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Circular RNAs (circRNAs) are newly discovered intriguing RNAs due to the covalently
closed loop structure, high stability, tissue specificity, and functional diversity. In recent
years, a large number of circRNAs have been identified through high-throughput
sequencing technology and bioinformatics methods, the abnormal expression of
circRNAs are closely related to many diseases including bladder cancer (BC). CircRNAs
have been proven to have several functions, such as acting as a regulator of parental gene
transcription, miRNA sponge and interacting with proteins to regulate its expression. In
addition, some circRNAs have been identified to encode proteins. CircRNAs have the
characteristics of high abundance, high stability, wide distribution in body fluids, tissue
specificity, and developmental stage specificity, which determine that circRNAs has great
potential to be utilized as biomarkers for BC. Herein, we briefly summarize the biogenesis,
functions and roles, and the current research progress of circRNAs in BC with a focus on
the potential application for BC diagnosis, treatment, and prognosis.
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INTRODUCTION

Bladder cancer (BC) is one of the most common malignant cancers with an estimated 549,000 new
cases and 200,000 deaths per year (1). Tumorigenesis processes of BC are a multicellular,
multifactorial, and multistage process. Although the pathogenesis of BC are not well known, BC
has been linked to tobacco smoke, parasitic infection, exposure to radiation, or chemicals and other
risk factors (2, 3). Malignant transformation of normal cells, the communication of BC cells, BC
stem cells, and microenvironment cells determines the initiation and progression of BC. However,
the molecular mechanisms and the early diagnosis of BC have not been well elucidated. Therefore, it
is urgent to explore new molecular mechanism and effective diagnosis biomarkers for BC.

Circular RNA (circRNA), a novel type of RNAs with covalently closed loop structure and lack of
3′ polyadenylated tails, are becoming a new hotspot in the field of non-coding RNAs in the recent
years. CircRNAs were first discovered in the pathogenic plant viruses and considered to be the rare
errors in RNA splicing. More recently, with high-throughput RNA sequencing technology, RNase
R-treated transcriptomes and novel circRNA-specific bioinformatics, a large amount of circRNAs
have identified in mammals, plants, fungi, worms, fish, insects, and other eukaryotes (4, 5). Since
then, circRNAs have attracted widespread attention and relevant studies have been conducted on
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their biological properties, functions, molecular mechanisms,
and potential application in clinical diagnosis and treatment.

In recent years, the expansion of knowledge of non-coding RNA
biology has revealed critical roles in tumorigenesis processes (6). An
increasing number of circRNAs have been found to participate in
many pathological processes such as tumorigenesis through
regulating genes expression at transcriptional, posttranscriptional,
and translational (7–9). It is also reported that a variety of circRNAs
are abnormally expressed in BC tissues or cell lines (10–13).

Since circRNAs have tissue and cell specificity, high abundance
and stability, evolutionary species conservation and spread in
various body fluids, exploring BC-related circRNAs as biomarkers
or targets might be create new possibilities for the early diagnosis,
effective treatment and prognosis evaluation of BC. In this review,
we summarize the biological characteristics, functions, mechanisms
of BC-related circRNAs, and finally discuss the potential
applications as biomarkers, therapeutic targets.
BIOGENESIS OF CIRCRNAS

CircRNAs are generated from precursor mRNA, and different
from the canonical splicing of mRNA, circRNAs are produced by
back-splicing process, which connects a 5′ splicing donor site with
an upstream 3′ splicing receptor site to form a single chain
covalent closed loop (9). The currently discovered circRNAs can
be divided into three types: exonic circRNAs which contain exons
only, intronic circRNAs which synthesized by introns, and exon-
intron circRNAs which contain both exons and introns (9, 14).

