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Abstract. Given a triangulated surface, a euclidean or hyperbolic polyhedral surface 
can be constructed by assigning radii to the vertices of the triangulation. We develop 
necessary and sufficient conditions for the existence of such a polyhedral surface 
having specified characteristics. 

O. Introduction and Definitions 

Suppose S is a compact bordered or closed surface with a triangulation 7'. A radius 
function R assigns a positive extended real number R(v) to each vertex v of T. 
Thurston [23] described the following method for using a finite radius function 
to construct a euclidean polyhedral surface. For  each face in T, consider three 
mutually tangent circles in the plane whose radii are R(v~), R(v2), and R(v3), where 
v~, v2, and v 3 are the vertices of the face. A triangle of centers is formed by 
connecting the centers of the circles by lines to produce a triangle. The triangles 
formed in this way are then pasted together along corresponding edges in a natural 
way to form a polyhedral surface E(R) such that there is a homeomorphism from 
S to E(R) which maps each face in S onto the corresponding triangle in E(R). T 
can then be regarded as a triangulation either of S or of E(R), and each face in 
E(R) is a euclidean triangle. 

The canonical metric on E(R) has constant Gauss curvature zero except for 
possible isolated cone-type singularities at the interior vertices, and this metric 
can be transferred back to S via the homeomorphism. The euclidean curvature 
induced by R at any interior vertex v of T is denoted ~c~UC(v) and is defined as 2rt 
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* The results in this paper are included in the author's doctoral dissertation [12]. 
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minus the sum of the angles at v in each face in E(R) that has v as a vertex. The 
metric on E(R) has no singularity at an interior vertex v where ~uc(v) = 0. 

Any radius function R can also be used to determine a hyperbolic polyhedral 
surface H(R) by following the same procedure using circles and geodesics in the 
hyperbolic plane to produce hyperbolic triangles. In this case the radius function 
need not be finite; a circle of infinite hyperbolic radius is interpreted as a horocycle 
under the disk model of the hyperbolic plane. The hyperbolic curvature induced 
by R at any interior vertex v of T is denoted x~YP(v) and is again defined to be 2~ 
minus the sum of the angles at v in each face of H(R) that has v as a vertex. The 
metric on H(R) has Gauss curvature - 1 everywhere except for isolated singular- 
ities at the interior vertices v where ~:~YP(v) :~ 0. See [17] for further details. 

Thurston [23] proved the following results, which we refer to as Thurston's 
theorems. Given a closed surface with triangulation T, if the Euler characteristic 
~( is negative, then there is a unique radius function R on T such that x~ yp - 0. 
Similarly, if~( = 0, then there is a finite radius function R such that K~ uc - 0; in this 
case R is unique up to constant multiples. These theorems show that for any 
triangulation of a closed surface S of Euler characteristic X -< 0, there is a metric 
of constant Gauss curvature on S such that the triangulation can be represented 
using geodesics for edges [10]. This result is also true for a sphere as a consequence 
of the Andreev-Thurston theorem; see Corollary 2.4. 

For  a surface with border, it seems natural to ask the following question, which 
we call the nonsingular hyperbolic (or euclidean) boundary-value problem. Assign 
a radius r(v) to each vertex in the boundary of the surface. Is there a radius function 
R that agrees with the prescribed radii on boundary vertices, and which induces 
x~ yp = 0 (or x~ uc = 0) on the interior vertices? Carter and Rodin [9] used a Perron 
family technique to prove that, in the euclidean case, there is always such a radius 
function on an orientable surface of genus 0 or 1 with a border. Beardon and 
Stephenson [4] showed that the hyperbolic problem always has a solution R if 
the surface is simply connected with a border. Minda and Rodin [17] and Doyle 
[11] proved that the hyperbolic problem is solvable for any orientable surface 
with a border, and they showed how this case can lead to the Poincar6 metric on 
the surface. 

In this paper, we consider the following problem, which we call the hyperbolic 
or euclidean boundary-value curvature problem. This is a slightly generalized 
version of a problem posed in [17]. Let Tbe  a triangulation of a compact bordered 
or closed surface S. Let ~ be the set of border vertices, if any, plus any selected 
interior vertices (called punctured vertices). We refer to ~ as the set of boundary 
vertices. Let r: ~ ~ (0, oo] be a function that prescribes radii on the boundary 
vertices. Let J be the set of nonboundary vertices. Let ~:: J ~ ( - ~ ,  2rt] be a 
function that prescribes curvatures to be concentrated at the nonboundary vertices. 
Is there a radius function R which agrees with the prescribed radius r(v) on each 
boundary vertex, and which induces the prescribed hyperbolic curvature x(v) at 
each vertex in J ?  Such a radius function is called a solution to the problem. 

