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Abstract

Targeted treatment, which can specifically kill tumour cells without affecting normal cells, is a new approach for tumour

therapy. However, tumour cells tend to acquire resistance to targeted drugs during treatment. Circular RNAs (circRNAs)

are single-stranded RNA molecules with unique structures and important functions. With the development of RNA

sequencing technology, circRNAs have been found to be widespread in tumour-resistant cells and to play important

regulatory roles. In this review, we present the latest advances in circRNA research and summarize the various

mechanisms underlying their regulation. Moreover, we review the role of circRNAs in the chemotherapeutic

resistance of tumours and explore the clinical value of circRNA regulation in treating tumour resistance.
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Background
Circular RNAs (circRNAs) are newly recognized non-

coding RNAs that are considered small endogenous

RNAs with a wide distribution, considerable variety, and

multiple regulatory functions [1]. In 1976, Sanger et al.

discovered the first circRNA in viroids [2]. Since then,

tens of thousands of circRNAs have been identified in

multiple cell lines and species [3–5], including fungi,

protozoa, plants, worms, fish, insects, mice and humans

[6–8]. CircRNAs are abundant—approximately one-

eighth of the genes in the human transcriptome can pro-

duce detectable circRNAs, and the expression levels of

these circRNAs are more than ten times those of the

corresponding linear mRNAs [9, 10]. Additionally, cir-

cRNAs are more stable than linear RNAs because of

their covalent closed-loop structure and lack of free

terminal ends, which confers resistance to degradation

by ribonuclease R (RNase R) [11]. Moreover, circRNAs

are evolutionarily conserved. Approximately 15,000

human circRNA sequences can be detected in mouse or

rat genomes [5, 12]. CircRNAs can also be used to clas-

sify and identify different tumour types due to their

advantage of cell type-, tissue-, and developmental stage-

specific expression and because different subtypes of cir-

cRNAs can be produced [13–16]. Considering the above

observations, we believe that circRNAs have great re-

search potential. As research has progressed, various

biological functions of circRNAs have been revealed.

CircRNAs can act as “sponges” for microRNAs (miR-

NAs) and affect the function of miRNA target genes

[17]. In addition, circRNAs can bind to specific RNA

binding proteins (RBPs), thereby affecting the function

of the parental genes [18–20]. Intriguingly, accumulating

evidence shows that circRNAs can encode proteins/pep-

tides that are involved in tumour pathogenesis and pro-

gression [21–23]. The unique properties and biological

functions of circRNAs demonstrate the importance of

circRNAs in tumorigenesis, proliferation, metastasis, in-

vasion, and drug resistance, which also suggests the pos-

sibility that circRNAs can be used as biomarkers and

tumour therapeutic targets [24–26].

Tumour treatment remains a serious medical problem

worldwide. Despite clinical advances, chemotherapy and

radiotherapy are still the preferred methods for tumour
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treatment. The development of drug resistance means

that tumour cells can evade the effects of antitumour

drugs with different structures and functions, and drug

resistance has proven an important obstacle to tumour

treatment [27, 28]. Due to the evolution of drug resist-

ance, a considerable number of cancer patients experi-

ence local recurrence and distant metastasis, which may

lead to poor prognosis and higher tumour mortality.

Although extensive studies have been conducted, the

mechanisms of and responses to drug resistance in tu-

mours remain unclear. Several studies have shown that

miRNAs and long non-coding RNAs (lncRNAs) are

associated with chemotherapeutic resistance [29, 30].

However, information on the involvement of circRNAs

in drug resistance and the underlying regulatory mecha-

nisms is scarce.

In this review, we provide an overview of the biosyn-

thesis and clinically significant of circRNAs and describe

the differential expression of circRNAs in drug-resistant

tumours. We emphasize potential regulatory mechanisms

of circRNAs to provide a basis for clinical treatment.

Biogenesis and characteristics of circRNAs

Biological origin of circRNAs

CircRNAs are divided into three categories according to

their source: exonic circRNAs (EciRNAs), exon-intron

circRNAs (EIciRNAs), and intronic circRNAs (CiRNAs)

[1, 31, 32]. Most circRNAs are formed by exon skipping

during pre-messenger RNA (pre-mRNA) transcription

to produce a lariat structure containing exons, which is

then spliced internally to release introns and form EciR-

NAs composed of exons [33–35]. Alternatively, the tail

end of the downstream 3′ splicing donor site in the exon

binds to the upstream 5′ splicing receptor site, resulting

in base pairing of the donor and receptor sites, which

mediates exon circularization to form circRNAs. Gener-

ally, circRNAs are produced from a single exon, but cir-

cRNAs containing several exons can also be formed [3].

The exons that form circRNAs are mainly contained in

the same gene. Further study indicated the generation of

circRNAs produced by exons from different genes due

to chromosomal translocations and other reasons

in vivo; these circRNAs are called fusion circRNAs (f-

circRNAs), and most are oncogenes [36]. In addition,

read-through circRNAs (rt-circRNAs) composed of two

adjacent gene exons on the same DNA strand, were

found by exon sequencing [37]. Rt-circRNAs accounted

for only a small fraction (2.5% on average) of all cir-

cRNAs in each sample. The expression of rt-circRNAs is

lower than that of total circRNAs, and the formation of

rt-circRNAs is related to read-through of RNA polymer-

ase II (RNA Pol II) at the gene locus [37]. During the

formation of circRNAs, if introns between exons are

retained, circular transcripts form EIciRNAs composed

of both exons and introns [9, 38]. The interconnections

of introns cause the formation of CiRNAs after the lariat

structure undergoes internal reverse splicing [32]. The

mechanisms of circRNA biogenesis are depicted in

Fig. 1.

CircRNA biogenesis is regulated by many factors. Rei

et al. found that mammalian-wide interspersed repeats

(MIRs) mediate the biogenesis of circRNAs. Knockout of

upstream or downstream MIRs in human and mouse ge-

nomes significantly inhibited the production of CDR1as

[39]. N6-methyladenosine (m6A) has been demonstrated

to affect the production of circRNAs [40]. From the

pachytene stage to the round cell stage of spermatogen-

esis after meiosis, a large number of circRNAs with an

extended m6A-modified open reading frame (ORF) are

produced. Anti-m6A RNA binding protein immunopre-

cipitation (RIP)-seq data showed that as spermatogenesis

progresses, the number of m6A-carrying circRNAs in-

creases, proving that m6A can mediate the biogenesis of

circRNAs. Di et al. confirmed that some circRNA-

specific m6A loci may be related to the production of

circRNAs. The authors found that circZNF609 contains

a circRNA-specific m6A locus and that when the specific

site is mutated, the production of circZNF609 is signifi-

cantly inhibited [41]. In addition, base pairing between

Alu elements and dimerization of RBPs in introns play

essential regulatory roles in the formation of circRNAs

alternative splicing [33, 42]. For example, the protein

HQK is encoded by quaking (QKI) [43], fused in sar-

coma (FUS) [44], and serine/arginine-rich splicing factor

3 (SRSF3) [45]. Via the Mini gene reporting system con-

structed in Drosophila cells, Liang et al. found that the

trans splicing factor SR protein and heterogeneous nu-

clear ribonucleoproteins (hnRNPs) could interact with

intron repeat sequences. In addition to the genes related

to transcription termination, SR and hnRNPs can signifi-

cantly increase the abundance of circRNAs [46]. A study

showed that ATP-dependent RNA helicase A (DHX9)

