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Angiogenesis is necessary for carcinoma progression and is regulated by a variety of pro-
and anti-angiogenesis factors. CircRNAs are RNA molecules that do not have a 5’-cap or
a 3’-polyA tail and are involved in a variety of biological functions. While circRNA-mediated
regulation of tumor angiogenesis has received much attention, the detailed biological
regulatory mechanism remains unclear. In this review, we investigated circRNAs in tumor
angiogenesis from multiple perspectives, including its upstream and downstream factors.
We believe that circRNAs have natural advantages and great potential for the diagnosis
and treatment of tumors, which deserves further exploration.
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INTRODUCTION

Angiogenesis is characterized by the proliferation, differentiation and migration of endothelial cells
(ECs) on the basis of existing capillaries or venules to generate new blood vessels (1–3). In normal
circumstances, blood vessels are regulated by multiple angiogenic factors that promote or inhibit
angiogenesis to maintain homeostasis. However, active proliferation and increased energy
metabolism are characteristics of a tumor. Primary or metastatic cancer relies on the
angiogenesis and formation of a rich network of blood vessels. In response to its own cell
necrosis, tumor cells regulate the microenvironment by releasing pro-factors or by blocking the
release of anti-angiogenic factors. By activating the “angiogenesis switch” in the tumor, the vascular
system is stimulated to sprout new blood vessels (3, 4), so as to obtain more energy and oxygen (5),
and to promote the proliferation of the tumor. Meanwhile, tumor cells spread and metastasize in
other parts of the body. Therefore, inhibiting angiogenesis has become an important target for
cancer therapy and has stimulated the drive to explain the mechanism of tumor angiogenesis.

A number of pro-angiogenic factors have been identified, including VEGF (6, 7), angiopoietin
(8), matrix metalloproteinases (MMPs) (9, 10), and fibroblast growth factors (FGF) (11). VEGF
specifically promotes vascular endothelial growth by promoting mitosis. Angiopoietins (8) are
growth factors secreted by vascular endothelium that regulate vascular maturation and remodeling.
Two important angiopoietins are Ang-1 and Ang-2 (12, 13). The balance of Ang-1 and Ang-2 in
endothelial cells is key to normal angiogenesis. FGF (11) is a low molecular weight polypeptide
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growth factor with a specific structure, most of which can bind to
heparin. FGF contains secreted signaling peptides that are
secreted into the extracellular matrix (ECM) and can bind to
acetylheparin aminoglycan. MMPs are proteases that hydrolyze
ECM and remodel angiogenic basement membrane (14).

In contrast to the pro-angiogenic factors, endostatin, arrestin,
and angiostatin have been shown to be antiangiogenic factors.
Endostatin, a peptide of collagen XVIII, contains a zinc-binding
domain and an arginine-binding domain, which allows it to bind
to heparin and is important for heparin’s antiangiogenic activity
(15). Arrestin selectively inhibits endothelial cell proliferation
and migration and thus represses angiogenesis (16). Angiostatin
(17) is the product offibrinogen lyolysis. Interestingly, fibrinogen
itself has no inhibitory effect on angiogenesis but can directly
bind to ATP synthase to trigger apoptosis of endothelial cells,
possibly by lowering the pH value in cells (18).

Circular RNAs (CircRNAs) are a type of long non-coding RNA
(lncRNA) first identified in plant studies and thought to be a class of
viroids (19). Because of low expression in cells, circRNAs were
initially thought to be an error in RNA splicing. Next-generation
sequencing techniques that do not rely on the 3’-polyA tail have
been used to find extensive circRNAs in eukaryotic cells. With the
development of deep sequencing, more and more RNA transcripts
have been discovered, and the nonstandard pattern of RNA splicing
leads to multiple subtypes of circRNAs (20). As the number of
identified circRNAs increased, more of them were found to be
biologically stable, and many circRNA transcripts were more
abundant than their associated mRNA transcripts (21). Hansen
and Memczak et al. first demonstrated a function of circRNAs,
showing that circRNAs act as a sponge for miR-7 (22, 23). Since
then, circRNAs have received extensive attention, and their
characteristics and potential applications in clinical diagnosis and
treatment have been explored.

