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The current generation of quantum computing technologies call for quantum algorithms that re-
quire a limited number of qubits and quantum gates, and which are robust against errors. A suitable
design approach are variational circuits where the parameters of gates are learnt, an approach that
is particularly fruitful for applications in machine learning. In this paper, we propose a low-depth
variational quantum algorithm for supervised learning. The input feature vectors are encoded into
the amplitudes of a quantum system, and a quantum circuit of parametrised single and two-qubit
gates together with a single-qubit measurement is used to classify the inputs. This circuit architec-
ture ensures that the number of learnable parameters is poly-logarithmic in the input dimension.
We propose a quantum-classical training scheme where the analytical gradients of the model can
be estimated by running several slightly adapted versions of the variational circuit. We show with
simulations that the circuit-centric quantum classifier performs well on standard classical bench-
mark datasets while requiring dramatically fewer parameters than other methods. We also evaluate
sensitivity of the classification to state preparation and parameter noise, introduce a quantum ver-
sion of dropout regularisation and provide a graphical representation of quantum gates as highly
symmetric linear layers of a neural network.

I. INTRODUCTION

Quantum computing - information processing with de-
vices that are based on the principles of quantum theory
– is currently undergoing a transition from a purely
academic discipline to an industrial technology. So
called “non-fault-tolerant”, “small-scale” or “near-term”
quantum devices are being developed on a variety of
hardware platforms, and offer for the first time a testbed
for quantum algorithms. However, allowing for only of
the order of 1, 000 − 10, 000 elementary operations on
50 − 100 qubits [1] and without the costly feature of
error correction, these early devices are not yet suitable
to implement the algorithms that made quantum com-
puting famous. A new generation of quantum routines
that use only very limited resources and are robust
against errors has therefore been created in recent years
[2–4]. While many of those small-scale algorithms have
the sole purpose of demonstrating the power of quantum
computing over classical information processing [5], an
important goal is to find quantum solutions to useful
applications.

One increasingly popular candidate application for
near-term quantum computing is machine learning
[6]. Machine learning is data-driven decision making
in which a computer fits a mathematical model to
data (training) and uses the model to derive decisions
(inference). Numerous quantum algorithms for machine
learning have been proposed in the past years [7, 8].
A prominent strategy [9–12] is to encode data into
the amplitudes of a quantum state (here referred to
as amplitude encoding), and use quantum circuits to

manipulate these amplitudes. Quantum algorithms that
are only polynomial in the number n of qubits can
perform computations on 2n amplitudes. If these 2n am-
plitudes are used to encode the data, one can therefore
process data inputs in polylogarithmic time. However,
most of the existing literature on amplitude encoded
quantum machine learning translates known machine
learning models into non-trivial quantum subroutines
that lead to resource-intensive algorithms which cannot
be implemented on small-scale devices. Furthermore,
quantum versions of training algorithms are limited to
specific, mostly convex optimisation problems. Hybrid
approaches called “variational algorithms” [2, 13, 14] are
much more suited to near term quantum computing and
are rapidly getting popularity in the quantum research
community in recent months. A general picture of
variational circuits for machine learning is introduced in
[15]. The emphasis of low-depth circuits for quantum
machine learning has been made in [16], where the
importance of entanglement as a resource has been
analysed for the low-depth architectures in the context
of Boltzmann machines. A very recent preprint that
comes closest to the designs presented here is Farhi and
Neven [17]. The latter focusses mostly on classification
of discrete and discretized data that is encoded into
qubits rather than amplitudes, which requires an ex-
ponentially larger number of qubits for a given input
dimension. The circuit architectures proposed in the
work are of more general nature compared to our focus
on a slim parameter count through the systematic use of
entanglement.

This paper presents a quantum framework for supervised
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FIG. 1. Idea of the circuit-centric quantum classifier. Infer-
ence with the model f(x, θ) = y is executed by a quantum
device (the quantum processing unit or QPU) which consists
of a state preparation circuit Sx encoding the input x into
the amplitudes of a quantum system, a model circuit Uθ, and
a single qubit measurement. The measurement retrieves the
probability of the model predicting 0 or 1, from which in
turn the binary prediction can be inferred. The classification
circuit parameters θ are learnable and can be trained by a
variational scheme.

learning that makes use of the advantages of amplitude
encoding, but is based on a variational approach and
therefore particularly designed for small-scale quantum
devices (see Fig. 1). To achieve low algorithmic depth
we propose a circuit-centric design which understands
a generic strongly entangling quantum circuit Uθ as the
core of the machine learning model f(x; θ) = y, where x
is an input, θ a set of parameters and y is the prediction
or output of the model. We call this circuit the model
circuit. The model circuit consists of parametrised
single and controlled single qubit gates, with learnable
(classical) parameters. The number of parametrised
gates in the family of model circuits we propose grows
only polynomially with the number of qubits, which
means that our quantum machine learning algorithm has
a number of parameters that is overall poly-logarithmic
in the input dimension.

The model circuit acts on a quantum state that repre-
sents the input x via amplitude encoding. To prepare
such a quantum state, a static state preparation circuit
Sx has to be applied to the initial ground state. After ap-
plying the state preparation as well as the model circuit,
the prediction is retrieved from the measurement of a
single qubit. If the data is sufficiently low-dimensional or
its structure allows for efficient approximate preparation,
this yields a compact circuit that can be understood as a
black box routine that executes the inference step of the
machine learning algorithm on a small-scale quantum
computer.

We propose a hybrid quantum-classical gradient descent
training algorithm. On the analytical side we show how
the exact gradients of the circuit can be retrieved from
running slight variations of the inference algorithm (and
for now assuming perfect precision in the prediction)

a small, constant number of times and adding up the
results, a strategy we call classical linear combination of
unitaries. The parameter updates are then calculated
on a classical computer. Keeping the model parameters
as a classical quantity allows us not only to implement
a large number of iterations without worrying about
growing coherence times, but also to store and reuse
learnt parameters at will. Using single-batch gradient
descent only requires the state preparation circuit Sx

to encode one input at a time. In addition to that,
we can easily improve the gradient descent scheme by
standard methods such as an adaptive learning rate,
regularisation and momenta.

We analyse the resulting circuit-centric quantum classi-
fier theoretically as well as via simulations to judge its
performance compared to other models. We show that
mathematically, a quantum circuit closely resembles a
neural network architecture with unitary layers, and
discuss ways to include dropout and nonlinearities. The
unitarity of the “pseudo-layers” is a favourable property
from a machine learning point of view [19, 20], since
it maintains the length of an input vector throughout
the layers and therefore circumvents notorious problems
of vanishing or exploding gradients. Unitary weight
matrices have also been shown to make the convergence
time of gradient descent independent of the circuit depth
[21] - an important guarantee to avoid the growing
complexity of training deep architectures. Possibly the
most important feature of the model is that it uses a
number of parameters that is logarithmic in the data
size, which is a huge saving to a neural network where
the first layer already has weights at least linear in the
dimension of the input.

In the remainder of the paper we will introduce the
circuit-centric quantum classifier in Section II, along with
design considerations for the circuit architecture in Sec-
tion III, as well as the training scheme in Section IV.
We analyse its performance in Section V and show that
compared with out-of-the-box methods it performs rea-
sonable well. We finally propose a number of ways to
extend the work in Section VI.

