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Abstract 

In order to measure the wakefield left behind multiple 
bunches of energetic electrons we have previously used 
the ASSET facility in the SLC [1].  However, in order to 
produce a more rapid and cost-effective determination of 
the wakefields we have designed a wire experimental 
method to measure the beam impedance and from the 
Fourier transform thereof, the wakefields.  In this paper 
we present studies of the wire effect on the properties of  
X-band structures in study for the JLC/NLC (Japanese 
Linear Collider/Next Linear Collider) project.  
Simulations are made on infinite and finite periodical 
structures.  The results are discussed. 

1  INTRODUCTION 
The progress of multiple bunches of electrons down 
several thousand accelerating structures can, at worst, lead 
to a Beam Break Up instability or at the very least can 
give rise to a dilution in the emittance of the beam.  These 
affects are driven by both intra-bunch (or short range) 
wakefields and long-range wakefields.  In order to ensure 
that these effects do not occur it is important to be able to 
predict and measure the associated beam impedance, loss 
factor and wakefield for a given accelerator structure in a 
routine manner.  Measurements already made on X-band 
structures inserted in the 2-mile SLAC linac using the 
ASSET facility [1] have indicated that theoretical models, 
give good predictions as to how well the wakefield is 
damped [2].  However, such measurements are so time 
consuming and expensive that it is only practical to make 
this measurement on a very limited number of 
accelerating structures.  The wire measurement technique 
[3,4,5,6], once perfected, will enable a routine 
measurement of the impedance of dipole frequency bands.  
We would envisage having a number of wire 
measurement setups being available according to the 
frequency band of interest [7]. 

The wire measurement method essentially replaces the 
electron beam with a pulse propagating along a wire 
placed in the DUT (Device Under Test).  In practice, the 
loss factor is determined through the perturbation of the 
current due to the DUT [3].  In the frequency domain the 
transmission factor leads to the impedance [4], while the 
area under the resonances allows the loss factor to be 

determined [8].  In this paper we investigate the frequency 
domain behavior of multiple cell structures.  In section 2 
the dispersion properties are calculated with the aid of a 
circuit model.  The circuit is developed to model the 
monopole and first dipole mode regions.  In the third 
section we utilize a matrix cascading technique in order to 
calculate the overall transmission coefficient of multi-cell 
structures. 

2  CIRCUIT MODEL OF  
LOWER BAND MODES 

We model the interaction between the TEM coaxial 
mode of a wire inserted on-axis into a cavity with the 
TM01 mode of the cavity.  The cavity consists of two half 
irises separated from each other by a section of 
waveguide.  This cavity will later be considered to be 
infinitely repeating in order to obtain the dispersion 
properties of the system. 

The circuit model chosen to model the electromagnetic 
behavior of a single traveling wave cavity is shown in  
Fig. 1.  The structure is represented by two sections of 
coax with a parallel resonant circuit connecting the upper 
conductors of the two sections.  The lower conductors of 
the two sections are connected together directly. 
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Fig. 1 Circuit model of wire inserted into accelerating 
cell.  The period of the structure is d and the characteristic 
impedance of the transmission line is Z0. 
 

For an accelerator made up of an infinite sequence of 
cavities with identical parameters, the dispersion relation 
for a structure modeled by the circuit in Fig. 1 is: 
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Here ψ refers to a particular phase advance, f is the 
frequency normalized with respect to the accelerating 
frequency (11.424 GHz), ψacc is the characteristic phase 
advance per cell at the accelerating frequency.  The 
parameters a and b are the accelerating frequency 
normalized with respect to the cell resonance frequency 
and, the parallel resonant circuit inductance divided by the 
coax inductance per unit length multiplied by the cell 
period, respectively.  In practice, these two parameters are 
obtained such that the dispersion equation identically fits 
the second 0 mode and the first π mode. 

In the limit of small frequencies this dispersion relation 
yields: 

2 22
accf1 1

2 2
ψψ− = −  

and thus there is a linear relation between frequency and 
phase.  For frequencies close to zero, circuit theory 
predicts that the mode follows the light line in this region 
as there is little or no coupling to the monopole or indeed 
any other modes. 

We apply this circuit method to a single cell of the 
SLAC detuned accelerating structure known as DS2S.  
Fig. 2 shows the dispersion points for this structure 
computed with HFSS (High Frequency Structure 
Simulator) together with the curves obtained from the 
dispersion equation.  The points are seen to be well 
simulated with the circuit model for all points apart from 
those in the upper branch close to the π phase advance 
point.  Replacing the L-C circuit with a transmission line 
may improve this representation.  Work is in progress to 
improve this model in the π phase advance region and 
also to include the higher order frequency bands. 
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Fig. 2 Dispersion curves for the detuned accelerating 
structure DS2S.  The circuit model is denoted by the 
curves and the HFSS simulation is given by the points. 

