
Page 1/24

CircRNA UBAP2 Serves as a Sponge of miR-1294 to
Increase Tumorigenesis in Hepatocellular
Carcinoma through Regulating c-Myc Expression
Min-Cheng Yu 

Zhongshan Hospital Fudan University
Guang-Yu Ding 

Zhongshan Hospital Fudan University
Pei-Yao Fu 

Zhongshan Hospital Fudan University
Peng Ma 

Zhongshan Hospital Fudan University
Xiao-Dong Zhu 

Zhongshan Hospital Fudan University
Jia-Bin Cai 

Zhongshan Hospital Fudan University
Ying-Hao Shen 

Zhongshan Hospital Fudan University
Jian Zhou 

Zhongshan Hospital Fudan University
Jia Fan 

Zhongshan Hospital Fudan University
Hui-Chuan Sun 

Zhongshan Hospital Fudan University
Ming Kuang 

Zhongshan Hospital Fudan University
Cheng Huang  (  huang.cheng@zs-hospital.sh.cn )

Zhongshan Hospital Fudan University

Research

Keywords: Circular RNA, Hepatocellular carcinoma, miRNA, c-Myc

Posted Date: August 2nd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-49281/v1

https://doi.org/10.21203/rs.3.rs-49281/v1
mailto:huang.cheng@zs-hospital.sh.cn
https://doi.org/10.21203/rs.3.rs-49281/v1


Page 2/24

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published at Carcinogenesis on January 1st, 2021. See
the published version at https://doi.org/10.1093/carcin/bgab068.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/carcin/bgab068


Page 3/24

Abstract
Background: Circular RNAs (circRNAs) are a class of regulatory RNAs with complex roles in healthy and
diseased tissues. However, the oncogenic role of circRNAs in hepatocellular carcinoma (HCC) remains
poorly understood, including the mechanisms by which the circRNA UBAP2 contributes to tumorigenesis.

Methods: We analyzed the expression of circUBAP2 in 20 paired samples of HCC and healthy tissue as
well as in seven HCC cell lines via quantitative real-time polymerase chain reaction (qRT-PCR). Functional
experiments, such as CCK8 viability assays, colony formation assays, wound healing, transwell assays,
and �ow cytometry, were conducted to assess the effects of circUBAP2 in vitro. To further elucidate the
mechanisms by which circUBAP2 acts, we conducted dual-luciferase assays, western blots, RNA pull-
down assays, and rescue experiments.

Results: circUBAP2 was highly upregulated in most HCC tissues and was associated with poor prognosis.
HCC patients with high circUBAP2 expression had greater vascular invasion and worse differentiation.
Functionally, circUBAP2 overexpression enhanced HCC cell proliferation, migration, and invasion and
inhibited apoptosis. Furthermore, we found that circUBAP2 upregulated c-Myc expression by sponging
miR-1294, thus contributing to hepatocarcinogenesis. Inhibiting circUBAP2 expression in HCC attenuated
the oncogenic effects of c-Myc.

Conclusions: These �ndings suggest that circUBAP2 promotes HCC growth and metastasis. circUBAP2
may have value as an independent prognostic biomarker or as a new target for the treatment of HCC.

Background
Hepatocellular carcinoma (HCC) is responsible for about 75-85% of primary liver cancers, which are the
fourth most common cause of cancer-related death around the world[1, 2]. Despite great efforts of basic
science and clinical research, HCC remains a highly deadly disease. Although HCC patients can be treated
with surgery, tumor ablation, transarterial therapies, or systemic therapies (e.g. with tyrosine-kinase
inhibitors or immune checkpoint inhibitors)[3], patients with advanced HCC lack effective options for
therapeutic intervention, and prognoses are poor. A better understanding of the critical molecular events
that occur in the pathogenesis of HCC may help uncover new biomarkers that can identify HCC patients
who are at high risk of relapse. Further, a better understanding of the molecular process of disease may
inform the rational design of effective therapeutics[4].