However, the mechanisms for circRNAs biogenesis are not
fully understood. Jeck et al. proposed two hypothetical models of
exonic circRNAs formation: lariat-driven circularization and
intron-pairing-driven circularization (15). Zhang et al.
demonstrated that exon circularization is dependent on the
complementary sequence of flanking introns (16). It was
reported that microintrons containing splice sites and short
reverse repeats can also form circRNAs (17). Subsequently, a
new hypothetical model has been reported: RNA binding
protein-mediated cyclization. ADAR1, muscle blind protein,
and RNA-binding protein QKI are found to be critical in the
formation of circRNAs (18–20).
CIRCRNA DETECTION AND DATABASE
FOR CIRCRNAS STUDIES

In the current research, various techniques have been used detect
and quantify circRNAs, including high-throughput RNA-seq,
circRNA microarray, RT-PCR/qPCR, Northern blot, and some
other technologies (21). High-throughout RNA-seq using next-
generation sequencing, combine with depletion of ribosomal
RNA to reveal the existence and quantity of circRNA (22).
CircRNA microarray analysis uses circular ligation sequence
specific probes combined with external nuclease linear RNA
depletion to capture and quantify circRNAs at high sensitivity
and specificity (15). Northern blot using the backsplice junction
Frontiers in Oncology | www.frontiersin.org 2
sequence specific probes and qRT‐PCR using divergent primers
are used to verify and quantify limited known circRNAs (21).

Nowadays, with the continuous progress of circRNAs field,
many circRNAs-associated databases have been built. The
establishment of these databases makes it easier for researchers
to analyze circRNAs’ information, regulatory networks, and role
in diseases. The Circbase, CIRC pedia v2, and Deepbase 2.0
databases contain a large number of circRNAs and related
detailed information about different species (23–25). The
Circnet, Starbase v2.0, and circInteractome databases predict
the circRNA-miRNA-gene network and interaction between
circRNA and RNA-binding proteins (26–28). The CircRNADb
and CSCD databases offer researchers the analysis of protein-
encoding ability (29, 30). The CircRNADb database also contains
genomic information, genome sequence, exon splicing, and
references about circRNAs (29). The TRCirc database provides
the regulatory information of circRNAs transcription (31). The
CirclncRNAnet database provides a simple method for
researchers to analyze sequencing results (32). The ExoRBase
database and circRNA disease provides circRNAs existed in
mutiple diseases or the related exosomes (33, 34). In addition
to the above, there are some other related databases in constant
establishment. However, due to the lack of standardized
nomenclature, it is still difficult to search all the different
databases for the same circRNA and compare these studies. In
addition, database management and updates are still limited.
PROPERTIES OF CIRCRNAS AND THE
APPLICATION IN DISEASES

As a novel type of non-coding RNAs, circRNAs have circular
structure, which is produced by unique back-splicing process
with different mechanisms. Circular structure and different
formation mechanism confer many unique characteristics to
circRNAs such as high stability, evolutionary conservation, and
tissues/cells specificity. These characteristics make it is possible
to apply in the diagnosis, treatment and prognosis of diseases.

CircRNAs have been demonstrated to serve as miRNA sponges,
regulate alternative splicing or transcription, bind to RNA binding
proteins, perform rolling translation, encode proteins, as well as
derive pseudo genes (4, 5, 35). CircRNAs are involved in many
pathological processes, such as diabetes and its complications,
nervous system disease, cardiovascular diseases as well as various
tumors (5, 36–44).

In this review, we focus on the role, function and clinical
application of circRNAs in the initiation, development,
diagnosis, and prognosis of BC.
CIRCRNAS IN BLADDER CANCER AND
MOLECULAR MECHANISMS

Increasing evidences indicated that circRNAs exert critical function
in regulating BC occurrence and progression (Figure 1). More and
more circRNAs have been discovered to regulate the proliferation,
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apoptosis, migration and invasion of BC cells. They played an
important role in the occurrence and development of BC through
various modes such as miRNA sponges and interaction with
proteins (Table 1).

Oncogenic circRNAs in Bladder Cancer
Circ-cTFRC might be correlated with grade and poor survival
rate of BC patients through circ-cTFRC/miR-107/TFRC axis. As
known a sponge for miR-107, circ-cTFRC are up-regulated in BC
tissues and cell lines, which related to grade, invasion,
proliferation and poor survival rate. The expression of circ-
cTFRC correlated with TFRC and negatively correlated with
miR-107 in BC tissues and cell lines (45).