For  any subset ~ of J ,  let F(~e) denote the number of faces having at least 
one vertex in ~e', and let F'(~U) denote the number of faces having all three Vertices 
in "U. In Theorem 1 we show that the hyperbolic boundary-value curvature 
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problem has a unique solution if and only if, for any nonempty subset "U of J ,  
the sum of the curvatures assigned to vertices in ~ is greater than 2hi ~UI - nF(~). 

Theorem 2 examines the nonsingular hyperbolic boundary-value problem, 
which is obtained by simply prescribing x = 0. We find that this problem has a 
solution if and only if 21-¢1 < F(J).  This condition is satisfied if and only if the 
surface has a border or has an Euler characteristic that is less than the number 
of punctured vertices. 

In Theorem 3 we examine the euclidean boundary-value curvature problem. 
Provided ~ is nonempty, x is strictly 'positive, and r is finite, this problem is 
solvable if and only if 

2~1~//:1 - trF(~/:) < ~ K(v) < 2 ~ t ~ : 1 -  nF'(~//') 
v E ~lU" 

for each subset ~/ of J .  Our results can be applied to prove Thurston's theorems; 
see Corollaries 2.2 and 3.1. 

We find it useful to adapt Colin de Verdi6re's concept of a coherent system of 
angles [10] to the present situation. A system of angles on T assigns an angle 
value O(v,f) ~ [0, re) to each ordered pair (v,f)  where v is a vertex of the f ace f  We 
say O(v,f) is the angle at v in f Such a system is hyperbolic coherent for x if 

(i) the sum of the three angles in each face in T is strictly less than rt, and 
(ii) 2n minus the sum of the angles at any nonboundary vertex v is equal to the 

assigned curvature ~c(v). 

Euclidean coherent systems of angles are defined similarly; in this case the assigned 
values are strictly positive and the sum of the angles in each face is exactly r~. 
Colin de Verdi6re showed that a nonsingular boundary-value problem is solvable 
iff there exists a coherent system of angles; we shall find that the same is true for 
our more general case. 

We prove our theorems by means of convergent algorithms which can be used 
for finding solutions to the boundary-value curvature problems. These algorithms 
use a hyperbolic or euclidean relaxation operator ~ which depends on the functions 
r and x. Given a radius function G, ~(G) is the radius function on T defined as 
follows. For each vertex v ~ ~ ,  ~(G)(v) = r(v). For each vertex v ~ J ,  ~(G)(v) is the 
unique radius, if any, such that the curvature induced at v would equal x(v) if the 
other radii remained unchanged. In other words, if Vo is a nonboundary vertex, 
then the radius function 

~G(v) if v ¢ vo, 
G'(v) 

(~(G)(vo) if v = v o 

induces the prescribed curvature at v o. It is easily seen by Lemma 0.1, which 
follows, that the hyperbolic relaxation operator ~ is defined on all radius functions 
as long as, for each nonboundary vertex v in T, 2n - nF({v}) < x(v) < 2re; in the 
euclidean case, strict inequality must hold. 
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We will discover that, if there is a solution to the boundary-value curvature 
problem, then ~ is defined and ~k(G) converges pointwise to the solution as 
k ~ ~ ,  provided that, in the euclidean case, there is at least one boundary vertex. 
Conversely, if ~k(G) converges to a radius function L, then L solves the problem, 
provided that L is finite in the euclidean case. ~ is very similar to the operators 
defined in [9] and originally suggested by Thurston [23]. 

We make frequent use of the following fairly obvious results; the reader may 
refer to [4], [12], and [23] for proofs. Except as noted, these results apply to both 
the hyperbolic and euclidean cases. 

Lemma 0.1. Consider the triangle of  centers of  circles of  radii a, b, and r, where 
a and b are fixed. Let or(r), ~(r), and p(r) be the angles that correspond to a, b, and 
r, respectively. Then 

(i) p(r) is a strictly decreasing continuous function with limr_,o+ p(r) = ~ and 
limr~ ~ p(r) = O. 

(ii) ct(r) and [3(r) are strictly increasing continuous functions with l imr.o, ~(r) = 
limr~o, /3(r) = 0. (Exception: In the hyperbolic case, i f  a = or, then ~ =- 0; 
if  b = ~ ,  then fl - 0.) 