Circular RNAs (circRNAs), a type of noncoding, regulatory RNAs, are endogenous RNAs that have
covalently linked ends[5]. These RNAs are mainly derived from the back-splicing of exons and are
exceptionally stable due to their covalently closed ring structure[6-8]. Generally, circRNAs are expressed at
low levels relative to their corresponding mRNAs and are primarily found in the cytoplasm of eukaryotic
cells[9]. An increasing amount of evidence has suggested that circRNAs function as sponges that can
protect speci�c mRNAs from miRNA-mediated degradation and as scaffolds that facilitate the
colocalization of enzymes and their substrates, indirectly regulating protein activity[9, 10]. However, the
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function of many circRNAs remains unknown[11]. Moreover, some circRNAs have been implicated in the
progression of diseases such as diabetes mellitus, chronic in�ammatory diseases, cardiovascular
diseases, and neurological disorders. Emerging studies have focused on the importance of circRNAs in
solid tumors, wherein circRNAs are generally categorized as oncogenes or tumor suppressors. Studies of
the molecular mechanisms of circRNAs in HCC are still in their infancy. Understanding the role of
circRNAs in the tumorigenesis and progression of HCC may facilitate the identi�cation of therapeutic
targets or potential biomarkers.

In this study, we found that circUBAP2 was markedly upregulated in HCC compared to paired healthy liver
tissues. Further clinical analysis revealed that HCC patients with higher circUBAP2 expression tended to
have worse prognoses. Additionally, functional studies suggested that circUBAP2 promoted
tumorigenesis and progression in liver cancer by altering the circUBAP2/miR-1294/c-MYC signaling
pathway. In summary, we identi�ed circUBAP2 as an important regulator of the growth and metastasis of
HCC, making it a promising therapeutic target for the management of HCC.

Materials And Methods
Patients and follow-up

HCC samples were collected from 125 patients diagnosed with HCC based on World Health Organization
criteria at the Liver Cancer Institute, Zhongshan Hospital, Fudan University (Shanghai, China). All patients
underwent curative resection at Zhongshan Hospital between February 2014 and January 2015. Follow-
ups were performed after surgery and were completed by December 2019. Additionally, 20 pairs of HCC
tissue and adjacent liver tissues were randomly selected to compare relative circUBAP2 levels. All
collection of HCC tissues was performed according to a protocol approved by the institutional review
board of Zhongshan Hospital, and each patient provided informed consent.

Cell lines and culture conditions

The human HCC cell lines used in these studies included MHCC97H, MHCC97L,HCCLM3, Huh-7,
PLC/PRF/5, Hep-G2, and Hep-3B. The MHCC97H, MHCC97L, and HCCLM3 cell lines were developed at
our institute. Huh-7 and PLC/PRF/5 cell lines were purchased from the Chinese Academy of Sciences.
Hep-G2, and Hep-3B cell lines were purchased from the American Type Culture Collection and preserved
at our institute. All cell lines were maintained in Dulbecco’s modi�ed Eagle’s medium (DMEM)
supplemented with 10% FBS in a humidi�ed incubator at 37°C with 5% CO2, as previously described.

CircRNA pull-down assay

CircRNA pull-down assays were conducted in accordance with the manufacturer's instructions. Biotin-
labeled circUBAP2 and control probes were designed and synthesized by Sangon Biotech. Brie�y, cell
extracts were �xed with 1% formaldehyde, lysed, and sonicated. Then, each cell extract sample was
centrifuged, and 50 μL of supernatant was retained. Next, the streptavidin-coupled Dynabeads were
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added to the supernatant and incubated at 25°C for 1 hour. The complexes were then washed and
incubated with lysis buffer and proteinase K. Finally, the RNA isolated from the pull-down bead sample
was studied via qRT-PCR.

RNA immunoprecipitation (RIP)

RNA immunoprecipitation experiments were performed using an EZ-Magna RIP Kit in accordance with the
manufacturer’s instructions (Millipore, Billerica, MA, USA). Brie�y, about 2 × 107 cells were collected and
lysed in RIPA Lysis Buffer that contained proteinase and RNase inhibitors. Then, samples were incubated
with the anti-AGO2 antibody (ab3238, Abcam) or IgG primary antibody (Cell Signaling Technology, USA).
Twenty-four hours later, the complexes were washed �ve times with cold PBS. Finally, the
immunoprecipitated RNAs were extracted and qRT-PCR was performed to detect RNA enrichment.

Luciferase assays

MHCC97H and HCCLM3 were cultured at 37°C with 5% CO2 and were co-transfected with miR-1294
mimic, a luciferase reporter plasmid, and corresponding controls using Lipofectamine 2000. Forty-eight
hours after transfection, luciferase activity was quanti�ed using a Dual Luciferase Reporter Assay Kit
(Yeasen) according to the manufacturer's protocol.

RNA extraction, qRT-PCR and western blot analysis

RNA isolation and qRT-PCR were performed as previously described[12]. Brie�y, total RNA was extracted
with Trizol reagent (Thermo Fisher, US). cDNA was synthesized using a PrimeScript RT reagent kit
(Takara, Japan). Target genes were quanti�ed using SYB Premix Ex Taq II (Takara, Japan). DNA
ampli�cation was performed using an ABI 7900 system. Western blots (WB) and immunohistochemistry
staining were also performed as previously described[13].