can promote the unwinding of double-stranded RNA

structures and that its knockout can significantly in-

crease the number and types of circRNAs [47]. The pro-

tein product of the interleukin enhancer-binding factor

3 (ILF3) gene, NF90/NF110, promotes the formation of

circRNAs and participates in host antiviral mechanisms

by stabilizing CiRNA pairs [48]. Studies have also shown

that the parental genes of circRNAs with high abun-

dance and constitutive detection have longer and larger

introns on both sides of the circRNA [16] and contain

greater numbers of repeating elements [37] than paren-

tal genes of circRNAs with low abundance and limited

expression. However, compared with the parental genes

of circRNAs, parental genes of rt-circRNAs have longer

introns and more repeating elements in their flanking

sequences [37]. These elements draw the two splice sites
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Fig. 1 Biogenesis and function of circRNAs. a. The main product of gene transcription, pre-mRNA. b. In vivo, chromosomal translocations and

other reasons may cause CircRNAs to be produced by exons of different genes, which are called fusion CircRNAs(f-circRNAs). c. Two adjacent

gene exons on the same DNA chain can form circRNAs, read through circRNA (rt-circRNAs). d. During pre-mRNA transcription to produce a lariat

structure containing exons, which is then spliced internally to release introns and form EciRNAs composed of exons. e. the tail end of the

downstream 3′ splicing donor site in the exon binds to the upstream 5′ splicing receptor site, resulting in base pairing of the donor and receptor

sites, which mediates exon circularization to form circRNAs or EciRNA. It is regulated by Alu, RBPs, and parental gene exons. f. The

interconnections of introns cause the formation of CiRNAs after the lariat structure undergoes internal reverse splicing. g. Liner mRNA: single-

stranded ribonucleic acids are carrying genetic information. h. Interaction between CiRNA and Pol II promotes parental gene transcription. i.

EIciRNAs interact with U1-SNP and Pol II to enhance gene expression. j. CircRNAs can affect the occurrence and development of diseases as

competitive binding miRNA of ceRNA. k. CircRNAs act as RBPs scaffold sponge to regulate variable splicing of transcripts, transcription of parent

genes, and post-transcriptional translation. l. CircRNAs can be modified with IRES sequence and m6A to facilitate the translation of circRNAs
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closer together and facilitate reverse splicing [7]. Josh

et al. found that parental genes of circRNAs tended to

form multiple circular isomers and that the number of

isomers formed was proportional to the number of

exons in the parental gene [37]. However, the expression

levels of circRNAs and the abundance of mRNA pro-

duced by the parental gene were not significantly related

[4, 49]. In addition, circRNAs are downregulated in most

tumours and are negatively correlated with cell prolifera-

tion [37]. The substantial accumulation of circRNAs in

ageing neural tissue can also be explained by this obser-

vation [50].

Characteristics of circRNAs

Unlike linear RNAs, circRNAs are single-stranded, cova-

lently closed circular transcripts without 5 ’caps and 3’

tails [9]. Thus, circRNAs are considered to be more

stable than linear RNAs. In 2006, Hitoshi et al. demon-

strated that circRNAs are not easily degraded by RNA

exonucleases [51]. In 2015, Yehoshua et al. found that

most circRNAs have longer half-life than their linear

counterparts [52], especially in non-dividing cells [53].

However, because circRNAs are relatively stable, they

can accumulate in cells with slower rates of division and

thus affect cell functions. To date, five pathways of cir-

cRNA self- circularization that manage this limitation

have been found (Fig. 2).

(1) MiR-671 binds to a highly complementary miRNA

binding site in ciRS-7 (also called CDR1as), thereby trig-

gering the cleavage of Argonaute 2 (Ago2) [54, 55].

Argonaute proteins play a role in RNA interference

(RNAi) [56]. This cleavage can be enhanced by miR-7,

which recruits the miR-671 silencing complex to ciRS-7

or retains it there through an undefined mechanism [55].

(2) CircRNAs containing m6A sequences can interact

with YTH domain-containing family protein 2 (YTHD

F2) (an m6A reader) [57] and possibly self-circularize via

two mechanisms. CircRNAs that contain binding sites

for heat-responsive protein 12 (HRSP12) (an adaptor

protein) are preferentially degraded via ribonuclease P

(Rnase P)/MRP-mediated endoribonucleolytic pathways

[58], which are coupled to the CCR4-NOT complex-

mediated deadenylation pathway via cooperative binding

of HRSP12 and YTHDF2 to circRNAs containing m6A

[59]. CircRNAs containing m6A lack HRSP12 binding

sites, and YTHDF2 may still interact with HRSP12 and

induce decay, albeit with low efficiency [59]. The

HRSP12 binding site and the Rnase P/MRP cleavage site

are located upstream and downstream of the YTHDF2

recognition site, respectively [59].

(3) CircRNAs tend to form a 16–26 bp small ring

structure, which can bind and inhibit double-stranded

DNA in the RNA-activated protein kinase (PKR) gene

[60]. When cells are stimulated or infected with viruses,

ribonuclease L (Rnase L) is activated and degrades cir-

cRNA molecules; subsequently, PKR is released and acti-

vates the downstream antiviral mechanism [60].

(4) GW182 mediates the degradation of circRNAs in

Drosophila cells, as determined in studies based on

RNAi library screening. Interference with GW182 min-

imally affects the abundance of nuclear circRNAs but,

conversely, significantly decreases the abundance of

cytoplasmic circRNAs. Overexpression of GW182 can

lead to a decrease in the abundance of related circRNAs

[61]. Moreover, circRNAs can be enriched significantly

after interference with the three human homologues of

the GW182 gene (TNRC6A, TNRC6B, and TNRC6C),

indicating that TNRC6A/B/C are involved in the degrad-

ation of circRNAs [61].

(5) UPF1 and G3BP1 mediate the structure-mediated

RNA decay (SRD) of mRNA. The abundances of mRNAs

with a complex 3′ untranslated region (3’UTR) structure

is less altered after UPF1 knockdown than those of

mRNAs with less complex 3’UTR structures. Subse-

quently, this mechanism was confirmed to apply to cir-

cRNAs. The authors knocked down UPF1 and G3BP1 in

DLD cells containing circRNAs with complex structures

and analysed the abundance trends. The abundances of

circRNA molecules with more complex structures chan-

ged less than those of circRNA molecules with less com-

plex structures after knocking down UPF1 and G3BP1.

Thus, circRNA molecules with complex structures may

be regulated by the SRD mechanism [62].

In addition, studies have shown that circRNAs may be

secreted from cells via exosomes [63, 64]; most of these

circRNAs mediate inter-cellular communication through

exosomes [65, 66]. However, whether this event is re-

lated to the self-regulation of circRNAs and whether the

degradation of these circRNAs affects their cellular func-

tion are unclear.

Nuclear and cytoplasmic transport of circRNAs

Most circRNAs are exported to the cytoplasm after for-

mation, acting as miRNA sponges, binding with RBPs,

or encoding proteins [67–69]. Huang et al. found that

Hel25E is a vital regulator of post-transcriptional nucle-

ation of circRNAs in Drosophila. Both of the Hel25E ho-

mologues, URH49 (DDX39A) and UAP56 (DDX39B),

can mediate the nuclear export of circRNAs [70]. Inter-

estingly, UAP56 and Hel25E are responsible mainly for

the nuclear export of long circRNAs, whereas URH49 is

responsible mainly for the nuclear export of short cir-

cRNAs [70]. Experimental results showed that circRNAs

of different lengths exhibit different protein recognition

characteristics due to point mutations in four amino

acids located in the middle of the protein sequence [70].