It has been previously shown that circRNAs play an important
role in tumor growth, angiogenesis, metastasis, recurrence, and
antitumor therapy (24). CircRNAs regulate VEGFR-related
pathways through adsorption of miRNA to affect tumor
angiogenesis. CircRNAs have also been shown to be involved in
regulating the tumor microenvironment (25). CircRNAs are highly
abundant and stable, conserved in evolutionary species, and widely
present in various body fluids. The exploration of tumor
angiogenesis-related circRNAs as biomarkers or targets will open
new possibilities for anti-tumor treatment strategies. Here, we focus
on the biomolecular mechanisms of circRNA in tumor angiogenesis.
CIRCRNA

Biogenesis and Characteristics of
circRNAs
After the removal of introns by enzyme-catalyzed precursor
mRNA, selective splicing of exons in turn to form mature
mRNA is common. Unlike typical mRNA splicing, circRNAs
are produced by a back-splicing process, in which the
downstream 5’ splicing site and the upstream 3’ splicing site
are connected to form a single-chain covalently closed ring.
Frontiers in Oncology | www.frontiersin.org 2
The spliceosome then removes all or part of the introns and joins
the remaining sequences. Three kinds of circRNAs are then
produced, including exonic circRNA, intronic circRNA, and
exon-intron circRNA (20, 26, 27).

The mechanism of circRNA formation is one of the basic
scientific questions underpinning the study of circRNAs. Zhang
et al. showed that the formation of circRNAs was determined by
rapid transcription, the reverse complementary sequence in RNA,
and the effect of long-term accumulation in cells (28). circRNA
predictive analysis combined with the technique of long-fragment
sequencing revealed that there were many selective splicing modes
of circRNA (29). In addition, the formation of circRNAs is closely
related to their selective splicing patterns and cell types (30). Besides,
RNA binding proteins are involved in the formation of circRNAs.
In drosophila, the splicing factor Muscleblind (Mbl) promotes the
formation of circMbl from its own precursor mRNA (31). In
general, the formation of circRNAs is parallel to the linear RNA
transcription, which is related to the transcription speed of
corresponding genes. Reverse complementary sequences or RBP
binding sequences are important prerequisites for the formation of
circRNAs. One gene may correspond to a variety of molecular
forms of circRNAs.

Biological Functions of circRNAs
CircRNAs play an important role in tumor growth, angiogenesis,
metastasis, recurrence, and antitumor therapy through multiple
functions (24). Recent studies suggest that circRNAs act as sponges
to bind and block miRNAs, or as competing endogenous RNA
(ceRNA) molecules (22, 23, 32). Previously, miRNAs have been
shown to bind directly to their target mRNA in the form of base
pairing, leading to cleavage of the mRNA transcript or inhibition of
mRNA translation (33). Furthermore, RNA binding proteins
regulate disease progression by directly targeting circRNAs (34–
36). Additionally, circRNAs can compete with linear transcripts for
splicing sites during reverse back-splicing (31). On the one hand,
when more exons form circRNAs, the mRNA is reduced; on the
other hand, circRNAs containing introns directly bind the U1
component in the spliceosome to recruit RNA polymerase II,
thereby upregulating expression of the target gene (28).
Interestingly, circRNAs have long been considered a non-coding
RNA, but that has changed. There is an m6A modification for
circRNAs that promotes translation (37). Additionally, the
circRNA, circ-FBXW7, directly encodes the protein FBXW7-
185aa and cooperates with the FBXW7 protein in linear
transcripts to stabilize c-Myc and inhibit the occurrence and
progression of malignant glioma (38). Furthermore, Pamudurti
et al. found that a large amount of circRNA translated proteins or
peptides were found in the Drosophila brain (39).
THE INTERACTION BETWEEN MIRNAS
AND CIRCRNAS IN TUMOR
ANGIOGENESIS