CircPRMT5 promoted metastasis of BC through sponging
miR-30c to induce EMT. CircPRMT5 was up-regulated in BC
tissues and associated with advanced clinical stage and worse
survival of BC patients. Moreover, circPRMT5 is also up-
regulated in serum and urine exosomes of BC patients,
indicating that it may be significantly related to metastasis (12).

Circ_0008532 was revealed as miR-155-5p and miR-330-5p
sponge and could regulate the capacity for invasive in BC cells
through MTGR1/Notch pathway. Circ_0008532 is up-regulated
in BC cells and tissues, which acted as an oncogene in BC, which
may provide potential biomarkers and a therapeutic target for
the treatment of BC (50).

A novel circRNA, circ_0001361 was recently found to act as
oncogenic circRNA (47, 48). Circ_0001361 was highly expressed
in BC tissues and cell lines, and it was positively correlated with
grade, invasion, and poor overall survival. Mechanistically,
circ_0001361 could directly interact with miR-491-5p to up-
regulate MMP9, and MMP9 was verified to mediate
circ_0001361-induced migration and invasion of BC cells (47).
Frontiers in Oncology | www.frontiersin.org 3
Circ_0068871 was a circRNA derived from several exons of
FGFR3, plays the role of oncogenes in the occurrence and
development of BC, and serves as a potential biomarker (49).
Circ_0068871 up-regulated expression of FGFR3 and activated
STAT3 through sponging miR-181a-5p to promote cells
proliferation and migration.

There are many other circRNAs (such as CircFNTA,
circDOCK1, CircGprc5a, CircCEP128, Circ_0058063, Circ-
VANGL1, CircRMYLK, and CircKIF4A) that play important
roles in promoting BC, which could be used as potential clinical
BC diagnosis and prognosis biomarkers (46, 51–60).

Antioncogenic circRNAs in Bladder
Cancer
Su et al. found that circRIP2 may serve as tumor suppressor in
BC through sponge for miR-1305 (13). Higher circRIP2
expression negatively associates with the grade, metastasis, and
outcome of BC patients. They found that circRIP2 sponge miR-
1305 to accelerate BC progression by activating TGF-b2/
smad3 pathway.

Circ ZKSCAN1 was markedly down-regulated in BC tissues
and cells and with survival, tumor grade, pathological stage, and
tumor recurrence (10). Overexpressed circ-ZKSCAN1 inhibited
the proliferation, invasion, and metastasis of BC cells. They also
demonstrated that circZKSCAN1 suppressed the aggressive
biological behaviors of BC cells through up-regulates the
expression of p21 by sponging miR-1178-3p.

CircSLC8A1 is a circRNA transcribed from gene SLC8A1.
CircSLC8A1 was identified from RNA-sequencing data, might
serve as potential tumor suppressor for BC (11). They found that
circSLC8A1 was down-regulated in BC tissues and cells, which
was negatively correlated with the stage and grade of BC.
CircSLC8A1 acted as miRNA sponge to regulate the expression
of the miR-130b/miR-494 target gene PTEN, which suppressed
the migration, invasion, and proliferation of BC cells.

CircACVR2A might serve as potential suppressive factor for
BC, which selected from RNA-sequence, was found to be
decreased in BC tissues and cell lines (62). CircACVR2A
acted as a miRNA sponge of miR-626 to regulate EYA4
expression and suppressed the proliferation, migration, and
invasion of BC cells.

CircFNDC3B acted as a miR-1178-3p sponge to suppress
G3BP2, which served as a novel tumor suppressive factor and
potential target for new therapies in human BC. CircFNDC3B was
dramatically down-regulated in BC tissues and correlated with
grade, proliferation, migration, invasion, and overall survival
rate (64).

Circ5912 played the role of tumor suppressor gene in BC by
regulating TGF-b2. Circ5912 expression was significantly lower
in BC tissues. Higher circ5912 levels associated with better
clinical outcomes, including grade, stage, metastasis, and
longer overall survival time (63).