II. THE CIRCUIT-CENTRIC QUANTUM

CLASSIFIER

The task our model intends to solve is that of super-
vised pattern recognition, and is a standard problem
in machine learning with applications in image recog-
nition, fraud detection, medical diagnosis and many
other areas. To formalise the problem, let X be a set
of inputs and Y a set of outputs. Given a dataset
D = {(x1, y1), ..., (xM , yM )} of pairs of so called train-
ing inputs xm ∈ X and target outputs ym ∈ Y for
m = 1, ...,M , our goal is to predict the output y ∈ Y
of a new input x ∈ X . For simplicity we will assume in
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FIG. 2. Supervised binary classification for 2-dimensional in-
puts. Given the red circle and blue triangle data points be-
longing to two different classes, guess the class of the new
input (pink square).

the following that X = R
N and Y = {0, 1}, which is a

binary classification task on a N -dimensional real input
space (see Fig. 2). Most machine learning algorithms
solve this task in two steps: They first train a model
f(x, θ) with the data by adjusting a set of parameters θ,
and then use the trained model to infer the prediction
y.

The main idea of the circuit-centric design is to turn a
generic quantum circuit of single and 2-qubit quantum
gates into a model for classification. One can divide the
full inference algorithm into four steps. As shown in Fig.
3, these four steps can be described using the language
of quantum circuits, but also as a formal mathematical
model, and finally, using the idea of graphical represen-
tation for neural networks, as a graphical model.

From a quantum circuit point of view we use the state
preparation circuit Sx to encode the data into the state
of a n qubit quantum system, which effectively maps an
input x ∈ R

N to the 2n-dimensional amplitude vector
ϕ(x) that describes the initial quantum state |ϕ(x)〉.
Second, the model circuit Uθ is applied to the quantum
state. Third, the prediction is read out from the final
state |ϕ′〉 = Uθ|ϕ(x)〉 . For this purpose we measure
the first of the n qubits. Repeated applications of the
overall circuit and measurements resolve the probability
of measuring the qubit in state 1. Lastly, the result is
postprocessed by adding a learnable bias parameter b
and mapping the result through a step function to the
output y ∈ {0, 1}.

From a purely mathematical point of view, this procedure
(that is, if we could perfectly resolve the probability of the
first qubit by measurements) formally defines a classifier
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FIG. 3. Inference with the circuit-centric quantum classifier
consists of four steps, here displayed in four colours, and can
be viewed from three different perspectives, i.e. from a formal
mathematical framework, a quantum circuit framework and
a graphical neural network framework. In the first step, the
feature map from the input space to the feature space R

N →
R

K is executed for an input by a state preparation scheme.
The quantum circuit applies a unitary transformation to the
feature vector which can be understood as one linear layer
(or, when decomposed into gates, several linear layers) of a
neural network. The measurement statistics of the first qubit
are interpreted as the continuous output of the classifier and
effectively implement a weightless nonlinear layer in which
every component of the last half of all units is mapped by an
absolute square and summed up. The postprocessing stage
binarises the result with a thresholding function via classical
computing.

that takes decisions according to

f(x; θ, b) =







1 if
2n∑

k=2n−1+1

|(Uθ ϕ(x))k|
2
+ b > 0.5,

0 else.

.

(1)
Here ϕ : RN → C

2n is a map that describes the proce-
dure of information encoding via the state preparation
routine (n is an integer such that 2n ≥ N), Uθ is
the parametrised unitary matrix describing the model
circuit, and (Uθϕ(x))k is the kth entry of the result after
we applied this matrix to ϕ(x). The sum over the second
half of the resulting vector corresponds to the single qubit
measurement resulting in state 1. Postprocessing adds
the bias b and thresholds to compute a binary prediction.

Lastly, if we formulate the four steps in the language of
neural networks and their graphical representation, state
preparation corresponds to a feature map on the input
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space, while the unitary circuit resembles a neural net-
work of several parametrised linear layers. This is fol-
lowed by two nonlinear layers, one simulating the read-
out via measurement (adding the squares of some units
from the previous layer) and one that maps the output to
the final binary decision. We will go through the four dif-
ferent steps in more detail and discuss our specific design
decisions for the model.

A. State preparation

There are various strategies to encode input vectors
into the n-qubit system of a quantum computer. In
the most general terms, state preparation implements
a feature map ϕ : R

N → C
2n where n is the total

number of qubits used to represent the features. In
the following we focus on amplitude encoding, where
an input vector x ∈ R

N – possibly with some further
preprocessing to bring it into a suitable form – is directly
associated with the amplitudes of the 2n-dimensional
‘ket’ vector of the quantum system written in the
computational basis. This option can be extended by
preparing a set of copies of the initial quantum state,
which effectively implements a tensor product of copies of
the input, mapping it to much higher dimensional spaces.

To directly associate an amplitude vector in computa-
tional basis with a data input, we require that N is a
power of 2 (so that we can use all 2n amplitudes of a
n-qubit system), and that the input is normalised to
unit length, xTx = 1. If N is no power of 2, we can
‘pad’ the original input with a suitable number of zero
features. (For example x = (x1, x2, x3)

T would be ex-
tended to x′ = (x1, x2, x3, 0)

T ). Normalisation can pose
a bigger challenge. Although many datasets carry prox-
imity relations between vectors in their angles and not
their length, some data sets can become significantly dis-
torted by normalisation. A possible solution is to embed
the data in a higher dimensional space. Practically, this
can be achieved by adding non-zero padding terms before
normalization. Let N be the dimensionality of the origi-
nal feature space, and let c1, . . . , cD be the padding terms
that may in general depend on the informative features
x1 to xN . The preprocessing necessary for amplitude
encoding maps

(
x1, ..., xN

)T → χ
(
x1, ..., xN , c1, ..., cD

)T
, (2)

with

χ =
1

√
∑

j x
2
j +

∑

k |ck|2
,

on the original data.

For the designs investigated in this paper it is convenient
to choose the padding width D such that N ′ = N + D

is some exact power of 2, and to choose {c1, . . . , cD} as
a set of non-informative constants. This choice has in
fact two desirable side-effects of feature normalisation
(2): first, is creates an ‘ancillary’ space of dimension D,
which in the language of neural networks is analogous to
having more “nodes” in the first hidden layer than in the
input layer; second, the constants create a state vector
that is not homogeneous with respect to the vector of
the original features (the importance of this will appear
shortly in the discussion of the tensorial maps).

Preparing a quantum state whose amplitude vector in the
computational basis is equivalent to the pre-processed
input ϕ(x) can always be done with a circuit that is
linear in the number of features in the input vector, for
example with the routines in Refs [22–24]. When more
structure in the data can be exploited, preparation rou-
tines with polylogarithmic dependence on the number of
features might be applicable [25, 26]. A largely uninves-
tigated option is also approximate state preparation of
feature vectors, which may reduce the resources needed
for the circuit Sx at the expense of an error in the inputs.

To map input data into vastly higher dimensional spaces
we can apply a tensorial feature map by preparing d
copies of the state [27]. If |ψ〉 is the ‘ket’ vector pro-
duced by amplitude encoding, this prepares

|ψ〉 → |ψ〉 ⊗ . . .⊗ |ψ〉
︸ ︷︷ ︸

d times

.

For amplitude encoding with N = 2 and d = 2, and
without any of the preprocessing described above, this
would map a feature vector (x1, x2)

T to

(
x1
x2

)

⊗
(
x1
x2

)

=






x21
x1x2
x2x1
x22




 ,

and can give rise to interesting nonlinearities that may fa-
cilitate the classification procedure in the following steps
(see also [28]).