The primary mechanisms by which circRNAs regulate tumor
angiogenesis is by functioning as a targeted sponge for miRNAs,
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by binding and blocking miRNAs, or by acting as competing
endogenous RNA molecules (22, 23, 32). The regulation of
miRNAs in tumor angiogenesis has been previously
characterized (40). miRNAs directly target the 3’UTR region of
the transcripts of pro-angiogenic or anti-angiogenic factors,
resulting in the inhibition of mRNA translation and
degradation of the mRNA (33). It has been shown that
miRNA transcription is downregulated in tumor-related ECs.
The reduction of competing miRNAs, which is a target of the
3’UTR region of VEGF-A mRNA, upregulate VEGF-A
expression and promotes angiogenesis through VEGF/VEGFR-
2 signaling pathways (41). In this study, we reviewed the
circRNAs associated with angiogenesis and summarized their
expression patterns, mechanism, and functions in tumor cells in
Table 1.

Pro-angiogenic-Associated circRNAs
CircRNA-MYLK
CircRNA-MYLK is an oncogene in bladder cancer, and it
activates the VEGF-A/VEGFR-2 signaling pathway by
functioning as a sponge for miR-29a to up-regulate VEGFA
expression (42). In vitro, overexpression of circRNA-MYLK
promotes the ability of HUVECs to form blood vessels and
rearrange the cytoskeleton. In vivo, upregulation of circRNA-
MYLK promotes tumor progression and is a predictor of poor
prognosis (Figure 1). In addition, studies have also shown that
Frontiers in Oncology | www.frontiersin.org 3
down-regulation of cell-derived microvesicle miR-29a relieves
suppression of VEGFA and promotes angiogenesis in gastric
cancer (59). The animal model demonstrates that angiogenesis
can be inhibited by microvesicles rich with miR-29a. Peng et al.
revealed that the lncRNA H19 acts as a miRNA sponge of miR-
29a. Downregulating miR-29a promotes angiogenesis by
targeting the 3’-UTR region of VASH2 (60). On the contrary,
Wang et al. reported that miR-29a serves as an oncogene that
activates the AKT pathway by targeting PTEN in endothelial
cells and promoting tumor angiogenesis (61). Meanwhile, both
miR-29a (62) and miR-362-3P (63) can be modulated by
circRNA-MYLK, which up-regulates the expression of
downstream Rab23 and promotes the progression of tumors.
Therefore, whether circRNA-MYLK promotes tumor
angiogenesis remains an open question, and further
investigation is required to identify its mechanism in tumors in
other than bladder cancer.

Circ-ASH2L
Circ-ASH2L was first identified for promoting tumor
angiogenesis in pancreatic ductal adenocarcinoma (44). As an
oncogene, it was found in the RIP experiment to be a sponge for
miR-34a. miR-34a has been widely reported to inhibit
angiogenesis by repressing the Notch1 signaling pathway (64,
65). In the study of Chen et al. (44), circ-ASH2L also promoted
angiogenesis by activating the Notch1 signaling pathway. In vitro
TABLE 1 | The expression patterns, mechanism, and functions of circRNAs associated with tumor angiogenesis.

CircRNA Expression Mechanism Function Origin Ref

circRNA-MYLK up miR-29a/VEGFA/VEGFR2/Ras/ERK
signaling pathway

proliferation, migration, tube formation of HUVEC and
rearranged cytoskeleton

Bladder Cancer (42)

CircHIPK3
/BCRC-2
/hsa_circ_0000284

down miR-558/HPSE migration, invasion, and angiogenesis bladder cancer (43)

Circ-ASH2L up miR-34a/Notch1 invasion, proliferation and angiogenesis Pancreatic Ductal
Adenocarcinoma

(44)

hsa_circRNA_002178
/hsa_circ_0000519

up miR-328-3p/COL1A1 cell viability, energy metabolism and tube formation
ability

breast cancer (45)

CircSMARCA5
/hsa_circ_0001445

down Splicing Factors SRSF1/VEGFA cells migration and angiogenesis glioblastoma multiforme (46,
47)

circ-SHKBP1
/hsa_circ_0000936

up miR-544a/FOXP1/miR-379/FOXP2/
AGGF1

viability, migration, and tube formation of GEC GECs (48)

circ_002136 up FUS/circ_002136/miR-138-5p/SOX13/
SPON2

viability, migration and tube formation GECs (49)

circ-DICER1 up MOV10/circ-DICER1/miR-103a-3p/miR-
382-5p/ZIC4/Hsp90b/PI3K/Akt

cell viability, migration, and tube formation of GECs GECs (50)