In addition, circRNAs can rely on m6A for nuclear ex-

port [71]. m6A-modified circNSUN2 can bind YTH
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domain-containing family protein 1 (YTHDC1) and pro-

mote its nuclear export. YTHDC1 is a reader of RNA

m6A [72]. CircNSUN2 interacts with YTHDC1 and can

be enriched by antibodies against m6A. This modifica-

tion mediates its interaction with YTHDC1. After inter-

ference with YTHDC1, the subcellular distribution of

circNSUN2 changed, and the abundance of nuclear cir-

cNSUN2 increased [72]. This phenomenon was con-

firmed with fluorescence in situ hybridization (FISH)

positioning analysis [71].

CircRNA functions

With the development of research, the biological func-

tions of circRNAs have been widely revealed [32, 73]

(Fig. 1 and Table 1).

MiRNA sponges

Numerous studies have demonstrated that circRNAs can

play a vital regulatory role as miRNA sponges in tu-

mours. The most representative example is ciRS-7,

which has more than 70 selectively conserved miRNA

targets [17]. CiRS-7 can inhibit the activity of miR-7 and

lead to an increased level of the target of miR-7. In

addition, the testicular-specific sex-determining region Y

circRNA (circ-Sry), can act as a miR-138 sponge. Gao

and Ye et al. used microarray analysis to select the most

significantly upregulated carcinogenic factor (circ-sox4)

in lung adenocarcinoma (LUAD) tissues and found that

circ-sox4 promoted the proliferation, invasion, and mi-

gration of LUAD cells by sponging miR-1270 and upreg-

ulating PLAGL2 [74]. In bladder cancer, circTCF25 acts

Fig. 2 CircRNAs self-circularize mechanisms. a. MiR-671 binds to a highly complementary miRNA binding site in ciRS-7, thereby triggering the

cleavage of AGO2. b. When cells are stimulated or infected by viruses, RNase L activates and degrades circRNAs molecules. c. CircRNAs with m6A

sequences have two ways of self-renewing. d. The GW182 gene in drosophila cells and the human homologous genes TNRC6A, TNRC6B, and

TNRC6C mediate the apoptosis of circRNAs. e. The regulation of UPF1 or G3BP1 can degrade CircRNAs with complex structures. f. CircRNAs are

removed from the cytoplasm by exosomes or direct release into the extracellular space
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as a miRNA sponge, suppressing the functions of miR-

103a-3p and miR-107 in tumour tissues and increasing the

expression of cyclin-dependent kinase 6 (CDK6), leading to

tumour cell proliferation [75]. Pan et al. found a carcino-

genic circRNA, circ-TFF1, which is produced from the host

gene trefoil factor 1 (TFF1) located on chromosome

21q22.3, and found that circ-TFF1 plays a carcinogenic role

in breast cancer by regulating the miR-326/TFF1 axis [76].

All of the above results suggest that miRNA sponging by

circRNAs is a common phenomenon [17].

Intriguingly, studies have also shown that circRNAs

can act as competing endogenous RNAs (ceRNAs) to

influence epithelial-mesenchymal transition (EMT) in

tumours. EMT can affect the expression patterns of cell

adhesion, migration, proliferation, apoptosis, and other

genes and can modify cell behaviour to induce drastic

changes [77]. First, a study showed that the expression

of hundreds of circRNAs is induced during EMT in

humans [43]. Then, Wei et al. identified the tumour sup-

pressor circPTPRA through an initial microarray analysis

of non-small cell lung cancer (NSCLC) samples and

found that circPTPRA inhibited EMT in NSCLC cells by

binding to miR-96-5p [78]. The tumour suppressor

circRIP2 induces EMT in bladder cancer through com-

petitive binding to miR-1305 and activation of the trans-

forming growth factor-β2 (Tgf-β2)/Smad3 pathway to

promote the proliferation, invasion, and migration of

bladder tumour cells [79]. However, circAMOTL1L acts

as a sponge by binding to miR-193a-5p in prostate can-

cer (Pca) cells, which alleviates the inhibitory effects of

miR-193a-5p on the protocadherin (PCDHA) gene clus-

ter, promotes prostate cancer cell EMT in vivo, and

leads to the growth of prostate cancer in vivo [80]. To

date, circRNAs have been found to stabilize miRNAs in

addition to acting as molecular sponges for miRNAs.

Through miRNA expression profiling and analysis of

AGO2-CLIP seq data, researchers showed that

circCSNK1G3 may function by binding to miR-181b/

d. Interestingly, the interaction of circCSNK1G3 with

miR-181b/d does not inhibit the activity of miR-181b/

d, but the reduction in circCSNK1G3 expression abol-

ishes the ability of miR-181b/d to inhibit the

Table 1 The mechanisms and biological functions of main circRNAs

circRNA Mechanisms Location Functions Refs

CIRS-
7(CDR1as)

Sponges miR-7 cytoplasm Regulates the nervous system and promotes drug resistance [17, 105,
157, 158]

circ-Sry Sponges miR-138 cytoplasm Relates to gender determination [17]

circ-SOX4 Sponges miR-1270 and up-regulated
PLAGL2

cytoplasm Promotes the proliferation, invasion and migration of LUAD
cells

[74]

circTCF25 Sponges miR-103a-3p and miR-107
increased the expression of CDK6

cytoplasm Promotes the proliferation of bladder cancer cells [75]

circ-TFF1 miR-326/TFF1 axis cytoplasm Carcinogenesis in breast cancer [76]

circPTPRA Sponges miR-96-5p cytoplasm Inhibition of EMT in NSCLC cells [78]

circRIP2 Sponges miR-1305, activated Tgf 2/ Smad3
pathway

cytoplasm EMT is induced to promote the proliferation, invasion and
migration of bladder cancer

[79]

circAMOTL1L Sponges miR-193a-5p cytoplasm Promotes EMT in prostate cancer cells [80]

CircCSNK1G3 Sponges miR-181b/d cytoplasm Stabilize miRNAs and promote cell proliferation [49]

CircMb1 Combines with the MBL cytoplasm Relates to neuromodulation [1]

Ci-ankrd52 Binds to RNA Pol II nucleus Cis-regulation promotes transcription of ANKRD52 [32]

circIIF3J Interacts with U1 snRNP and RNA Pol II nucleus Enhances the transcription of parental genes [81]

circPAIP2 Interacts with U1 snRNP and RNA Pol II nucleus Enhances the transcription of parental genes [81]

circMYBL2 Binds to the protein PTBP1 cytoplasm Promotes the development of flt3-itd mutant white blood [82]

circAmotl1 Binds PDK1 and AKT1 cytoplasm Protein scaffolds promote phosphorylation and promote
cardiac protective nuclear translocation

[20]

circFOXO3 Binds to the complex of ID-1, CDK2-p21 and
p53-MDM2

cytoplasm Affects cell senescence, cell cycle and apoptosis [83, 84]

circZNF609 Translation template cytoplasm Specifically controls the proliferation of myoblasts [23]

circSHPRH Translation template cytoplasm Inhibits cell proliferation and tumor suppressors [96]

circ-LINCPINT Translation template cytoplasm Inhibits cell proliferation and tumor suppressors [97]

circFBXW7 Translation template cytoplasm Inhibits the proliferation of cancer cells and the acceleration
of the cell cycle

[98]

circPPP1R12A Translation template cytoplasm Inhibits cell proliferation and tumor suppressors [21]
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expression of its target genes (CBX7, CDK1, and

CDC25A) [49]. This pattern is inconsistent with the

usual pattern of circRNA action. However, competitive

binding of circRNAs to miRNAs remains the primary

mechanism underlying their regulatory functions in

tumours. Research on circRNAs can provide potential

targets for cancer treatment.

RBPs

RBPs are a broad class of proteins that interact with

RNA molecules and can play key roles in RNA post-

transcriptional regulation, tissue development, and dis-

eases [68].