Cell proliferation,colony formation, and invasion assays

To analyze cell proliferation and viability, we used Cell Counting Kit-8 (CCK-8) assays (Dojindo,
Kumamoto, Japan) according to the manufacturer’s instructions. Brie�y, HCC cells were seeded into wells
of 96-well plates (1 × 103 cells per well) and cultured at 37°C and 5% CO2. Plates were monitored at the
indicated times at an absorbance of 450 nm[14].

Colony formation assays were conducted as previously described[15]. Brie�y, HCC cells (1 × 103 cells per
well) were aliquoted into 6-well plates and cultured for 14 days. Colonies were then �xed with 100%
methanol and stained with Giemsa staining solution (Sigma, USA). Visible colonies were counted using
Image-Pro Plus 5.0 (Media Cybernetics, USA).

Invasion assays were conducted using transwell plates (Millipore, USA) coated with Matrigel (BD
Biosciences, USA). DMEM containing 1% FBS was added to the upper chamber and DMEM containing
10% FBS was added to the lower chamber. HCC cells (2 × 105 per well) from each treatment group were
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added to the upper chambers. After 48 hours of incubation, cells that invaded the lower chamber surface
were �xed, stained with crystal violet (Sigma), and manually counted. All functional experiments were
conducted in triplicate.

Xenograft mouse model

All in vivo experiments were performed in accordance with the Guide for the Care and Use of Laboratory
Animals, as published by the US National Institutes of Health. All animal protocols were approved by the
Animal Care Committee of Zhongshan Hospital. Brie�y, 6-week-old nude mice, purchased from Charles
River Laboratories (Beijing, China), were subcutaneously injected with 3 × 106 tumor cells. Tumor
volumes and tumor weights were measured every 3 days. After 6 weeks, all mice were sacri�ced for
subsequent analyses.

Statistical analysis

All data were shown as the mean ± standard deviation of three independent experiments and were
analyzed using SPSS 20.0 (SPSS, Chicago, IL, USA). We used t-tests, ANOVA, Mann-Whitney, chi-squared,
and Fisher's exact tests to analyze differences between groups when appropriate. Time to reccurence
(TTR) and overall survival (OS) were analyzed using Kaplan-Meier survival curves and log-rank tests,
respectively. We also conducted univariate and multivariate analyses using Cox proportional hazard
regression models. P < 0.05 was considered statistically signi�cant.

Results
CircUBAP2 was upregulated in HCC tissues and indicated poor prognosis

To evaluate the relationship between circUBAP2 and outcomes among patients with HCC, we leveraged
the StarBase database to perform bioinformatic analyses of the expression of circUBAP2 in HCC tissues.
We found that circUBAP2 expression was signi�cantly higher in HCC tissues relative to healthy liver
tissues (Fig. 1B). In order to con�rm the �ndings from the public database, we compared the relative
expression of circUBAP2 in 20 paired formalin-�xed, para�n-embedded tissue samples of liver cancer
and adjacent healthy liver tissues via qRT-PCR (Fig. 1C). To investigate the diagnostic and prognostic
value of circUBAP2 in HCC, we next measured the expression of circUBAP2 in 125 HCC tissues.
Unexpectedly, we found that circUBAP2 was associated with markedly worse OS (p < 0.001) and TTR (p <
0.001) after surgical resection (Fig. 1D-E).

We investigated the association between the expression of circUBAP2 in HCC tissues and
clinicopathological parameters through univariate and multivariate Cox proportional regression analyses.
Multivariate subgroup analyses showed that high circUBAP2 expression was an independent factor for
predicting both TTR [HR 2.83 (1.69-4.74), p < 0.001] and OS [HR 4.68 (2.45-8.89), p < 0.001, Tables 2-3].
Indeed, patients with higher circUBAP2 expression were more likely to have microvascular invasion (MVI)
and worse differentiation (Tables 2-3). 
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We measured the relative expression of circUBAP2 in seven different characteristic HCC cell lines (Fig.
1F). In good agreement with our �ndings in patient samples, we found that circUBAP2 expression was
higher in the high-grade malignancy cell lines HCCLM3 and MHCC97H relative to MHCC97L, a less
malignant cell line, suggesting the cicrUBAP2 may facilitate the progression of HCC. Thus, we considered
HCCLM3 and MHCC97H cells to be suitable for further experiments. These results collectively suggested
that circUBAP2 is of signi�cant importance in the pathogenesis of HCC.

