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ALAN F. BEARDON AND KENNETH STEPHENSON

(Received October 18, 1989)

1. Circle packings. In the last few years there have been many papers which

have explored the connection between circle packings in the Euclidean plane and com-

plex analysis (see, for example, [3], [4] and [5]), and in [1] we considered packings in

the hyperbolic plane. In this paper, we shall show how the three classical geometries

of constant curvature (namely, spherical geometry C^, Euclidean geometry C, and

hyperbolic geometry viewed as the unit disc A in C) control the possible circle packings

in that geometry. The idea is that the curvature of any one of these spaces determines

its trigonometry, and that this, in turn, exerts a strong influence on any circle packing

that the space supports.

Throughout this paper, S will denote any one of these spaces. By a circle packing

ofS we mean a collection {Da} of closed, non-overlapping discs in S with the properties

(i) the discs DΛ do not accumulate in S, and

(ii) the closure of each component ofS—(\jDa) is a compact subset of S bounded

by exactly three circular arcs, each arc lying on the boundary of some Da.

Roughly speaking, in any circle packing, each disc is tangent to several others, and the

regions between the discs are circular triangles. Note that (i) implies that any circle

packing of C^ can only contain a finite number of circles, while (ii) implies that any

circle packing of C, or of A, must contain infinitely many circles: this is a fundamental

distinction.

Given a circle packing of 5, the flower of a circle C in the packing is the configuration

consisting of C together with all of the circles tangent to it. The circle C is the centre

of the flower, the circles tangent to C are the petals of C, and the degree of C is the

number of petals of C. In this paper, our interest centres largely (but not entirely) on

the degree k circle packings, that is, on circle packings in which each circle has exactly

k petals. As an illustration of how the curvature of S influences its circle packings, we

prove the following existence and uniqueness theorem for degree k packings.

THEOREM 1. (i) There exists a degree k circle packing of ' C ^ if and only if k = 2,

3, 4 or 5.

(ii) There exists a degree k circle packing of C if and only if k = 6.

(iii) There exists a degree k circle packing of A if and only if k>l.

Further, in each case, a degree k circle packing of S is unique up to a conformal

automorphism of S.
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This rather special result illustrates our basic idea, for we can give an intuitive
explanation of Theorem 1 as follows. Consider a degree k circle packing of S, choose
any circle Co in the packing, and define a sequence of circles Cn inductively by the
condition that Cn + 1 is any one of the smallest petals of Cn. In order that the sequence
Cn does not accumulate in S, the radii of the Cn cannot converge to zero too quickly.
It follows that the larger values of k must correspond to those geometries in which the
length of the circumference of a circle is a relatively large function of the radius (the
case of negative curvature) and conversely.

Of course, circle packings with variable degree are of greater interest than constant
degree packings and we shall also prove:

THEOREM 2. (i) Suppose that S supports a circle packing in which each circle has

degree at most 5; then S is the complex sphere.

(ii) Suppose that S supports a circle packing in which each circle has degree at most

6; then S is either the complex plane or the complex sphere.

This result is concerned with upper bounds on the degree; in the other direction,
we prove:

THEOREM 3. Suppose that S supports a circle packing in which each circle has degree

at least seven. Then S is the hyperbolic plane.

We remark that any circle packing of S gives rise to a (possibly infinite) triangulation
of S which is obtained by joining the centres of mutually tangent circles by a geodesic
segment. It is often easier to discuss the triangulation, or its graph, rather than the
circle packing, and we shall pass freely between a circle packing, its triangulation, and
the corresponding graph, without much comment.

2. The sphere. There are three Platonic solids with triangular faces, namely the
tetrahedron, the octahedron and the icosahedron. We view these as being embedded
in R3 with their vertices on the unit sphere, and in each case, there is a unique value
of r such that the spherical caps of radius r centred at the vertices provide a degree k
circle packing of Q (k is 3 for the tetrahedron, 4 for the octahedron and 5 for the
icosahedron). In addition, we can place three equal circles symmetrically about the
equator of the unit sphere to obtain a degree two circle packing of C^.

Conversely, given any degree k circle packing of C^, we can apply Euler's formula
to its graph (as we do when we seek all Platonic solids) and immediately find that k is
2, 3, 4 or 5. This completes the proof of the existence part of Theorem 1 (i).

The uniqueness of these packings follows from the uniqueness results in [1].
Applying a Mόbius map, we may consider one circle as the unit circle, with all other
circles lying inside the unit disc A. This yields an Andreev configuration for the packing
with the first circle removed, and this is known to be unique up to an automorphism of A.
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3. The Euclidean plane. In this section, we shall prove Theorem 1, (ii) and

Theorem 3, and first we prove Theorem 3.