Exosome
has_circRNA_100338

up VE-Cadherin and ZO-1 cell proliferation, angiogenesis, permeability, and
vasculogenic mimicry formation ability of HUVECs

HCC (51)

hsa_circ_0003575 up potential circRNA-miRNA-mRNA
network

proliferation and angiogenesis ability of HUVECs HUVECs (52)

hsa_circ_0010729 up miR-186/HIF-1a Axis vascular endothelial cell proliferation and apoptosis HUVECs (53)
cZNF609 up miR-615-5p/MEF2A retinal vessel loss and suppressed pathological

angiogenesis
high glucose and
hypoxia stress

(54)

circNfix
/hsa_circ_0005660

up miR-214/Gsk3b/b-catenin/Meis1(TF)
Ybx1,Nedd4l cyclin A2,cyclin B1

proliferation angiogenesis and apoptosis adult heart in humans,
rats, and mice

(55)

circHIPK3 up miR-30a-3p/VEGF-C, FZD4, and WNT2 cell viability, proliferation, migration, and tube formation diabetic retinas and
retinal endothelial cells

(56)

hsa_circ_0074834 down microRNA-942-5p/ZEB1/VEGF promote osteogenic differentiation of BMSCs and the
repair of bone defects

BMSC (57)

Circ_0063517 down miR-31-5p-ETBR growth, migration, and angiogenesis placenta tissue of PE (58)
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experiments verified that circ-ASH2L sequesters miR-34a to
increase the downstream expression of VEGF through the
Notch1 signaling pathway (Figure 2). Meanwhile, miR-34a
down-regulates VEGF expression through another axis that
inhibits the translation and degradation of the E2F3 mRNA in
head and neck squamous cell carcinoma (66).

Hsa_circRNA_002178 (hsa_circ_0000519)
Hsa_circ_0000519, a circular transcript of RPPH1, is located on
chromosome chr14:20811436-20811534. Hsa_circ_0000519 was
upregulated in breast cancer and was suggested as a marker of
poor prognosis (45). Knockdown of hsa_circRNA_002178 directly
decreased the combination of miR-328-3p, and thus downregulated
COL1A1 and impaired breast cancer angiogenesis (Figure 2).
COL1A1 is upregulated in brain metastases (67) and oral
squamous cell carcinomas (68), which are potentially associated
with angiogenesis. A previous study showed that miR-328-3p
directly targets the 3’UTR of matrix metalloprotease 16 (MMP-
Frontiers in Oncology | www.frontiersin.org 4
16) and suppresses its expression in osteosarcoma cells (69).
MMP16 is a member of the matrix metalloproteinase (MMP)
family (10) and can hydrolyze ECM proteins. MMPs [such as
MMP-9 (70)] can break the ECM and cell connections, promoting
tumor angiogenesis and progression. HIF-1 mediates the regulation
of VEGF and MMPs at the transcriptional level (71). MMPs (such
as MMP-2/-3/-7 and -9) promote angiogenesis by degrading the
extracellular protein matrix, releasing VEGF without affecting its
activity (9, 72, 73). MMP-16 has a similar structure to MMPs, and
the 3’UTR of MMP-16 is targeted by miR-328-3P, while
hsa_circ_0000519 can adsorb miR-328-3P. Therefore, further
investigation is required to see if hsa_circ_0000519 can promote
tumor angiogenesis by sponging miR-328-3p to regulate
other MMPs.

