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1 Introduction

In recent years, a new bridge has begun to develop connecting quantum information theory

to quantum gravity and quantum field theory. In particular, understanding the relation be-

tween quantum entanglement and the emergence of semi-classical spacetime geometry [3–5]

has become an active field of research. Gauge/gravity duality [6–8] has been the central

arena for the exploration of these connections and much of the understanding of the con-

nection between entanglement and geometry has come from investigations of holographic

entanglement entropy [9–11]. However, it has become clear that holographic entanglement

entropy is not able to probe the bulk spacetime far behind the event horizon of black

holes [12, 13]. Inspired by this problem, Susskind [13–15] proposed the study of new bulk

observables, which he conjectured should be the gravitational dual of the circuit complexity

in the boundary theory. In particular, there are two proposals for ‘holographic complexity’:

complexity=volume (CV) [15, 16] and complexity=action (CA) [17, 18]. The CV conjec-

ture states that the complexity of the boundary state is proportional to the volume of an

extremal codimension-one surface extending the boundary time slice into the bulk. The
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CA conjecture identifies the complexity of the boundary state with the gravitational action

evaluated at special bulk region called the Wheeler-DeWitt patch, i.e., the causal devel-

opment of the bulk surface identified in the previous approach. Both conjectures bring to

our attention new gravitational observables which contain information about the spacetime

region deep behind the black hole horizon and they have been vigorously investigated in

the recent literature, e.g., [19–41].

An obstacle in this program is that precise comparisons with the boundary theory are

not yet possible because we still do not have a precise definition of circuit complexity for

states in quantum field theory. However, some preliminary steps towards developing such

a definition have been taken in the past year, e.g., [1, 2, 41–53]. In particular, refs. [1]

adapted the approach of Nielsen and his collaborators [54–56] to translate the task of

finding the complexity of the ground state of a free scalar field theory into a geometric

problem of finding optimal geodesics in an associated geometry. As similar geometric

approach was developed for this question in [2] based on the Fubini-Study metric.1 In

fact, both approaches produced the same simple circuit to prepare the vacuum state for

a simple (unentangled) reference state and assigned the same complexity to the vacuum.

In these calculations the field theory must be regulated since the complexity is dominated

by contributions from the high energy modes and the result is UV divergent. However,

an interesting agreement was found in comparing the structure of these divergences with

those appearing in holographic complexity. In particular, the leading divergence found for

holographic complexity [21] takes the form

CA ∼ V

δd−1
log(ℓ/δ) , CV ∼ V

δd−1
, (1.1)

where V is the spatial volume, δ is the short-distance cutoff, and d is the spacetime dimen-

sion of the boundary theory. The scale ℓ is undetermined and arises because of ambiguities

in defining the gravitational action on regions with null boundary segments [23, 39]. An

analogous ambiguity appears in evaluating the complexity for the scalar field theory because

an undetermined scale must be introduced to define the reference state, and the leading

divergence of the vacuum has precisely the same form as shown above for CA [1, 2]. Of

course, in either calculation, the interesting logarithmic factor can be removed by choosing

ℓ ∼ δ and so this does not rule out the CV conjecture.

In this paper, we are extending the investigations of complexity in refs. [1, 2] by ex-

amining the complexity of excited states in the free scalar field theory. In particular, we

develop the additional techniques needed to evaluate the complexity of coherent states in

which the scalar field acquires a nonvanishing expectation value. An exploratory investi-

gation of the complexity of coherent states already appears in [48], however, the analysis

there differs in many essential ways from our approach and there is no substantive overlap

between the previous work and the present paper, as we will describe in more detail in sec-

tion 6. Here, we might add that the complexity of excited fermionic states was considered

in [42]. But this was a special case where the excited states were still Gaussian states and

1We must add that a complementary approach to understand complexity in quantum field theory using

path integral techniques is being developed by [57–61].

– 2 –



J
H
E
P
1
0
(
2
0
1
8
)
0
1
1

so no new ingredients were needed beyond those needed to evaluate the complexity of the

vacuum. Further, refs. [45, 46] examined the complexity of excitations for the free scalar

produced by a quench of the mass term. However, again these excited states could be

assessed using the same techniques used to evaluated the vacuum complexity. To prepare

the coherent states, we must introduce a new class of gates in our circuits and in particular,

this requires introducing a new (undetermined) scale into our model for the complexity.

We develop the extended geometry associated with this larger gate set for both the Nielsen

and Fubini-Study approaches and the resulting optimal circuits and complexities exhibit

a number of interesting features. For example, we find that the optimal circuits introduce

entanglement between the normal modes at intermediate stages even though our reference

state and target states are not entangled in this basis. Further for general coherent states,

we show that the complexities, as well as the optimal circuits, derived by Nielsen and

Fubini-Study approaches are different.

1.1 Nielsen, geometry and complexity

In this section, we briefly review the salient ideas required to apply Nielsen’s geometric

approach to circuit complexity [54–56] to evaluate the complexity of state in a quantum

field theory, as developed in [1]. In this setting, complexity is a measure of the difficulty

or cost to prepare the particular target state |ψT〉 starting with a certain simple reference

state |ψR〉. We are using a quantum circuit model where the preparation is accomplished by

applying a series of elementary unitaries, chosen from a particular set of gates {g1, · · · , gN}.
That is,2

|ψT〉 = UT |ψR〉 = gin · · · gi2 gi1 |ψR〉 , (1.2)

whose circuit is shown in figure 1. Now in general, we must expect that there are a large

(e.g., infinite) number of circuits or sequences of elementary gates which will accomplish

the above transformation. The complexity of the target state |ψT〉 is then defined as the

minimum number of gates needed to construct a unitary UT satisfying eq. (1.2). We stress

that this optimal number will depend on the choices for the reference state |ψR〉 and for

the gate set {g1, · · · , gN}, however, one can still obtain interesting physical insights by

comparing the complexities for families of target states. Nonetheless, given a particular set

of choices, the main challenge is to identify the optimal circuit from amongst the infinite

range of possibilities to prepare a certain target state.

To overcome this challenge, Nielsen and collaborators [54–56] developed a geometric

method. Adapting this approach to evaluate the complexity of QFT states [1], one begins

with a continuum construction of the unitary transformations acting on the states

U(σ) = ~P exp

[

−i
∫ σ

0
dsH(s)

]

, where H(s) =
∑

I

Y I(s)OI (1.3)

2When working with discrete gates as discussed here, we will typically only prepare |ψT〉 within some

tolerance ε, e.g., ‖ |ψT〉 − UT|ψR〉‖2 ≤ ε. However, with the continous construction of unitaries introduced

in eq. (1.3), we are always able to exactly prepare the target states with a finite cost, and so we will not

need to introduce a tolerance.
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Figure 1. A general quantum circuit where |ψT〉 is prepared beginning with |ψR〉 and applying a

sequence of elementary unitaries gi. We also indicate all of the intermediate states |ψi〉 that are

produced after every step.

where s parametrizes the circuit and ~P indicates right-to-left path ordering. The (path-

dependent) Hamiltonian H(s) is expanded in terms of a basis of Hermitian operators OI ,

which we think of as generators for elementary gates gI ∼ exp[−iεOI ] (where ε would be

an infinitesimal parameter). The control functions Y I(s) then specify which gates (and

how many times they) are applied at a particular point s in the circuit. Note that eq. (1.3)

specifies not only the full transformation UT in eq. (1.2) but also a trajectory U(σ) through

the space of unitaries, or through the space of states with |ψ(σ)〉 = U(σ)|ψR〉, where

0 ≤ σ ≤ 1. The circuits of interest are then the trajectories satisfying the boundary

conditions

U(σ = 0) = ✶ , U(σ = 1) = UT , (1.4)

i.e., we start from the identity and end with the desired unitary UT producing the desired

transformation in eq. (1.2). From this perspective, the Y I(s) can be understood as the

tangent vectors to the trajectories with

Y I(s)OI = i ∂sU(s)U−1(s) , (1.5)

which will play a important role later.

Then Nielsen’s approach for identifying the optimal circuit is to minimize the cost

defined as

D(U(σ)) =

∫ 1

0
ds F

(

U(s), Y I(s)
)

, (1.6)

where F is a local cost function depending on the position U(s) and the tangent vector

Y I(s). This question is then similar to the physical problem of identifying a particle

trajectory by minimizing the action with Lagrangian F (U(s), Y I(s)). While the precise

form of the cost function F is not fixed, there are a number of desirable features for

reasonable cost functions [56]: 1) Smoothness, 2) Positivity, 3) Triangle inequality and

4) Positive homogeneity — see also [1, 62]. Some simple examples of cost functions that

satisfy the above constraints are

F1(U, Y ) =
∑

I

∣

∣Y I
∣

∣ , F2(U, Y ) =

√

∑

I

(Y I)2 . (1.7)
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Given the role of the Y I(s) as control functions, the F1 measure comes the closest to the

original concept of counting the number of gates. The F2 measure can be recognized as

the proper distance in a Riemannian geometry, and this choice reduces the problem of

identifying the optimal circuit to finding the shortest geodesic connecting the reference

and target states in this geometry.

Another class of cost functions introduced in [1] take the form

Fκ(U, Y ) =
∑

I

∣

∣Y I
∣

∣

κ
. (1.8)

These κ cost functions can be thought of as a generalization of the F1 cost function.

The corresponding vacuum complexity compares well with the results from holographic

complexity but these cost functions do not satisfy the ‘homogeneity’ property above, i.e.,

the cost (1.6) is not invariant under reparametrizations of s. We also note that the κ = 2

cost function will yield exactly the same extremal trajectories or optimal circuits as the

F2 cost function. An interesting suggestion in [42] was to construct a family of new cost

functions using the Schatten norm (e.g., see [63–65])

Fp(U, Y ) = ‖V ‖p =
[

Tr

(

(

V † V
)p/2

)]1/p

, (1.9)

where V = Y I(s)OI is the tangent vector defined as an operator which transforms the

states (see details in section 3.2). These cost functions satisfy all of the desired properties

and further are independent of the particular choice of basis for the OI — a issue for the

F1 measure and the general κ cost functions (for κ 6= 2) [1].

Before closing this short review, we must mention the group theoretic structure that

naturally appears in applying this approach to evaluate the complexity of QFT states.

For the problem to be tractable, one only considers a limited basis of operators OI to

constructing the unitaries (1.3). A practical restriction is that this basis should then

form a closed algebra, and hence in many examples, the OI provide a representation of

a Lie algebra g, i.e., [OI ,OJ ] = ifIJ
KOK . For example, in examining the complexity of

fermionic Gaussian states, an O(2N) group structure emerges [42]. In [1], a GL(N,R)

algebra appeared in evaluating the complexity of the ground state of a free scalar field, and

the latter was extended to an Sp(2N,R) algebra examining the corresponding thermofield

double state in [49] — see also [42]. In the following, we will find that an R
N
⋊GL(N,R)

algebra plays a central role in evaluating the complexity of coherent states. The utility of

this group theoretic perspective is that the physical details of the basis operators OI can

be pushed to the background. Instead, the generators in eq. (1.3) are simply elements of

the Lie algebra g, and we can choose the most convenient representation for the particular

calculations of interest.

The rest of the paper is organized as follows: in section 2, we study the complexity

for coherent Gaussian states in a system of two coupled oscillators. For general states, we

must resort to numerical methods to evaluate the complexity in section 2.4, however, we

also produce some analytic results for simple cases in which only one mode is excited in

section 2.3 or in which the excitations have small amplitudes in section 2.5. This initial

– 5 –



J
H
E
P
1
0
(
2
0
1
8
)
0
1
1

analysis is based on the F2 and κ = 2 cost functions, and so we discuss analogous results for

the F1 cost function in section 3.1 and the p = 1 Schatten norm in section 3.2. We extend

our results to a free scalar field theory by a lattice regularization in section 4. In section 5,

we apply the geometric approach based on the Fubini-Study metric [2] to reinvestigate the

complexity of our coherent states for two coupled harmonic oscillators. The results for this

simple system are also compared with our results in section 2 using Nielsen’s approach

with the F2 cost function. We conclude with a discussion of our results and possible future

directions in section 6.