CircRNAs bind to RBPs to regulate transcript splicing and

parental gene transcription

As a regulatory protein of circRNAs, muscleblind (MBL)

in Drosophila can promote the circularization of mRNA

precursors. The MBL circRNA (circMb1) and its flank-

ing introns contain conserved sites that bind specifically

to MBL. At low concentrations of MBL, the MBL gene

produces a linear mRNA transcript, which is translated

into the MBL protein. In contrast, at high concentra-

tions of MBL, the MBL protein binds to its precursor

RNA, prompting the formation of circMbl from exon 2,

preventing the production of additional MBL protein

and exerting negative feedback regulation [1]. An

enriched CiRNA, ci-ankrd52, accumulates mainly in the

nucleus and promotes the transcription of ANKRD52

through cis regulation of RNA Pol II. Knockout of ci-

ankrd52 can reduce the expression of its parental gene

[32]. Additionally, EIciRNAs, which are composed of

exons and introns, promotes transcription. A study

showed that EIciRNAs such as circIIF3J and circPAIP2,

which are localized mainly in the nucleus, interact with

the U1 small nuclear ribonucleoprotein (U1 snRNP) and

RNA Pol II to enhance the transcription of their parental

genes. Knockout of circEIF3J and circPAIP2 reduced the

transcript levels of EIF3J and PAIP2, respectively [81].

Interestingly, both of these EIciRNAs are present in the

nucleus and act as cis-regulatory elements to promote

the expression of their parental genes, but the other po-

tential functions of these EIciRNAs, such as trans regula-

tion, are unknown.

CircRNAs bind to RBPs to regulate translation and act as

protein scaffolds

CircRNAs can bind to specific RBPs and regulate the

interaction between RBPs and their target RNAs. Sun

et al. found that circMYBL2 regulates the mRNA trans-

lation efficiency of the oncogene FMS-like tyrosine

kinase-3 (FLT3) by recruiting the RBP PTBP1, thus pro-

moting the occurrence and development of white blood

cells harbouring FLT3-internal tandem duplication

(ITD) mutations [82]. That study was the first to report

that circRNAs play a decisive regulatory role in the

translation process as RNA-protein complexes [82]. In

addition, circRNAs may act as a “scaffold” for RBPs,

binding to multiple RBPs and promoting stable interac-

tions through the potentially increased stability of cir-

cRNA transcripts. For example, circAmotl1 physically

binds to 3-phosphoinositide-dependent protein kinase 1

(PDK1) and protein kinase B (AKT1) to promote PDK1-

dependent AKT1 phosphorylation. In addition, circA-

motl1 promotes the cardioprotective nuclear translocation

of PAKT [20]. CircFOXO3 can affect cell senescence, the

cell cycle, and apoptosis by interacting with the anti-

ageing 132 protein ID-1, the CDK2-p21 complex, and the

p53-MDM2 complex [83, 84]. In summary, we speculate

that circRNAs may also function as sequence-targeting el-

ements. Interactions between circRNAs and RBPs can also

mediate various biological activities, such as cell prolifera-

tion, differentiation, motility, apoptosis, senescence, and

the cellular response to oxidative stress, through post-

transcriptional regulation [83, 85]. Some studies have

shown that specific proteins can synergistically bind to

multiple circRNAs in the cytoplasm to produce a molecu-

lar repository of proteins that respond rapidly to extracel-

lular stimuli. This process can achieve a rapid immune

response after viral infection [18].

Protein translation

CircRNAs are considered non-coding RNAs because they

lack 3′ and 5′ ends [86]. However, in 2015, Abe et al. pro-

vided strong evidence that endogenous circRNAs can act

as translation templates [87]. In the acellular Escherichia

coli translation system, circRNAs with an infinite ORF

were effectively translated through the roll-ring amplifica-

tion technique (RCA). These results suggest that cir-

cRNAs without poly (A) tail or cap structures can be

translated into proteins [87]. Since that discovery, accu-

mulating evidence has shown that circRNAs can encode

regulatory proteins/peptides [88] and that these functional

proteins/peptides can regulate biological processes and

affect tumour occurrence, invasion, and metastasis [89].

Translation patterns based on the IRES

Eukaryotic mRNAs are translated through a typical cap-

dependent translation mechanism [90]. However, under

conditions such as cellular stress exposure or viral infec-

tion, mRNA translation can be initiated through a cap-

independent alternative translation mechanism via the

internal ribosome entry site (IRES) [91]. The IRES can

directly recruit ribosomes, perform ribosomal assembly

and in-frame protein translation, and initiate protein

translation independent of the 5′ cap structure and dir-

ect translation [92]. In 2017, Legnini et al. found that

circZNF609 in mouse and human muscle cells explicitly
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controls the proliferation of muscle cells. During myo-

genesis, heat shock activates circZNF609 translation, and

the UTR of circZNF609 can act as an IRES to support

protein translation in a splice-dependent and cap-

independent manner [23]. Surprisingly, additional studies

have demonstrated that through IRES-mediated transla-

tion, circRNAs produce peptides that regulate tumour

biological functions [93–95]. CircSHPRH [96], circ-

LINCPINT [97], circFBXW7 [98], and circPPP1R12A [21]

can translate proteins or short peptide chains in glioma by

relying on the IRES-mediated translation mechanism. Cir-

cRNAs with more than 50 nucleotides (nt) may contain a

hexamer similar to an IRES [88], a feature that indicates

the universality of the IRES-mediated circRNA translation

mechanism.

Translation modes based on m6A

In addition to the IRES-mediated circRNA translation

mechanism, another important cap-independent transla-

tion mechanism is mediated by the presence of methyl-

ated adenosine residues in the form of m6A in the

5’UTR [99]. m6A modification is quite common in

mRNAs and ncRNAs [100, 101]. Recently, circRNAs

were found to contain numerous short sequences with

m6A sites [102]. Yun et al. found that m6A in the 5’UTR

promoted cap-independent translation during heat stress

through the protective mechanism of YTHDF2 [102]. In

addition, this group found that numerous circRNAs are

methylated, and hundreds of endogenous translatable

circRNAs containing m6A sites were identified by se-

quencing [102]. Collectively, the above findings demon-

strate that the m6A-mediated translation is typical for

circRNAs [103, 104]. The IRES-mediated and m6A-me-

diated translation mechanisms are two primary cap-

independent circRNA translation mechanisms. More

mechanisms by which circRNAs are translated into pro-

teins remain to be discovered.

Potential of circRNAs as biomarkers

The early symptoms of most tumours are not obvious,

and patients often miss the best opportunity for treat-

ment due to the lack of specific early diagnostic markers.