CircUBAP2 promotes HCC cell proliferation and induces cell apoptosis

To investigate the biological effects of circUBAP2 in HCC cells, we generated two circUBAP2-speci�c
shRNAs to target the back-splice sequence. As expected, these shRNAs led to downregulation of
circUBAP2 expression in HCCLM3 and MHCC97H cell lines, as validated by qRT-PCR (Fig. 2A). We next
performed a series of functional experiments. Here, we found that reduced circUBAP2 expression
markedly suppressed cell proliferation (CCK8 assay, Fig. 2B-C). Consistently, �ow cytometry assays
showed that downregulation of circUBAP2 led to increased apoptosis in circUBAP2high (Fig. 2D-E).

To further evaluate the function of circUBAP2 in vivo, we generated a xenograft tumor model using
NOD/SCID/γc(null) (NOG) mice. We found that tumor volumes and weights were decreased in mice with
down-regulated circUBAP2 relative to the control group (Fig. 2F). Further, the rate of tumor growth was
signi�cantly decreased (Fig. 2F).

CircUBAP2 promotes HCC cell migration and invasion

Pathological epithelial-mesenchymal transition (EMT) is a signi�cant stage in cancer progression, in
which cancer cells gain invasive potential[16]. Many important drivers of EMT, such as SNAIL1, bind to
and suppress the activity of E-cadherin promoters and are correlated with increased chance of relapse
and decreased survival in patients with HCC[17]. Notably, we found that, after knockdown of circUBAP2,
HCCLM3 and MHCC97H had decreased migration in both transwell and wound healing assays (Fig. 3A-
D). Moreover, in vitro transwell assays found decreased invasion of cells in the circUBAP2-KD group
compared to the control group. Collectively, the above experiments con�rmed that circUBAP2 promotes
migration and invasion of HCC cells in vitro. To identify whether EMT was at the root of these malignant
phenotypic changes, qRT-PCR and WB assays were performed to analyze changes in epithelial markers
such as E-cadherin and mesenchymal markers such as N-cadherin and SNAIL1 (Fig. 3E-G). We found that
circUBAP2-KD cell lines had decreased expression of N-cadherin and SNAIL1 compared with the mock-
transfected cell lines. In accordance with the results from functional and molecular experiments, we
found that circUBAP2 was associated with EMT and promoted migration and invasion of HCC cells.

circUBAP2 upregulated c-MYC expression by sponging miR-1294

Fluorescence in situ hybridization (FISH) and nuclear-plasma extraction assays suggested that
circUBAP2 was primarily localized in the cytoplasm of the two HCC cell lines (Fig. 4A-B). A number of
prior studies have reported that some circRNAs act as microRNA sponges. Accordingly, we conducted
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dual-luciferase reporter assays to explore this possibility for circUBAP2. We constructed a luciferase
report vector of wild-type (WT) and mutant (Mut) circUBAP2 and transfected that vector into both
HCCLM3 and MHCC97H cell lines (Fig. 4C). After transfection, we found that overexpression of the miR-
1294 mimic signi�cantly reduced luciferase activity relative to the negative control (Fig. 4F). Furthermore,
we performed RNA immunoprecipitation (RIP) studies with anti-Ago2 antibodies in the same two HCC
cells and found that endogenous circUBAP2 was enriched (Fig. 4D). The results of a microRNA pull-down
assay using biotin-labeled miR-1294 mimics showed signi�cant enrichment of circUBAP2 compared with
the control group (Fig. 4E). Meanwhile, a circRNA pull-down assay using a probe speci�c for circUBAP2
detected a clear increase in miR-1294 (Fig. 4D-E). Taken together, these results suggested that circUBAP2
functions as a sponge for miR-1294.

Next, we sought to determine the regulatory relationship and binding properties between miR-1294 and c-
MYC through qRT-PCR (Fig. 4G), dual-luciferase reporter assays (Fig. 4H), and WB (Fig. 4I). We found that
circUBAP2-KD cells had increased miR-1294 levels (Fig. 4G). Conversely, overexpression of miR-1294
reduced the expression of c-MYC protein (Fig. 4I). This result was con�rmed by the reduced activity of a
WT LUC-c-MYC reporter gene (Fig. 4H), however overexpression of miR-1294 had no effect on the activity
of a LUC-c-MYC-mutant reporter gene (Fig. 4H). Collectively, these studies suggested that circUBAP2 may
function as a sponge of miR-1294 to upregulate c-MYC expression.

miRNA inhibitor and overexpression of mRNA prevented the effects of circUBAP2 in liver cancer cells.