2 Complexity of coupled harmonic oscillators

Our goal is to evaluate the complexity of coherent states in a free scalar field theory, ap-

plying the techniques of [1]. However, as a warm-up exercise, we begin here by considering

coherent states in the simpler system of two coupled harmonic oscillators. In this section,

our focus will be on the F2 cost function (1.7), and also on the κ = 2 cost function (1.8)

which are extremized by the same trajectories. We will turn to consider other cost func-

tions in section 3. Our approach here closely follows that in [1] and we refer the reader

there for a more detailed discussion.

2.1 Gate set and group structure

Let us consider two coupled harmonic oscillators with the Hamiltonian

H =
1

2m

[

p21 + p22 +m2ω2
(

x21 + x22
)

+m2Ω2 (x1 − x2)
2
]

=
1

2m

[

p2+ +m2ω2
+x

2
+

]

+
1

2m

[

p2− +m2ω2
−x

2
−

]

, (2.1)

where in the second line, the two oscillators were decoupled by introducing the normal

modes,

x± =
1√
2
(x1 ± x2) , ω+ = ω , ω− =

√

ω2 + 2Ω2 . (2.2)

Given the decoupled Hamiltonian, the ground state wave function is easily written as

ψ0(x1, x2) =

(

m2 ω+ω−

)1/4

√
π

exp
[

−m
2

(

ω+ x
2
+ + ω− x

2
−

)

]

(2.3)

=

(

m2 ω+ω−

)1/4

√
π

exp

[

−m(ω+ + ω−)

4

(

x21 + x22
)

+
m

2
(ω− − ω+)x1x2

]

.

While the normal modes are completely unentangled here, from the perspective of the

physical coordinates {x1, x2}, the ground state is an entangled state. Ref. [1] developed

the techniques needed to evaluate the complexity of this state relative to a factorized

Gaussian state as the reference state,

ψR(x1, x2) =
ωR√
π

exp

[

−ω
2
R

2
(x21 + x22)

]

=
ωR√
π

exp

[

−ω
2
R

2
(x2+ + x2−)

]

. (2.4)

– 6 –
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where the reference frequency ωR, which characterizes the width of this state, is left as a

free parameter.3 We note that this reference state is unentangled in both the physical and

the normal-mode bases.

Now we would like to extend the calculations in [1] to evaluate the complexity of

coherent states of the form

ψT(x+, x−) =

(

m2 ω+ω−

)1/4

√
π

exp
[

−m
2

(

ω+(x+ − a+)
2 + ω−(x− − a−)

2
)

]

. (2.5)

These coherent states are characterized by the expectation values

〈ψT|x±|ψT〉 = a± , (2.6)

which vanish in the ground state (2.3). Alternatively, in terms of the physical coordinates,

we have

〈ψT|x1|ψT〉 =
a+ + a−√

2
and 〈ψT|x2|ψT〉 =

a+ − a−√
2

. (2.7)

The coherent states in eq. (2.5) are written in terms of the normal modes since this simplifies

the calculations below, as shown in [1], and this will be our working basis throughout the

rest of this paper.4

The next step is to identify the set of elementary unitary gates with which we will

construct the desired unitary U , which implements

|ψT〉 = U |ψR〉 . (2.8)

With the new shift parameters a±, we need additional gates than those described by the

GL(2,R) algebra in [1]. However, the full complement of gates required to construct an

arbitrary Gaussian state were discussed in [1] and for the coherent states of the form (2.5),

we only need three types of elementary gates:

scaling gates : Qii = e
iε
2
(xipi+pixi) = eε/2 eiεxipi ,

entangling gates : Qij = eiεxipj (with i 6= j) , (2.9)

shift gates : Q0i = eiεx0pi ,

where the i, j can be either {1, 2} or {+,−}, but as mentioned above, we will work in the

normal mode basis, i.e., i, j ∈ {+,−}. Further we recall that ε is a small (dimensionless)

parameter which ensures that these gates only make small changes to the states on which

they act. The dimensionful parameter x0 appearing in the shift gates is another free

parameter (a c-number) which characterizes our complexity model. As we discuss below,

3Note that our notation is slightly different from that in [1]. In particular, the latter had mω0 in place

of ω2
R in eq. (2.4).

4With the states chosen in eq. (2.5), we are focusing on real wavefunctions with 〈ψT|xi|ψT〉 6= 0 but

〈ψT|pi|ψT〉 = 0. In principle, by considering complex wavefunctions, one could examine more general states

which also have 〈ψT|pi|ψT〉 6= 0, as would naturally arise from the time evolution of the wavefunctions in

eq. (2.5). We note that this would require the extending the GL(2,R) algebra appearing below to Sp(4,R),

e.g., see [42, 49]. We thank Lucas Hackl for a discussion on this point.
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we might simplify the model by setting x0 ∼ 1/ωR (or x0 ∼ δ in the QFT calculations).

The action of these gates is illustrated with the following examples:

Q++ ψ(x+, x−) = eε/2ψ (eεx+, x−) scale x+ → eεx+ ,

Q−+ ψ(x+, x−) = ψ(x+ + εx−, x−) shift x+ by εx− ,

Q0+ ψ(x+, x−) = ψ(x+ + εx0, x−) shift x+ by εx0 .

(2.10)

Note that our set of elementary gates (2.9) can be summarized by

Qai = exp [iεOai] = e
iε
2
(xapi+pixa) , (2.11)

where a ∈ {+,−, 0} and i ∈ {+,−}. We have also introduced the notation Oai to denote

the Hermitian generators of these elementary gates.

Now following [1] to make further progress, next, we construct a matrix representation

of these gates. In general, we are interested in coherent states of the form

ψ(x+, x−) = N exp

[

−1

2

(

xaA
ab xb − c x20

)

]

. (2.12)

where again the sums over a, b run over {+,−, 0}, and A is a symmetric 3×3 matrix with

A00 = c. We introduced the term cx20 above to eliminate this c-number contribution from

the exponent and hence N is the normalization constant. It will be convenient to keep

A00 in the following calculations, but we stress that its value will be unimportant since the

wavefunction (2.12) is independent of this coefficient.5

Of course, the matrix A completely determines the wave function, and so instead of

working with these wavefunctions directly, we focus our attention on the five-dimensional

space of A’s. Again, the full space of symmetric 3×3 matrices would be six-dimensional

but since as explained above, the wavefunctions are independent of A00, we have a five-

dimensional space of distinct wavefunctions. With this matrix form, we can represent the

reference state (2.4) as

ψR(x+, x−) → AR =







ω2
R 0 0

0 ω2
R 0

0 0 cR






, (2.13)

and the target state (2.5) is represented by

ψT(x+, x−) → AT = m







ω+ 0 −a+ ω+

0 ω− −a− ω−

−a+ ω+ −a− ω− cT






, (2.14)

where a± ≡ a±/x0. We emphasize once more that the values of cR and cT are completely

undetermined since they do not affect the wavefunctions.

5Since the elementary gates (2.9) are unitary, they preserve the normalization of the wavefunctions.

However, the normalization is an inessential feature which can be restored given an A and so we will lose

track of it when working with the matrix representation below.
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By considering the action of the elementary gates (2.10) on the general wavefunc-

tions (2.12), we produce a 3×3 matrix representation of the gates which transforms the A

as follows

A→ A′ = QaiA QT
ai , (2.15)

where

Qai = exp[εMai] with [Mai] cd = δac δid . (2.16)

An easy way to verify this result is to consider the action of the matrices Qai on the

vector x̃T = (x+, x−, x0) and confirm that the result agrees with the transformation by the

original gates (2.9), e.g., we can compare

x̃TQ++ = (eεx+, x−, x0) ,

x̃TQ−+ = (x+ + εx−, x−, x0) ,

x̃TQ0+ = (x+ + εx0, x−, x0) ,

(2.17)

with the transformations in eq. (2.10). Explicitly, the six generators Mai are

M++ =







1 0 0

0 0 0

0 0 0






, M−− =







0 0 0

0 1 0

0 0 0






, M−+ =







0 0 0

1 0 0

0 0 0






, M+− =







0 1 0

0 0 0

0 0 0






,

M0+ =







0 0 0

0 0 0

1 0 0






, M0− =







0 0 0

0 0 0

0 1 0






.

(2.18)

The convenience of this representation is that we can define a simple inner product of these

matrix generators (2.16),

tr
(

MIM
T
J

)

= δIJ , (2.19)

where I, J ∈ {++,−−,−+,+−, 0+, 0−}. We will use this inner product in a moment in

constructing a metric on the six-dimensional space of unitary transformations generated

by our elementary gates (2.9).

Now we recall from [1] that the four generators Mij for the scaling and entangling

gates (appearing in the first line of eq. (2.18)) form a GL(2,R) algebra. More generally

if we consider the action of a string of the elementary gates on x+ and x−, we find that

they are transformed as xi → Gi
j xj + vi (where G is a GL(2,R) matrix). That is, our

gates produce affine transformations of the coordinates. Hence the full group generated

the six gates Qai has a structure similar to that of the Poincaré group. The GL(2,R) of

the scaling and entangling gatess plays the role of the Lorentz group O(1, 3) and the R
2

of translations generated by the Q0i is analogous to the translations in Minkowski space.

Hence, the structure of our algebra here6 is the semidirect product of R2 by general linear

transformations GL(2,R), i.e.,

R
2
⋊GL(2,R) . (2.20)

6For N harmonic oscillators, it is straightforward to generalize this discussion to show that the algebra

of the generators of N(N + 1) elementary gates acting on the coordinates of the harmonic oscillators form

a fundamental representation of RN
⋊GL(N,R).
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2.2 Six-dimensional geometry and its geodesics

The group structure (2.20) is manifest by any transformation U generated by the Mai

taking the form

U =

(

U2 0

uT 1

)

(2.21)

where uT = (u+, u−) ∈ R
2 and U2 ∈ GL(2,R). It will be convenient to parametrize the

latter with the following polar decomposition

U2 = eyR(−x)S(ρ)R(z) = ey

(

cosx − sinx

sinx cosx

)(

eρ 0

0 e−ρ

)(

cos z sin z

− sin z cos z

)

, (2.22)

where R denotes a rotation matrix and S is a ‘squeezing’ matrix. This construction

then introduces the coordinates yT = (y, ρ, x, z, u+, u−) on the group of affine transfor-

mations (2.20).

There is also a surjective, but not injective, map that associates a wavefunction of the

form (2.12) to every group element, given by

ψy(x+, x−) = U(y)ψR(x+, x−) , (2.23)

with the reference state given in eq. (2.4). The corresponding transformation using the
matrix representation (2.21) becomes

A(y) = U(y)AR U
T (y)

= ω2
R





e2y(cosh(2ρ) + cos(2x) sinh(2ρ)) e2y sin(2x) sinh(2ρ) Λ+

e2y sin(2x) sinh(2ρ) e2y(cosh(2ρ)− cos(2x) sinh(2ρ)) Λ−

Λ+ Λ− u2+ + u2− + cR



 ,

(2.24)

where AR is given in eq. (2.13) and

Λ+ = ey+ρ cos(x)(u+ cos(z) + u− sin(z))− ey−ρ sin(x)(u− cos(z)− u+ sin(z)) ,

Λ− = ey−ρ cos(x)(u− cos(z)− u+ sin(z)) + ey+ρ sin(x)(u+ cos(z) + u− sin(z)) .
(2.25)

In fact, one can see that Λ = U2 · u where we have assembled the vector ΛT = (Λ+,Λ−).

This observation is useful because it allows us to see that the final matrix A(y) is indepen-

dent of z in the following sense: first, it is obvious that the upper-left 2×2 block in eq. (2.24)

is invariant under arbitrary shifts z → z′ = z+δz, i.e., this block is completely independent

of z. Now given the form of U2 in eq. (2.22), it is also evident that Λ is invariant as long as

we accompany the shift of z with a rotation u → u′ = R(−δz)·u. Finally, this rotation also

leaves invariant the component [A(y)]00, as can be seen by writing this term as uT ·u. This
result reflects the fact that the map from the space of unitary transformations to Gaussian
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states is surjective but not injective, i.e., the space of unitaries which we are considering is

six-dimensional while our space of Gaussian states is only five-dimensional.7

Now following [1], we replace the unitaries (1.3) by their matrix counterparts

U(σ) = ~P exp

[∫ σ

0
dsH(s)

]

where H(s) =
∑

I

Y I(s)MI , (2.26)

with the generators MI given in eq. (2.18). Now using eq. (2.19), we can solve for the

coefficients YI(σ) as

Y I(σ) = tr
(

∂σU(σ)U−1(σ)MT
I

)

. (2.27)

Further, for the parametrization of the group elements in R2
⋊GL(2,R) in eq. (2.21), we

can define a metric on the space of unitary transformations as8

ds2 = δIJ tr(dUU
−1MT

I ) tr(dUU
−1MT

J ) (2.28)

= 2 dy2 + 2 dρ2 + 2 dx2 − 4 cosh(2ρ)dx dz + 2 cosh(4ρ)dz2

+ e−2y
[

cosh(2ρ)(du2+ + du2−)− cos(2z) sinh(2ρ)(du2+ − du2−)

− 2 sin(2z) sinh(2ρ) du+ du−
]

.