Lemma 0.2. ~ is a continuous function that preserves inequalities in the sense that 
i f  A and B are two radius functions such that A <_ B (that is, A(v) <_ B(v) for 
each vertex v in T), then ~(A) < ~(B). 

Lemma 0.3. Let A be a radius function, and assume that the relaxation operator 
is defined. The following are equivalent, and the corresponding statements with 

the inequalities reversed are also equivalent: 

(a) ~(A) < A. 
(b) For each integer k >_ O, ~k+l(A) < ~k(A). 
(C) For each nonboundary vertex v, the curvature induced by A concentrated at 

v is greater than or equal to ~c(v). 
(d) For each integer k > 0 and for each nonboundary vertex v, the curvature 

induced by ~k(A) concentrated at v is greater than or equal to K(v). 

I_emma 0.4. Let A be a radius function on T. Suppose that the sequence {#~k(A)} 
converges pointwise to a radius function L and that, in the euclidean case, L is finite. 
Then L is a solution to the problem. 

1. The Hyperbolic Boundary-Value Curvature Problem 

Theorem 1. Consider any hyperbolic boundary-value curvature problem. Let ~ be 
the hyperbolic relaxation operator for r and ~. The following are equivalent: 

(a) The problem has a unique solution. 
(b) There exists a hyperbolic coherent system o f  angles for  x on T. 
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(c) Given a nonempty "¢/ o f  5~, the prescribed curvatures satisfy 
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(d) There exists a radius .function G such that .~gk(G) converges pointwise to a 
radius function as k ~ oo. 

(e) Given any radius fimction G, ~k(G) converges pointwise to the solution to the 
problem as k ~ ~ .  

The following lemmas will be useful in proving Theorem 1. Lemma 1.1 is due to 
Doyle [11]. An analytic proof based upon the Hyperbolic Cosine Rule is given by 
Xiangyang Liu in [17], and a proof based on hyperbolic and euclidean geometries 
is given in [12]. 

Lemma 1.1. Let a, b, and c be positive extended real numbers such that a is finite. 
For t > O, consider the hyperbolic triangle of  centers of  mutually tangent circles of  
hyperbolic radii ta, tb, and tc, and let Off) be the angle corresponding to ta. Then 
O(t) is a strictly decreasing function o f  t. 

Lemma 1.2. I f  a hyperbolic boundary-value curvature problem has a solution, then 
the solution is unique. 

Proof Suppose A and B are solutions. Certainly A and B agree on boundary 
vertices, and A(v) = B(v) = 0o at any vertex v ~ J where x(v) = 2n. Now suppose 
A(v) > B(v) at some vertex v ~ J where x(v)< 2n, and choose Vo to maximize 
A(v)/B(v) among such vertices. Let c = A(vo)/B(vo). Then Lemmas 0.1 and 1.1 imply 
Khyp(VO) <t~ KcBhyp(vo) ~ KhAYP(Vo), which violates the assumption that Khyp(vo): 
~:~YP(Vo) = ~:(Vo). Thus the solution is unique. []  

We are now ready to prove Theorem 1. 

Proof of  Theorem I. (a) ~ (b) The solution to the boundary-value curvature 
problem generates a hyperbolic coherent system of angles. 

(b) =~ (c) Given a subset ~ of J ,  certainly 

E(angles at vertices in ~e ~) ___ E(angles of faces that have at least one vertex in ¢/') 

< rtF(~/r), 

We obtain the desired inequality by subtracting the first and last expressions 
from 2~1~1. 

(c) =~ (d) 9t is defined because, for any vertex v e J ,  x(v) _< 2n by assumption, 
and the inequality in (c) yields 2n - nF({v}) < ~¢(v). 

Let G = P, where P(v) = oo at each vertex v; certainly N(P) _< P. By Lemma 
0.3, {~k(p)} is a nonincreasing sequence which is bounded below at each vertex 
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by zero. Thus ~lk(P) converges pointwise to a function L such that L(v) >_ 0 for 
each vertex v. 

Now we must show that L(v) vt O. Let ~r be the set of vertices v where L(v) = O. 
Suppose that Uis nonempty. We will show that the inequality in (c) is violated. 

As in [16], we classify each angle at any vertex v e "U as type ~, fl, or ), if the 
face that contains the angle has exactly one, two, or three vertices in U, 
respectively. Now consider the angles induced by )tk(P). It follows from Lemma 
0.1 that any angle of type ct approaches n as k-~ 09. If a face has two type fl 
angles, the third angle approaches zero by Lemma 0.1, and the area of the face 
approaches zero. Since the area of a hyperbolic triangle is rt minus the sum of its 
angles, this means that the sum of the two type fl angles approaches ~ as k ~ ~.  
For a face with three type 7 angles, the area of the face approaches 0, so the sum 
of the three angles in the face approaches ~. 