GECs Related circRNAs
The method of co-culturing glioblastoma (GBM) cells and
endothel ia l ce l l s was used to explore the ce l lu lar
FIGURE 2 | CircRNAs mediate angiogenesis in pancreatic ductal adenocarcinoma, breast cancer, and hepatocellular carcinoma.
FIGURE 1 | The role of circRNAs in pro-angiogenesis and anti-angiogenesis in bladder cancer.
March 2021 | Volume 11 | Article 553706
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communication and molecular adjustment between the two cell
types. Three significant upregulated circRNAs [circ-SHKBP1
(48), circ_002136 (49), and circ-DICER1 (50)] were identified
(Figure 3). Among them, circ-SHKBP1 (circbase ID:
hsa_circ_0000936) serves as a sponge for miR-379 and miR-
544a, competing with the combination of 3’UTR of FOXP1 and
FOXP2. At the same time, FOXP1 and FOXP2 are the angiogenic
promoter of AGGF1, which induce tube formation of GECs
through the PI3K/AKT and ERK1/2 signaling pathways (Figure
3). AGGF1 acts as a angiogenic promoter and has been widely
reported in gastric carcinoma (74), hepatocellular carcinoma
(75), and medulloblastoma (76). Meanwhile, the activation of the
PI3K/AKT and ERK1/2 signaling pathways promoted by AGGF1
has been found when angiogenesis was activated (77–79).

Circ_002136 was found to combine with miR-138-5p,
resulting in increased expression of SOX13, which upregulated
SPON2 by directly binding the SPON2 promoter region (Figure
3). Interestingly, FUS acts as RNA binding protein to upregulate
circ_002136, and was upregulated by promotor SPON2, to form
a feedback loop. Further research showed that SPON2-
knockdown significantly suppresses tumor angiogenesis in
GECs. In addition, one of the SPON2 family members
inhibited endotheliocyte proliferation, migration, and
angiogenesis by inhibiting HIF-1a, VEGFA expression, and the
phosphorylation of VEGFR-2 in colon cancer (80). Meanwhile,
after IL-1b induced cartilage degradation, overexpressed miR-
138-5p was found to be a FOXC1 sponge, and upregulation of
MMP-13 was observed (81). Interestingly, SOX13, which was
shown to be a target for circ_002136, regulates angiogenesis
through a system model of homologous phenotypes (82).

Circ-DICER1 is a target for the RNA binging protein,
MOV10, which together regulate angiogenesis (50). circ-
DICER1 directly binds the 3’UTR of miR-103a-3p and miR-
382-5p and downregulates ZIC4 in GECs (Figure 3).
Furthermore, ZIC4 promotes tube formation through the
PI3K/Akt signaling pathway by upregulating heat shock
Frontiers in Oncology | www.frontiersin.org 5
protein 90b (Hsp90b). In addition, Hsp90b up-regulates the
expression of VEGFRs and promotes tumor angiogenesis by
VEGFRs promoters in HCC (83, 84). Meanwhile, HSP90b
directly targets the BAZF mRNA after activation by the VEGF-
A/PRKD2 pathway to promote angiogenesis (85). In another
study, miR-103a-3p was also found to target PTEN to promote
EPC migration and angiogenesis (86).

Exosome has_circRNA_100338
Exosomes have been used as messengers of intercellular
communication, in which circRNA plays an essential role in
tumorigenesis and progress (87). circRNA-100338 (51) is
upregulated in both HCC cells and their secreted exosomes.
Based on RNA pulldown assays, circRNA-100338 potentially
targets NOVA2 and promotes angiogenesis in HUVECs (Figure
2). Furthermore, a previous study has shown that the
downregulation of NOVA2 can disrupt angiogenesis (88). In
addition, it was found that exosome-derived ncRNAs promote
cell communication in the microenvironment and regulate
angiogenesis (89–91). Therefore, as a stable ncRNA in
exosomes, a novel therapy has a promising future in the
mechanism of tumor angiogenesis and prognosis.