An intuitive cost function in this context is the F2 norm (1.7), which becomes

D2 (U) =

∫ 1

0
ds
√

gab ẋa ẋb , (2.29)

7Further, the fact that this mismatch appears as A(y) being independent of z is a reflection of the rotation

invariance of the reference state (2.13). This symmetry can be made more explicit by reparametrizing the

group elements as

U =

(

✶2 0

vT 1

)(

U2(y, ρ, x, z) 0

0T 1

)

,

with vT = (v+, v−). We then find

x̃
T ·A·x̃ = (x+ x0v)

T ·A2·(x+ x0v) ,

where xT = (x+, x−) and A2 = A2(y, ρ, x) is the 2 × 2 upper-left matrix in eq. (2.24). The wavefunction

is then clearly independent of z. We chose not to use this parametrization because the metric in these

coordinates is much more complicated.
8More generally, one could replace δIJ → GIJ in constructing this metric. However, the present choice

assigns the same cost to all of elementary gates and further it corresponds to the F2 cost function introduced

in eq. (1.7). Following a construction analogous to that in [66] (see also [42, 49]), we can also construct the

metric by defining

ds2 = tr(dUU−1AR (dUU−1)T aR)

where aR is the inverse of AR, i.e., [AR]
ac [aR]cb = δab. In this case, the metric takes the form

ds2 = 2 dy2 + 2 dρ2 + 2 dx2 − 4 cosh(2ρ)dx dz + 2 cosh(4ρ)dz2

+ κ e−2y
[

cosh(2ρ)(du2
+ + du2

−)− cos(2z) sinh(2ρ)(du2
+ − du2

−)

− 2 sin(2z) sinh(2ρ) du+ du−

]

,

with κ = cR/ω
2
R. Of course, this metric agrees with eq. (2.28) when we choose cR = ω2

R, i.e., with AR ∝ ✶.

Recall that up to this point, cR was a spurious parameter but with the above construction, it plays an

essential role in defining the geometry. In particular, if we were to adopt this approach, we would have to

restrict our attention to cR ≥ 0 to produce a sensible geometry.
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i.e., this simply corresponds to evaluating the geodesic distance in geometry defined by

eq. (2.28). However, as was argued in [1] (see also [2]), this cost function does not reproduce

the expected UV divergences found in holographic complexity [21]. However, this situation

can be remedied by using the κ = 2 cost function (1.8), which corresponds to

Dκ=2 (U) =

∫ 1

0
ds gab ẋ

a ẋb . (2.30)

Of course, from a physicist’s perspective, this can be seen as the action of a test particle

moving in the same geometry and so it yields the same extremal trajectories. We will also

consider two alternative cost functions in section 3, the F1 and Schatten measures, but in

the following we will focus on finding the circuits that minimize the distance (1.6) using

the cost functions (2.29) and (2.30).

Now the complexity is given by the shortest unitary connecting the reference and target

state, i.e., C (AT) = minUD (U) with

AT = U(σ = 1)AR U
T (σ = 1) and U(σ = 0) = ✶ . (2.31)

With the cost functions in eqs. (2.29) and (2.30), this corresponds to finding a geodesic from

the origin in the geometry (2.28) to the point corresponding to the desired transformation

U(σ = 1). However, as we described for the transformation in eq. (2.24), the target state is

independent of one of the coordinates in U or alternatively, the reference state is invariant

under a family of transformations (known as the stabilizer group, e.g., see [42, 49]). Hence

for any target state AT, there exists a one-parameter family of transformations satisfying

the boundary conditions in eq. (2.31). Thus, there is a one-parameter family of geodesics

connecting the reference state to the target state and the complexity will be determined

by the length of the shortest geodesic in this family.

For simplicity, we describe the determination of the geodesics in terms of extremizing

eq. (2.30), which takes the form of a particle action with Lagrangian

L0 = 2 ẏ2 + 2 ρ̇2 + 2 (ẋ− cosh(2ρ) ż)2 + 2 sinh2(2ρ) ż2 (2.32)

+ e−2y
(

cosh(2ρ)(u̇2+ + u̇2−)− cos(2z) sinh(2ρ)(u̇2+ − u̇2−)− 2 sin(2z) sinh(2ρ) u̇+ u̇−
)

.

We solve the resulting ‘equations of motion’ analytically for simpler target states in

section 2.3 and provide numerical solutions for general target states of the form (2.14)

in section 2.4.

2.3 Solving for simple geodesics

While we were not able to find analytic solutions for the geodesics to arbitrary target

states (2.14), for some simpler set of target states, the optimal path between the reference

and target states remains in a H
2 × R slice of the full geometry (2.28). We begin by

describing these simple geodesics which have an analytic solution. In section 2.4, we confirm

numerically that these are indeed globally the shortest geodesics for the particular target

states of interest.
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First, we can use the freedom to reparametrize s in the cost function (2.29) to fix

k =
√

gab ẋa ẋb (2.33)

where k is a (positive) constant. This means that when evaluated for the optimal trajectory,

the complexity with this cost function is simply given by C2 = k. Similarly, with the κ = 2

cost function (2.30), the complexity is given by Cκ=2 = k2.

Now to identify simple geodesics, we begin by looking at the equations of motions for

x(s) and z(s):

0 = ∂s (ẋ− cosh(2ρ)ż) , (2.34)

0 = ∂s (2cosh(4ρ)ż − 2cosh(2ρ)ẋ) (2.35)

+ e−2y sinh(2ρ)
(

2 cos(2z)u̇+u̇− − sin(2z)(u̇2+ − u̇2−)
)

.

Now if u̇± = 0 (e.g., if we were simply preparing the vacuum state as in [1]), these equations

would be solved by x(s) = x̄ and z(s) = z̄, i.e., setting both of these coordinates to be

constant along the trajectory. These are the geodesics that we will focus on below.

To pick appropriate values for x̄ and z̄, we must examine the boundary conditions.

The initial boundary condition U(s = 0) = ✶ and comparing to eqs. (2.21) and (2.22)

then gives

x0 = z0 , ρ0 = 0 , y0 = 0 , u±0 = 0 , (2.36)

where the subscript notation indicates ya0 = ya(s = 0).9 The first restriction implies that

we must choose x̄ = z̄ for our simple geodesics. Similarly for the final boundary conditions,

comparing (2.14) and (2.24), we see that sin(2x1) = 0 is required to produce a target

state which is unentangled in normal mode basis. Hence this end point condition requires

sin(2x̄) = 0, i.e., x̄ = nπ/2. Combining these conditions for the final state from eq. (2.24)

(with cR = 0) gives at s = 1,

A(s = 1) = U(s = 1)AR U
T (s = 1) (2.37)

= ω2
R







e2(y1+ρ1) 0 ey1+ρ1u+1

0 e2(y1−ρ1) ey1−ρ1u−1

ey1+ρ1u+1 ey1−ρ1u−1 u2+1 + u2−1






,

where implicitly we have assumed cos(2x̄)=+1 (i.e., x̄ = 0 or π). For the case cos(2x̄)=−1

(i.e., x̄ = π
2 or 3π

2 ), we simply interchange y1+ρ1 ↔ y1−ρ1 in the above state. To simplify

the following, we will proceed with the analysis assuming that cos(2x̄) = 1.

With these choices, the z equation (2.35) reduces to

e−2ysinh (2ρ) u̇+u̇− = 0 . (2.38)

Together with the initial boundary conditions (2.36), this is satisfied for ρ = 0 or u+ = 0

or u− = 0. The first of these possibilities is inconsistent with the final boundary condition

if the normal mode frequencies given in eq. (2.2) are not equal, i.e., Ω 6= 0. Hence we must

9We will use a similar notation for the final boundary conditions at s = 1.
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choose one of the latter two possibilities. That is, the consistency of our simple geodesics

(with constant x and z) demands that we only shift one of the normal modes to produce

either a nonvanishing expectation value 〈x+〉 or 〈x−〉, but not both!10 We continue our dis-

cussion here with the choice u−(s) = 0, i.e., we consider states with 〈x+〉 6= 0 and 〈x−〉 = 0.

To ensure that the choice x̄ = z̄, sin(2z̄) = 0 and u− = 0 is still a geodesic of the full

geometry (2.28), we verify that the equation of motion for u− is satisfied, i.e.,

∂s

(

e−2(y−ρ)u̇−

)

= 0 , (2.39)

which is indeed the case. The induced geometry on the slice given by these choices becomes

ds2 = dy2+ + e−2y+du2+ + dy2− , (2.40)

where we have introduced y± = y ± ρ. Our analysis has guaranteed that finding geodesics

(y+(s), y−(s), u+(s)) in the induced metric (2.40) will give us geodesics (y+(s), y−(s),

x = nπ, z = nπ, u+ = 0 = u−) in the full six-dimensional geometry described by eq. (2.28).

It is straightforward to see that the three-dimensional geometry (2.40) is the direct product

of two-dimensional hyperbolic space (covered by y+ and u+) with the real line (covered

by y−). Since two components of this geometry are maximally symmetric, it would be

straightforward to evaluate the distance between any two points in this geometry using

standard formulae. However, it is useful for us to have explicit expressions describing the

geodesics and so we proceed by evaluating the equations of motion in the H
2×R geometry.

Of course, from eq. (2.36), the initial conditions for the geodesics are simply:

y+0 = 0 = y−0 = u+0. To determine the final boundary conditions, we begin with eq. (2.37)

for the final state, which simplifies to

A(s = 1) = ω2
R







e2y+1 0 ey+1u+1

0 e2y−1 0

ey+1u+1 0 u2+1






. (2.41)

Requiring that this state matches the target state AT with a− = 0 in eq. (2.14) yields the

following boundary conditions at s = 1:

y+1 =
1

2
logw+ , y−1 =

1

2
logw− , u+1 = −√

w+ a+ , (2.42)

where for convenience, we are using the following dimensionless ratios:11

w± =
mω±

ω2
R

and a± =
a±
x0

. (2.43)

Now to find the path which these geodesics follow, we extremize the cost function

(either eq. (2.29) or (2.30)) subject to the restriction that the motion is only in the three-

dimensional subspace described by eq. (2.40). Each of the three equations of motion can

be integrated to yield the following first order equations

ẏ+ = A−B u+ , u̇+ = B e2y+ , ẏ− = C , (2.44)

10Of course, with more general geodesics, we are able to prepare states where both 〈x+〉 and 〈x−〉 are

nonvanishing, as we will examine in section 2.4.
11Of course, a± are the same quantities which already appeared in eq. (2.14).
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where the three integration constants correspond to the velocities at s = 0, e.g., ẏ+|s=0 = A.

These equations can be integrated and after imposing the initial conditions, the solution

becomes

y+(s) =
1

2
log

(

∆2

B2
sech2(α(s))

)

, u+(s) =
∆

B
tanh(α(s)) +

A

B
, y−(s) = Cs , (2.45)

where ∆ =
√
A2 +B2 and α(s) = ∆s − arctanh(A∆). Furthermore, the final condi-

tions (2.42) fixes the integration constants as

A =
a2+w+ +w+ − 1

√

(a2+w+ +w+ − 1)2 + 4a2+w+

arccosh

(

a2+w+ +w+ + 1

2
√
w+

)

,

B = ±2

√

a2+w+

(a2+w+ +w+ − 1)2 + 4a2+w+
arccosh

(

a2+w+ +w+ + 1

2
√
w+

)

,

C =
1

2
logw− ,

(2.46)

where the sign of B is chosen to match the sign of u+1 (i.e., the opposite sign as a+).
12

Further, it follows that

∆ = arccosh

(

a2+w+ +w+ + 1

2
√
w+

)

(2.47)

= log





(a2+w+ +w+ + 1) +
√

(a2+w+ +w+ + 1)2 − 4w+

2
√
w+



 .