There are many other anti-cancer circRNAs that play
important roles in the diagnosis, treatment and prognosis
of BC and may be used in clinical practice in the future (58,
65–74).
FIGURE 1 | Oncogenic and antioncogenic circRNAs have been discovered
in bladder cancer.
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TABLE 1 | Some examples of circRNAs that play an important role in the occurrence and development of BC.

CircRNAs Sample Dysregulation
in GC

Potential function Mechanism References

CircPRMT5 BC tissues and paired tissues;
BC cell lines; Animal models

Up-regulated Correlated with tumor grade,
EMT and poor survival rate

As a ceRNA for miR-107 to regulate
SNAIL1/E-cadherin axis

Chen et al. (12)

Circ-cTFRC BC tissues and paired tissues;
BC cell lines; Animal models

Up-regulated Correlated with tumor grade and
poor survival rate

As a ceRNA for miR-107 to regulate
TFRC expression

Su et al. (45)

Circ_0008532 BC tissues and paired tissues;
BC cell lines; Animal models

Up-regulated Correlated with tumorigenesis
and invasion

As a sponge for miR-155-5p/miR-330-
5p to regulate MTGR1/Notch pathway
axis

Chen et al. (46)

Circ_0001361 BC tissues and paired tissues;
BC cell lines; Animal models

Up-regulated Correlated with tumor grade and
invasion

As a sponge for miR-491-5p to
regulate MMP9 expression

Liu et al. (47);
Liu et al. (48)

Circ_0068871 BC tissues and paired tissues;
BC cell lines; Animal models

Up-regulated Promote the proliferation and
migration of BC cells

Circ_0068871 up-regulated FGFR3 and
activated STAT3 by targeting miR-
181a-5p

Mao et al. (49)

CircFNTA BC tissues and paired tissues;
BC cell lines; Animal models

Up-regulated Altered BC cells invasion and
chemo-sensitivity to cisplatin

AR-mediated
As a sponge for miR-370-3p or miRNA-
451a then regulate KRAS or S1PR3

Chen et al. (50);
Tian et al. (51)

CircDOCK1 BC tissues and paired tissues;
BC cell lines; Animal models

Up-regulated Promote the proliferation and
migration of BC cells

As a sponge for miR-132-3p to
regulate Sox5 expression

Liu et al. (52)

CircCEP128 BC tissues and paired tissues;
BC cell lines; Animal models

Up-regulated Promote the vitality, migration,
and proliferation of BC cells

Regulating miR-145-5p via Myd88/
MAPK or SOX11 signaling pathway

Sun et al. (53);
Wu et al. (54)

CircGprc5a BC tissues and paired tissues;
Bladder CSCs; Animal models

Up-regulated Affect the self-renewal and
metastasis of
bladder CSCs; related to clinical
severity and metastasis of
bladder cancer

CircGprc5a produced peptide and
exerted its role in
a peptide-dependent manner

Gu et al. (55)

Circ_0058063 BC tissues and paired tissues;
BC cell lines; Animal models

Up-regulated Promote the proliferation and
migration of BC cells; inhibit of
apoptosis

Acted as a sponge of miR-145-5p or
miR-486-3p to regulate CDK6 or
FOXP4 expression

Sun et al. (56);
Liang et al. (57)

Circ-VANGL1 BC tissues and paired tissues;
BC cell lines; Animal models

Up-regulated Promote the proliferation, cell
cycle, migration, and invasion of
BC cells

Acted as a sponge of miR-605-3p
which targeted VANGL1

Zeng et al. (58)

Circ-MYLK BC tissues and paired tissues;
BC cell lines; Animal models

Up-regulated Accelerated the growth,
angiogenesis, and metastasis of
BC cells

Function as competing endogenous
RNA for miR-29a to activate VEGFA/
VER2 and downstream Ras/ERK
pathway

Zhong et al. (59)