Thus, as k --* 09, the sum of the angles at vertices in "~" approaches ~F(~V'). Hence 
~ . ~ e  x~YP(v) approaches 2 r c t ~ l -  rtF(~/'), where ~khYP(v) denotes the hyperbolic 
curvature induced by ~k(p) at the vertex v. However, for all v e ~ and for all k, 
K(v) _< ~hrP(v) by Lemma 0.3. Therefore, 

x(v) _< 2~z[U'[ - zcF(~V'); 
V E ~  ~ 

this violates condition (c). 
(d) =:, (e) The hyperbolic boundary-value curvature problem has a solution R 

by Lemma 0.4. Let G be any radius function. For each vertex v, R(v) = o0 iff 
(x(v) = 2rt or r(v)= 09) iff ~t(G(v))= 09, so we can choose e~(0, 1) such that 
eR < ~(G). Let N = eR. By Lemma 1.1 x~YP(v) _< x(v) at all vertices v ~ J .  Thus 
by Lemma 0.3, ~tk+l(N) > ~tk(N) for all k > 0. Furthermore, N _< R, so 9/k(N) --< 
~k(R) = R. 

Thus, at any vertex v where R(v) is finite, {~tk(N)(v)} is nondecreasing and 
bounded. At other vertices, ~tk(N)(v)= 09 for all k. Therefore, ~tk(N) converges 
pointwise to a radius function L; L = R by Lemmas 0.4 and 1.2. A similar 
argument shows that ~tk(P) decreases to R, where P(v) = m at each vertex v. 

Now N < 9t(G) < P, so, by Lemma 0.2, ~tk(N) _< 98k+l(G) < 9tk(P) for all k. 
Since {gtk(N)} and {~tk(P)} both approach R as k ~ 09, so does {~k(G)}. 

(e) ~ (a) This is obvious. [] 

Any hyperbolic boundary-value curvature problem can be modified by changing 
the assigned radii and/or  puncturing some of the vertices in J and assigning radii 
instead of curvatures to them. If the original problem has a solution R, then the 
new problem will also have a solution, since R generates a coherent system of 
angles. 

The proof of Theorem 1 shows that if no solution exists, then either ~ is 
undefined or there is at least one vertex v in J such that, for any radius function 
G, Ylk(G)(v) --+ 0 as k ~ oo. In fact, as long as ~ is defined, the sequence {~k(G)} 
converges pointwse to a limit L which does not depend on G. L is the solution if 
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the problem is solvable; otherwise, L(v)= 0 for at least one vertex v e J .  This 
assertion is proved in [12]. 

2. The Nonsingular Hyperbolic Boundary-Value Problem 

Theorem 2. Consider a hyperbolic boundary-value curvature problem in which the 
assiqned curvature function ~c is identically zero, Assume ~¢ is nonempty. Then the 
foIlowiny are equivalent: 

(a) The problem has" a solution. 
(b) 2 t J I  < F(~-~). 
(c) The Euler characteristic )~ is strictly less than the number of  punctured vertices, 

or the surface has a border. 

Proof ( a ) ~ ( b )  By Theorem 1 we know that ( a ) ~ ( b ) ;  we aim to show that if 
21Jl  < F(J) ,  then condition (c) of  Theorem 1 is satisfied, i.e., 21~'1 - F(~ ~-) < 0 
for any nonempty  subset ~" of ,~. We assume without loss of  generality that f -  
is connected. 

Consider the subcomplex S'~ that consists of all faces that have at least one 
vertex in ~ '  If S'~ is closed, then it must  be that S'~ = S and S is closed, so 
Fl~t ~) = b lJ ) .  Then 

2 1 . 1  - F(~ °) = 21, t - F(~)  ~< 21J l  - F ( J ) ;  

this quantity is negative by assumption (b). 
We are left with the case where S'~ has a border;  in the ensuing discussion, 

"border"  refers to the border  of  the subcomptex. Let S¢ be the subcomplex that 
results from "separat ing"  any locations in S', where a border vertex is shared by 
more than two border edges, so that the number  of border  edges equals the number  
of border vertices; see Fig. 1. Let n be the number  of contours  in the border of  
S ,  plus the number  of vertices in the interior of S~ that are not  in ~e. Let m be 
the number of edges in the border  of S~ . 