Therefore, identification of accurate biomarkers and

therapeutic targets is urgently needed. CircRNAs are po-

tential biomarkers for the early diagnosis, metastasis,

prognosis, and drug resistance of tumours due to their

stable structure [11], long half-life [52], tumour specifi-

city [16], and ability to be detected in various body fluids

[105–107]. Regarding the early diagnosis of tumours,

Ren et al. found that hsa_circ_0043265 exhibited low ex-

pression in NSCLC tissues and cells and that it could in-

crease the expression of FOXP2 through sponging miR-

25-3p, thus inhibiting NSCLC progression. Thus, hsa_

circ_0043265 could be used as a biomarker for the early

diagnosis of NSCLC [108]. Li et al. found that circMYLK

was highly expressed in liver cancer tissues and cell lines

and promoted the occurrence and development of liver

cancer by regulating the miR-362-3p/Rab23 axis, thus

providing a basis for the early diagnosis and treatment

of liver cancer [109]. Regarding tumour metastasis, Yang

et al. found that the expression of circPTK2 was upregu-

lated in colorectal cancer (CRC) tissues and that the sur-

vival rate of colorectal cancer patients with high

circPTK2 expression was lower than that of colorectal

cancer patients with low circPTK2 expression. CircPTK2

promotes EMT in colorectal cancer cells both in vivo

and in vitro by binding to vimentin at Ser38, Ser55, and

Ser82. These results suggest that circPTK2 may be a

therapeutic target for metastatic colorectal cancer and a

promising biomarker for the early diagnosis of metastasis

[110]. Regarding tumour prognosis, Guo et al. found that

circBFAR expression was upregulated in pancreatic ductal

adenocarcinoma (PDAC). CircBFAR expression was posi-

tively correlated with the tumour-node-metastasis (TNM)

stage and was associated with poor prognosis in PDAC

patients. This circRNA enhancing EMT by binding miR-

34b-5p and activating the Met/PI3K/Akt signalling path-

way, finally promoting the development of PDAC. Cir-

cBFAR could be used as a prognostic indicator and

therapeutic target for PDAC [111]. In addition, the expres-

sion levels hsa_circ_0124055 and hsa_circ_0101622 in

tumour tissues and plasma of patients with thyroid cancer

are significantly increased, and the overall survival times

of patients with a high expression level of either circRNA

were shorter than those of patients with a low expression

level of either circRNA. These results suggest that both of

these circRNAs are helpful biomarkers for the prognosis

and diagnosis of thyroid carcinoma and can be used as

clinical therapeutic targets [112]. In addition, regarding

drug resistance, hsa_circ_0006528 [113], circMTO1 [114],

circ_0001546 [115], and circ-LARP4 [116] exhibit abnor-

mal expression levels in drug-resistant cells, suggesting

that they could be used as diagnostic markers for drug re-

sistance in tumours.

CircRNAs have become accepted as biomarkers for

multi-stage tumours. If circRNA detection methods can

be effectively applied in clinical practice, these methods

could be used to diagnose tumours in patients as early

as possible and avoid patient distress.

Mechanisms of circRNAs in drug resistance

The unique properties and biological functions of

circRNAs have indicated their importance in tumorigen-

esis, tumour growth, metastasis, invasion, drug resist-

ance and radioresistance. Further, these results suggest

that circRNAs may become new biomarkers or thera-

peutic targets for tumours [24–26]. As shown in Fig. 3

and Table 2, we summarize the potential mechanisms of
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circRNAs in drug-resistant tumours to provide evidence

for clinical treatment strategies.

Lung cancer

Cisplatin (CDDP), pemetrexed (MTA), paclitaxel

(PTX), and gefitinib are effective targeted drugs for

lung cancer [117–119]. Numerous experiments have

demonstrated that circRNAs play a regulatory role in

drug resistance in lung cancers, including LUAD, small

cell lung cancer (SCLC), and NSCLC. CircPVT1 is up-

regulated in LUAD tissues and cell lines with resistance

to CDDP and MTA. CircPVT1 was found to mediate

CDDP and MTA resistance via the miR-145-5p/ABCC1

axis. CircPVT1 knockout sensitizes tumour cells to

CDDP and MTA [120]. Another study showed that up-

regulation of CDR1-as in LUAD tissues and cell lines is

related to PTX and CDDP insensitivity in LUAD

patients. CDR1-as promotes chemotherapeutic resist-

ance to PTX and CDDP in LUAD patients through the

epidermal growth factor receptor (EGFR)/phos-

phatidylinositol 3-kinase (PI3K) signalling pathway

[105]. In SCLC, circESRP1, which can directly bind to

miR-93-5p and upregulate the expression of its down-

stream target genes Smad7/cyclin-dependent kinase in-

hibitor 1 (p21), is significantly downregulated in drug-

resistant cells. Finally, a negative feedback loop is

formed. At the same time, TGF-β-mediated EMT is

regulated to enhance the sensitivity to CDDP, adriamy-

cin (ADM), and etoposide (DT-PACE). In addition,

both overexpression of circESRP1 and inhibition of the

TGF-β signalling pathway can change the tumour re-

sponse to chemotherapy [121]. Circ_0002483 is down-

regulated in NSCLC cells and can regulate its target

genes growth factor receptor-bound protein2 (Grb2),

forkhead box protein O1 (Foxo1), and forkhead box

protein O3 (Foxo3) by sponging miR-182-5p, thus

enhancing the sensitivity of NSCLC cells to PTX [122].

In another study, circ_0076305 and circRNA_103762

were found to be significantly upregulated in CDDP-

resistant NSCLC tissues and cell lines. Circ_0076305

can regulate CDDP resistance in NSCLC cells by bind-

ing to miR-296-5p and acting on the target gene

STAT3 [123]. CircRNA_103762 promotes CDDP resist-

ance in NSCLC by targeting DNA damage-inducible

transcript 3 (CHOP) [124]. Hsa_circ_0001946 is down-

regulated in NSCLC cells and has been proven to re-

duce the sensitivity of NSCLC cells to CDDP by

regulating the nucleotide excision repair (NER) signal-

ling pathway; promoting the survival, proliferation, mi-

gration, and invasion of NSCLC cells; and inhibiting

apoptosis [125]. Finally, upregulation of hsa_circ_

0004015 in NSCLC cells can enhance the resistance of

lung cancer cells to gefitinib via the circRNA/miR1183-

PDK1 axis [25].

Breast cancer

Chemotherapy is an effective method to prevent breast

cancer recurrence and metastasis after surgical treatment

[126]. However, chemotherapeutic resistance remains a

major problem. Hsa_circ_0006528 is upregulated in

ADM-resistant breast cancer cells, possibly via the cir-

cRNA/miR-7-5p/Raf1 axis [113]. Low expression levels of

miR-7 have long been proven to confer resistance to

breast cancer chemotherapy [127]. In another study of

ADM-resistant breast cancer, circKDM4C downregulation

was found to inhibit tumour progression and alleviate

ADM resistance by regulating the miR-548p/PBLD axis

[128]. Additionally, the expression level of circMTO1

(hsa_circ_007874) in monastrol-resistant breast cancer

cell lines is significantly reduced compared with that in

monastrol-sensitive breast cancer cell lines, and overex-

pression of circMTO1 can reverse monastrol resistance

through the circRNA/TNF receptor-associated factor 4

(TRAF4)/Eg5 pathway [129]. In addition, Ma et al. found

that circMOTL1, which may play an essential role in the

PTX resistance of breast cancer cells by regulating the

AKT pathway, promoting anti-apoptotic protein expres-

sion, and inhibiting pro-apoptotic protein expression, is

upregulated in breast cancer [130]. Yang et al. found that

the expression of circ-ABCB10 was upregulated in breast

cancer cells. Circ-ABCB10 mediates the PTX resistance,

apoptosis, invasion and autophagy of breast cancer cells

through the let-7a-5p/DUSP7 axis [131].

Prostate cancer

CircFoxo3 can decrease the survival, migration, invasion,

and docetaxel (DTX) resistance of prostate cancer cells and

can influence DTX resistance through the circRNA/Foxo3/

EMT pathway [132]. Currently, androgen deprivation ther-

apy (ADT) with enzalutamide (ENZ) can prolong the sur-

vival of patients with castration-resistant prostate cancer

(CRPC). However, most patients develop ENZ resistance

[133]. Hsa_circ_0004870 is downregulated in ENZ-resistant

cells and plays a key role in mediating ENZ resistance in

CRPC cells through RBM39 [134]. Another study showed

that circRNA17 may suppress ENZ resistance in ENZ-

resistant CRPC tumour cells by altering miR-181c-5p/ARv7

signalling [135].