CircKIF4A BC tissues and paired tissues;
BC cell lines; Animal models

Up-regulated Promote the proliferation and
migration of BC cells

As a sponge for miR-375/1231 to
regulate NOTCH2 expression

Shi et al. (60, 61)

CircRIP2 BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Negatively associate with the
grade, metastasis, and outcome
of BC

Activating miR-1305/Tgf-b2/smad3
pathway

Su et al. (13)

CircZKSCAN1 BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Negatively associate with
survival, grade, metastasis, and
recurrence

As a sponge for 1178-3p to regulate
p21 expression

Bi et al. (10)

CircSLC8A1 BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Negatively associate with the
pathological stage, histological
grade, invasion, and proliferation

Acted as a sponge of miR-130b/miR-
494 to regulate PTEN expression

Lu et al. (11)

CircACVR2A BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Inhibit BC cell proliferation and
metastasis

As a sponge for miR-626 to regulate
EYA4 expression

Dong et al. (62)

Circ5912 BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Negatively associate with grade,
stage, metastasis, and overall
survival time

Regulated TGF-b2 pathway Su et al. (63)

CircFNDC3B BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Correlated with pathological
stage, grade, proliferation,
invasion, and overall survival rate

Acted as a miR-1178-3p sponge to
suppress G3BP2/SRC/FAK pathway

Liu et al. (64)

CircITCH BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Inhibited the proliferation,
invasion, and metastasis of BC
cells

Acted as a tumor suppressor by circ-
ITCH/miR-17, miR-224/p21, PTEN axis

Yang et al. (65)

CircBCRC-3 BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Inhibited the proliferation of BC
cells

As a sponge for miR-182-5p to
regulate p27 expression

Xie et al. (66)

CircFAM114A2 BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Inhibited the migration, invasion,
and proliferation of BC cells

Acted as a sponge of miR-762 to
regulate ΔNP63 expression

Liu et al. (67)

(Continued)
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CIRCRNAS AS DIAGNOSTIC AND
PROGNOSTIC BIOMARKERS FOR
BLADDER CANCER

The high incidence, high mortality and poor prognosis of BC
make new requirements for early diagnosis and the prognosis.
CircRNAs have been shown to have great potential as cancer
diagnostic and prognostic biomarkers. Firstly, circRNAs can be
easily detected due to the high stability and abundance in various
tissue of human. Secondly, many circRNAs expression are tissue
specific and development stage specific, which has an important
role in diagnosis and prognosis. In addition, circRNAs are also
exists in serum, plasma, and other body fluids, which can be used
for non-invasive detection (9, 75, 76).

The clinical value of circRNAs as diagnostic and prognostic
biomarkers of BC has been explored in many studies (62, 77–79).
Subsequently, through the correlation analysis of clinic
pathological factors and prognosis and survival analysis, a set of
potential circRNAs biomarkers appeared for the early diagnosis
of BC and the prediction of recurrence and metastasis (Table 2).

According to the detection of tissue and serum samples from
BC patients and the controls, followed with clinic pathologic
Frontiers in Oncology | www.frontiersin.org 5
factors correlation analysis as well as prognostic and survival
analysis, a set of potential circRNAs biomarkers are verified for
BC diagnosis and prognosis. Circ_0077837 and circ_0004826 was
significantly correlated with worse clinicopathological features
and poor prognosis of BC patients. The area under the ROC curve
of them was 0.775 and 0.790, respectively (80). Circ_0137439 was
correlated with tumor stage, grade, lymph node status, and
history of muscle-invasive BC. Urinary cell-free circ_0137439
could not only distinguish BC from normal controls, but also
distinguish muscle-invasive BC from non-muscle-invasive BC. In
addition, circ_0137439 in urine supernatant could be used as an
independent prognostic indicator of recurrence-free survival and
overall survival of BC patients (81). Circ_0000285 was
significantly reduced in BC tissues and serum. Moreover,
circ_0000285 was associated with tumor size (p < 0.001),
differentiation (p < 0.001), distant metastasis (p = 0.004), TNM
stage (p = 0.013), and lymph node metastasis (p = 0.038) (82).
Higher circ5912 levels associates with better clinical outcomes,
including grade (p = 0.008), metastasis (p = 0.016), and longer
overall survival time (p = 0.0157) (63).