Fig. 1. S~- and S~. The vertices in ~ are marked by dots. In this case n = 3 and m = 10. 
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Now construct a triangulated closed surface as follows. Attach a disk to each 
contour in the border of S~ ,  and triangulate the disk by placing a vertex in its 
interior and constructing edges between this vertex and each vertex in the contour. 
The resulting surface has I~/1 + n + m vertices and F(q/~) + m faces. Let Z' be the 
Euler characteristic of this surface. 

Now for any triangulated closed surface with F faces, V vertices, E edges, and 
Euler characteristic ~', we know that V - E  + F = Z' and 3 F =  2E, so 
2 V -  F = 2X'. In the present case this implies 2pt~l - F(~ r )  = 2Z' - 2n - m. Since 
S~- has a border, we know n >_ 1 and m >_ 3; since g' < 2, this tells us that 

21~1 - F(~v') < 0. 
(b).¢~(c) Apply the above argument to the case f "  = J .  If the subcomplex S~ 

has a border, then both (b) and (c) are true. Otherwise, m = 0, so 21Jl - F (J )  = 
2(X - n). However, in this case n is the number of punctured vertices, so (b)¢~-(c) 
is obvious. [] 

The next three corollaries follow immediately from the fact that the Euler 
characteristic Z of an orientable closed surface of genus g is 2 - 2g, and, for a 
nonorientable closed surface, ;t = 2 -  g. Note that Corollary 2.3 resolves a 
question posed in [17] regarding the thrice-punctured sphere. 

Corollary 2.1. The nonsingutar hyperbolic boundary-value problem on a closed 
surface o f  genus g with n punctured vertices has a solution iff 2g + n > 3 (orientable 
case) or g + n >_ 3 (nonorientable case). 

Corollary 2.2 (Thurston's Theorem for Z < 0). Let Tbe  a triangulation of  a closed 
orientable surface with genus g > 2 or a closed nonorientable surface of genus g >_ 3. 
There exists a radius function on T that induces hyperbolic curvature zero at each 
vertex in T. 

Corollary 2.3, Let T be the triangulation o f  any closed surface, and suppose that 
at least three vertices are punctured The nonsingular hyperbolic boundary-value 
problem has a solution. Note that i f  the boundary radii are set to infinity, the 
PoincarO metric on the punctured surface is obtained 

Corollary 2.4 (Existence Portion of the Andreev-Thurston Theorem). A circle 
packing is a collection of  closed disks whose interiors are disjoint. The nerve of a 
circle packing is a graph that has one vertex for each disk; two vertices are connected 
by an edge iff the corresponding closed disks are tangent. Let T be a triangulation 
of  the sphere. Then there exists a circle packing on the sphere whose nerve is 
isomorphic to the graph formed by the vertices and edges in T [16]. 

Proof Choose any face in T. Puncture its three vertices and assign arbitrary 
radii to them. By Corollary 2.3, there is a radius function R that solves the 
nonsingular hyperbolic boundary-value problem. Construct the hyperbolic poly- 
hedral surface H(R) as discussed in the introduction. Now remove the chosen face 
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from H(R); what remains is a triangulated triangle in the hyperbolic plane. For 
each vertex v in H(R), construct the disk of hyperbolic radius R(v) centered at v; 
this yields a circle packing in the hyperbolic plane which has the desired nerve. 
This packing can be embedded in the complex plane and then transferred to the 
sphere by stereographic projection. [] 

3. The  Eucl idean Boundary-Value  Curvature  P r o b l e m  

Our euclidean theorem requires at least one boundary vertex, but a closed surface 
is easily handled by puncturing one vertex and assigning radius I. In this case the 
curvature concentrated at the punctured vertex is uniquely determined by the 
curvatures at the other vertices; this is easily seen by applying the Gauss-Bonnet 
formula, which simplifies to Z x(v) = 2re Z in the case of a closed surface of Euler 
characteristic Z with a metric of Gauss curvature 0 except for isolated singularities 
v with concentrated curvatures x(v). 

Theorem 3. Consider a euclidean boundary-value curvature problem & which ~ is 
nonempty, r is fni te ,  and x(v) < 2rt for all v e J .  Let ~ denote the euclidean 
relaxation operator for r and ~c. The following are equivalent." 