Consider a flower in Cwith k petals, where k>3, and suppose that the centre circle

C o has radius r0, and that the petals Cj have radii rpj=l9 , k. A computation shows

that if all of the petals have the same radius, then this common radius is λkr0, where

_
ΛL. — -

1 — sin(π/k)

Of course, λk> 1 for k<5, λk = 1 for k = 6, and λk< 1 for k> 7. We prove:

LEMMA 4. In the situation described above,

and λk is best possible.

REMARK. This may be viewed as a companion to the Rodin-Sullivan Ring Lemma,

[3], which asserts that for some μk,

(3.1) min(r l 9 . ..,rk)>μkr0:

see [2] for the best choice of μk.

PROOF OF LEMMA 4. Let

λ = min(rί/r0, . . . , r k / r 0 ) .

Now consider the three mutually tangent circles, Co, Cγ and C 2 of radii r0, r1 and r2,

respectively, construct the triangle with vertices at the centres of the circles, and let θ

be the angle of this triangle at the centre of Co: thus

(r0 + >*i)2 + (r0 + r 2 ) 2 - (rx + r 2 ) 2

Now 0 decreases as we decrease rλ and r2; hence cosθ increases and so, on replacing

r1 and r2 by Ar0, we obtain

2λ2

say. The same argument holds for any pair of consecutive petals so, if θj is the angle

associated with r } and rj+ί, then we have cosθj<g(λ). We deduce that

2π=t ej>kcos-

and hence that

g(λ)>cos(2π/k) =
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As g is a decreasing function, we obtain λ<λk as required.
We can now give:

THE PROOF OF THEOREM 3. Consider a circle packing of S as given in Theorem

3 and suppose first that S is the complex plane. As described in the introduction, we
create a sequence of circles Cn, each Cn + ί being one of the smallest petals of Cn. By
Lemma 4, the radius of CM, say /?„, is at most (A7)%, so, as λΊ< 1,

QO 00

Σ Pn<roΣ(λiT<+00 >
n=ί n=l

and the circles Cn must therefore accumulate in C. As this cannot happen, S is not C.
Finally, we show that S cannot be the sphere. Now any circle packing of the sphere
can be stereographically projected into the plane without changing the degree of the
circles, and the argument above shows that each circle C in C has a petal which has a
strictly smaller Euclidean radius than C. As this implies that there are infinitely many
circles present, S is not the sphere so it must be the hyperbolic plane.

REMARK. The circle packing of C consisting of circles of radius 1/2 with centres
at m + in (m, n integers), and circles of radius (y/2 —1)/2 with centres at (m + iή)j2 (m, n
odd integers), has infinitely many circles of degree eight.

We now give:

THE PROOF OF THEOREM 1, (ii). First, the regular hexagonal packing of circles of
equal size is a degree 6 circle packing of C We must show that for any degree k circle
packing of C, k = 6, and as an immediate consequence of Theorem 3 is that k < 6, it
remains to show that k > 6 for such a packing.

Consider now a (necessarily infinite) degree k circle packing of C, or of A, and
suppose that k<5: we propose to reach a contradiction and so show that no such
packings exist. This will

(1) complete the proof of the existence part of Theorem 1 (ii);
(2) prove Theorem 2 (i),

and finally (for use later),
(3) show that k > 6 for any degree k circle packing of A.
We proceed now to a contradiction, so let S be either of the spaces C or A. The

given packing of S gives rise to an infinite triangulation, and hence to a graph G on 5,
and we begin by constructing a Jordan curve Γ in G. We denote the interior of Γ by
Σ, so G induces a triangulation T of Σ u Γ. Clearly, we may construct Γ so that

(i) Γ has at least 21 edges, and
(ii) each triangle in T meets Γ in a connected set (this means that Σ has no narrow

neck spanned by just one triangle).
Suppose that Γ contains n vertices υj9 and n edges ej (so n>21), and let kj be the

number of triangles having v} as a vertex. Suppose also that T contains t triangles, and
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n0 interior vertices wj9 and let a} be the number of triangles having w } as a vertex. First,
Euler's formula applied to T yields

(3.2) t

Next, each ws has a} triangles meeting there and, by assumption, α, <5: thus

(3.3) 3 r - Σ * Σ
j

and, eliminating n0 from (3.2) and (3.3),

(3.4)