In conclusion, circRNAs play an important role in the
occurrence and development of BC, which may be served as
TABLE 1 | Continued

CircRNAs Sample Dysregulation
in GC

Potential function Mechanism References

CircPICALM BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Correlated with pathological
stage, grade, metastasis, and
overall survival rate

Acted as a sponge of miR-1265 to
influence FAK phosphorylation

Yan et al. (68)

CircCdr1as BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Overexpression of Cdr1as
inhibited proliferation, invasion
and migration; induced the
apoptosis and enhanced the
cisplatin chemosensitivity of BC
cells

As a sponge for miR-1270 or miR-135a
to regulate APAF or p21 expression

Yuan et al. (69);
Li et al. (70)

CircHIPK3 BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Inhibited cell cycle progression
and proliferation of BC cells

As a sponge for miR-27a-3p to regulate
cyclin D1 expression

Li et al. (71);
Xie et al. (72)

CircPTPRA BC tissues and paired tissues;
BC cell lines; Animal models

Down- regulated Associated with prognosis,
stage, and proliferation

As a sponge for miR-1270 to regulate
KLF9 expression

He et al. (73)
January 2021 | Volume
TABLE 2 | Analysis of clinical application of CircRNAs.

CircRNAs Dysregulation in GC Analysis of clinical application References

Circ_0077837 Down-regulated A promising biomarker for the early diagnosis, prognosis, and therapy of BC Shen et al. (80)
Circ_0004826 Down-regulated A promising biomarker for the early diagnosis, prognosis, and therapy of BC Shen et al. (80)
Circ_0137439 Up-regulated A promising biomarker for early diagnosis and prognostic assessment of BC Song et al. (81)
Circ-cTFRC Up-regulated A potential marker of BC diagnosis or progression Su et al. (45)
Circ5912 Down-regulated A promising progression marker and a potential therapeutic target of BC Su et al. (63)
Circ ZKSCAN1 Down-regulated A potential progression marker and a prognostic factor of recurrence Bi et al. (10)
CircSLC8A1 Down-regulated A potential progression marker and a potential therapeutic target of BC Lu et al. (11)
CircACVR2A Down-regulated A potential prognostic biomarker and therapeutic target of BC Dong et al. (62)
CircFNDC3B Down-regulated A potential prognostic biomarker and therapeutic target of BC Liu et al. (33)
CircPRMT5 Up-regulated An exploitable therapeutic target of BC Chen et al. (12)
Circ_0008532 Up-regulated A potential therapeutic target of BC Chen et al. (46)
circ_0001361 Up-regulated A potential novel target for BC therapy Liu et al. (47);

Liu et al. (48)
Circ_0068871 Up-regulated A potential marker of BC progression Mao et al. (49)
Circ_0000285 Down-regulated An independent prognostic assessment factor of BC Chi et al. (82)
10
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potential biomarkers for the diagnosis, prognosis, and therapy
of BC.
CIRCRNAS AS POTENTIAL THERAPEUTIC
TARGETS FOR BLADDER CANCER

As the roles in BC are gradually being clarified, circRNAs might
be developed as potential therapeutic targets. Studies have
proposed several strategies based on the function of circRNAs
to treat BC. Exogenous up-regulation or down-regulation of
related circRNAs to regulate miRNA may be the useful methods,
and several of them have been applied. SiRNA or shRNA
targeting a specific reverse splicing sequence of circRNAs was
used to inhibit its expression (9, 83, 84). Stable circRNAs
knockdown was generated using specific lentiviral short
hairpin RNA (85–87). Some researchers have also tried to use
the CRISPR/Cas9 system to achieve circRNAs knockout (88, 89).
It was also reported that plasmids and lentiviral vectors used to
increase the expression of circRNAs (88, 90). Overexpression
vectors with short intronic repeat sequences also could increase
the levels of circRNAs (17). In addition to exogenous regulation
of circRNAs expression, endogenous regulation also has broad
application prospects. However, there are still no relevant reports
on how to control the process of endogenous cyclization.