(a) The problem has a unique solution. 
(b) There exists a euclidean coherent system of angles for x on T. 
(c) Given a nonempty subset ~/" of J ,  the assigned curvatures satisfy 

2=t"Fl - r~F('F') < ~ x(v) < 2=t'//I - rcF'(<) .  
vE~'- 

(d) There exists a finite radius function that solves the hyperbolic boundary-value 
curvature problem determined by x and r, and, for any nonempty subset 
of  J ,  

2~1~1- ltF'(f') > ~ x(v). 

(e) There exists a finite radius function G such that 37~k(G) converges to a finite 
radius function as k -* oo. 

(0 I f  G is anyfinite radius function, then ~tk(G) converges to the problem's solution 
ask - - ,  oo. 

The proof of Theorem 3 follows along the lines of the proof of Theorem 1, with 
the following exceptions. The uniqueness proof is somewhat different; see Lemma 
3.2. Also, in order to prove (d)=~ (e), we let G be the radius function that solves 
the hyperbolic problem; it turns out that {~k(G)} is a nondecreasing, bounded 
sequence. To show that {~k(G)} is bounded, let ~ be the set of nonboundary 
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vertices such that ~Rk(G)--. ~ .  It is easily shown that condition (d) is violated if 
~" is nonempty. The fact that {~gk(G)} is nondecreasing follows from this lemma: 

Lemma 3.1. Let a, b, and c be positive real numbers that satisfy the triangle 
inequality. Consider the hyperbolic and euclidean triangles with sides o f  lengths a, 
b, and c. Each angle of  the euclidean triangle is larger than the corresponding angle 
o f  the hyperbolic triangle. 

Proof Consider the hyperbolic triangle with sides ta, tb, and tc, and let O(t) be 
the angle opposite the side tc. Let q~ be the angle opposite c in the euclidean 
triangle. Now cos O(t) approaches cos ~p as t ~ 0, so O(t) approaches q~. However, 
O(t) is a strictly decreasing function of t by Lemma 1.1, so q~ > O(t) for all positive t. 
Thus (p > 0(1). [] 

Lemma 3.2. I f  a euclidean boundary-value curvature problem has a solution, then 
the solution is unique, provided the set ~ is nonempty. 

Proof Suppose A and B are two radius functions which solve the problem. 
Choose a vertex v o which maximizes A(v)/B(v) over all vertices v in a connected 
component  of J ;  let c = A(vo)/B(vo). Then at each vertex v which is adjacent to 
v o, we must have A(v)/B(v) = c, for otherwise we would have x~UC(Vo) > K~UC(Vo). 
Repeating this argument along chains of vertices in J shows that A(v)/B(v) = c for 
all vertices v in and adjoining the connected component. Since A and B certainly 
must agree on boundary vertices, we conclude that c = 1. [] 

As in the hyperbolic case, any euclidean boundary-value curvature problem can 
be modified by changing the assigned radii and/or by puncturing some of the 
vertices in J and assigning radii instead of curvatures to them. If the original 
problem had a solution, then so will the new one. 

We now show how Thurston's  theorem for X = 0 follows from our results. 

Corollary 3.1. Suppose T is a triangulation of  a torus or a Klein bottle. Then there 
is a radius function R on T such that x~UC(v) = 0 for each vertex v in T. R is unique 
up to constant multiples. 

Proof Let V, E, and F denote the number of vertices, edges, and faces in the 
triangulation, respectively. Now V -  E + F is the Euler characteristic zero, and 
3F = 2E, so 2 V -  F = 0. 

Now puncture one vertex v o in T, and prescribe radius r(vo) = 1. Then ~ = {Vo}, 
and J i s  the set of all remaining vertices in T. There is a solution to the nonsingular 
hyperbolic boundary-value problem on T by Theorem 2, so by Theorem 1 we 
know that, for any nonempty subset "~ of J ,  we have 

2 J ~ l  - F W )  < 0. 
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Now if "//c denotes the set of vertices not  in ¢ ,  we know that 

21~1 - F ( ~ / )  + 213v~1 - F'(3¢ -c) = 2 V  - F = O, 

SO 

21~c1 - F ' ( g  c) > O. 

However, Vo was chosen arbitrarily, so this inequality actually holds for a n y  

nonempty proper  subset ~.c of the vertices in T. Hence condition (d) of Theorem 
3 is satisfied, so there is a unique radius function R such that  x~"C(v) = 0 for all 

e u c  v :~ Vo, and R(vo) = 1. Now KR (VO) = 0 by the Gauss -Bonne t  formula. Clearly, 
any scalar multiple k R  will also generate euclidean curvature zero at each vertex. [ ]  
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