B. The model circuit

Given an encoded feature vector ϕ(x) which is now a
‘ket’ vector in the Hilbert space of a n qubit system,
the model circuit maps this ket vector to another ket
vector ϕ′ = Uθϕ(x) by a unitary operation Uθ which is
parametrised by a set of variables θ.
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1. Decomposition into (controlled) single qubit gates

As described before, we decompose U into

U = UL . . . Uℓ . . . U1, (3)

where each Uℓ is either a single qubit or a two-qubit quan-
tum gate. As a reminder, a single qubit gate Gk acting
on the kth of n qubits can be expressed as

Ul = I0 ⊗ · · · ⊗Gk ⊗ · · · ⊗ In−1. (4)

If the circuit depth L is in Ω(4n), this decomposition
allows us to represent general unitary transformations.
Remember that unitary operators are linear transforma-
tions that preserve the length of a vector, a fact that
holds a number of advantages for the classifier as we will
discuss later.

We further restrict the type of 2-qubit gate to simplify
our “elementary parametrised gate set”. A 2-qubit uni-
tary gate is called imprimitive if it can map a 2-qubit
product state into a non-product state. A common case
of an imprimitive two-qubit gate is a singly-controlled
single-qubit gate C(G) that in standard computational
basis can be written as

Ca(Gb) |x〉|y〉 = |x〉 ⊗Gx|y〉, (5)

where G is a single-qubit gate other than a global phase
factor on the qubit b and the state x of qubit a is either 0
or 1 (G0 is the identity). For example, G could be a NOT
gate, in which case the C(G) is simply the frequently
used CNOT gate. It is known ([29]), that single-qubit
gates together with any set of imprimitive 2-qubit gates
provide for quantum universality:

Observation 1. Circuits of the form (3) composed out
of single-qubit gates and at least one type of imprimitive
2-qubit gates generate the entire unitary group U(2n) in a
topological sense. That is, for any ε > 0 and any unitary
V ∈ U(2n) there is a circuit of the the form (3) the value
of which is ε-close to V .

To make the single qubit gates trainable we need to for-
mulate them in terms of parameters that can be learnt.
The way the parametrisation is defined can have a signif-
icant impact on training, since it defines the shape of the
cost function. A single qubit gate G is a 2 × 2 unitary,
which can always be written [30] as

G(α, β, γ, φ) = eiφ
(

eiβ cosα eiγ sinα
−e−iγ sinα e−iβ cosα

)

(6)

and is fully defined by four parameters {α, β, γ, φ}. For
quantum gates – where we cannot physically measure
overall phase factors – we may neglect the prefactor
eiφ and only consider three learnable parameters per
gate. The advantage in using angles (instead of, for
example, a parametrisation with Pauli matrices) is that

training does not need an additional condition on the
model parameters. A disadvantage might unfavourable
convergence properties of trigonometric functions close
to their optima.

Note that there may be much more efficient “elementary
parametrised gatesets” for a specific hardware, since
some single qubit gates might naturally be parametrised
in the device (i.e. where the parameter corresponds to
the intensity of a laser pulse). For the agnostic case
we consider here, every parametrised gate has to be
decomposed into the constant elementary gate set of the
physical device, which adds an efficient overhead per
gate that depends on the fidelity with which we seek to
approximate it (see Section IVE).

We treat the circuit architecture, i.e. which qubit a cer-
tain gate acts on and where to place the controls, as
fixed here and will discuss design choices in Section III.
Of course, strategies to learn the circuit architecture are
also worth investigating, but we expect this to be a non-
trivial problem due to the vast impact that each gate
choice in the architecture bears for the final state (see
[31] and the discussion on “quantum chaos” in random
circuits).

C. Read out and postprocessing

After executing the quantum circuit Uθϕ(x) in Step 2,
the measurement of the first qubit (Step 3) results in
state 1 with probability[32]

p(q0 = 1, x; θ) =
2n∑

k=2n−1+1

|(Uθϕ(x))k|2 .

To resolve these statistics we have to run the entire
circuit S times and measure the first qubit. We esti-
mate p(q0 = 1) from these samples s1, ..., sS . This is
a Bernoulli parameter estimation problem which we
discuss in Section IVE.

The classical postprocessing (Step 4) consists of adding
a learnable bias term b to produce the continuous output
of the model,

π(x; θ, b) = p(q0 = 1, x, θ) + b. (7)

Thresholding the value finally yields the binary output
that is the overall prediction of the model:

f(x; θ) =

{

1 if π(x; θ) > 0.5

0 else
.

In Dirac notation the measurement result can be written
as the expectation value of a σz operator acting on the
first qubit, measured after applying U to the initial state
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B1 B3

|q0〉 G • G G • G G

|q1〉 G G • G G •

|q2〉 G G • G G •

|q3〉 G G • G G •

|q4〉 G G • G G •

|q5〉 G G • G G •

|q6〉 G G • G G •

|q7〉 G G • G G •

FIG. 4. Generic model circuit architecture for 8 qubits. The circuit consists of two ‘code blocks’ B1 and B3 with a range of
controls of r = 1 and r = 3 respectively. The circuit consists of 17 trainable single-qubit gates G = G(α, β, γ), as well as 16
trainable controlled single qubit gates C(G), which have in turn to be decomposed into the elementary constant gate set used
by the quantum computer on which to implement it. If the optimisation methods are used to reduce the controlled gates to a
single parameter, we have 3 · 33 + 1 = 100 parameters to learn in total for this model circuit. These 100 parameters are used
to classify inputs of 28 = 256 dimensions, which shows that the circuit-centric classifier is a much more compact model than a
conventional feed-forward neural network.

|ϕ(x)〉. In absence of non-linear activation, the expecta-
tion value of the σz operator on the subspace of the first
qubit is given by

E(σz) = 〈ϕ(x)|U†(σz ⊗ I⊗ . . .⊗ I)U |ϕ(x)〉,

and we can retrieve the continuous output via

π(x; θ) =

(
E(σz)

2
+

1

2

)

+ b. (8)

III. CIRCUIT ARCHITECTURES

Our initial goal was to build a classifier that at its core
has a low-depth quantum circuit. With the circuit de-
composed into L single or controlled single qubit gates,
we therefore want to constrain L to be polynomial in
n which will allow us to do inference with a number of
elementary quantum operations that grows only polylog-
arithmically in the dimension of the data set. However,
this obviously comes at a price. The vectors of the form
Uθ|0...0〉 exhaust only a small subset of the Hilbert space
of n qubits. In other words, the set of amplitude vec-
tors ϕ′ = Uθϕ(x) that the circuit can ‘reach’ is limited.
In machine learning terms, this limits the flexibility of
the classifier. Much like in classical machine learning,
the challenge of finding a generic circuit architecture is
therefore to engineer circuits (3) of polynomial depth that
still create powerful classifiers for a subclass of datasets.

A. Strongly entangling circuits

A natural approach to the problem of circuit design
is to consider circuits that prepare strongly entangled
quantum states. For one, such circuits can reach ‘wide
corners of the Hilbert space’ with Uθ |0, ..., 0〉. Reversibly
argued, they have a better chance to project input data
state |ϕ(x)〉 with the class label y onto the subspace

|y〉 ⊗ |η〉, η ∈ C
2n−1

, which corresponds to a decision of
p(q0) = 0, 1 in our classifier (for a zero bias). Moreover,
from a theoretical point of view a classifier has to
capture both short and long-range correlations in the
input data, and there is mounting evidence [19, 33] that
shallow circuits may be suitable for the purpose when
they are strongly entangling.