For these simple geodesics, the constraint (2.33) reduces to

k2sim = ẏ2+ + e−2y+ u̇2+ + ẏ2− = ∆2 + C2 . (2.48)

As will be shown in section 2.4, these geodesics are indeed the shortest ones connecting

the reference state (2.13) to the target states (2.14) with a− = 0 in the full geometry.

Therefore eq. (2.48) yields the complexity of the coherent states with the F2 and κ = 2

cost functions, i.e., C2 = ksim and Cκ=2 = k2sim. As a check, one can easily verify that in the

limit a+ → 0, this result (2.48) yields the complexity of the ground state found in [1], i.e.,

Cκ=2,vac = k2sim
∣

∣

a+→0
=

1

4

[

(logw+)
2 + (logw−)

2
]

. (2.49)

As expected, the difference in complexity between the coherent states and the ground

state comes from the normal mode which has been translated (x+ in this case). It is

interesting to examine the difference in various limiting cases.13 That is, let us consider

12Here, we assume the definition of ‘arccosh’ is such that it always yields a positive result.
13In the following, we focus on the complexity for the κ = 2 cost function rather that the F2 measure.

There are two motivations for doing so: first, the κ = 2 complexity reproduces the expected UV divergences

of holographic complexity as was found in [1]. Second, as we will see in section 4.2, the change in F2

complexity ∆C2 vanishes when generalizing our results to free scalar field theory. In contrast, the change

in κ = 2 complexity ∆Cκ=2 remains finite when generalizing to field theory.
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the asymptotic behavior of

∆Cκ=2 = Cκ=2 − Cκ=2,vac = ∆2 − 1

4
(logw+)

2 (2.50)

=



log





(1 + a2+w+ +w+) +
√

(1 + a2+w+ +w+)2 − 4w+

2
√
w+









2

− 1

4
(logw+)

2 .

Expanding for small |a+|, eq. (2.50) yields

∆Cκ=2 = log(w+)
w+ a2+

w+ − 1
+

[

1 +
log(w+) (w+ + 1)

2 (w+ − 1)

](

w+ a2+

w+ − 1

)2

+O(a6+) , (2.51)

while for large |a+|, we find

∆Cκ=2=(loga2+)
2+

[

log(w+)+2
w++1

w+ a2+

]

loga2++log(w+)
w++1

w+ a2+

+O
(

loga2+
a4+

)

. (2.52)

There is no divergent term for w+ = 1 where the above expansion for small a+ doesn’t

apply and the change of complexity is simplified as

∆Cκ=2 (w+ = 1) =

(

arccosh

(

a2+ + 2

2

))2

. (2.53)

2.4 Numerical results in full geometry

In this section, we describe our results for numerical solutions of the geodesic equations.

Our approach was to derive the second order differential equations from the variation of

eq. (2.32) and then use the pseudo-spectral method where Chebyshev polynomials were

used in the s direction. Combining the Dirichlet boundary conditions at s = 0 and

s = 1, the solutions can be uniquely determined. One subtlety is that in the initial condi-

tions (2.36), the value of x0 = z0 is not fixed. However, with our method, this parameter is

easily fixed by scanning through a range of values for x0 and demanding that the solution

is smooth in the vicinity of s = 0.

Our first application was to verify our numerical results by comparing them with the

analytic solutions for the simple geodesics found in the previous section. An example

is shown in figure 2. As expected, if u+ (u−) ends at zero, it remains zero along the

entire trajectory, and the scale coordinate y− (y+) follows a straight line. The other two

coordinates follow curved paths, as expected from eqs. (2.45) and (2.46). In every case, we

found excellent agreement between the numerical and the analytic solutions.

Next we considered the family of geodesics connecting the reference state to a specific

target state with a−1 = 0 (or a+1 = 0), as shown in figure 3. Recall that as described below

eqs. (2.24) and (2.25), the final state was independent of z1 (as long as the final values

u±1 were rotated appropriately). In the figure, we see that the shortest geodesic is that for

which z1 = 0. That is, for all the examples that we examined, our numerics confirm that the

optimal geodesics correspond to the simple geodesics derived in the previous section. Hence

these numerical studies provide strong evidence for the claim that the simple geodesics are

indeed the shortest ones for the target states in which only one of normal modes is shifted.
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Figure 2. Comparing the numerical solutions to analytic solutions for the simple geodesics (2.45).

The top two graphs show the geodesic ending at y+1 = 0.211, y−1 = 1.211, u+1 = 1.690, u−1 = 0,

while the bottom two graphs show the geodesic ending at y+1 = −0.790, y−1 = 0.211, u+1 = 0,

u−1 = 1.690. These values were chosen to produce simple values for Λ+ and Λ−, i.e., Λ+ = Λ− = 1.

The subscripts “n” and “a” are used to indicate the numerical and analytical solutions, respectively.

Figure 4 shows an example of the optimal geodesic to a target state with both a+
and a− non-zero. In this situation, we do not have an analytic solution and we can see

in our numerical solution that these geodesics do not take a simple form, e.g., none of the

coordinates follow a straight path. Similar to the previous discussion, to determine the

optimal geodesic, we vary z(s = 1) while keeping the final state (2.24) fixed, evaluate the

lengths of the corresponding geodesics and then choose the trajectory with the minimal

length. Let us note in passing that generally these optimal geodesics pass through regions

where x(s) and ρ(s) are nonvanishing. Therefore even though both the initial (2.13) and

final (2.14) states are unentangled, the intermediate states (all) along the optimal trajectory

are entangled when preparing a target state with both a+ and a− are nonvanishing — see

further discussion in section 6

Recall that for the simple geodesics with only a single excitation, we found x(s) = 0 =

z(s). In contrast, when both normal modes are excited in the target state, the optimal
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Figure 3. Lengths of a family of geodesics (k) connecting to two target states, in which a single

mode is excited, for different final values of the z angle. The red upper triangles represent geodesics

reaching the state with y+1 = 0.1, y−1 = 1.1, Λ+ = 0, Λ− = 6.008. The blue lower triangles are

for y+1 = 0.1, y−1 = 1.1, Λ+ = 1.105, Λ− = 0. In both cases, the minimum value arises at z = 0,

i.e., the optimal geodesic corresponds to one of the simple geodesics found in the previous section.

Figure 4. Example of geodesics preparing a target state with both a± nonvanishing. We compare

the optimal geodesic and the “simpler” geodesic with z1 = 0. In this example, both geodesics have

the final boundary conditions: y+1 = 0.1, y−1 = 1.1, Λ+ = 1.105, Λ− = 6.008. For the optimal

geodesic, we also have x0 = z0 = −0.0976π, x1 = 0, z1 = −0.0167π, while for the “simpler” one,

x0 = z0 = −0.0749π, x1 = 0 = z1. Note that y± essentially coincide in both geodesics, as shown in

the far left panel.

geodesic has nonvanishing profiles for both x(s) and z(s), as illustrated in figure 4. While

at the final point, x1 = 0 in order to ensure that the target state is unentangled, as

can be inferred from eq. (2.24), in general we have z1 6= 0 for the optimal geodesic. For

comparison purposes, we can also consider the geodesic with z1 = 0, which we will denote

as the “simpler” geodesic, which is also shown in figure 4. There we can see that the

biggest difference between these two geodesics is in the profiles of x(s) and z(s). In fact,

the profiles for y±(s) are indistinguishable in the figure. It is also interesting to compare the

length of these geodesics, which we do in figure 5. There we introduce the new parameter

∆k = ksim − kopt,
14 In the figure, we show the results for ∆k for geodesics where the

14Of course, ∆k > 0 because the optimal geodesic is the shortest geodesic.

– 18 –



J
H
E
P
1
0
(
2
0
1
8
)
0
1
1

Figure 5. A comparison of the lengths of the optimal geodesic and the “simpler” geodesic with

z1 = 0. ∆k = ksim − kopt and kopt are shown as functions of Λ−(s = 1) = −mω+

x0ω
2

R
a−. This

example is characterized by the boundary conditions y+1 = 0.1, y−1 = 1.1 and Λ+1 = 1.105, while

Λ−(s = 1) varies from 0 to 12.017. We note that while ∆k grows as |a−| increases, it represents at
most an increase of 0.2% over kopt for the geodesics shown here.

boundary conditions are fixed as in figure 4 except that Λ− varies from 0 to 12.017. With

Λ− = 0, ∆k = 0 because the two geodesics coincide with the simple geodesics found

analytically in the previous section. However, we see in the figure that as a− increases, the

difference in lengths increases monotonically.

2.5 Small excitations

We began in section 2.3 by considering simple geodesics for states where only one normal

mode is excited. Then in section 2.4, we applied numerical techniques to examine the

geodesics for target states where both normal modes are excited. In particular, we noted

that the resulting geodesics are driven away from the space of states with no entanglement

between the two normal modes. While we cannot find the geodesics for these general target

states analytically, we can at least find the leading order contributions to the length of the

geodesics for small shifts, i.e., when both a± are nonvanishing but |a±| ≪ 1. To exam-

ine this situation, we consider small perturbations from the optimal geodesics connecting

the reference state to ground state. It was already shown in [1] that the optimal circuit

connecting the reference state (2.13) to the ground state,

AT = m







ω+ 0 0

0 ω− 0

0 0 cT






, (2.54)

is the ‘straight line’ circuit:

U(s) = exp
[s

2
(logw+M++ + logw−M−−)

]

. (2.55)

In terms of the six-dimensional geometry, the corresponding geodesic is given by

y+(s) = y+1 s , y−(s) = y−1 s , x(s) = 0 = z(s) = u+(s) = u−(s) , (2.56)
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where y+1 = 1
2 logw+ and y−1 = 1

2 logw−, with y± = y ± ρ as before. The κ = 2

complexity (2.30) is then given by the expression in eq. (2.49).

Now we want to evaluate the leading order change to the above circuit depth (2.49)

evaluated with eq. (2.30) when we introduce small shifts for both normal modes, i.e.,

a+ , a− ∼ O(ε). In particular, the final boundary conditions are then modified for u± but

it will be true that u±(s) , u̇±(s) ∼ O(ε) all along the new geodesic. This follows because

the second line in (2.32) is positive definite, so having u̇± = O(1) would increase the length

by an O(1) factor. The x and z equations of motion take the form

0 = ∂s (ẋ− cosh(2ρ)ż) , (2.57)

0 = ∂s (2cosh(4ρ)ż − 2cosh(2ρ)ẋ) + e−2ysinh(2ρ)
(

2 cos(2z)u̇+u̇− − sin(2z)(u̇2+ − u̇2−)
)

,

but this implies that x, ẋ, z, ż ∼ O(ε2). Now if we expand the cost function, i.e., determine

the leading corrections to eq. (2.32), we find

L0 = ẏ2+ + ẏ2− + e−2y+ u̇2+ + e−2y− u̇2− +O(ε4) . (2.58)

Effectively, the modified geodesics move on a four-dimensional submanifold of the full

geometry (2.28) which takes the form H
2 × H

2. Hence to leading order, the complexity

becomes

Cκ=2 = ∆2
+ +∆2

− +O(ε4) (2.59)

where ∆+ is the expression in eq. (2.47) and ∆− is the same expression after substituting

w+ → w− and a+ → a−. The leading order change in the complexity then becomes

∆Cκ=2 = Cκ=2 − Cκ=2,vac = ∆2
+ +∆2

− − 1

4
(logw+)

2 − 1

4
(logw−)

2 +O(ε4)

=
| logw+|
|w+ − 1| w+a

2
+ +

| logw−|
|w− − 1| w−a

2
− +O(ε4) , (2.60)

where we are dropping terms of the form a4+, a
4
− and a2+ a2−. The key result here is that

the leading order corrections to complexity factorize into contributions from the individual

normal modes, i.e., there are no second order contributions involving the cross-term a+a−.