Gastric cancer

CDDP, MTA, PTX, and oxaliplatin (OXA) are commonly

used in gastric cancer (GC) chemotherapy [136–138].

However, patients always acquire chemotherapeutic resist-

ance after treatment, which limits the overall clinical effi-

cacy of the treatment. CircPVT1 is a carcinogenic factor

in GC, mediating PTX resistance by upregulating ZEB1

via miR-124-3p [139]. Huang et al. found that circFN1 can

promote CDDP-induced GC cell activity and inhibit GC

cell apoptosis in vivo and in vitro. CircFN1 inhibits GC
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cell apoptosis through sponging miR-182-5p and pro-

motes CDDP resistance in GC, suggesting that circFN1

could be a therapeutic target in GC patients receiving

CDDP treatment [106]. As another example of circRNA

involvement in CDDP resistance in GC, circAKT3 can

regulate phosphoinositide 3-kinase regulatory subunit 1

(PIK3R1), while PIK3R1 increases CDDP resistance by ac-

tivating the PI3K/AKT signalling pathway [140]. Zhang

et al. found that circCCDC66 is an important regulator of

CDDP resistance and is highly expressed in CDDP-

Fig. 3 The mechanisms of circRNAs in drug-resistant tumours. Circular RNAs are a double-edged sword in the mechanism of drug-resistant

tumors, which can not only promote drug resistance but also inhibit drug resistance
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Table 2 Overview of circRNAs in drug-resistant tumors

Cancer type circRNAs Drug
resistance

Resistance mechanisms Dysregulation Biomarker Refs

LUAD circPVT1 CDDP/MTA miR-145-5p/ABCC1 axis Upregulated Prognostic [120]

CDR1-AS PTX/CDDP EGFR/PI3K signalling pathway Upregulated Prognostic [105]

SCLC circESRP1 CDDP/ADM/
DT-PACE

miR-93-5p/Smad7/p21(CDKN1A) Downregulated Prognostic and
Therapeutic targets

[121]

NSCLC circ_
0002483

PTX miR-182-5p/Grb2、Foxo1、Foxo3 Downregulated Therapeutic targets [122]

circ_
0076305

CDDP miR-296-5p/STAT3 Upregulated Therapeutic targets [123]

circRNA_
103762

CDDP CHOP Upregulated Therapeutic targets [124]

hsa_circ_
0001946

CDDP NER signalling pathway Downregulated Diagnosis and
Prognostic

[125]

hsa_circ_
0004015

Gefitinib miR1183-PDK1 axis Upregulated Therapeutic targets [25]

Breast cancer hsa_circ_
0006528

ADM miR-7-5p/Raf_1 axis Upregulated Unknown [113]

circKDM4C ADM miR-548p/PBLD axis Downregulated Prognostic [128]

circMTO1 Monastrol TRAF4/Eg5 pathway Downregulated Prognostic and
Therapeutic targets

[129]

circAMOTL1 PTX AKT signalling pathway Upregulated Therapeutic targets [130]

circ-ABCB10 PTX Let-7a-5p /DUSP7 axis Upregulated Therapeutic targets [131]

Prostate cancer circFoxo3 DTX Foxo3 Downregulated Prognostic and
Therapeutic targets

[132]

hsa_circ_
0004870

ENZ RBM39 Downregulated Diagnosis and
Prognostic

[134]

circRNA17 ENZ miR-181c-5p/ARv7 signalling pathway Downregulated Therapeutic targets [135]

Gastric cancer circPVT1 PTX miR-124-3p/ZEB1 Upregulated Therapeutic targets [139]

circFN1 CDDP miR-182-5p Upregulated Therapeutic targets [106]

circAKT3 CDDP PI3K/AKT signalling pathway Upregulated Therapeutic targets [140]

circCCDC66 CDDP miR-618 and releasing BCL2 Upregulated Therapeutic targets [136]

circMTHFD2 MTA miR-124/MDR-1 Upregulated Drug targets [141]

circ0001546 OXA ATM/Chk2/p53 Downregulated Diagnosis and
Prognostic

[115]

circRACGAP1 Apatinib miR-3657/ATG7 axis Upregulated Therapeutic targets [142]

Colorectal cancer circ_
0000338

5-FU/OXA unknown Upregulated Drug targets [143]

CIRS-122 Apatinib miR-122-PKM2 Upregulated Therapeutic targets [144]

hsa_circ_
0007031

5-FU miR-885-3p/AKT3 Upregulated Drug targets [107]

hsa_circ_
0000504

5-FU miR-485-5p/STAT3/AKT3 Upregulated Drug targets [107]

hsa_circ_
0048234

5-FU miR-671-5p/EGFR axis Downregulated Drug targets [107]

hsa_circ_
0079662

OXA hsa-miR-324-5p/ HOXA9/ TNF-α Upregulated Unknown [145]

Osteosarcoma circPVT1 ADM/CDDP unknown Upregulated Diagnosis and
Prognostic

[24]

circ-LARP4 ADM/CDDP miR-424 Downregulated Unknown [116]
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resistant cells and tissues. In vitro and in vivo experiments

showed that circCCDC66 inhibits apoptosis and promotes

drug resistance by targeting miR-618 and releasing B cell

lymphoma-2 (BCL2) [136]. Via microarray analysis, Xu

et al. identified the upregulation of circMTHFD2, which

bound directly to miR-124 as a molecular sponge, in GC

cells. This binding induced an increase in MDR-1 protein

expression, ultimately enhancing MTA resistance in GC

cells [141]. Circ_0001546 is upregulated in GC tissues and

cells, which can increase ATM expression and inhibit cell

proliferation and OXA resistance by activating the ATM/

Chk2/p53-dependent pathway [115]. In GC cells, silencing

circRACGAP1 inhibits apatinib-induced autophagy, which

can be rescued by miR-3657 expression. Knockout of the

circRACGAP1 gene endows GC cells with sensitivity to

apatinib by inhibiting autophagy. CircRACGAP1 was

found to mediate apatinib resistance through the cir-

cRACGAP1/miR-3657/ATG7 axis [142].

Table 2 Overview of circRNAs in drug-resistant tumors (Continued)

Cancer type circRNAs Drug
resistance

Resistance mechanisms Dysregulation Biomarker Refs

hsa_circ_
001569

CDDP Wnt/β-catenin signalling pathway Upregulated Therapeutic targets [149]

ESCC circRNA_
100367

Radiation
resistance

miR217/WNT3 Upregulated Therapeutic targets [151]

circITCH Radiation
resistance

Wnt/β signalling pathway Downregulated Therapeutic targets [152]

circRNA_
001275

CDDP miR-370-3p/ Wnt7a Upregulated Diagnosis and
Therapeutic targets

[153]

Nasopharynx cancer circCRIM1 DTX miR-422a/FOXQ1 Upregulated Prognostic and
Therapeutic targets

[154]

Bladder cancer hsa_circ_
0000285

CDDP miR-124 and miR-558 Downregulated Prognostic [156]

circRNA
Cdr1as

CDDP miR-1270/APAF1 Upregulated Therapeutic targets [157]

Ovarian cancer circRNA
Cdr1as

CDDP miR-1270/SCAI Downregulated Unknown [158]

circCELSR1 PTX miR-1252/FOXR2 Upregulated Therapeutic targets [159]