More specifically, we compose the circuit (3) out of sev-
eral code blocks B (see dotted boxes in the example in
Figure 4). A code block consists of a layer of single qubit
gates G = G(α, β, γ) applied to each of the n qubits, fol-
lowed by a layer of n/gcd(n, r) controlled gates, where r
is the ‘range’ of the control and gcd(n, r) is the greatest
common denominator of n and r. For j ∈ [1..n/gcd(n, r)]
the jth 2-qubit gate Ccj (Gtj ) of a block has qubit num-
ber tj = (jr − r) mod n as the target, qubit number
cj = jr mod n as control. A full block has the following
composition,

B =

n−1∏

k=0

Cck(Gtk)

n−1∏

j=0

Gj . (9)

We observe that such code block is capable of entan-
gling/unentangling all the qubits with numbers that
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G0 •

G1 G •

G2 G

⇔

G0 Pλ •

G1 Q† Pφ Q Pλ •

G2 Q† Pφ Q

⇔

G̃0 •

G̃1 Pφ Q̃ •

G̃2 Pφ Q

FIG. 5. Illustration of first step of the proof from Observation 2 for an example of the first 5 gates of a codeblock of 3 qubits
with range r = 1. Decomposing the controlled rotations and merging single qubit gates reduces the number of parameters
needed to represent the model circuit architecture. For simplification the gates are displayed without indices or parameters.

are a multiple of gcd(n, r). In particular, assuming r
is relatively prime with n, all n qubits can be entan-
gled/unentangled.

As an example that demonstrates the entangling power
of the circuit, select a block with n = 4, r = 1. Let
all controlled gates be CNOTs and let all single qubit
gates be identities, except from G0 = G2 = H, which
are Hadamard gates. Applying the circuit to the basis
product state |0000〉 we get the state

|ψ〉 = 1

2
(|00〉|00〉+ |01〉|11〉+ |10〉|01〉+ |11〉|10〉).

If A is the subsystem consisting of qubits 0, 1 and B
the subsystem of qubits 2, 3, then the marginal density
matrix, corresponding to the state |ψ〉 and the partition-
ing A⊗ B, is completely mixed. Therefore the state |ψ〉
strongly entangles the two subsystems.

B. Optimising the architecture

The definition of the code block as per Equation (9) is
fairly redundant. It turns out that the parameter space
of the circuit (9) can for practical purposes be reduced to
roughly 5n parameters. For this we need to introduce a
controlled phase gate Cj(Pk(φ)), φ ∈ R that applies the
phase shift ei φ to a standard basis vector if and only if
both the j-th and k-th qubits are in state |1〉. (Note the
symmetry of the definition, which means that it does not
matter which of the qubits is the control and which is the
target.)

Observation 2. A circuit block of the form (9) can, up
to global phase, be uniquely rewritten as

B =
n−1∏

k=0

RX
k Cck(Ptk)

n−1∏

j=0

Gj . (10)

where ∀j,Gj ∈ SU(2) are single qubit gates with the usual
three parameters (and, moreover, Gj is an axial rotation
for j > 0), P is a single-parameter phase gate, and RX

is a single-parameter X-rotation.

Proof. The proof is based on transformations of the
Ca(Gb) gates and subsequent normalizations of the

single-qubit unitaries. Let us diagonalise the single-
qubit unitary G = QDQ†, where Q is some other
single-qubit unitary and D = diag(ei λ, ei (λ+φ)) with
λ, φ ∈ R is the diagonal matrix of the eigenvalues.

Then Ca(Gb) = QbCa(Pb(φ))Q
†
b Pa(λ) (see Figure 5).

We further merge the Q†
b with the corresponding Gb

of the code block (9). In case a = 0 the Pa(λ) can be
commuted to the beginning of the layer and merged with
G0. In case a 6= 0 the Pa(λ) can be commuted through
the end of the layer and either merged into the next
layer or, if we are looking at the last layer in the circuit,
traced out. At this point the action of the circuit (9)

is equivalent to that of (
∏n−1

k=0 Q̃tk Cck(Ptk))
∏n−1

j=0 G̃j

where G̃j and Q̃tk are updated single qubit gates from
the merging operation. Note that the single qubit gates
in the following layer are also updated.

In the second round of the we split all the single-qubit
gates Q̃ up to global phase into product of three ro-
tations Q̃ ∼ RZ(µ1)RX(µ2)RZ((µ3). We conclude the
proof by noting that each of the diagonal operators
RZ(mu1)tj , RZ((µ3)tj can be commuted through all con-
trolled phase gates to either the end of the layer or to the
beginning (in which case it can be merged with one of the

G̃j gates).

To summarize, with the possible exception of the last
layer in the classifier, a layer is described (up to a global
phase) by at most 5n parameters, at most n for all con-
trolled phase gates C(P ), at most n for all x-rotations
RX and at most 3n for all fully parametrised single qubit
gates G.

C. Graphical representation of gates

As a product of elementary gates, the model circuit
Ux can be understood as a sequence of linear layers
of a neural network with the same number of units in
each “hidden layer”. This perspective facilitates the
comparison of the circuit-centric quantum classifier with
widely studied neural network models, and visualises
the connectivity power of (controlled) single qubit gates.
The position of the qubit (as well as the control) deter-
mine the architecture of each layer, i.e. which units are
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G0 C1(G0)

FIG. 6. Graphical representation of quantum gates. Left: A
single qubit gate applied to the first qubit of a 2-qubit register.
Right: A single qubit gate and a controlled single cubit gate
applied to a two-qubit register. A solid line corresponds to a
unit weight, while the other lines stand for a variable weight
parameter. The same line styles indicate the same weights.

connected and which “weights” are tied in a “gate-layer”.

To show an example, consider a Hilbert space of dimen-
sion 2n with n = 2 qubits |q0q1〉. A single qubit unitary
G applied to q0 would have the following matrix repre-
sentation

G0 =







eiβ cosα 0 eiγ sinα 0
0 eiβ cosα 0 eiγ sinα

−e−iγ sinα 0 e−iβ cosα 0
0 −e−iγ sinα 0 e−iβ cosα






,

while the same unitary but controlled by qubit q1, C1(G0)
has matrix representation

C1(G0) =







1 0 0 0
0 eiβ cosα 0 eiγ sinα
0 0 1 0
0 −e−iγ sinα 0 e−iβ cosα







At the same time, these two gates can be understood as
layers with connections displayed in Figure 6.

It becomes obvious that a single qubit gate connects two
sets of two variables with the same weights, in other
words, it ties the parameters of these connections. The
control removes half of the ties and replaces them with
identities. A quantum circuit can therefore be under-
stood as an analog of a neural network architecture
with highly symmetric, unitary linear layers, and con-
trols break some of the symmetry. Note that although
we speak of linear layers here, the weights (i.e., the en-
tries of the weight matrix representing a gate) have a
nonlinear dependency on the model parameters θ, a cir-
cumstance that plays a role for the convergence of the
hybrid training method.

IV. TRAINING

We consider a stochastic gradient descent method for
training. The parameters that define every single qubit
gate of the quantum circuit are at every stage of the quan-

tum algorithm classical values. However, we are comput-
ing the model function on a quantum device, and have
therefore no ‘classical’ access to its gradients. This means
that the training procedure has to be a hybrid scheme
that combines classical processing to update the param-
eters, and quantum information processing to extract the
gradients. We will show how to use the quantum circuit
to extract estimates of the analytical gradients, as op-
posed to other proposals for variational algorithms based
on derivative-free or finite-difference gradients (see [34]).
A related approach, but for a different gate representa-
tion, has been proposed during the time of writing in Ref.
[17].