We would like to go further and so that in fact, these geodesics on the effective H2×H
2

geometry are optimal, i.e., that we are correctly evaluating the leading corrections to the

complexity in eq. (2.60). We can argue for a proof by contradiction of this result as follows:

imagine that we find a geodesic where the deviations of x(s) and z(s) from the straight-line

geodesic (2.56) are the same order as a±, i.e., x, z ∼ O(ε). Examining the cost function,

we see that the motion in x and z will introduce a strictly positive contribution of order ε2,

from the terms in the first line of eq. (2.32). Similarly the second and third terms in the

second line will make contributions of O(ε4) and O(ε3), respectively. There is no definite

sign of these contributions but being higher order, they will never be able to make up for

the O(ε2) increase generated by moving in the x and z directions. One might consider

even stronger deviations, e.g., x, z ∼ O(1), but then the ẋ, ż terms in eq. (2.32) will only

increase the length of the geodesic by order one while u̇± terms will still only contribute

at order ε2.
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Figure 6. Comparison between the quadratic approximation for small excitations, i.e., the second

line of eq. (2.60), and the complexity found numerically for various target states. In the figures,

we choose w+ = 1.221 and w− = 9.025 and a− = γa+. We let a+ range from 0 to 0.01 and then

compare the two results with γ = 1, 1.5 and 2. The three figures show excellent agreement between

the quadratic approximation and the true complexity for a± ≪ 1.

We can also use the numerical approach developed in the previous section to find

evidence that eq. (2.60) correctly provides the leading corrections to the complexity. In

particular, we looked at families of states where a− = γa+ with γ being some fixed numer-

ical constant. As a+ increased from zero, we found that the numerical results matched the

approximation provided in the second line of eq. (2.60) when a± ≪ 1 in all of the cases

that we examined. Figure 6 provides an example of our numerical analysis.

3 Complexity with alternate cost functions

In [1], the UV divergences in complexity of the ground state of the free scalar field were

compared to those in holographic complexity (see also [2]). In particular, it was found

that the F1 cost function in eq. (1.7) gave the most promising comparison. In particular,

the leading divergence for the F1 cost function took the form V/δd−1 log(ℓ/δ) where ℓ is

some undetermined length scale. This is precisely the same form as the leading divergence

in holographic complexity evaluated with the CA proposal [21]. However, an apparent

shortcoming of the F1 cost function is that the complexity depends on the basis used for

the gates, e.g., the results will change upon rotating between the physical basis and the

normal mode basis. However, in [42], it was suggested that we would recover the same

essential results of the F1 measure using the Schatten norm (with p = 1 — e.g., see [63, 64]

and further details below). The advantage of the Schatten norm is that the results are basis

independent. Hence in the following, we will re-examine the complexity of the coherent

states (2.5) for the system of two coupled harmonic oscillators introduced in section 2.1

using these two alternatives for the cost function.

3.1 F1 cost function

First, we turn to the task of studying the F1 cost function introduced in eq. (1.7)

F1(U, Y ) =
∑

I

∣

∣Y I
∣

∣ , (3.1)
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that is, we want to study the circuits U(s) that optimize the cost function

D1(U(s)) =

∫ 1

0
ds
∑

I

∣

∣Y I
∣

∣ . (3.2)

However, we re-iterate that this measure is not invariant under changes of the basis, and

therefore the results depend on the choice of basis I which we choose in its definition. As

we saw in the previous section, the normal modes provide a natural basis to work in for

the circuit optimization problem and so in the following, we simply define the F1 metric in

this basis. Hence for the problem of two coupled harmonic oscillators, which we focus on

in the following, the index I in eq. (3.1) runs over {++,−−,−+,+−, 0+, 0−}.
Using the results of section 2, we find the components Y I appearing in the cost func-

tion (1.6) to be

Y ++ = ẏ + ρ̇ cos(2x)− ż sinh(2ρ) sin(2x) ,

Y +− = ρ̇ sin(2x) + ż(cosh(2ρ) + sinh(2ρ) cos(2x))− ẋ ,

Y −+ = ρ̇ sin(2x)− ż (cosh(2ρ)− sinh(2ρ) cos(2x)) + ẋ , (3.3)

Y −− = ẏ − ρ̇ cos(2x) + ż sinh(2ρ) sin(2x) ,

Y 0+ = e−y+ cos(x)(u̇+ cos(z) + u̇− sin(z))− e−y− sin(x)(u̇− cos(z)− u̇+ sin(z)) ,

Y 0− = e−y− cos(x)(u̇− cos(z)− u̇+ sin(z)) + e−y+ sin(x)(u̇+ cos(z) + u̇− sin(z)) .

We will not attempt to find the extremal trajectories in complete generality here. Rather

we will focus on the analog of the simple geodesics found in section 2.3, which prepare

coherent states where only one of a± is nonvanishing. We will also consider the case of

small excitations, i.e., |a±| ≪ 1, to parallel the analysis in section 2.5.

To begin let us consider constraining the trajectories with x(s) = 0 = z(s), in which

case the F1 cost function (3.2) takes a simple form

D1 =

∫ 1

0
ds (|ẏ+|+ |ey+ u̇+|+ |ẏ−|+ |ey− u̇−|) , (3.4)

where once again we used y± = y±ρ. A key feature here is that the motions for the + and −
coordinates have decoupled, which is reminiscent of the trajectories studied in sections 2.3

and 2.5. We will proceed with examining the geodesics in the x = 0 = z subspace which

extremize eq. (3.4) in a moment. However, first imagine that we have these solutions and

then we wish to show that they also extremize the full cost function (3.2) by considering

perturbations away from this subspace. Let us construct a perturbative expansion with

x(s), z(s) ∼ O(ε). Then keeping the leading perturbations in eq. (3.2) yields

D1 =

∫ 1

0
ds
[

|ẏ+|+ |ey+ u̇+ + u̇− (ey+z − ey−x)|

+ |ẏ−|+ |ey− u̇− + u̇+ (ey+x− ey−z)| (3.5)

+
∣

∣2x ρ̇+ e2ρż − ẋ
∣

∣+
∣

∣2x ρ̇− e−2ρż + ẋ
∣

∣+O(ε2)
]

.

First, let us consider the case where the excitations are small, i.e., |a±| = O(ε). In this

scenario, we expect u± = O(ε), and therefore the x, z dependent terms in the first two lines
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are O(ε2). Therefore, we drop the latter and the only O(ε) terms involving these variables

are in the third line and the action is minimized when they vanish, which yields

ẋ = cosh(2ρ)ż , 2x ρ̇+ sinh(2ρ)ẋ = 0 . (3.6)

These expressions in turn are solved by x tanh(ρ) = constant. The initial condition ρ0 = 0

implies that the constant is zero, which in turn leads to x(s) = 0 = z(s) as necessary

conditions to minimize the action. The remainder of the cost function then takes the

simple form in eq. (3.4), in which the ± coordinates decouple, but recall that here we

assumed that both |a±| ≪ 1.

Instead let us assume that we have a coherent state where a+ is large but that

a− = O(ε) or zero. In this situation, we again expect u− = O(ε), which means that

the x, z dependent terms in the first line are O(ε2) and can be ignored again. The O(ε)

terms involving x and z are the second term in the second line and the two terms in the

third line of eq. (3.5). The action will be minimized if we can find a solution where they

vanish. The terms in the third line vanish with x = 0 = z, with the analysis following

eq. (3.6). Hence the action again reduces to the form given in eq. (3.4), although we must

keep in mind that the term involving u̇− is O(ε).15

We now turn to the problem of finding the geodesics in the simple “geometry” appear-

ing above in eq. (3.4). That is, we consider

D1 =

∫ 1

0
ds
(

|ẏ|+
∣

∣e−y u̇
∣

∣

)

. (3.7)

With the “flat measure” D =
∫

ds (|ẏ|+ |u̇|) the minimal trajectories are simply those

which traverse between the initial and final endpoints without backtracking in u or y.

However, with the addition of the scaling factor e−y in the u̇ term in eq. (3.7), there is a

balance between backtracking in y and attempting to reduce the scaling factor by going

to a larger y before turning back to the final value. This leads to two possible classes of

paths that can minimize the distance (3.7), illustrated in figure 7. We call these the L and

J paths. We will assume y1 > y0 and u1 > u0 to simplify our discussion, but the other

cases are very similar to these.

The length of the L-shaped path that is a straight line from (y0, u0) to (y1, u0) and

then a straight line from (y1, u0) to (y1, u1) is

DL = ∆y + e−y1∆u , (3.8)

where ∆y = y1−y0 and ∆u = u1−u0. For the J-shaped paths, there are three straight-line

sections: (y0, u0) to (y2, u0), (y2, u0) to (y2, u1) and then (y2, u1) to (y1, u1). The length of

15Further let us consider states where both |a±| & 1. In principle, the O(ε) terms in the first two lines

could offset the contributions from the third line. However, in most situations, the relative signs between

the terms in front of the u̇+ and u̇− are different for each absolute value. Therefore we expect that for most

of these states, these contributions will not be able to counter the increase in length coming from the terms

in the third line. In this case, the action would still be minimized when the terms in the third line vanish,

and the two modes would decouple in determining the optimal path. That is, the optimal trajectories would

effectively be determined by the product geometry H
2 ×H

2 even when |a±| & 1.
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Figure 7. An illustration of the two types of geodesics arising with F1 metric. The L-shaped (blue)

paths move in two straight segements to the target state, while the J-shaped (red) paths have three

straight segments. The first overshoots y1 because motion in the u direction is less costly at higher

values of y. The dashed curves illustrate the corresponding simple geodesics found with the F2

measure, as in section 2.3.

this path is

DJ(δy) = ∆y + 2δy + e−(y1+δy)∆u , (3.9)

where δy = y2−y1 > 0. This cost is minimized with δymin = log∆u
2 −y1. The optimal J path

therefore goes up to y2,min = log ∆u
2 , then over to u1 and then back to y1, and has length

DJ(δymin) = ∆y + 2 log
∆u

2
− 2 y1 + 2 . (3.10)

The L paths are shorter for e−y1∆u 6 2, while the J paths are shorter for e−y1∆u > 2.

Finally, we can express the boundary conditions in terms of parameters of the target

state (and the reference state). For the reference states (2.4) and the target states (2.5),

we find16

y0 = 0 , y1 =
1

2
log w u0 = 0 , u1 = −

√
wa . (3.11)

Substituting these expressions into eqs. (3.8) and (3.10), we find

DL =
1

2
log w+ a , DJ =

1

2
log w+ log

a2

4
+ 2 . (3.12)

Using eq. (3.11), we also find e−y1∆u = a and so we see that DL is smaller for a 6 2 while

DJ is smaller for a > 2.

Note that since we assumed that y1 > y0 above, we are implicitly considering w > 1.

Carefully going through the argument above for the case y0 > y1, we find that the following

16Unlike the discussion above, u1 < u0, but it is simple to show that the same argument holds with

∆u = −(u0 − u1) =
√
wa in the final result.
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lengths for the two types of paths

DL = −1

2
log w+

√
wa , DJ =

1

2
log w+ log

a2

4
+ 2 , (3.13)

for w < 1. Here, the J paths are shorter for
√
wa > 2 and otherwise the L paths are

shorter. Note that DJ has precisely the same form in eqs. (3.12) and (3.13). So in general,

we can write the cost of these two families of extremal paths as

DL =
1

2
|log w|+min(1,

√
w) |a| , DJ =

1

2
log w+ log

a2

4
+ 2 , (3.14)

where the J geodesics are defined (and shorter) for min(1,
√
w) |a| > 2. Hence in general,

the F1 cost function (3.7) yields the following complexities

C1 =
{

DL , for w > 1 , |a| ≤ 2 , or w < 1 ,
√
w|a| ≤ 2 ,

DJ , for w > 1 , |a| ≥ 2 , or w < 1 ,
√
w|a| ≥ 2 .

(3.15)

To conclude here, let us note that if we are considering small excitations of the ground

state, i.e., |a| ≪ 1, then the optimal circuit will be described by a L-shaped geodesic.

Further, in this case, the change in the complexity will be linear in |a|, i.e., ∆C1 = C1 −
C1,vac ∝ |a|. The latter behaviour contrasts with our previous results for the κ = 2 cost

function, where we found ∆Cκ=2 ∝ a2 in eq. (2.51). Further, for large excitations with

|a| ≫ 1, the optimal circuit is descriped by a J-shaped geodesic and we find ∆C1 ≃ log a2.

Recall that we found in eq. (2.52) that ∆Cκ=2 ≃
(

log a2
)2

and so there is again a difference

in the power of the leading contribution.