To further illustrate the regulatory interactions between circUBAP2 and miR-1294 that affect the c-MYC
signaling pathway, we used a miR-1294 inhibitor to attenuate the induced expression in the initially
circUBAP2 knockdown cells. qRT-PCR results con�rmed that, as expected, addition of the miR-1294
inhibitor decreased the expression of miR-1294 in both MHCC97H and HCCLM3 cells (Fig. 5B). Of
interest, we found that treatment with the miR-1294 inhibitor partially rescued the expression of c-MYC
mRNA and protein relative to the control group (Fig. 5C-D). However, qRT-PCR analysis found that neither
the addition of miR-1294 inhibitor nor the overexpression of c-MYC affected the expression of circUBAP2
(Fig. 5A).

Functional experiments revealed that the addition of miR-1294 inhibitor reversed the circUBAP2-
knockdown-mediated increase in apoptosis and decrease in the proliferation, migration, and invasion in
HCCLM3 and MHCC97H cells (Fig. 5E-H). Of note, the overexpression of c-MYC led to a reversal of the
suppressive effects caused by circUBAP2 knockdown. circUBAP2-KD cells overexpressing c-MYC had
signi�cantly increased rates of proliferation and apoptosis, as determined by CCK8 and �ow cytometry
assays (Fig. 5E-F). Transwell migration and invasion assays showed attenuated motility and invasive
potential in circUBAP2-KD cells, however these effects were partially reversed by overexpression of c-MYC
(Fig. 5G-H). In summary, we determined that the addition of miR-1294 inhibitor and the overexpression of
c-MYC reversed the oncogenic effects of circUBAP2 in HCC cells.

mRNA overexpression abolished the effects of miRNA on liver cancer cells.
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In order to understand the exact interactions between miR-1294 and c-MYC, we transfected a miR-1294
mimic into MHCC97H and HCCLM3 cell lines. The effects of the miR-1294 mimic were con�rmed by qRT-
PCR in those two cell lines compared with a scrambled control miRNA mimic. Next, qRT-PCR was
combined with WB assays to show that the overexpression of miR-1294 in MHCC97H and HCCLM3 cells
led to decreased c-MYC expression (Fig. 6B-C). However, c-MYC overexpression did not alter miR-1294
expression in the same two cell lines (Fig. 5B). Therefore, we next tested whether c-MYC overexpression
would attenuate the effects of miR-1294 in HCC cells. Indeed, overexpression of miR-1294 inhibited
proliferation, migration, and invasion in MHCC97H and HCCLM3 cell lines (Fig. 6E-G). Conversely, when
we also introduced c-MYC into the HCC cells, the tumor suppressive role of miR-1294 was signi�cantly
weakened. These �ndings matched with the �nding of decreased cell viability, migration, and invasion
(Fig. 6E-G). In summary, overexpression of c-MYC reversed the tumor suppressive role of miR-1294.

Discussion
Although the approach to management of HCC has changed dramatically over the last 5 years, outcomes
remain poor. This may be because the main molecular drivers behind the transformation and progression
of HCC have not yet been recognized[18]. CircRNAs are relatively new members of the noncoding cancer
genome that have gene-regulatory potential and have been reported to drive malignant transformation
and progression[19]. In recent years, there has been major progress in our understanding of the
biogenesis and roles of circRNAs in HCC. An increasing number of studies indicate that circRNAs can
play both oncogenic and tumor suppressive roles in HCC[20, 21]. Nevertheless, the vast majority of
circRNAs in HCC have unknown functions, and the list of circRNAs involved in HCC continues to grow at a
steady pace[19]. Previous studies have reported that circUBAP2 is important in the tumorigenesis and
progression of esophageal squamous cell carcinoma[22], pancreatic adenocarcinoma[23], ovarian
cancer[24], and osteosarcoma[25]. In this study, we found that circUBAP2 was aberrantly expressed in
HCC tissues and was positively correlated with vascular invasion and worse differentiation. circUBAP2
functions as a sponge to inhibit the function of miR-1294, thus promoting HCC proliferation, invasion,
and migration through the c-Myc signaling pathway. These �ndings suggested that circUBAP2 may hold
promise as a biomarker or target for the management of HCC. However, further prospective cohort studies
are required to validate the clinical value of circUBAP2.