A. Cost function

We choose a standard least-squares objective to evaluate
the cost of a parameter configuration θ and a bias b given
a training set, D = {(x1, y1), ..., (xM , yM )},

C(θ, b; D) =
1

2

M∑

m=1

|π(xm; θ, b)− ym|2,

where π is the continuous output of the model de-
fined in Equation (7). Note that we can easily add
a regularisation term (i.e., an L1 or L2 regulariser)
to this objective, since it does not require any addi-
tional quantum information processing. For the sake of
simplicity we do not consider regularisation in this paper.

Gradient descent updates each parameter µ from the set
of circuit parameters θ via

µ(t) = µ(t−1) − η
µC(θ, b; D)

∂θ
,

and similarly for the bias,

b(t) = b(t−1) − η
∂C(θ, b; D)

∂b
.

The learning rate η can be adapted during training and
we can also add momenta to the updates, which can
significantly decrease the convergence time.

In stochastic gradient descent, we do not consider the
entire training set D in every iteration, but only a subset
or batch B ⊂ D [35]. The derivatives in the parameter
updates are therefore taken with respect to C(θ, b; B)
instead of C(θ, b; D). In principle, quantum computing
allows us to encode a batch of B training inputs into
a quantum state in superposition and feed it into the
classifier, which can be used to extract gradients for the
updates from the quantum device. However, guided by
the design principle of a low-depth circuit, this would
extend the state preparation routine to be in O(BN) for
general cases, where N is the size of each input in the
batch (which becomes even worse for more sophisticated
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QPU

input

x ∈ R
N

output

p(q0 = 1)

update θ
gradient

FIG. 7. Idea of the hybrid training method. The quantum
processing unit (QPU) is used to compute outputs and gradi-
ents of the model in order to update the parameters for each
step of the gradient descent training.

feature maps in Step 1). We therefore consider single-
batch gradient descent here (i.e., B = 1), where only one
randomly sampled training input is considered in each
iteration. Single-batch stochastic gradient descent can
have favourable convergence properties, for example in
cases where there is a lot of data available [36].

B. Hybrid gradient descent scheme

The derivative of the objective function with respect to
a model parameter ν = b, µ (where µ ∈ θ is a circuit
parameter) for a single data sample {(xm, ym)} is calcu-
lated as

∂C

∂ν
= (π(xm; ν)− ym) ∂νπ(x

m; ν).

Note that π(xm; ν) is a real-valued function and the ym

and the parameters are also real-valued. Hence ∂C
∂ν

∈ R.

While π(xm; ν) is a simple prediction we can get from
the quantum device, and ym is a target from the classical
training set, we have to look closer at how to compute
the gradient ∂νπ. For ν = b this is in fact trivial, since

∂bπ(x
m; b) = 1.

In case of ν = µ, the gradient forces us to compute
derivatives of the unitary operator. In the following we
will calculate the gradients in vector as well as in Dirac
notation and show how a trick allows us to estimate
these gradients using a slight variation of the model
circuit Sx.

The derivative of the continuous output of the model with

respect to the circuit parameter µ is formally given by

∂µπ(x
m;µ) = ∂µ p(q0 = 1;xm, θ)

= ∂µ

2n∑

k=2n−1+1

(Uθ ϕ(x))
†
k (Uθ ϕ(x))k

= 2Re







2n∑

k=2n−1+1

(∂µUθ ϕ(x))
†
k
(Uθ ϕ(x))k






.

The last expression contains the ‘derivative of the circuit’,
∂µUθ, which is given by

∂µUθ = UL . . . (∂µUi) . . . U1,

where we assume for simplicity that only the
parametrised gate Ui depends on parameter µ. If
the parameters of different unitary matrices are tied
then the derivative can simply be found by applying the
product rule.

In Dirac notation, we have expressed the probability of
measuring the first qubit in state 1 through the expec-
tation value of a σz operator acting on the same qubit,
p(q0 = 1;xm, θ) = 1

2 (〈Uθϕ(x)|σz|Uθϕ(x)〉+1) (see Equa-
tion 8). We can use this expression to write the gradient
in Dirac notation,

∂µ π(x
m; θ, b) = Re{〈(∂µUθ)ϕ(x

m)|σz|Uθϕ(x
m)〉}. (11)

This notation reveals the challenge in computing the gra-
dients using the quantum device. The gradient of a
unitary is not necessarily a unitary, which means that
|(∂µUθ)ϕ(x

m)〉 is not a quantum state that can arise from
a quantum evolution. How can we still estimate gradients
using the quantum device?

C. Classical linear combinations of unitaries

It turns out that in our architecture we can always
represent ∂µUθ as a linear combination of unitaries.
Linear combination of unitaries is a known technique in
quantum mechanics [37], where the sum is implemented
in a coherent fashion. In our case where we allow
for classical postprocessing, we do not have to apply
unitaries in superposition, but can simply run the
quantum circuit several times and collect the output.
This is what we will call classical linear combinations of
unitaries here.

Consider the derivative of Ui for the single-qubit gate
defined in Equation (4),

∂µUi = I⊗ · · · ⊗ ∂µG(α, β, γ)⊗ · · · ⊗ I,

where G(α, β, γ) is given in the parametrisation intro-
duced in Equation (6) and discounting the global phase.
The derivatives of the single qubit gate G(α, β, γ) with
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respect to the parameters µ = α, β, γ are as follows:

∂αG = G(α+
π

2
, β, γ) (12)

∂βG =
1

2
G(α, β +

π

2
, 0) +

1

2
G(α, β +

π

2
, π) (13)

∂γG =
1

2
G(α, 0, γ +

π

2
) +

1

2
G(α, π, γ +

π

2
) (14)

One can see that while the derivative with respect to
α requires us to implement the same gate but with the
first parameter shifted by π

2 , the derivative with respect
to µ = β [µ = γ] is a linear combination of single qubit
gates where the original parameter β [γ] is shifted by π

2 ,
while γ [β] is replaced by 0 or π.

Differentiating a controlled single qubit gate is not that
immediate, but fortunately we have

∂µ C(G) =
1

2

(

C(∂µG)− C(−∂µG)
)

,

which means that the derivative of the controlled single
qubit gate is half of the difference between a controlled
derivative gate and the controlled negative version of
that gate. In our design, when µ = α, each of the two
controlled gates is unitary, while µ = β, γ requires us to
use the linear combinations in (13) and (14).

If we plug the gate derivatives back into the expressions
for the gradient in Equation (11), we see that the gradi-
ents, irrespective of the gate or parameter, can be com-
puted as ‘classical’ linear combinations of the form

∂µ π(x
m; θ, b) =

J∑

j=1

aj Re {〈Uθ[j]ϕ(xm)|σz|Uθϕ(x
m)〉} ,

where θ[j] is a modified vector of parameters corre-
sponding to a term appearing in Equations (12 - 14),
and aj is the corresponding coefficient also stemming
from the Equations (12 - 14). If there is no parameter
tying between the constituent gates, for example,
then J is either 2 or 4 depending on whether the
gate containing parameter µ is a one- or two-qubit
gate. For each circuit, the eventual derivative has to
be estimated by repeated measurements, and we will
discuss the number of repetitions in the following section.

The last thing to show is that we can compute the
terms Re{〈Uθ[j]ϕ(xm)|σz|Uθϕ(x

m)〉} with the quantum
device, so that classical multiplication and summation
can deliver estimates of the desired gradients.