For target states where both modes are excited but with a± ≪ 1, the resulting “geom-

etry” is a product space of two copies of the above geometry. The geodesics will therefore

correspond to the L-shaped geodesics and following eq. (3.15), the total complexity is then

C1,tot = DL(w+, a+) +DL(w−, a−) , (3.16)

where DL(w, a) is defined in (3.14). With these small excitations, the increase in complexity

above the vacuum complexity is given by

∆C1,tot = min(1,
√
w+) |a+|+min(1,

√
w−) |a−| (3.17)

which is linear in |a±|. We can also consider the complexity of states where one excitation

is large, e.g., |a+| ≫ 1 (but the other is still small). This contribution dominates and

C1,tot ≃ DJ(w+, a+). Hence the change in the complexity becomes17

∆C1 ≃ log a2+ . (3.18)

Let us note that unlike the case of the κ = 2 complexity of section 2 and of the Schatten

complexity of the next section, ∆C1 is independent of the excited frequency w, unless w < 1

and
√
w|a| 6 2, in which case it is proportional to

√
w.

17As described in footnote 15, if both of excitation parameters a± are large, we expect that two modes

still decouple in the optimal preparation of most such states. In this situation, the change in complexity

would scale as ∆C1 ≃ log a2+ + log a2−.
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3.2 Schatten cost function

A suggestion put forward in [42] is that we might use the p = 1 Schatten norm (e.g.,

see [63–65]) rather than the F1 cost function. The observation was that with this new

cost function that we would recover the same leading divergence as with the F1 measure

for the complexity of the vacuum,18 however, the results are now basis independent when

described in terms of the Schatten norm. This norm actually provides a family of measures

based on computing the singular value decomposition of the desired transformation. Given

a transformation A, this norm takes the form

‖A‖p =
[

Tr

(

(

A†A
)p/2

)]1/p

. (3.19)

Note that with p = 2, this reduces to the standard Frobenius-Hilbert-Schmidt norm, i.e.,

we recover the F2 measure which we were studying in the previous section. As with the

F2 cost function, the results are basis independent for the Schatten measure for any value

of p. Another property worth noting is that the Schatten p-norms are non-increasing in p,

which means we have ‖A‖p ≥ ‖A‖q for 1 ≤ p ≤ q ≤ ∞.

In the present case, the transformation of interest is the velocity tangent to the path

of unitaries, namely

V (σ) = ∂σU(σ)U−1(σ) = Y I(σ)MI =







Y ++ Y +− 0

Y −+ Y −− 0

Y 0+ Y 0− 0






, (3.20)

and the adjoint mapping is simply V T (σ). By construction, V TV (or V V T ) is a (non-

negative) symmetric matrix with positive real eigenvalues s2k, where the sk (≥ 0) are the

singular values of V .19 and the Schatten norm (3.19) then becomes

‖V ‖p =
[

∑

k

spk

]1/p
. (3.21)

In particular then, ‖V ‖1 =
∑

k sk. Given eq. (3.20), we can explicitly write out the self-

adjoint operator

V T V =







(Y a+)2 Y a−Y a+ 0

Y a−Y a+ (Y a−)2 0

0 0 0






, (3.22)

where implicitly we are summing over a ∈ {+,−, 0} in each component. Hence we can

immediately see that in the special case of interest, the third singular value is zero and we

18In fact, the vacuum complexity was identical for both measures, but we will see below that this does

not carry over for the coherent states studied here.
19In general, we can write V = R1DR2 where R1 and R2 are two independent rotation matrices while

D = diag(s1, s2, s3) with sk ≥ 0. The sk are the singular values of V , which only agree with the eigenvalues

of V in special cases. For example, the two agree when V is symmetric and non-negative. We note that

the singular values and eigenvalues do not agree for the case of interest in eq. (3.20).
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simply need to find the eigenvalues of the upper 2×2 block. The latter is a simple exercise,

which yields

γ1,2 = s21,2 =
1

2

(

(Y a+)2 + (Y a−)2 ±
√

((Y a+)2 − (Y a−)2)2 + 4(Y a−Y a+)2
)

. (3.23)

Substituting these expressions into eq. (3.21) for p = 2, we recover

‖V ‖2 =
√
γ1 + γ2 =

√

(Y a+)2 + (Y a−)2 , (3.24)

in agreement with the F2 cost function in eq. (1.7), as expected.

Turning instead to the Schatten cost function with p = 1, we find

‖V ‖1 =
√
γ1 +

√
γ2 . (3.25)

It is useful to consider some simple examples, i.e., some simple trajectories. First imagine

that we are only scaling the two normal modes, as we would in preparing the ground state.

Then from eq. (3.3), we have Y ++ = ẏ + ρ̇ = ẏ+ and Y −− = ẏ − ρ̇ = ẏ−, and eq. (3.25)

reduces to

‖V ‖1 = |Y ++|+ |Y −−| . (3.26)

Of course, this expression has the same form as the F1 cost function for these trajectories,

and so both measures would yield the same complexities in situations where these simple

scaling circuits were the optimal ones. But now let us consider trajectories where there is

also a displacement for, say, the + mode, i.e., where u̇+ 6= 0. Then another component of

the tangent vector is also nonvanishing, namely, Y 0+ = e−y+ u̇+. The cost function (3.25)

then becomes

‖V ‖1 =
√

(Y ++)2 + (Y 0+)2 + |Y −−| =
√

ẏ2+ + e−2y+ u̇2+ + |ẏ−| . (3.27)

Hence the ‘Schatten’ cost of this simple trajectory is already different from the F1 cost.20

Interestingly, because the motions associated with the ± modes are decoupled in the above

cost function (3.27), we can easily find the optimal trajectory is a geodesic in the product

geometry H
2 × R. The optimal trajectory which extremizes eq. (3.27) is precisely the

‘simple geodesic’ discussed in section 2.3.

However, we have restricted the motion of the trajectories in constructing the ex-

pression in eq. (3.27) and so next we would like to show that our ‘simple geodesics’ also

extremize the full Schatten norm (3.25). Towards this goal, we consider a new Lagrangian

(or cost function) which is the square of Schatten cost function,

L′
0 = ‖V ‖21 = γ1 + γ2 + 2

√
γ1γ2 ≡ L0 + 2

√

L1 , (3.28)

and if we find trajectories which extremize L′
0 (and yield ‖V ‖1 6= 0), then they will also

extremize ‖V ‖1, the desired cost function. Now we have divided the result in eq. (3.28) into

20Further, we can anticipate that for small displacements of u+, i.e., small excitations of a+, the total

cost will have a contribution proportional to ∆u2
+ ∼ a2+.
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the sum of two pieces: L0 = γ1 + γ2, which corresponds to the κ = 2 cost function,21 and

L1 = γ1γ2. Now we wish to consider the simple geodesics given by eqs. (2.45) and (2.46),

as well as

x(s) = 0 = z(s) = u−(s) . (3.29)

Now the analysis in section 2.3 showed that these trajectories extremized the κ = 2 cost

function (2.32). Hence we already know that the simple geodesics will extremize the first

part of eq. (3.28), and we need only examine the variations of the L1 term. These equations

of motion are generally very complicated but they simplify enormously when we substitute

eq. (3.29). The simplied variations are

δxL1 = 0 = δzL1 = δu−
L1 ,

δy+L1 = −2ẏ−
(

2ẏ+ÿ− + ẏ−
(

e−2y+ u̇2+ + ÿ+
))

,

δy−L1 = e−2y+ u̇+ (−4ẏ−ü+ + u̇+ (4ẏ−ẏ+ − 2ÿ−))− 2ẏ+ (ẏ+ÿ− + 2ẏ−ÿ+) ,

δu+L1 = −2e−2y+ ẏ− (ẏ−ü+ − 2u̇+ẏ+ẏ− + 2u̇+ÿ−) .

(3.30)

However, one can easily show that the three remaining variations will vanish upon substi-

tuting the corresponding equations of motion derived from the κ = 2 cost function:

ÿ− = 0 , ü+ − 2u̇+ẏ+ = 0 , ÿ+ + e−2y+ u̇2+ = 0 . (3.31)

Therefore we arrive at the desired conclusion that the simple geodesics in the H
2 × R

geometry also describe the optimal circuits for the (full) Schatten p = 1 cost function (3.25).

Hence the coherent states in which a single normal mode is excited are prepared in

precisely the same way as in section 2.3. Recall that the boundary conditions for these

trajectories are given by eq. (2.42). Further, using the subsequent analysis in section 2.3, it

is then straightforward to show that the complexity measured by the Schatten cost function

is then given by

CSchat = |∆|+ |C| , (3.32)

where C and ∆ are given in eqs. (2.46) and (2.47), respectively. The increase in the

complexity above that of the vacuum state is given by

∆CSchat = CSchat − CSchat,vac = |∆| − 1

2
| logw+|

=

∣

∣

∣

∣

∣

∣

log





(1 + a2+w+ +w+) +
√

(1 + a2+w+ +w+)2 − 4w+

2
√
w+





∣

∣

∣

∣

∣

∣

− 1

2
| logw+| .

(3.33)

Expanding for small |a+|, eq. (3.33) yields

∆CSchat =
w+a

2
+

|w+ − 1| −
w2

+(w+ + 1)a4+
2|w+ − 1|3 +O(a6+) , (3.34)

while for large |a+|, we find

∆CSchat = loga2++
1

2
logw+−

1

2
| logw+|+

1+w+

w+a
2
+

− 1+4w++w2
+

2w2
+a

4
+

+O
(

1

a6+

)

. (3.35)

21As we saw above in evaluating the Schatten norm with p = 2, γ1 + γ2 = (Y a+)2 + (Y a−)2.
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In analogy to section 2.4, one might attempt to study numerically the full equations of

motion resulting from eq. (3.28) to investigate the complexity of states where both of the

normal modes are excited. However, we do not pursue this direction here. Instead, we turn

to an analysis for such states in the regime where the excitations are small, i.e., a± ≪ 1,

in analogy to section 2.5. We will assume that in the excited state that a± ∼ O(ε) where

ε is a small expansion parameter in the following perturbative construction. Assuming the

variation of the geodesics is smooth and starting from the geodesic with u± = 0 = x = z,

i.e., a± = 0, the perturbed geodesic line for a± ∼ O(ε) should have

u±(s), u̇±(s), x(s), ẋ(s), z(s), ż(s) ∼ O(ε) , (3.36)

to leading order in our ε expansion. Therefore we define the perturbative solution with

u±(s) = εu
(1)
± (s) + ε2u

(2)
± (s) + O(ε3), and similarly for x(s) and z(s). Substituting these

expansions into the expressions in the cost function (3.28), we find

L0 = γ1 + γ2 = ẏ2+ + e−2y+ε2(u̇
(1)
+ )2 + ẏ2− + e−2y−ε2(u̇

(1)
− )2

+ 2ε2
(

(ẋ(1))2 − 2 cosh(2ρ)ẋ(1)ż(1) + cosh(4ρ)(ż(1))2
)

+O(ε3) ,

L1 = γ1γ2 =
(

ẏ2+ + e−2y+ε2(u̇
(1)
+ )2

)(

ẏ2− + e−2y−ε2(u̇
(1)
− )2

)

+ ẏ+ẏ−ε
2
(

(ẋ(1))2 − 2 cosh(2ρ)ẋ(1)ż(1) + (ż(1))2
)

+O(ε3) .