AML circPAN3 ADM circPAN3-miR-153-5p/miR-183-5p-XIAP axis or
AMPK/mTOR pathway

Upregulated Drug targets [161,
162]

circMYBL2 quizartinib FLT3-ITD signalling pathway Upregulated Therapeutic targets [82]

f-circPR Ara-C p-AKT signalling Upregulated Diagnosis and
Therapeutic targets

[36]

f-circM9 Ara-C MAPK and AKT1-induced signalling Upregulated Diagnosis and
Therapeutic targets

[36]

CML circ_
0009910

imatinib miR-34a-5p/ ULK1-induced autophagy Upregulated Drug targets [165]

circBA9.3 TKIs BCR-ABL pathway Upregulated Therapeutic targets [166]

circ_100053 imatinib BCR-ABL pathway Upregulated Diagnosis and
Therapeutic targets

[168]

MM hsa_circ_
0007841

BTZ unknown Upregulated Diagnosis and
Prognostic

[170]

Pancreatic cancer circHIPK3 GEM miR-330-5p/RASSF1 Upregulated Prognostic and Drug
targets

[171]

Cholangiocarcinoma circ-
SMARCA5

CDDP/GEM unknown Downregulated Prognostic [172]

HCC circ_
0003418

CDDP Wnt/β-catenin signaling pathway Downregulated Unknown [173]

Renal carcinoma hsa_circ_
0035483

GEM miR-335/CCNB1 Upregulated Unknown [174]

Glioblastoma circNFIX TMZ miR-132 Upregulated Prognostic and
Therapeutic targets

[175]
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Colorectal cancer

Hon et al. found that circ_0000338 has a tumour-

suppressive effect in colorectal cancer and can enhance

the chemosensitivity of colorectal cancer cells. Knockout

of hsa_circ_0000338 in HCT116-R cells increases 5-

fluorouracil (5-FU) and OXA resistance and may have a

dual regulatory effect. Hsa_circ_0000338 was selectively

transfected into HCT_116-P cells cocultured with HCT_

116-R exosomes, which exhibited a more robust re-

sponse to drug therapy than control cells. Hsa_circ_

0000338 may play a carcinogenic role in HCT116-R exo-

somes and enhance the drug resistance of the recipient

cells [143]. In addition, CIRS-122 (hsa_circ_0005963)

acts as a sponge for miR-122, which targets PKM_2, and

is positively correlated with chemotherapeutic resistance.

Studies have shown that exosomes from OXA-resistant

cells transport CIRS-122 to sensitive cells, thereby pro-

moting glycolysis and chemotherapeutic resistance

through upregulation of miR-122 sponging and PKM2

expression. In addition, extracellular transport of si-

CIRC-122 inhibits glycolysis and reverses OXA resist-

ance in vivo by regulating the CIRS-122/miR-122/PKM2

pathway [144]. Xiong et al. investigated circRNA regula-

tion in 5-FU-resistant colorectal cancer cells for the first

time, finding that the most strongly upregulated cir-

cRNAs—hsa_circ_0007031 and hsa_circ_0000504—pro-

moted 5-FU resistance by regulating the circRNA/miR-

853-3p/AKT3 and circRNA/miR-485-5p/STAT3/AKT3

signalling pathways or by regulating Bcl2 protein ex-

pression. In addition, the authors speculated that

downregulation of hsa_circ_0048234, which has four

miR-671-5p binding sites, may promote drug resist-

ance by upregulating the miR-671-5p/EGFR axis

[107]. Lai et al. found that hsa_circ_0079662, which

can bind to hsa-miR-324-5p, regulate the target gene

HOXA9, and induce resistance to the chemotherapeu-

tic drug OXA in colorectal cancer via the tumor ne-

crosis factor-α (TNF-α) pathway, is upregulated in

drug-resistant colorectal cancer cells [145].

Osteosarcoma

Osteosarcoma (OS) is one of the most common primary

bone tumours. CircPVT1 is significantly upregulated in

OS and can reduce the resistance of OS cells to ADM

and CDDP by decreasing the expression of the ABCB1

gene, which is related to classical drug resistance, after

knockout [24]. However, the detailed mechanism is un-

clear. Overexpression of circ-LARP4 increases the sensi-

tivity of MG63 cells to CDDP and ADM but does not

significantly affect sensitivity to methotrexate (MTX). In

addition, overexpression of miR-424 reduces the chemo-

sensitivity of circ-LARP4-overexpressing MG63 cells

[116]. In addition, experimental results have shown that

circ-LARP4 can affect the development of GC [146],

ovarian tumours [147], and oesophageal squamous cell

carcinoma (ESCC) [148]. Zhang et al. found that hsa_circ_

001569 is upregulated in CDDP-resistant OS cells, which

promotes cell proliferation by activating the Wnt/β-ca-

tenin pathway and enhances resistance to CDDP [149].

Oesophageal squamous cell carcinoma

Radiotherapy is a main treatment for patients with

ESCC. However, radioresistance is a historical reason

for the failure of ESCC therapy and local tumour re-

currence [150]. In ESCC, circRNA_100367 attenuates

the radioresistance of oesophageal tumour cells via

the miR217/Wnt3 pathway. CircRNA_100367 inhibits

the proliferation and migration of ESCC cells [151].

In addition, circITCH is downregulated in ESCC tis-

sues. As previous radioresistance studies indicated,

circITCH may inhibit the expression of its target gene

by inhibiting the Wnt/β-catenin signalling pathway,

thus affecting radioresistance in ESCC [152]. Cir-

cRNA_001275 is significantly upregulated in CDDP-

resistant oesophageal cancer tissues and cells. Overex-

pression of circRNA_001275 promotes the prolifera-

tion and invasion of CDDP-resistant cells, reduces

their apoptosis, and promotes CDDP resistance by

upregulating Wnt7a expression by sponging miR-370-

3p [153].

Nasopharyngeal carcinoma

In highly metastatic nasopharyngeal carcinoma (NPC)

cells, circCRIM1 is upregulated. Overexpression of cir-

cCRIM1 promotes NPC cell metastasis and EMT. Cir-

cCRIM1 can competitively bind miR-422a and block the

inhibitory effect of miR-422a on its target gene FOXQ1,

resulting in metastasis, EMT, and DTX resistance in

NPC [154]. Additionally, upregulation of circCRIM1 is

associated with poor survival of NPC patients. Via the

development of a prognostic model based on circCRIM1

expression and N staging, the risk of distant metastasis

and the therapeutic response to DTX-induced chemo-

therapy in NPC patients can be effectively predicted.

Bladder cancer and ovarian cancer

Bladder cancer is a common tumour of the urinary sys-

tem. Most (75–80%) bladder cancer patients receive

transurethral resection; however, those with advanced

bladder cancer can receive only chemotherapy or radio-

therapy [155]. However, due to chemotherapeutic resist-

ance, some patients do not benefit from this treatment.

Chi et al. studied the differential expression of circRNAs

in bladder cancer cell lines and found that the expres-

sion of hsa_circ_0000285 in CDDP-resistant cells is al-

most three times that in CDDP-sensitive cells. The

possible mechanism underlying this difference may be

related to the expression of miR-124 and miR-558 [156].
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Another study showed that circCdr1as sensitizes bladder

cancer cells to CDDP by restoring the expression of

APAF1, which is decreased by miR-1270. APAF1 silen-

cing decreased the sensitivity of bladder cancer cells to

CDDP [157]. In addition, in ovarian cancer, circCdr1as

reduces CDDP resistance by inhibiting miR-1270 and

upregulating SCAI. Similarly, overexpression of Cdr1as

inhibits the proliferation of ovarian cancer cells and pro-

motes CDDP-induced apoptosis [158]. CircRNAs are

currently considered essential regulators of tumour de-

velopment and progression. Zhang et al., through gene

chip analysis, found that circCELSR1 (hsa_circ_0063809)

is upregulated in PTX-resistant ovarian cancer tissues

and cells. CircCELSR1 regulates the expression of

FOXR2 via miR-1252 and mediates the resistance of

ovarian cancer cells to PTX [159]. Silencing of cir-

cCELSR1 enhances the cytotoxic effect of PTX in ovar-

ian cancer cells.