Observation 3. Given two unitary quantum circuits A
and B that act on a n qubit register to prepare the two
quantum states |A〉, |B〉, and which can be applied con-
ditioned on the state of an ancilla qubit, we can use the
quantum device to sample from the probability distribu-

tion p = 1
2 + 1

2 Re〈A|B〉
Proof. The proof of this observation follows from the ex-
act same reasoning that underlies the Hadamard test.
For concreteness, we specify the algorithm below. We
use the circuits A,B to prepare the two states |A〉, |B〉
conditioned on an ancilla,

1√
2
(|0〉|A〉+ |1〉|B〉) .

Applying a Hadamard on the ancilla yields

1

2
(|0〉(|A〉+ |B〉) + |1〉(|A〉 − |B〉)) ,

where the probability of the ancilla to be in state 0 is
given by

p(a = 0) =
1

2
+

1

2
Re〈A|B〉.

To use this interference routine we have to add an extra
qubit and implement Uθ and Uθ[j] conditioned on the
state of the ancilla. Since these two circuits coincide
in all except from one gate, we do in fact only need to
apply the differing gate in conditional mode. This turns
a single qubit gate into a singly controlled single qubit
gate, and a controlled gate into a double controlled gate.
The desired value Re〈A|B〉 can be derived by resolving
p(a = 0) through measurements and computing

Re〈A|B〉 = 2p(a = 0)− 1.

D. Dropout

Despite the relatively small parameter space, our
circuit-centric architecture is not immune to overfitting.
Benchmarking on smaller data sets reveals cases where
the training data is fit perfectly (zero misclassifications)
by a model with exponentially few parameters, but the
same model has significant generalization errors on the
test holdout.

The approach that often helps is a simple dropout regu-
larization that is both quantum-inspired and quantum
ready (in the sense that it is easy in both classical
simulation and quantum execution). The essence of the
approach is to randomly select and measure one of the
qubits, and set it aside for a certain number Ndropout

of parameter update epochs. After that, the qubit is
re-added to the circuit and another qubit (or, perhaps,
no qubit) is randomly dropped. This strategy works by
“smoothing” the model fit and it generally inflates the
training error, but often deflates the generalization error.

The effect of such dropout regularization is similar, in
spirit, to dropout regularization in a traditional neural
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network when the dropout probability p = 0.5 is used.
Indeed, freezing a randomly chosen qubit for a certain
number of epochs prevents a half of the amplitudes in the
amplitude encoding from affecting the stochastic gradi-
ent during these epochs. In the graphical representation
of the circuit-centric classifier this is analogous to remov-
ing a half of the nodes from a hidden layer for a certain
number of epochs.

E. Performance analysis

In order to use the circuit-centric quantum classifier with
near-term quantum devices, we need to motivate that
it only requires a small number of qubits, a low circuit
depth as well as a high error tolerance. After introducing
the details of the algorithms for inference and training,
we want to discuss these three points in more detail.

1. Circuit depth and width

The number of qubits needed for the circuit-centric
quantum classifier (if we use amplitude encoding as
explained in Section IIA) is given by d⌈log2N⌉ where
N is the dimension of the inputs and d is the number
of copies we consider for a tensorial feature map. For
example, if d = 1, we can process a dataset of 1000-
dimensional inputs with n = 10 qubits. With about 50
qubit we can use a tensorial feature map of d = 5 (i.e.,
prepare 5 copies of the state) and map the data into a
250 dimensional feature space. For the inner products
subroutine in the hybrid training scheme, we need one
extra ancilla qubit. The algorithm is therefore very
compact as much as circuit width is concerned, a feature
stemming from the amplitude encoding strategy.

The bottleneck of the circuit depth is the state prepara-
tion routine Sx. Comparably, implementing the model
circuit costs a negligible amount of resources. Using an
architecture with K codeblocks of ranges (r1, ..., rK) and
n qubits, we need

Kn+

K∑

k=1

n/gcd(n, rk)

parametrised (controlled) single qubit gates to implement
Uθ, which is polynomial in the number of qubits. Each
of these gates has to be decomposed into the elementary
constant gate set used in the physical implementation
of the quantum computer. Every parametrised single
qubit gate can be efficiently translated into circuit G̃
of at most O(log 1

δ
) constant elementary gates from a

given gate set such as “Clifford-plus-T” to a fidelity of at
least (1 − δ) (cf. [38–41]). Methods such as automated
optimization [42] may reduce the costs further.

General state preparation can in the worst case require
ccn2

n CNOT gates as well as csgl2
n single qubit gates.

For current algorithms csgl and ccn is equal to or slighly
larger than 1 [22–24, 43, 44]. This means that for the ex-
ample of N = 1000 from above, we would indeed require
2 · 2n = 2048 gates only to prepare the states. Issues
of fidelity arise, since without error correction we cannot
guarantee to prepare a close enough approximation of
x. Our simulations show that adding 5% noise to the in-
puts does not change the classification result significantly,
which suggests that the classifier is rather robust against
input noise. Still, until error correction becomes a real-
ity, it is therefore advisable to focus on lower-dimensional
datasets. Two interesting exceptions have to be men-
tioned. First, if an algorithm is known that efficiently
allows us to approximate the (preprocessed) inputs with
a product state, x ≈ a1 ⊗ · · · ⊗ aK the resources reduce
to the number of gates required to prepare the a1, ..., aK
in amplitude encoding [25]. Second, as other authors in
quantum machine learning research, we point out that if
the data is given by a shallow and robust digital quan-
tum simulation routine performed on the same register of
qubits, our classifier can be used to train with ‘quantum
data’, or inputs that are ‘true’ wavefunctions.

2. Number of repetitions for output estimation

The continuous output of the circuit-centric quantum
classifier was based on the probability of measuring the
first qubit in state 1. To resolve this number, we have
to repeat the entire algorithm multiple times. Each mea-
surement samples from the Bernoulli distribution p(q0 =
1) = ν, and we want to estimate ν from the S samples
q11 , ..., q

S
1 . The number of samples needed to estimate ν at

error ǫ with probability > 2/3 scales as O(Var(σz)/ǫ
2)),

where Var(σz) is the variance of the sigma-z operator
that we measure with respect to the final quantum state
[12, 34]. If amplitude estimation is used then the number
of repetitions of circuit centric classifier falls into O(1/ǫ)
at a price of increasing the circuit depth by a factor of
O(1/ǫ).

3. Parameter noise

An important feature of the circuit-centric classifier is
its robustness to noise in the inputs and parameters.
Suppose δ > 0 is some small value and we allow pa-
rameter permutations (resp. input permutations) such
that for each constituent gate G the permuted gate G′

is δ-close to G: ||G − G′|| < δ. (Or for encoded input φ
a perturbed input φ′ is δ-close to φ.) we allow certain
imprecisions in some or all parameter values and that
such imprecisions are bounded below some constant
δ. Since all the constituent operations are unitary, the
impact of the parameter imprecisions is never amplified
across the circuit at the defect imposed by the imperfect
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Noise level RI Mean RI St.Dev. RI max RI min

0.1% 1% 1.47% 3.5% 0%

1% 7% 6.67% 17% 0%

10% 60.2% 55.8% 192.3% 0%

TABLE I. Relative impact (RI) of uncorrelated parameter
noise on the classification test error over SEMEION and
MNIST256 data, using the generic 8-qubit model circuit dis-
played in Figure 4

circuit on the final state before the measurement is
bounded by 4Lδ in the worst theoretical case, where L
is the number of elementary parametrised gates which
have at most 4 parameters. In practice the propagated
error should be much smaller that this bound.