Previous studies have reported that miR-1294 plays a critical role in osteosarcoma[26], gastric cancer[27],
esophageal cancer[28], ovarian cancer[29], pancreatic ductal adenocarcinoma[30], clear cell renal cell
carcinoma[31], and many other types of cancers. However, no prior studies have examined the role of
miR-1294 in HCC. In this work, we found that knockdown of circUBAP2 enhanced the expression of miR-
1294, and that upregulation of miR-1294 inhibited the growth and metastasis of HCC in vitro and in vivo.
Moreover, we validated that the c-Myc oncogene was the target of miR-1294 through dual-luciferase
reporter assays. Overexpression of c-Myc resulted in a reversal of the effects of miR-1294 in HCC cells.
Future work will be needed to validate the clinical impacts of miR-1294 in HCC.
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It has been �rmly established that c-Myc acts as a pleiotropic transcription factor to control cell
proliferation, apoptosis, metabolism, adhesion, DNA replication, differentiation, and angiogenesis[32-34].
The c-Myc oncogene is broadly overexpressed in many late-stage cancers and is often associated with
tumorigenesis by causing inappropriate gene expression[35-37]. An increasing number of reports have
recently focused on the role of c-Myc in HCC[38]. Mechanistically, our results suggested that knockdown
of circUBAP2 led to a signi�cant decrease in the expression of c-Myc in HCC and inhibited cellular DNA
synthesis. Further, rescued expression of c-Myc in circUBAP2-KD cells promoted cellular proliferation and
inhibited apoptosis. Previous reports have shown that c-Myc is a crucial factor in driving the transition
from G0/G1 to the S phase in hepatocytes[39, 40]. We believe that our results suggest that circUBAP2
regulates HCC cell survival by affecting the c-Myc signaling pathway. Thus, inhibiting the expression of
circUBAP2 may abolish the tumorigenesis of c-Myc, a previously undruggable target[41].

Conclusions
These experiments suggested that circUBAP2 has oncogenic potential in HCC. Speci�cally, circUBAP2
acts as a sponge of miR-1294 to upregulate c-Myc expression, which subsequently contributes to the
activation of EMT signaling pathways and consequently promotes tumorigenesis and progression. Of
note, circUBAP2 expression was a signi�cant independent prognostic factor for TTR and OS. These
�ndings may provide additional insights into the molecular events responsible for hepatocarcinogenesis.
Further prospective studies will help determine the potential value of circUBAP2 as a prognostic indicator
or therapeutic target for patients with HCC.

Abbreviations
HCC: Hepatocellular carcinoma; NOG: NOD/SCID/γc(null); circRNAs: circular RNAs; miRNAS: microRNAs;
TTR: Time to recurrence; OS: Overall survival;  EMT: Epithelial-mesenchymal transition; TMA: Tissue
microarray analysis.
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Table 1. 
Correlation between clinicopathological parameters of patients enrolled

 

Variables

Whole cohort (n=125)

Low circUBAP2

(n=62)

High circUBAP2

(n=63)

 

P

Sex Female 12 19 0.162

Male 50 44

Age

 

≤50 year 24 31 0.237

>50 year 38 32

ALT ≤40 U/L 45 45 0.886

>40 U/L 17 18

AFP ≤400 ng/ml 47 49 0.794

>400 ng/ml 15 14

Cirrhosis No 11 16 0.298

Yes 51 47

Tumor size ≤5 cm 40 39 0.762

>5 cm 22 25

Number Single 55 54 0.616

Multiple 7 9

MVI Absent 40 27 0.015

Present 22 36

Encapsulation Complete 31 43 0.038

Incomplete 31 20

Differentiation

 

I-II 46 34 0.019

III-IV 16 29

BCLC 0+A 53 51 0.498

B+C 9 12

Abbreviations: HR, hazard ratio; HBsAg, hepatitis B surface antigen; ALT, alanine aminotransferase;
AFP, α-fetoprotein; STIP1, Stress Induced Phosphoprotein 1; MVI, microvascular invasion
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Table 2. 
Univariate cox proportional regression analysis of factors associated with recurrence and overall survival

    Recurrence Overall survival

Variables HR

(95% CI)

P HR

(95% CI)

P

Age

(>50y versus ≤50y)

0.82

(0.52-1.29)

0.385 0.70

(0.41-1.19)

0.187

Sex

(male versus female)

0.77

(0.46-1.29)

0.317 0.55

(0.31-0.98)

0.042

Liver cirrhosis

(yes versus no)

1.17

(0.66-2.07)

0.585 0.84

(0.45-1.57)

0.585

ALT

(>40U/L versus ≤40U/L)