Acute myeloid leukaemia

Acute myeloid leukaemia (AML) is a highly heteroge-

neous haematologic malignancy. Drug resistance and re-

currence are the key factors in the failure of leukaemia

treatment [160]. Shang et al. found that circPAN3,

which may be a key regulatory factor for acquired che-

moresistance in AML, is upregulated in drug-resistant

AML cells and mediates ADM resistance through differ-

ent pathways. Autophagy can be regulated through the

circPAN3-miR-153-5p/miR-183-5p-XIAP axis or the

AMPK/mTOR pathway, which act as autophagy in-

ducers, to promote ADM resistance in AML cells [161,

162]. Sun et al. found that circMYBL2 expression is

higher in AML patients with FLT3-ITD mutations than

in AML patients without FLT3-ITD mutations. Knock-

out of the circMYBL2 gene specifically inhibits the pro-

liferation of FLT3-ITD+ AML cells and overcomes

acquired resistance to quizartinib [82]. In addition,

Guarnerio et al. discovered a new class of circRNAs, f-

circRNAs [36]. This type of circRNA was later identified

in the MiOncoCirc database [37]. F-circRNAs cannot

trigger tumorigenesis alone, but in combination with

other carcinogenic stimuli, they can promote the devel-

opment of leukaemia and acquired drug resistance. Ex-

pression of both f-circPR and f-circM9 leads to an

increase in cell proliferation and transformation, but f-

circM9 can trigger both mitogen-activated protein kin-

ase (MAPK) and AKT1 signalling, thereby affecting drug

resistance. In the presence of f-circPR, the p-AKT level

is increased only slightly but affects drug resistance [36].

Chronic myeloid leukaemia

Chronic myeloid leukaemia (CML) is a disorder of uncon-

trolled myeloid stem cell proliferation characterized by the

Philadelphia chromosome [163]. The development of

imatinib and other tyrosine kinase inhibitors (TKIs) has

altered the course of the disease; however, resistance de-

velops in approximately 13% of patients [164]. Circ_

0009910, which can regulate ULK1-induced autophagy by

targeting miR-34a-5p and accelerate the development of

imatinib resistance in CML cells, is upregulated in the

serum and cells of imatinib-resistant CML patients [165].

In addition, circBA9.3, a circRNA derived from BCR-

ABL1, can promote cell proliferation by upregulating the

protein expression levels of c-ABL1 and BCR-ABL1 and

make CML cells resistant to TKIs, including imatinib,

nilotinib, and dasatinib [166]. Ping et al. found that the ex-

pression of circ_100053 in imatinib-resistant CML pa-

tients is higher than that in imatinib-sensitive patients.

Mutations in the BCR-ABL kinase domain (KD) often lead

to imatinib resistance [167]. Thus, circ_100053 may regu-

late imatinib resistance by regulating the BCR-ABL path-

way [168].

Multiple myeloma

Multiple myeloma (MM) is a haematologic malignancy

caused by abnormal proliferation of bone marrow

plasma cells. Although new treatments have greatly im-

proved the prognosis of MM, its incidence has been in-

creasing annually. A main factor contributing to this

phenomenon is the high heterogeneity of MM cells,

which leads to disease recurrence and drug resistance in

patients [169]. Gao et al. found that the expression of

hsa_circ_0007841 is significantly upregulated in MM cell

lines and bortezomib (BTZ)-resistant cell lines and that

the hsa_circ_0007841 expression level is significantly

higher in MM patients with BTZ resistance than in MM

patients with BTZ sensitivity. Therefore, upregulation of

hsa_circ_0007841 may be involved in BTZ tolerance in

MM patients [170].

Other cancers

CircRNAs also play an essential role in drug resistance

in other tumours. CircHIPK3 is upregulated in gemcita-

bine (GEM)-resistant pancreatic cancer cells. Experi-

ments proved that circHIPK3 targets RASSF1 through

miR-330-5p, promotes GEM resistance in pancreatic

cancer cells, and regulates cell proliferation, invasion,

migration, EMT, and apoptosis [171]. In addition, in

cholangiocarcinoma, downregulation of circ_SMARCA5

inhibits the proliferation of CDDP- and GEM-treated

cells, reduces the relative cell survival rate, and reduces

the inhibitory concentration (IC) of CDDP and GEM by

50%. Circ_SMARCA5 has potential application value in

monitoring disease progression and predicting prognosis

in intrahepatic cholangiocarcinoma (ICC) [172]. Circ_

0003418 is downregulated in hepatocellular carcinoma

(HCC) tissues and cell lines and is associated with the

tumour size, TNM stage, and HBsAg level. Inhibition of
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circ_0003418 enhances the CDDP resistance of HCC

cells in vivo and in vitro. Circ_0003418 gene knockout

activates the Wnt/β-catenin signalling pathway in HCC

cells. However, after inhibition of the Wnt/β-catenin

pathway, the effect of circ-0003418 on the CDDP sensi-

tivity of hepatoma cells was reversed [173]. In renal can-

cer, hsa_circ_0035483 promotes autophagy and tumour

growth by regulating the miR-335/CCNB1 axis and en-

hances GEM resistance, and silencing hsa_circ_0035483

can enhance GEM sensitivity [174]. Another study

showed that exosomal CircNFIX is upregulated in the

serum of temozolomide (TMZ)-resistant patients. Cir-

cNFIX can interact directly with miR-132 and enhance

the TMZ sensitivity of drug-resistant glioma cells as well

as promote cell migration and invasion and inhibit apop-

tosis [175].

Conclusions

With the development of modern medicine, tumour

treatment is progressing from a traditional treatment

model to a targeted treatment model. Targeted therapy

can specifically kill tumour cells without affecting the

normal peritumoral cells. To date, numerous drugs have

been developed for targeted therapy. For example, tar-

geted drugs for GC include PTX, CDDP, MTA, OXA,

and apatinib; targeted drugs for colorectal cancer include

5-FU and OXA; and targeted drugs for pancreatic tu-

mours include GEM. However, clinically, tumour cells

gradually develop resistance to targeted drugs.

CircRNAs are widely distributed in eukaryotic cells

and have a long half-life. Moreover, the expression levels

of circRNAs are tissue- and developmental stage-

specific. Therefore, we believe that circRNAs have po-

tential as tumour markers and therapeutic targets. How-

ever, we found that circRNAs act as a double-edged

sword in chemoresistance, not only promoting but also

suppressing drug resistance. CircPVT1 promotes CDDP

and MTA resistance in LUAD by targeting miR-145-5p

and increasing the chemosensitivity of tumour cells. In

contrast, monastrol resistance can be reversed in breast

cancer via the TRAF4/Eg5 pathway through overexpres-

sion of circMTO1. CircRNAs also have a dual regulatory

effect in some tumour chemoresistance mechanisms. For

example, hsa_circ_0000338 in tumour cells can inhibit

tumour growth, but exosomal hsa_circ_0000338 has a

carcinogenic effect.

CircRNAs play an essential role in chemoresistance,

but the mechanism is not entirely clear. Hidden mecha-

nisms of resistance will lead us to recognize the import-

ance of circRNAs in human tumours. With continuous

improvements in circRNA databases and detection tech-

nology, we believe that circRNAs will be applied clinic-

ally and provide a new approach for tumour treatment.
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