3  MATRIX CASCADE SIMULATIONS 
In order to determine the impedance or loss factors of 

various passbands, in the wire method the transmission 
S21 has to be determined.  Here we calculate the 
transmission coefficient of structures consisting of 
multiple cells in order to facilitate comparison with 
experimental measurements.  We considers the 

dimensions of a 11.4 GHz standing wave structure built 
for the JLC/NLC studies.  This accelerator structure, 
known as SW20PI, is 20cm in length and consists of 15 
cells.  The cells have an iris radius of 4.75 mm and are all 
identical prior to tuning the cells (in order to obtain a flat 
field).  The calculations were made with the HFSS code.  
The walls and the wire are considered to be perfect 
conductors except where otherwise noted.  All curves in 
the geometry were approximated by straight lines 
subscribing angles of 10-15 degrees.. 

Performing simulations of full 3D accelerating 
structures is computationally expensive in terms of both 
memory and time.  Therefore, we used the technique of 
cascading scattering matrices to obtain the overall 
scattering matrix from the individual multi-mode 
matrices.  The scattering matrix of an object is given by: 
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where S12 is in general a matrix relating modes of port 1 
to the modes of port 2.  The individual elements of the 

2×2 matrix are themselves matrices as they represent the 
scattering into higher order modes.  However, in 
calculating the impedance, only the first component of the 
S21 matrix is necessary once the overall scattering matrix 
has been evaluated. 

In order to obtain the scattering parameters for a 
structure similar to the one illustrated in Fig. 3a, we 
calculated the S matrix for the end section 3b and a 
middle section 3c.  Six modes were considered in each 
port.  The conductors are assumed to have an infinite 
conductivity.  The wire has a diameter of 300 µm.  The 
global scattering matrix is obtained by cascading two-
sections-at a-time using the generalized scattering matrix 
method [9,10]: 

a  
 

 

b      c  
 

Fig. 3 Structures used for simulation of S parameters: a. 
full structure; b. and c. geometries used in simulations for 
cascading 
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Here, SA and SB represent the matrices of the individual 
sections.  This allows the overall matrix to be determined 
quite rapidly as the calculation of a single section is very 
efficient. 

In order to verify the accuracy of our cascading, a 
structure consisting of a limited number of cells (seven for 
the calculation herein) has been studied.  The detailed 
results are presented in the following subsections.  Two 
cases have been considered: a centered and an offset wire. 

Centered wire 
For the centered wire we sliced a 10 degrees section of 

each simulated object in order to reduce the calculation 
time.  An initial comparison of the cascading results to the 
ones obtained directly by simulating the full length of the 
structure showed good agreement, except in the region of 
the cutoff frequencies of higher band modes.  The 
agreement is improved considerably by performing a 
simulation in which the actual conductivity of copper  
(σ ~5.8·107 Ω−1·m−1) is used for the walls of the structure 
and for the wire.  This prevents numerical instabilities 
occurring as the modes now start to propagate gradually.  
Excellent agreement is now obtained between the two 
simulations as seen in Fig. 4a. 

Offset wire 
In order to excite dipole modes, the wire is displaced 

from the axis by 1 mm.  Symmetry considerations dictate 
that half of the geometry is required to be modeled.  The 
walls and the wire are again simulated with the 
conductivity of copper.  The results are compared in  
Fig. 4b.  The discrepancy between the two methods is 
negligible. 

We also note that in Fig. 4 the fundamental monopole 
band can be distinguished between about 12 and  
12.6 GHz.  Moving the wire hardly perturbs it.  The 
frequency range above about 13 GHz contains modes of 
the first and second dipole bands interacting with the 
coaxial TEM mode.  This region is perturbed significantly 
by moving the wire off-axis. 

4  DISCUSSION 
The dispersion properties of the wire-loaded 

accelerating structure have been seen to be quite well 
modeled with a transmission line and an L-C circuit.  
Using this circuit for the complete 15-cell structure will 
also enable the impedance of the structure to be obtained 
and enable a thorough understanding of the nature of the 
resonances obtained in the experimental measurement of 
the transmission coefficient.  Work is already ongoing in 
this area.  Further research is in progress on developing 
the circuit model to include higher order frequency bands. 

Application of the generalized scattering matrix method 
has allowed the overall transmission coefficient to be 
obtained accurately and efficiently.  The monopole 
frequency band is, as expected, little affected by the 
movement of the wire whilst dipole resonances are seen to 
appear as the wire is moved off axis. 
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a.

b.  
Fig. 4 S21 obtained with the cascading technique compared 
to the direct simulation of a complete 7-cell structure,
having a wire of 300 µm in diameter placed on-axis (a) 
and at 1 mm offset (b) 
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