Anti-Angiogenesis Associated circRNA in
Tumor
CircHIPK3
CircHIPK3 is located on chromosome chr11:33307958-33309057.
In a previous study, circHIPK3 serves as oncogene of multiple
tumors. However, in bladder cancer (43, 92) and osteosarcoma
(93) tissues, circHIPK3 is significantly downregulated, acting as a
tumor suppressor gene. Downregulation of circHIPK3 is
associated with angiogenesis (43). CircHIPK3 directly targets
miR‐558 and suppresses heparinase (HPSE) expression to
inhibit angiogenesis in ECs (Figure 1). Additionally, studies by
Qu et al. (94) and Zheng et al. (95) demonstrated that upregulation
of miR-558 in neuroblastoma and gastric cancer cells promoted
FIGURE 3 | The role of circRNAs in pro-angiogenesis and anti-angiogenesis in glioblastoma.
March 2021 | Volume 11 | Article 553706
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expression of HPSE by directly activating or weakening the
inhibition of HPSE by Smad4. On the one hand, HPSE is highly
expressed in cancer tissue but not in mature vascular ECs (96). On
the other hand, HPSE significantly cuts off the HS chain in the
endothelial cell matrix and stimulates the release of other pro-
angiogenic molecules (97). The active bFGF produced by HPSE
binds to HS fragments and directly targets endothelial cells to
promote angiogenesis (96, 98). Meanwhile, studies have also
shown that exogenous HPSE can induce melanoma cells to
release VEGF, and this has no correlation with the enzyme
activity of HPSE (99).

CircSMARCA5
CircSMARCA5 (circbase ID: hsa_circ_0001445) (46, 47) is
downregulated in GBM and is negatively correlated with SRSF1
and VEGFA. SPRF1, a splicing factor, has been shown to bind
directly to circSMARCA5 to regulate VEGFA expression (Figure 3).
Furthermore, circSMARCA5 is significantly correlated with vascular
microvessel density, suggesting that circSMARCA5 is a potential
biomarker for GBM angiogenesis. In addition, circSMARCA5 is
downregulated in gastric cancer (100), cervical cancer (101), non-
small cell lung cancer (102), hepatocellular carcinoma (103), multiple
myeloma (104), and acts as a biomarker. On the contrary,
circSMARCA5 is upregulated in prostate cancer (105).

CircRNA Regulates Angiogenesis in Other
Diseases
Upregulation of hsa_circ_0003575 (52) was observed in
oxLDL-treated HUVECs to simulate atherosclerosis, and
downregulation of hsa_circ_0003575 promoted angiogenesis in
HUVECs. In a hypoxia-induced microenvironment, endothelial
cells are more prone to angiogenesis, and hsa_circ_0010729 (53)
was found to be upregulated and bound miR-186. Knockdown of
hsa_circ_0010729 repressed the expression of HIF-1a and
inhibited cellular angiogenesis related capacity and promoted
apoptosis in HUVECs. Significant upregulation of cZNF609 (54)
was observed both in vivo and in vitro in high glucose-induced
microenvironments. Subsequent bio functional experiments
demonstrated that cZNF609 inhibited angiogenesis via
sequestering miR-615-5p and increasing the expression of
MEF2A. In an adult mouse model of myocardial infarction,
circNfix (55) is regulated by the transcription factor, Meis1-
bound superenhancer, thereby promoting angiogenesis and
cardiac regeneration. CircHIPK3 (56) is upregulated and
served as a sponge for miR-30a-3p, resulting in increased
expression of VEGC-C, FZD4 and WNT2, and promoting the
formation of new blood vessels in EC. One of the key factors in
fracture healing is the recovery of blood flow, and the
dysregulation of circRNAs in bone marrow stem cells inhibits
angiogenesis. The downregulation of hsa_circ_0074834 (57)
releases inhibition of miR-942-5p to upregulate ZEB1 and
VEGF, promoting osteogenic differentiation and the repair of
bone defects. For patients with preeclampsia, circ_0063517 (58)
and ETBR were found downregulated in the placenta tissue;
circ_0063517 promotes angiogenesis by sponging miR-31-5p to
downregulate ETBR.
Frontiers in Oncology | www.frontiersin.org 6
The Potential Therapeutic Role of
circRNAs
In vivo and in vitro experiments have verified that the regulation
of the transcriptional patterns of circRNAs is related to the
survival and growth of tumor cells. Therefore, there is great
potential to use siRNA, ASO, and circRNAs to treat tumors and
other diseases. Previous reviews have described a therapeutic role
for circRNAs in cardiovascular disease (106). One advantage of
circRNAs in its therapeutic role is that it has a stable structure
that is not easily degraded compared with other lncRNAs.
Additionally, circRNAs have been found in plasma exosomes,
which provide a reference model for simulating circRNA as drug
targeted delivery in vivo. Further, chemical modifications enable
gene delivery as a treatment strategy, while minimizing side
effects (107).