Artificial circRNAs sponges targeting miRNAs may be a
simple, effective, and convenient strategy for BC treatment. A
large number of studies have found that circRNAs as miRNA
sponges can inhibit the progression of BC (10, 11, 13, 62). These
results suggested that BC can be treated by synthesizing related
circRNAs sponges. Recently, synthetic circRNA presented a new
treatment approach for critical global pathologies, including
cardiovascular disease, hepatitis, esophageal carcinoma, and
Gastric Carcinoma (91–94). These findings establish that the
design and construction of highly efficient artificial circRNAs
sponges represent a novel strategy in the treatment of cancer and
other diseases.

Artificially controlled endogenous circularization may be
another approach to apply circRNAs to the treatment of BC. On
one hand, the “mRNA trap” can be used to isolate the translation
initiation site of these abnormal mRNA to reduce the production of
BC-related functional proteins (9, 95). On the other hand, using
circRNAs to regulate the release and activity of BC-related proteins,
or targeting coding circRNAs involved in tumorigenesis or
development may be potential therapeutic methods (9).
CHALLENGES AND PERSPECTIVES

CircRNAs are becoming an emerging field of tumor diagnosis
and treatment research, but the experimental and clinical
researches in BC still many unresolved. Firstly, the mechanism
of cyclization and degradation of BC-related circRNAs is still
unclear. Secondly, the number of BC-related circRNAs with clear
biological functions and mechanisms of action is limited.
Besides, under what conditions circRNAs play a cancer-
Frontiers in Oncology | www.frontiersin.org 6
promoting effect, and what conditions play a cancer-
suppressing effect is not clear. In addition, it is not clear
whether circRNAs can affect BC microenvironment cells and
play a role in BC development.

Exosomes are nano-scale vesicles released by many cells,
which can transfer signal molecules including circRNAs to
recipient cells and regulate the progression of many diseases,
including cancer. Exosomes might extremely extend circRNAs’
studies and applications. It is reported that exosomal circRNAs
can be used as emerging tools for cancer diagnosis, prognosis and
risk assessment (9, 61, 96, 97). Based on these studies, we believe
exosomal circRNAs may be expected to become a promising
biomarker and therapeutic tool for BC.

Noncoding RNA methylation modification in cancer is
getting more and more attention from researchers. Recent
studies have indicated that several circRNAs are closely related
to the tumorigenesis of cancers via post-transcriptional
methylation modificationsp (98–100). It provides a new
research direction for us to explore the role of circRNAs in the
occurrence and development of BC.

Nevertheless, the clinical application of circRNAs as drugs
or targets in BC needs more detailed and complete experimental
data such as safety, efficacy, and potential side effects. The
systematic assessment including the cost, accuracy, repeatability,
specificity, and sensitivity of circRNAs biomarkers in large samples
is not sufficient. Furthermore, standardized methodology for
circRNAs detecting in the process of clinical application is
lacked. In addition, how to safely and effectively deliver
circRNAs in vivo is also a problem to be solved. These
challenges and deficiencies provide the direction for the follow-
up research and technology development. We believe that with the
deepening of research, the continuous progress of technology and
the development of various aspects, these problems will eventually
be solved.
CONCLUSION

Through traditional/emerging biological methods and
informatics technologies along with these further studies, more
and more BC-related circRNAs and their physiological and
pathological functions have been identified. In addition, many
circRNAs have been found to have great potential to be diagnosis
and prognosis biomarkers for BC as well as novel therapeutic
targets or approaches. The knowledge of the precise mechanisms
of circRNAs cyclization, degradation, localization, and function
in BC is still limited in current stage. But, we believe that these
limitations will eventually be resolved, these novel diagnosis and
treatment strategies based on circRNAs will effectively serve BC
clinical early diagnosis and treatment in the future.
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