(3.37)

So let us consider the solutions extremizing L0 first: it is consistent to solve with x(1)(s) =

0 = z(1)(s).22 With this choice, the ± modes decouple at this order and the solutions

correspond to geodesics on H
2 ×H

2. Further note that for either mode on these geodesics,

ẏ2 + e−2yε2(u̇(1))2 = ∆ is a constant of the motion. That is, this is like a conserved

energy, which corresponds to ∆2 in eq. (2.47) for the simple geodesics. Now we move to

consider variations of L1. Again it is straightforward to show that x(1)(s) = 0 = z(1)(s) is

a consistent solution. To facilitate the discussion, we can then write

L1 =
(

ẏ2+ + e−2y+ε2(u̇
(1)
+ )2

)(

ẏ2− + e−2y−ε2(u̇
(1)
− )2

)

+O(ε3) ,

where we should only really pay attention to the terms to O(ε2). But given this form, the

variations with respect to y± and u± are all proportional either to equations of motion

from L0 or to ∂s(ẏ
2+ e−2yε2u̇2), both of which vanish for the perturbative solutions of the

equations of motion from L0. Therefore to leading order, the two modes decouple and we

can just consider geodesics on H
2×H

2. From eq. (3.34), the resulting change in complexity

is then just

∆CSchat =
w+a

2
+

|w+ − 1| +
w−a

2
−

|w− − 1| +O(ε4) . (3.38)

22We stress that at higher orders, we expect that x(s) and z(s) will be nonvanishing one sees in the full

numerical solutions for finite values of a±.
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4 Complexity of coherent states in QFT

In the previous section, we examined the complexity of coherent states in a system of two

coupled harmonic oscillators. In this section, we extend the results to the quantum field

theory describing a free scalar. In particular, we consider a free scalar theory in d spacetime

dimensions with the Hamiltonian

H =
1

2

∫

dd−1x
[

π(x)2 + (~∇φ(x))2 + µ2 φ(x)2
]

. (4.1)

Following [1], we regulate the theory by putting it on a lattice with lattice spacing δ, in

which case the regulated theory becomes a family of coupled harmonic oscillators. The

lattice Hamiltonian can be written as23

H =
1

2

∑

~n

δd−1

[

π(~n)2 +
1

δ2

∑

i

(φ(~n)− φ(~n− x̂i))
2 + µ2 φ(~n)2

]

=
∑

~n

{

P (~n)2

2m
+

1

2
m

[

ω2X(~n)2 +Ω2
∑

i

(X(~n)−X(~n− x̂i))
2

]}

,

(4.2)

where in the second line, we have defined X(~n) = δd/2φ(~n), P (~n) = δ(d−2)/2π(~n), m = 1/δ,

ω = µ and Ω = 1/δ. Hence as noted above, the lattice Hamiltonian describes a system

of the coupled harmonic oscillators on an (d-1)-dimensional lattice. For simplicity in the

following, let us consider the case of d = 2. That is, we will consider N oscillators on a

one-dimensional lattice with the Hamiltonian

H =
1

2m

N
∑

a=1

[

p̄2a +m2ω2x̄2a +m2Ω2(x̄a − x̄a+1)
2
]

, (4.3)

and periodic boundary conditions x̄a+N = x̄a. The Hamiltonian is straightforwardly rewrit-

ten in terms of normal modes,

H =
1

2m

N
∑

k=1

(

|pk|2 +m2ω2
k |xk|2

)

, (4.4)

where the normal modes and the corresponding frequencies are given by

xk ≡ 1√
N

N
∑

a=1

exp

(

−2πi

N
k a

)

x̄a and ω2
k = ω2 + 4Ω2 sin2

πk

N
(4.5)

with k ∈ {1, . . . , N}. The conjugates are x†k = x−k = xN−k and similarly for pk. In the

normal mode basis, the ground state wave function becomes

ψ0(xk) =

N
∏

k=1

(mωk

π

)1/4
exp

(

−1

2
mωk |xk|2

)

. (4.6)

23We approximate the spatial derivatives as ∂iφ(x) ≃ 1
δ
(φ(x)− φ(x− δ x̂i)) and we designate the lattice

sites with ~n = ni x̂
i, where x̂i are unit normals along the spatial axes.
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The complexity associated with preparing the ground state from an unentangled reference

state24

ψR(xk) =

(

ω2
R

π

)N/4 N
∏

k=1

exp

(

−1

2
ω2

R |xk|2
)

. (4.7)

was analyzed in [1] and, e.g., with the κ = 2 cost function (1.8), the complexity is given by

Cκ=2,vac =
1

4

N
∑

k=1

[

log
(

mωk/ω
2
R

)]2
=

1

4

N
∑

k=1

[logwk]
2 . (4.8)

where in the latter expression, we substituted the notation introduced in eq. (2.43).

We now consider the complexity of coherent states in the (regulated) scalar field theory

of the form

ψT(xk) =

N
∏

k=1

(mωk

π

)1/4
exp

[

−1

2
mωk|xk − ak|2

]

. (4.9)

Of course, this question is a simple extension to N modes of that examined in the previous

section for two coupled harmonic oscillators. Hence the construction of the circuits prepar-

ing ψT(xk) from the reference state ψR(xk) also only requires a straightforward extension

of the previous discussion. For example, to define the gates, we need only extend the range

of the indices in eq. (2.11), i.e., i ∈ {1, . . . , N} and a ∈ {0, . . . , N}.25 With this set of

gates, the group structure in eq. (2.20) is generalized to R
N
⋊GL(N,R), and eq. (2.21) is

replaced by a representation of (N + 1)×(N + 1) matrices taking the form

U =

(

UN 0

uT 1

)

, (4.10)

where uT = (u1, . . . , uN ) ∈ R
N and UN ∈ GL(N,R). In principle, we can then construct

a metric on the corresponding N(N + 1)-dimensional space of unitaries, analogous to

eq. (2.28), and the geodesics would be solutions extremizing the following particle action,

analogous to eq. (2.32),

L0 = δIJ tr
(

U̇ U−1MT
I

)

tr
(

U̇ U−1MT
J

)

. (4.11)

However, parametrizing the transformations in eq. (4.10) (and in particular, the GL(N,R)

transformation UN ) is far more complicated. In any event, given our experience in the

previous section, we do not expect that we will be able to find analytical solutions for

geodesics preparing general states of the form in eq. (4.9).

Instead then, let us focus on the special case where only a single mode in the lattice

model is shifted. In particular, we focus on target states of the form

ψ′
T(xk) =

N
∏

k=1,k 6=i

(mωk

π

)1/4
exp

(

−1

2
mωk|xk|2

)

×
(mωi

π

)1/4
exp

(

−1

2
mωi|xi − ai|2

)

,

(4.12)

24As in eq. (2.4), this wave function is unentangled both in the normal mode basis and in the physical

position basis.
25Note that we reserve x0 to denote the c-number scale appearing in the shift gates. The zero modes are

accounted for in xN .
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where only the i’th mode is excited by shifting to 〈xi〉 = ai. Motivated by the results

in last section and also in [1], we are led to conjecture that the optimal circuit preparing

this state corresponds to a geodesic in the geometry H
2 × R

N−1. That is, for the optimal

transformation preparing the above state (4.12), eq. (4.10) reduces to

U(s) =

(

DN 0

dT 1

)

where

{

DN = diag(ey1(s), · · · , eyN (s)) ,

dT = (0, · · · , 0, ui(s), 0, · · · , 0) .
(4.13)

The yj(s) with j 6= i would simply grow linearly with s, while yi(s) and ui(s) satisfy the

geodesic equations on the hyperbolic space H
2. This suggestion generalizes the geodesics

on H
2×R found for two coupled harmonic oscillators in the previous section, and if we set

ai = 0 (and hence ui(s) = 0), the motion would be restricted to the RN parametrized by yi,

which was dubbed the normal mode subspace in [1]. In fact, we can prove that eq. (4.13)

do indeed yield a family of simple geodesics in the full N(N + 1)-dimensional manifold

described by eq. (4.10). We save the proof for the next subsection where we consider the

more general geodesics necessary to prepare coherent states where more than one of the ai
are nonvanishing.

Given these simple geodesics describing coherent states (4.12) with a single excited

mode, we can easily find their complexity as in section 2.3.

4.1 Perturbations of simple geodesics

Here we would like to examine the effect of exciting some subset of the normal modes

with a shift producing 〈xi〉 = ai. To motivate the conjecture which we will prove in the

following, let us review: first, with no such excitations at all, it was found in [1] that

the optimal geodesics preparing the ground state were confined to an R
N submanifold of

the full GL(N,R) geometry. In the previous section, it was found that for two coupled

oscillators that the geodesics preparing a coherent state in which a single normal mode

was excited were confined to a H
2 × R submanifold of the full R2

⋊ GL(2,R) geometry.

That is, the motion of the geodesic was still confined to the normal mode subspace for

the second unexcited oscillator. However, when both normal modes were excited, we

had to consider the geodesic motion in the full six-dimensional geometry, as described in

section 2.4. Now the geodesics describing optimal circuits to prepare coherent states in

our (regulated) scalar field theory are governed by the N(N + 1)-dimensional geometry

R
N
⋊GL(N,R). However, given the previous observations, it is natural to conjecture that

if we are considering coherent states (4.9) where only K of the normal modes are excited,

then the motion is confined to the normal mode subspace R
N−K for the unexcited modes,

while the geodesics explore the full RK
⋊ GL(K,R) subspace describing all of the gates

acting on the remaining normal modes. That is, for these states, the optimal geodesics are

confined to a (K2 +N)-dimensional submanifold of the full geometry, described by

U =







UK 0 0

0 D 0

dT 0 1






, (4.14)
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where UK ∈ GL(K,R), dT is a K-dimensional vector (with entries ui(s)), and D is an

(N−K)×(N−K) diagonal matrix (with entries eya(s)). For convenience, we have arranged

the basis of normal modes so that the first K modes are being excited with ai 6= 0.

Given the ansatz (4.14), we can use eq. (4.11) to describe geodesics restricted to move

on this (K2+N)-dimensional submanifold. However, we would like to show that geodesics

lying within this subpace are in fact geodesics of the full RN
⋊GL(N,R) geometry. Hence

we consider perturbing the above trajectories as follows

Û = U + ε δU with δU =







0 X 0

Y Z 0

0 V 0






, (4.15)

where V , X, Y and Z represent small first-order excursions away from the submanifold

described by eq. (4.14). Here, V , X and Y fill out the three ‘zero’ blocks on the left-hand

side of U and Z comprises the off-diagonal components of the central (N −K)×(N − k)

block. We have also introduced a small expansion parameter ε here and so that if we

substitute Û into eq. (4.11), the particle action can be expanded as

L0(Û) = L0(U) + εL′
0 +

1

2
ε2 L′′

0 + · · · . (4.16)

If we set δU = 0, the variation of L0(U) yields the geodesic equations on the submanifold of

interest, i.e., RK
⋊(GL(K,R)×R

N−K). The order ε and higher order terms will contribute

to determine the geodesics in the full geometry as they move away from the submanifold.

However, the terms of order ε2 and higher will vanish in the equations of motion if we

simply set the components of δU to zero. The dangerous terms are those linear in ε since

they may yield nonvanishing terms which do not vanish in the equations derived from

variations of the components of δU , i.e., these terms may produce source terms which

drive the geodesics away from the submanifold. Therefore our goal is to verify that in fact

L′
0 vanishes.

Towards the latter goal, let us begin by writing the inverse of Û to first order in

perturbations: Û−1 = U−1 − εU−1δUU−1 + · · · where

U−1 =







U−1
K 0 0

0 D−1 0

−dT U−1
K 0 1






(4.17)

U−1δUU−1 =







0 U−1
K XD−1 0

D−1Y U−1
K D−1ZD−1 0

0 V D−1 − dTU−1
K XD−1 0






.

We then examine the expansion of the tangent vector

Y I(s)MI = ∂sÛ Û
−1 = ∂sU U

−1 + ε
(

∂sδU U
−1 − ∂sU U

−1δUU−1
)

+ · · · , (4.18)

and let us explicitly write out the zero’th order term

∂sU U
−1 =







∂sUK U−1
K 0 0

0 ∂sDD−1 0

∂sd
T U−1

K 0 0






. (4.19)
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Given this last expression and the form of the action (4.11), we can conclude that a non-

vanishing order ε term will arise in eq. (4.16) if and only if ∂sδU U
−1 − ∂sU U

−1δUU−1

has contributions proportional to the same matrix generators as appear in ∂sU U
−1, i.e.,

the O(ε) term in eq. (4.18) has nonvanishing components in the same entries as eq. (4.19).

However, given our explict expressions above, it is straightforward to show that all of these

entries vanish. For example,

∂sδU U
−1 =







0 ∂sXD
−1 0

∂sY U
−1
K ∂sZD

−1 0

0 ∂sV D
−1 0






, (4.20)

where the only potential overlap with eq. (4.19) is in the central block. However, since

D is a diagonal matrix while Z has only off-diagonal components, these contributions are

orthogonal in the sense of the inner product (2.19) on the matrix generators.

As we argued above, since we were able to show that L′
0 vanishes in eq. (4.16) above, we

can conclude that the geodesics determined with L0(U) on the R
K
⋊ (GL(K,R)×R

N−K)

submanifold are in fact geodesics in the full geometry R
N
⋊GL(N,R). In particular, notice

that if we choose K = 1, i.e., our target state is only excited in one normal mode, this

proof shows that there is a simple geodesic in an (N + 1)-dimensional slice of the full

geometry which takes the form R ⋊ (GL(1,R) × R
N−1) = H

2 × R
N−1, discussed in the

previous section. In this case, the present argument is a generalization of that presented in

section 2.3, in which we showed this geometry plays a role in determining simple geodesics

for N = 2.