CircRNAs Associated Bioinformatics
Software
With the development of deep sequencing, a large number of
transcripts were discovered, and data were formed and
developed into databases for further analysis (Supplementary
Table 1). These databases record the specific ID, sequences,
potential functions, and expression patterns of newly discovered
circRNAs in different species in different diseases. Different
databases may have different results in predicting the function
of circRNAs (such as miRNA binding sites, protein binding sites,
and coding proteins) due to differences in algorithms and
individual heterogeneity. Therefore, the intersection of results
frommultiple databases may be a potential method to predict the
function of circRNA more accurately.
FUTURE PROSPECTIVE
AND CONCLUSION

Currently, circRNA plays a significant role in carcinoma
angiogenesis through varied biological pathways. Current
studies have shown that circRNAs regulate tumor angiogenesis
mainly through two pathways. The first is by functioning as a
miRNA sponge, thereby upregulating or downregulating
downstream genes, and promoting or repressing angiogenesis.
Second, RBP directly targets circRNAs to regulate tumor
angiogenesis (46, 47, 49, 50). Nevertheless, it has been
previously reported that circRNA-encoded proteins regulate
GBM malignancy (38). However, current research has not
found whether circRNA regulates tumor angiogenesis by
encoding proteins. Therefore, there is no doubt that the
exploration of circRNAs in tumor angiogenesis is in its
infancy, and more detailed analyses is essential.

Tumor angiogenesis is co-regulated by a variety of pro- and anti-
angiogenic factors, among which VEGF-related pro-angiogenic
factors are the most remarkable (108–110). On the one hand,
circRNA-MYLK (42), circHIPK3 (56), and hsa_circ_0074834 (57)
act as a miRNA sponge, directly upregulating VEGF expression to
promote angiogenesis. On the other hand, circSMARCA5 (46) has
March 2021 | Volume 11 | Article 553706
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been shown to serve as a sponge for SRSF1, negatively regulating
VEGF and anti-angiogenesis in GBM. Thus, whether circRNA
regulates angiogenesis through angiogenesis-related factors, such
as angiopoietin, FGF, MMPs, and Endostatin, requires
further exploration.

As a stable RNA, circRNAs have natural advantages and great
potential as a diagnostic biomarker (111). Compared with tumor
tissue, circRNA in plasma or plasma exosomes have greater
clinical significance as biomarkers for tumor diagnosis (112),
because a blood test is less likely to lead to metastasis than a
biopsy or surgical removal.

Furthermore, monitoring angiogenesis, the necessary process
for oncogenesis and carcinoma progression, to diagnose or
evaluate prognosis may be a worthwhile direction to explore.
The exosome circRNA, has_circRNA_100338 (51), has been
shown to promote angiogenesis and to be a potential
biomarker for HCC.

However, circRNA displays heterogeneity as a diagnostic
biomarker (113), and circRNAs may be inversely expressed in
different types of tumors. circHIPK3 serves as oncogene of a
variety of tumor such as CC (114–116) and NSLC (117, 119).
However, in bladder cancer (43, 92) and osteosarcoma (93) tissues,
circHIPK3 is significantly downregulated, repressing invasion and
metastasis of tumor cells and predicting a good prognosis.
Additionally, circSMARCA5 is downregulated in gastric cancer
(100), cervical cancer (101), NSLC (102), HCC (103), multiple
myeloma (104), but upregulated in prostate cancer (105).
Therefore, whether such heterogeneity also exists in the
regulation of angiogenesis by circRNAs needs further exploration.

In summary, we reviewed the biological characteristics,
functions, and molecular mechanisms of circRNAs in tumor
Frontiers in Oncology | www.frontiersin.org 7
angiogenesis. We believe that circRNAs have great potential as a
target for antiangiogenic therapy and as a diagnostic biomarker
in tumors, which deserves our attention in the future.
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