1.80

(1.11-2.90)

0.016 1.70

(0.97-2.98)

0.066

AFP

(>400ng/ml versus ≤400ng/ml)

2.20

(1.35-3.60)

0.002 2.04

(1.05-3.84)

0.034

No. of tumors

(multi versus single)

1.75

(0.96-3.14)

0.070 2.14

(1.07-4.69)

0.041

Tumor size

(>5cm versus ≤5cm)

2.42

(1.52-3.83)

<0.001 1.56

(0.91-2.68)

0.106

Macro vascular invasion

(yes versus no)

2.41

(1.15-5.03)

0.020 2.62

(1.18-5.81)

0.018

Micro vascular invasion

(yes versus no)

1.87

(1.18-2.96)

0.008 1.96

(1.03-3.73)

0.040

Edmondson stage

(III-IV versus I-II)

1.73

(1.09-2.74)

0.019 1.48

(0.86-2.55)

0.158

BCLC stage

(B+C versus 0+A)

1.88

(1.10-3.22)

0.021 1.64

(0.88-3.07)

0.122

circUBAP2

(high versus low)

2.40

(1.50-3.84)

<0.001 4.31

(2.30-8.09)

<0.001

Abbreviations: ALT, alanine aminotransferase; AST, aspartate transaminase; AFP, α-fetoprotein; BCLC,
Barcelona Clinic Liver Cancer; HR, hazard ratio; N.A, not applicable.
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Table 3. 
Multivariate cox proportional regression analysis of factors associated with recurrence and overall

survival

    Recurrence Overall survival

Variables HR

(95% CI)

P HR

(95% CI)

P

AFP

(>400ng/ml versus ≤400ng/ml)

2.47

(1.42-4.29)

0.001 2.18

(1.18-4.03)

0.013

ALT

(>40U/L versus ≤40U/L)

1.46

(0.88-2.44)

0.145 N.A.

Tumor size

(>5cm versus ≤5cm)

2.05

(1.23-3.42)

0.006 N.A.

No. of tumors

(multi versus single)

N.A. 1.44

(0.69-3.01)

0.338

Macro vascular invasion

(yes versus no)

1.15

(0.50-2.62)

0.744 1.95

(0.83-4.57)

0.124

Micro vascular invasion

(yes versus no)

0.98

(0.58-1.67)

0.943 1.09

(0.59-2.00)

0.784

Edmondson stage

(III-IV versus I-II)

1.28

(0.78-2.10)

0.339 N.A.

circUBAP2

(high versus low)

2.83

(1.69-4.74)

<0.001 4.68

(2.45-8.89)

<0.001

Abbreviations: ALT, alanine aminotransferase; AST, aspartate transaminase; AFP, α-fetoprotein; BCLC,
Barcelona Clinic Liver Cancer; HR, hazard ratio; N.A, not applicable.

Figures
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Figure 1

CircUBAP2 is highly upregulated in HCC tissues and is associated with poor outcomes. (A) Schematic
illustration of the construction of circUBAP2. (B) CircUBAP2 expression levels in 15 HCC tissues and
matched normal liver tissues based on bioinformatic analysis of a public database. (C) Validation of
circUBAP2 expression in 20 HCC tissues and matched healthy liver tissues via qRT-PCR analysis. (D-E)
Kaplan-Meier analyses were performed to analyze the correlation between circUBAP2 expression and OS
as well as TTR in patients with HCC. (F) Detection of circUBAP2 expression levels in 7 HCC cell lines via
qRT-PCR. (G) An RNase R treatment assay was conducted. Although circUBAP2 showed strong
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exonuclease resistance, UBAP2 did not. Data are shown as the mean ± standard deviation of three
independent experiments, and t-tests were used to compare group averages. **p < 0.01; ***p < 0.001.

Figure 2

Knockdown of circUBAP2 inhibits liver cancer cell proliferation and induces cell apoptosis. (A)
Con�rmation of circUBAP2 knockdown (KD, sh-circ-UBAP2) in HCC cell lines by qRT-PCR. (B-C) CCK8
assays to detect the effects of circUBAP2 on HCC cell proliferation. (D-E) Flow cytometry showed that
circUBAP2 inhibited HCC cell apoptosis and promoted DNA synthesis. (F) The effects of circUBAP2 gain-
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or loss-of-function on in vivo HCC tumor size. Data are shown as the mean ± standard deviation of three
independent experiments, and t-tests were used to compare group averages. **p < 0.01; ***p < 0.001.