The same analysis applies to imperfections in the
quantum gates execution (other than parameter drift).
There is no amplification of defect across the circuit
and the imperfection of the final state is bounded by
the sum of imperfections of individual gates. Finally,
the ket encoding of the input data does not have to be
perfect either. A possible imperfection or approximation
during the state preparation will not be amplified
by the classification circuit, and the drift of the pre-
measurement state will be never be greater than the
drift of the initial state. Another widely advertised
advantage of variational quantum algorithms is that
they can learn to counterbalance systematic errors in
the device architecture – for example when one gate
always over-rotates the state by the same value.

In our simulation experiments we have systematically
evaluated the effects on the quality of the classification
of 0.1%, 1% and 10% random perturbations in (a) the
circuit parameters and (b) the input data vectors. As
expected due to the unitariness, the effect of input
noise is not amplified by the classifier circuit and
thus had proportionate impact on the percentage of
misclassifications. Somewhat more surprisingly, random
perturbations of the trained circuit parameters almost
never had the worst case estimated impact on the
classification error. The 0.1% uncorrelated parameter
noise in the majority of cases had no impact on the
classification results.

Here we limit the noise impact discussion to the context
of the “SEMEION” and “MNIST256” data sets of the
benchmark sets displayed in Table II. Our observations
are easier to calibrate in this context since both datasets
are encoded with 8 qubits and the same model circuit
architecture with 33 gates at depth 19 (as shown in
Figure 4 ) is used in the classifier.

The 0.1% parameter noise had no impact on classifi-

cation in about 60% of our test runs. The maximum
relative drift of the test error has been 3.5% (in one the
of remaining runs), the mean drift has been 1% with
the standard deviation of approximately 1.47%. The 1%
parameter noise had a more pronounced, albeit fairly
robust impact, which was non-trivial in about 90% of
our test runs. The maximum relative change in the test
error rate has been 17%, the mean relative change has
been 7% with the standard deviation of approximately
6.67%. This statistics is summarized in Table I. Finally
the 10% parameter noise lead to significant loss of
classification robustness (although still smaller that the
worst case analysis suggests). The maximum relative
change in the test error rate has been 192.3%, the mean
has been 60.2% with the standard deviation of 55.8%.
Curiously, the minimum change has been zero in one of
the “SEMEION”-based runs. This suggests that 10%
perturbation of parameters has no stable amplification
pattern, and the model should be best re-trained after
such perturbation.

The practical takeaway from these observations is that
the circuit-centric classifiers may work on small quantum
computers even in the absence of strong quantum error
correction.

V. SIMULATIONS AND BENCHMARKING

To demonstrate that the circuit-centric quantum clas-
sifier works well in comparison with classical machine
learning methods we present some simulations. The
circuit-centric classifier was implemented on a classical
computer using the F# programming language.

1. Datasets

We select six standard benchmarking datasets (see Table
II). The CANCER, SONAR, WINE and SEMEION
data sets are taken from the well-known UCI repository
of benchmark datasets for machine learning [45]. The
MNIST data set is the official NIST Modified handwrit-
ten digit recognition data set. While CANCER and
SONAR are binary classification exercises, the other
data sets call for multi-class classification. Although
the circuit-centric quantum classifier could be operated
as a multi-class classifier, we limit ourselves to the case
of binary classification discussed above and cast the
multi-label tasks as a set of “one-versus-all” binary
discrimination subtasks. For example, in the case of
digit recognition the ith subtask would be to distinguish
the digit “i” from all other digits. The results are an
average taken over all subtasks.

The data is preprocessed for the needs of the quantum
algorithm. The MNIST data vectors were course-grained
into real-valued data vectors of dimension 256. With the
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ID domain # features # classes # samples preprocessing

CANCER decision 32 2 569 none

SONAR decision 60 2 208 padding with noninformative features

WINE decision 13 3 178 padding with noninformative features

SEMEION OCRa 256 10 1593 padding with noninformative features

MNIST256 OCR 256 10 2766 coarse-graining and deskewing

a Optical Character Recognition

TABLE II. Benchmark datasets and preprocessing.

ID model fixed hyperparameters variable hyperparameters

QC Circuit-centric
quantum classifier

entangling circuit architecture dropout rate, number of blocks, range

PERC perceptron - regularisation type

MLPlin neural network dim. of hidden layer = N regularisation strength, optimiser,
initial learning rate

MLPshal neural network dim. of hidden layer = ⌈log2N⌉ regularisation strength, optimiser,
initial learning rate

MLPdeep neural network dim. of hidden layers = ⌈log2N⌉ regularisation strength, optimiser,
initial learning rate

SVMpoly1 support vector
machine

polynomial kernel with d = 1,
regularisation strength of slack variables
= 1, offset c = 1

-

SVMpoly2 support vector
machine

polynomial kernel with d = 2,
regularisation strength of slack variables
= 1, offset c = 1

-

TABLE III. Benchmark models explained in the text and possible choices for hyperparameters.

exception of this data set, in all other cases the data vec-
tors have been padded non-informatively so that their
dimension after padding is the nearest power of 2. Af-
ter padding, each input vector was renormalized to unit
norm. Thus each of the N -dimensional original data vec-
tors would require n = ⌈log2(N)⌉ qubits to encode in
amplitude encoding. In our simulations we do not use
feature maps which would multiply the input dimensions.
However, we expect that the circuit-centric classifier will
gain a lot of power from this strategy, which can be tested
on real quantum devices without the same amount of
overhead.

2. Benchmark models

For the circuit-centric quantum classifier (QC) we use
the data-agnostic entangling circuit of n qubits, which
has been explained in Section III. We use one, two or
three entangling layers, which means that the circuit
contains anywhere from n+1 to 6n+1 single-qubit and
two-qubit gates. Therefore the number of real trainable

parameters varies from 3n + 2 to 18n + 2. For each
dataset we selected the circuit architecture with the
lowest training error while reducing overfitting.

Defining a fair, systematic comparison is not straight
forward since there are many different models and
training algorithms we could compare with, each being
further specified by hyperparameters. Without the use
of feature maps, our classifier has only limited flexibility,
and benchmarking against state-of-the-art models such
as convolutional neural networks will therefore not
provide much insight. Instead, we choose to compare
our model to six classical benchmark models (see Table
III) that are selected for their mathematical structure
which is related to the circuit-centric classifier.

Section III C showed an interesting parallel to neural
networks, which is why we take neural networks as
one benchmark model family. From this family we
choose 3 different architectures shown in Figure 8. The
MLPlin model has a linear hidden layer of the same
dimension N as the input layer and resembles the
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FIG. 8. The three architectures of the benchmark artificial
neural network models. Left is the MLPlin model, which has
a hidden linear layer of the size of the input N and a logistic
output layer. The MLPshal model in the middle has a hidden
layer of size ⌈log

2
N⌉ with nonlinear activations and a logistic

output layer. The MLPdeep model model on the right adds
a second nonlinear hidden layer.

architecture of our QC model displayed in Figure 3.
The MLPshal and MLPdeep models have hidden layers
of size ⌈log2N⌉. The motivation is to compare the
QC with an architecture that - after the input layer of
sizeN - gives rise to a polylogarithmic number of weights.

We use a support vector machine as a second bench-
mark model. Support vector machines are similar to the
circuit-centric classifier since we can also think of them
as a linear classifier in a feature space that is defined by
a kernel κ [46]. We mentioned in Section IIA that am-
plitude encoding can be supplemented by a feature map
which is very similar to that of a support vector machine
with a polynomial kernel,

κ(x, x′) = (xTx′ + c)d.