We must now estimate the sum 2^jkj in two different ways. Obviously, kj<4 (as
otherwise, υj would be a vertex inside Γ) so certainly, YJkj<4n: this, however, is not
sufficient for our needs. Suppose for the moment that, say, k2 — 4. Then the edges
ex and e2 which meet at v2 must be two consecutive edges of one triangle outside of T
(as otherwise, in the graph G, v} would have valency exceeding 5). It follows that if
kj = kj+1=4, then three consecutive edges of Γ bound the same triangle and so n = 3,
contrary to (i). We deduce that

and so we obtain our first estimate, namely

j

Combining this with (3.4) we obtain

(3.5) / <

Next, we obtain a second estimate. The assumptions on Γ imply that there are

rnj = max{kj — 2, 0}

triangles with Vj as a vertex and not having an edge in common with Γ. As no such
triangle appears in this set for different values of j , we find that

t — n being the total number of triangles not having an edge on Γ. This leads to our
second estimate, namely,
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and this, with (3.4) yields

(3.6) 3n<t+\0.

Finally, elimination of t from (3.5) and (3.6) yields «<20, a contradiction. We have

now completed the proofs of (1), (2) and (3) above.

The uniqueness of the packing in Theorem 1, (ii) follows directly from Appendix

1 in [4].

4. The hyperbolic plane. We begin by constructing, for each k>l, a degree k

circle packing of the hyperbolic plane. First, construct an equilateral (hyperbolic) triangle

T with each angle equal to 2π/k: this is possible if and only if k>Ί. The group Γ

generated by the reflections across the sides of T is discrete, and T is a fundamental

region for Γ. This means that the Γ-images of T tesselate A and clearly, this gives rise

to an infinite triangulation of A in which each edge has the same hyperbolic length, say

2Rk, and in which each vertex has degree k. The desired circle packing is now obtained

by constructing circles of radius Rk at each vertex of each Γ-image of T.

As the value of Rk plays an important role in what follows, we shall find an explicit

expression for it. By bisecting T and considering the triangle with sides Rk, r (say), and

2Rk (these being opposite angles of π/k9 2π/k and π/2, respectively), we obtain

= sm(π k),
sinh(2iίfc)

or, equivalently,

(4.1) 2sin(π/fc)coshCRfc)=l .

This definition holds for k>7, but it is convenient to extend it to k = 6, so ^ 6 = 0. To

complete the proof of the existence part of Theorem 1, we must prove that k>l for

any degree k circle packing of A. Note that from (3) in §3, we know that k>6, so Rk

is defined for the range of k we are considering.

We shall need to use the function

Φ: (a, fe)ι-» S m a , a > 0 , b>0,
sinh(α + b)

which arises naturally in hyperbolic trigonometry. Observe that

(i) for fixed b, the map a\-+Φ(a, b) is increasing;

(ii) for fixed a, the map b\—>Φ(a, b) is decreasing;

(iii) Φ(0 + ,Z>) = 0, Φ(+oo,6) = e-*;

(iv) the map a\-+Φ(a, a) = 2(cosha)~1 is decreasing.

Now take any λ in (0, 1/2]. The properties (i) and (iii) guarantee that we can define

a function
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V ί O , +00)

by the formula

where we have supressed the dependence of/on λ in our notation. To obtain an explicit
formula for /, we can express the defining equation in terms of exponentials and
re-arrange to obtain the formula

\-λex

This shows that / i s a strictly increasing map of (0, logΛ."1) onto (0, +00), and also
that / can be extended to an analytic function in some neighbourhood of the origin
with/(0) = 0.

The geometric significance of the function Φ is that if a circle C1 of radius a is
tangent to a circle C2 of radius b, then Cγ subtends and angle 2Θ at the centre of C2, where

sin θ = Φ(a, b).

In particular, if a flower contains a central circle C of radius r, and n petals Cj of equal
size, then each petal has radius/(r), where/is given by

We shall now use the dynamics of the iterates of/to investigate the geometry of
circle packings. With this in mind, observe that if λ< 1/2, then /has exactly two fixed
points, namely 0 and xλ, where

2λ cosh xλ = 1 :

in particular, if /l = sin(π/fc), the fixed points of/are 0 and Rk. We shall show that the
fact that Rk is a fixed point of/corresponds to the existence of the regular degree k
circle packing of Δ with each circle having radius Rk. The fact that Rk is an unstable
fixed point of/corresponds to the fact that the regular packing is rigid, and, by further
analysis, unique.

For 0<Λ< 1/2, the additional relevant features of/are as follows:
(v) f(x)<xon(0,xλ)9 and

(vi) f(x)>x on (xλ, log /Γ1).
For example, f(x)<x is equivalent to

which, in turn, is equivalent to x<xλ. These facts show that if/n denotes the n-th iterate
of/ then

(vii) fn-+0 on (0, xλ\ and
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(viii) if x is in (xλ, log/l~ *), then for some n,

and s o / n + 1(x) is not defined.