Figure 3

Knockdown of circUBAP2 suppressed migration and invasion in liver cancer cells. (A-B) Transwell
migration and invasion assays were used to investigate the effects of circUBAP2 in HCCLM3 and
MHCC97H cell lines. (C-D) Wound healing assays were used to evaluate the function of circUBAP2 in
HCCLM3 and MHCC97H cell lines. (E) Expression of EMT-phenotype markers in HCCLM3 and MHCC97H
cell lines after circUBAP2 downregulation were measured via qRT-PCR. (D) Expression of EMT-phenotype
markers in HCCLM3 and MHCC97H cell lines after circUBAP2 downregulation were measured via WB.
Data are shown as the mean ± standard deviation of three independent experiments, and t-tests were
used to compare group averages. **p < 0.01; ***p < 0.001.
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Figure 4

CircUBAP2 upregulated c-MYC expression by sponging miR-1294. (A-B) FISH and nuclear-plasma
extraction assays were used to detect the localization of circUBAP2 in HCCLM3 and MHCC97H cell lines.
(C) Bioinformatic analyses of the circRNA-miRNA-gene regulatory network. (D) RNA immunoprecipitation
assays showed that circUBAP2 binds to AGO2 and con�rmed the enrichment of circUBAP2 using a
circUBAP2-speci�c probe. The enrichment of circUBAP2 was detected by qRT-PCR and normalized to that
of a control probe. (E) RNA pull-down experiments were performed with HCCLM3 and MHCC97H cells
using a circUBAP2-speci�c probe and biotin-labeled miR-1294 mimics. (F) qRT-PCR analysis showed that
circUBAP2-KD cells had increased expression of miR-1294. (G) Dual-luciferase reporter assays were
performed to measure the activity of LUC-circUBAP2 or LUC-circUBAP2-mutant in HCCLM3 and
MHCC97H cell lines after overexpression of miR-1294. (H) Dual-luciferase reporter assays were
performed to detect the activity of LUC-c-MYC or LUC-c-MYC-mutant in HCCLM3 and MHCC97H cell lines
after overexpression of miR-1294. (I) qRT-PCR was combined with WB to show that treatment with an
miR-1294 mimic decreased mRNA and protein levels of c-MYC. Data are shown as the mean ± standard
deviation of three independent experiments, and t-tests were used. **p < 0.01; ***p < 0.001.
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Figure 5

miR-1294 inhibitor and overexpression of c-MYC mRNA prevented the effects of circUBAP2 on liver
cancer cells. (A-C) Relative expression of circUBAP2, miR1294, and c-MYC in MHCC97H and HCCLM3
cells after circUBAP2 knockdown, treatment with an miR-1294 inhibitor, and overexpression of c-MYC was
quanti�ed by qRT-PCR. (D) Relative expression of c-MYC in MHCC97H and HCCLM3 cells after circUBAP2
knockdown, treatment with an miR-1294 inhibitor, and overexpression of c-MYC was detected by WB. (E)
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CCK8 assays found that an miR-1294 inhibitor reversed the effect of circUBAP2 knockdown on HCC
proliferation. (F) Flow cytometry studies found that miR-1294 inhibitor attenuated the effects of
circUBAP2 knockdown on HCC viability. Bar graphs represent the rate of apoptosis in treated cells. (G-H)
MHCC97H and HCCLM3 cells were used to evaluate the effects of the miR-1294 inhibitor on HCC cell
migration and invasion after circUBAP2 knockdown. Data are shown as the mean ± standard deviation of
three independent experiments, and t-tests were used to compare group averages. **p < 0.01; ***p <
0.001.

Figure 6

c-MYC overexpression rescues the tumor suppressive role of miR-1294 in HCC cells. (A) qRT-PCR showed
that treatment with an miR-1294 mimic enhanced the relative expression of miR-1294. (B) qRT-PCR
showed that miR-1294 overexpression decreased the expression of c-MYC mRNA. (C) Western blot
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showed that miR-1294 overexpression decreased c-MYC protein expression. (D) c-MYC overexpression
attenuated the effects of miR-1294 upregulation on HCC proliferation, as determined by CCK-8 assays.
(E) c-MYC overexpression attenuated the effects of miR-1294 upregulation on HCC viability, as
determined by �ow cytometry assays. (F-G) c-MYC overexpression attenuated the effects of miR-1294
upregulation on HCC migration and invasion, as determined by transwell assays. Data are shown as the
mean ± standard deviation of three independent experiments, and t-tests were used to compare group
averages. **p < 0.01; ***p < 0.001.