The offset c can be loosely compared to the effect of
padding. The degree d of the kernel is not one-to-one
comparable to the degree of the polynomial feature map
in amplitude encoding, since our QC model effectively
contains an ‘extra’ nonlinearity which derives from the
measurement process (and is therefore not precisely
a linear model in feature space). This can be seen in
Figure 9 where we compare the decision boundaries
of an SVM with polynomial degree d = 1, 2 with the
QC model and a feature map of degree d = 1, 2. To
counterbalance the potential advantage of the QC, we
consider two support vector machines, one with d = 1
(SVMpoly1) and one with d = 2 (SVMpoly2). The QC
model does not use any feature maps. Finally, we add
a perceptron (PERC) to the list of benchmark models
to get an impression about the linear separability of the
datasets.

Since one of our goals is to build a model with a small
parameter space, we compare the number of trainable
parameters for each model in Table IV. For the MLP and
PERC models these parameters are the weights between
units, and their number is defined by the dimension of
inputs as well as the architecture of the network. For
the SVM models we consider the number of input data
points, since in their dual formulation these models start
with assigning a weight to each input, after which they

QC SVMpoly QC SVMpoly

1

0

d
=

1
d

=
2

FIG. 9. Comparison of the decision boundary for the circuit-
centric quantum classifier (QC) and a support vector machine
with polynomial kernel (SVMpoly). The 2-dimensional data
gets embedded into a 4-dimensional feature space (we padded
with 2 non-informative features), where it is classified by the
two models. The colour scale indicates the probability that
the model predicts class “green circles”. For the QC model,
the parameter d corresponds to the degree of the polynomial
feature map in amplitude encoding (see Section IIA). For the
SVMpoly, d is the degree of the polynomial kernel. One can
see that for d = 1 the QC model is slightly more flexible than
the SVMpoly.

ID QC PERC MLPlin MLPshal MLPdeep SVM

CANCER 79 32 1056 165 190 208

SONAR 60 60 1952 305 330 569

WINE 28 13 272 51 60 178

SEMEION 100 256 65792 2056 2120 1593

MNIST256 124 256 65792 2056 2120 800

TABLE IV. Number of parameters each model has to train for
the different benchmark datasets. The circuit-centric quan-
tum classifier QC has a logarithmic growth in the number of
parameters with the input dimension N and data set size M ,
while all other models show a linear or polynomial parameter
growth in either N or M .

reduce the training set to a few support vectors used for
inference.

3. Results

For every benchmarking test (except from the QC model
on SEMEION and MNIST256) we use 5-fold crossval-
idation with 10 repetitions each. This means that the
results are an average of 50 repetitions of training the
model and calculating the training and test error. Due
to the significant cost of quantum circuit simulations, for
the QC experiments on the SEMEION and MNIST256
datasets only one repetition of the 5-fold cross-validation
was carried out. The results are summarized in Table V.

As we can read from the non-zero training error of the
PERC model, none of the datasets is linearly separable.
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CANCER SONAR WINE∗ SEMEION∗ MNIST256∗

QC 0.022/0.058 0.000/0.195 0.000/0.028 0.031/0.031 0.031/0.033

PERC 0.128/0.137 0.283/0.315 0.067/0.134 0.022/0.038 0.065/0.066

MLPlin 0.060/0.075 0.117/0.263 0.001/0.039 0.001/0.025 0.038/0.041

MLPshal 0.064/0.077 0.010/0.174 0.029/0.063 0.002/0.024 0.011/0.018

MLPdeep 0.056/0.076 0.001/0.174 0.010/0.063 0.001/0.026 0.014/0.021

SVMpoly1 0.373/0.367 0.452/0.477 0.430/0.466 0.101/0.100 0.092/0.092

SVMpoly2 0.169/0.169 0.334/0.383 0.090/0.099 0.100/0.101 0.091/0.092

Average 0.125/0.136 0.171/0.283 0.090/0.137 0.037/0.049 0.040/0.043

TABLE V. Results of the benchmarking experiments. The cells are of the format “training error/validation error”. The variance
between the 50 repetition for each experiment was of the order of 0.01− 0.001 for the training and test error. ∗For multilabel
classification problems with d labels, the average of all d one-versus-all problems train and test errors were taken.

One finds that the QC model performs significantly
better than the SVMpoly1 and SVMpoly2 models across
all data sets. In further simulations we verified that for
support vector machines with polynomial kernel, degrees
of d = 6 to d = 8 return the best results on the datasets,
which are also better than those of the MLP models.

Although showing slightly worse test errors than the
MLPshal and MLPdeep (and with mixed success com-
pared to the MLPlin), the QC performs comparable with
the MLP models that train a lot more parameters. For
the SONAR and WINE dataset we find that the QC
model overfits the training data. This is even worse with-
out using the dropout qubit regularization technique ex-
plained above. The observation is interesting, since the
QC model is ‘slimmer’ than the MLP and SVM mod-
els in terms of its parameter count. An open question is
therefore how to introduce other means of regularisation.

VI. CONCLUSION

We have developed a machine learning design which is
both quantum inspired and implementable by near-term
quantum technology. The key building block of this
design is a unitary model circuit with relatively few
trainable parameters that assumes amplitude encoding of
the data vectors and uses systematically the entangling
properties of quantum circuits as a resource for capturing
correlations in the data. After state preparation, the
prediction of the model is computed by applying only
a small number of one- and two-qubit gates quantum
gates. At the same time, simulating these gates on a
classical computer requires a of elementary operations
that scales with the number of features. We are aware of
prior designs of unitary neural nets available in literature
(cf. [19, 20] and related work). In these designs the
number of learnable parameters is proportional to the
number of data features, whereas the size of our model

circuit therefore scales with the number of qubits and
thus allows, qubit-wise, for exponentially fewer learnable
parameters than what traditional methods would use.
We have also shown in some preliminary simulations
that the design can indeed achieve results close to
off-the-shelf methods that have comparable limitations
but considerably more tunable parameters.

The quantum classifiers based on model circuits that
we have explored so far belong to a class of weakly
nonlinear classifiers. The main source of nonlinearity in
our classifiers stems from the concluding measurement
and thresholding on the probabilities of the measurement
outcomes. These probabilities are roughly quadratic
in the amplitudes of the final post-circuit state. Since
the overall effect of the model circuit on the amplitudes
is linear reversible, one concludes that the models we
have experimented with can capture (amplitude-wise)
quadratic separation of classes in the original feature
space.

There is a potential for tracing class separation bound-
aries of higher polynomial degrees by encoding several
copies of a classical data vector in disjoint quantum
registers and then having the model circuit work on the
tensor power of the data vector. Of course, this setup
requires vastly more computational resources to simulate
the quantum circuit, and we leave such experiments
for the future. We furthermore expect that the most
beneficial application of our quantum classifiers is to
quantum data. One can conceive entangling a quantum
system with a classifier circuit and use the latter to
discriminate between various states of the quantum
system.

This work contributes to the growing literature on vari-
ational circuits for machine learning applications in
proposing a specific circuit architecture and parametrisa-
tion, a dropout regularisation technique, a hybrid train-
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ing method, as well as a graphical interpretation of quan-
tum operations in the language of neural networks. How-
ever, an overwhelming number of questions is still largely
unexplored. For example, we noticed that our slim cir-
cuit design still suffers from overfitting. Also, full-fledged
numerical benchmarks on larger datasets are needed to
systematically analyse the effect of logarithmically few
parameters with growing input spaces. The power of
feature maps to introduce nonlinearities is another open
question. Further numerical as well as theoretical stud-
ies are therefore crucial to understand the convergence
properties and representational power of circuit-centric
models for classification.
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