If λ = 1/2, then /fixes zero on\yj(x)>x on (0, log 2), and (viii) holds with x λ = 0.

We come now to the stability argument, and the essence of this is contained in the

following Lemma (which is a type of hyperbolic Ring Lemma).

LEMMA 5. Suppose that λ = sin(π/A:), where k>6, and consider a flower in A with

central circle Co and petals Cu . . ., Ck, where each Cj has radius ry Then r 0 <log/ l " 1 ,

so f(r0) is defined, and

min{r l5 . . .,rk}^f(r0)<max{rl9 . . ., rk} .

With this, the rest of the proof of Theorem 1 is easy. Suppose first that k>l. Let

C o be a circle in a degree k circle packing of A, and construct a sequence Cn of circles,

each Cn + 1 being one of the smallest petals of Cn. Let pn be the radius of Cn, and suppose

that po<Rk. Then from Lemma 5, pn<fn(p0), and, as po<Rk, we see that pn->0 as

n->co. This means that for sufficiently large n,

and as/ '(0)< 1, there is a number τ, τ < 1, such that pn + ι<τpn for all sufficiently large

n. The convergence argument (as given in the proof of Theorem 3) is now applicable,

and this shows that the circles Cn must accumulate in A. As this cannot be so, we deduce

that for k > 7, every circle in every degree k circle packing of A has radius at least Rk.

Now suppose that k>6 and ρo>Rk, and construct the Cn as above, except that

now, Cn + 1 is one of the largest petals of Cn. Then pn+1>f(pn), whence ρn>fn(p0)> a n d

so, according to (viii), some pn exceeds logΛ,"1. This contradicts Lemma 5, however,

because in Lemma 5, C o is any petal in the packing, hence pM<log/l~1 for all n. We

deduce that for k> 6, every circle in every degree k circle packing of A has radius at most

Rk.

When k = 6, Rk = 0 and this argument shows that every circle in the packing has

radius zero: thus no such packings exist, and k>l for any degree k circle packing of

A. When k>l, the argument above shows that every circle in the packing has radius

equal to Rk, and the uniqueness is now obvious.

We now give:

PROOF OF LEMMA 5. First, we must show that r 0 < l o g A " 1 . Place the centre of

the circle C o at the origin, and let R be its Euclidean radius. If a circle Cx touches C o

and the unit circle, and subtends an angle 2πjk at the origin, then (from Euclidean

geometry),



CIRCLE PACKINGS 35

λ = sin(π/&) =
( ) / \+R

so

say. If R exceeds μ then it is impossible for C o to have k petals, so C o has Euclidean

radius at must μ. If follows that if C o has hyperbolic radius r0, then

- μ

as required. Now let Cj have centre zj9 and, for convenience, put Ck+ί = C1. Consider

the triangle with vertices zθ9 Zj and zj+ί, and let the angle at z 0 be θj. Obviously,

Now let

If we decrease r7- and r J + 1 to /, then θj decreases to some angle, say OLJ9 where, by

trigonometry,

sinh t = sin(αy2)sinh(r0 +1) .

We deduce that for each j ,

Φ(t,r0) = sm(ocj/2)<sm(θj/2).

Taking θj to be the smallest of the angles 0 l 5 . . . , θk, we obtain

whence t<f(r0) as required.

Now let

s = max{rί9 ...,rk}.

We let 2φj be the angle subtended at z 0 by the circle Cp so

From trigonometry,

so we have
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it I k
sin"1 Φ(/(r0), ro) = π/k<- Σ Φj = τΣ sin'1 Φ(rpr0)

kj=i kj=i

k

" 1
1

< - Σ sin"1 Φ(s, ro) = sin~1Φ(s, r0) ,
kj=i

whence f(ro)<s, as required.
It only remains to prove Theorem 2, (ii) so suppose that there is some circle packing

of A in which each circle has degree at most six. We define/by

Φ(/(x),*) = sin(π/6),

and suppose that a circle Co with radius r0 has q petals C, with radii rp respectively,
where 7= 1, . . . , q and q<6. Then, as in the proof that f(r0) < s above, we have

Φ(f(r0), r0) = sin(π/6) < sin(π/q) < Φ(s, r0),

where

We deduce that s >/(r0), and as r0 > R6 (= 0), we again see that there must be a sequence
of circles in the packing whose radii tend to + oo. For exactly the same reason as before,
this cannot happen and the proof is complete.
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