We will not examine here the geodesics in the more general case where K ≥ 2, as it

seems that this will demand rather intensive numerical work. For example, the numerical

results in section 2.4 are easily extended to the case of K = 2 for the present discussion

with larger values of N . However, we would remark that if we excite K normal modes

but all with small amplitudes, it is straightforward to show that to leading order the

optimal geodesics can be evaluated using an (N +K)-dimensional submanifold of the form

(H2)K ×R
N−K — see discussion in the next section. Hence, for example, eq. (2.60) would

be easily extended here to give the change in the κ = 2 complexity for a QFT state of this

form, as we discuss in the next section.

Recall that it seems that the simple geodesics found in section 2.3 (i.e., K = 1 and

N = 2) actually seem to provide the optimal geodesics for the corresponding family of target

states. Strong evidence for this claim came from our numerical studies in section 2.4. An

interesting open question is whether the generalization of these simple geodesics found here

for larger values of N and K will actually provide the optimal geodesics.

4.2 Complexity for simple target states

Now we would like to evaluate the complexity of coherent states in the free scalar field

theory using various cost functions. We will focus on two situations: a) where a single

mode is excited and b) where many modes are excited but all with small amplitudes.

Recall that the complexity of the ground state (4.6) is divergent because the complexity
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is dominated by contributions of the UV modes [1, 2]. In particular, with the F2 cost

function (1.7), this leading divergence takes the form

C2,vac ∼
(

V

δd−1

)1/2

| log(δ ωR)| , (4.21)

where V is the spatial volume, δ is the short-distance cutoff (i.e., the lattice spacing) and d

is the spacetime dimension of the scalar field theory. Further we have introduced m = 1/δ

(as in eq. (4.2)) and ωk ∼ 1/δ for a typical UV mode. The form of this divergence did

not match the leading divergence (1.1) found for holographic complexity [21] and hence

the κ measures (1.8) were introduced in [1] to ameliorate this problem. With these cost

functions, the leading divergence becomes

Cκ,vac ∼
V

δd−1
| log(δ ωR)|κ . (4.22)

Let us add that following the reasoning presented in [42], one can show that the Schatten

p = 1 cost function yields the same leading divergence in the vacuum complexity as for the

κ = 1 complexity (or the F1 cost function).

a) Single excitation. In the previous section, we have argued that the simple geodesics

found in section 2.3 also describe the optimal circuit preparing QFT coherent states (4.12)

with a single excited mode, for the F2 and κ = 2 cost functions. Hence we can apply our

earlier results to evaluate the complexity of these states. For example with the κ = 2 cost

function (1.8), we would have

Cκ=2 = ∆2
i +

N
∑

k=1,k 6=i

C2
k (4.23)

where, in analogy to eqs. (2.46) and (2.47), we have

∆i = log





(1 + a2iwi +wi) +
√

(1 + a2iwi +wi)2 − 4wi

2
√
wi



 , Ck =
1

2
logwk , (4.24)

with ai = a/x0 and wj = mωj/ω
2
R. In particular, we can evaluate the difference between

the complexity of this coherent state and the complexity (4.8) of the ground state, which

yields precisely the same result as for two coupled harmonic oscillators in eq. (2.50) with

the substitution a+,w+ → ai,wi,

∆Cκ=2 (ai)=



log





(1+a2iwi+wi)+
√

(1+a2iwi+wi)2−4wi

2
√
wi









2

− 1

4
(logwi)

2 . (4.25)

Further, we can consider various limits of this result in analogy to those presented at the

end of section 2.3. For example, to leading order for ai ≪ 1, we have ∆Cκ=2 ∝ a2i as in

eq. (2.51).
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The arguments in the previous section can also be extended to the F1 metric (3.1) and

p = 1 Schatten cost function (3.19). This would combine the reasoning given in section 4.1

and extending the perturbative arguments given below for the case of small amplitudes,

but we do not present the details here. Hence the results for the simple geodesics can be

extended to give the Schatten complexity for QFT coherent states with a single excited

mode, with

CSchatten = |∆i|+
N
∑

k=1,k 6=i

|Ck| , (4.26)

where again ∆i and Ck are given in eq. (4.24). Similarly, for this class of states, the F1

cost function would be extremized by the L- or J-shaped paths described in section 3.1.

Hence from eq. (3.15), the F1 complexity becomes

C1 = DL,J(wi, ai) +
N
∑

k=1,k 6=i

|Ck| , (4.27)

where DL and DJ are the costs given in eq. (3.14). Of course, as described for eq. (3.15),

the L cost applies for w > 1, |a| ≤ 2 or w < 1,
√
w|a| ≤ 2, and the J cost applies otherwise.

One may also be tempted to extend the previous analysis to the higher κ cost func-

tions (1.8). In this case, we would have

∆Cκ =

∫ 1

0
ds
[

(ẏi)
κ + (e−yi u̇i)

κ
]

− Cκ
i , (4.28)

where Ci are given in eq. (4.24). This expression can be evaluated numerically for the

simple geodesics given the expressions in eqs. (2.45) and (2.46). In the limit ai → 0, the

simple geodesic reduces to a straight-line geodesic with ui(s) = 0 and of course, ∆Cκ → 0.

It was shown in [1] that these straight-line geodesics were still optimal geodesics preparing

the vacuum state for general κ measures, not just for κ = 2. Hence the vacuum complexity

is correctly given by Cκ,vac =
∑N

k=1(Ck)
κ, but for the coherent states with ai 6= 0, eq. (4.28)

only provides an upper bound on the complexity. Hence the above expression provides an

upper bound on the increase of the complexity for these special states.

An interesting feature of the result in eq. (4.25) is that ∆Cκ=2 is finite, i.e., there is a

single contribution from the excited mode. In particular, the sum over the contributions

from the UV modes causes Cκ=2 to diverge for both the vacuum and the coherent state (in

the limit δ → 0), but these UV divergences cancel in the difference. In contrast, we might

carry out the analogous calculations with the F2 cost function but in this case, the leading

contribution takes the form

∆C2 (ai) =
1

2

∆Cκ=2 (ai)

C2,vac
, (4.29)

where C2,vac and ∆Cκ=2 are given by eqs. (4.21) and (4.25), respectively. Hence combining

these expressions, we find that ∆C2 vanishes as δ
d−1
2 /V

1
2 as δ → 0.
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b) Small amplitudes. Another interesting case which is relatively easy to analyze is

that of excited states where a number of modes are excited but all with small amplitudes,

i.e., with ak ≪ 1 for every mode. As alluded to in the previous section, the final result

will be that, to leading order, the modes decouple and ∆C is simply given by the sum of

the leading results found when simply exciting a single mode. In the following, we will

demonstrate that this result applies for the F1, κ = 2 and p = 1 Schatten measures, using

the techniques developed in section 4.1. Let us summarize the (leading) result for the

increase in the complexity for each of these cost functions here,

∆C1 ≃
∑

wk≤1

√
wk |ak|+

∑

wk≥1

|ak|

∆Cκ=2 ≃
∑

k

logwk

wk − 1
wk a

2
k , ∆CSchat ≃

∑

k

wk a
2
k

|wk − 1| ,
(4.30)

where the sums run over the excited modes.

Let us begin with the κ = 2 cost function, where we are generalizing the arguments

made for two coupled harmonic oscillators in section 2.5. Imagine that we have a number

of modes excited but that ak ≪ 1. We wish to construct a perturbation expansion in which

we designate the excitations as first order, i.e., a+ ∼ O(ε). Then using the formalism of

section 4.1, we assume that uT = εu(1)T +O(ε2) and

Û =

(

UN 0

0 1

)

+ ε

(

0 0

u(1)T 0

)

+O(ε2) . (4.31)

Expanding the tangent then yields

V = ∂sÛ Û
−1 =

(

U̇NU
−1
N 0

0 0

)

+ ε

(

0 0

u̇(1)TU−1
N 0

)

+O(ε2) , (4.32)

and the particle action (4.11) in the κ = 2 cost function becomes

L0(Û) = tr
(

U̇NU
−1
N U−1T

N U̇T
N

)

+ ε2u̇(1)TU−1
N U−1T

N u̇(1) +O(ε3) . (4.33)

The O(1) part of the Lagrangian is the precisely same as for considered in [1], and the

solution which prepares Gaussian states (with ak = 0) is a diagonal matrix and uT = 0.

Therefore in our perturbative expansion for small excitations, we may assume

UN = D + εZ(1) + ε2Z(2) +O(ε3) , (4.34)

where D is a diagonal matrix and Z(i) are completely off-diagonal. Furthermore, since the

diagonal is a local minimum of the zeroth order Lagrangian, substituting this into eq. (4.33)

gives an expression of the form

L0 = tr
(

Ḋ2D−2
)

+ ε2
(

u̇(1)TD−2 u̇(1) + F (Z(1), Ż(1);D, Ḋ)
)

+O(ε4) , (4.35)

where F (Z(1), Ż(1);D, Ḋ) is quadratic in Z(1), positive semidefinite and vanishes if and only

if Z(1) = Ż(1) = 0. Because there is no term linear in ε, the optimal solution for Z(1) is just
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zero since any nonvanishing Z(1) would only increase the cost at second order of ε. With this

choice, the separate modes simply decouple and the resulting cost function indeed describes

motion on (H2)N . That is, the motion in the full RN
⋊ GL(N,R) geometry is restricted

to a (H2)N submanifold to leading order when the excitations are small. According to

the previous result (2.51) for the simple geodesics in the hyperbolic geometry, we find the

leading order change of complexity ∆Cκ=2 is given by the expression in eq. (4.30) above.

Of course, extremizing the κ = 2 cost function (1.8) also extremizes the F2 cost func-

tion (1.7). Hence using eq. (4.29), we can evaluate ∆C2 for only small excitations as

∆C2 =
1

2C2,vac
∑

k

| logwk|
|wk − 1| wka

2
k +O(ε4) . (4.36)

Now we turn to the p = 1 Schatten norm, where at the end of section 3.2, we already

argued that for two coupled harmonic oscillators, the leading order result for ∆C is simply

the sum of those for the individual modes. It is straightforward to extend the above

perturbative argument to the Schatten norm for the free scalar field theory, i.e., for N

coupled modes. In order to proceed, we need to consider the eigenvalues of the square

matrix as

V TV = (∂sÛ Û
−1)T (∂sÛ Û

−1) =

(

M 0

0 0

)

, (4.37)

where Û is defined as in eq. (4.10) and then the matrix M is given by

M = (∂sUN U−1
N )T (∂sUN U−1

N ) + (∂su
T U−1

N )T (∂su
T U−1

N ) . (4.38)

The eigenvalues of M are labeled as γi with i = 1, · · ·N . The general p = 1 Schatten cost

function is then defined as

‖V ‖1 =
N
∑

i=1

√
γi . (4.39)

Our perturbative construction again begins with the small excitations where ak ∼ O(ε).

It is straightforward to show that the zeroth order solution is then given by u(s) = 0 and

γ
(0)
i = (Y ii)2 =

(

ẏ
(0)
i

)2
= C2

i , (4.40)

which means that here the straight-line geodesics also provide the optimal circuit for the

Schatten cost function. Perturbing around these solutions as above, we have

ui = εu
(1)
i +O(ε2) , UN = D + εZ(1) +O(ε2) , (4.41)

where D is a diagonal matrix with Dii = e2yi and Z is a completely off-diagonal perturba-

tion. The leading perturbations of the eigenvalues are now given by

δγi = ~vi
T ·∆M · ~vi, with M (0) · ~vi = γi ~vi , (4.42)

where substituting eq. (4.41) into eq. (4.38) has produced an expansion M = M (0) +

εM (1)+ ε2M (2)+O(ε3) and we combine all of the higher order terms as ∆M =M −M (0).
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Further, since UN is diagonal to leading order, M (0) is a diagonal matrix as well and so the

eigenvectors take the special form: (vi)a = δia. As a result, the perturbations δγi all come

from the diagonal components of ∆M , i.e., eq. (4.42) yields δγi = (∆M)ii. However, it

is straightforward to show that M (1) has only off-diagonal components and so there is no

O(ε) contribution to δγi. Hence we may focus on M (2) to find the leading perturbations

of the eigenvalues. First of all, we can easily see the second term in (4.38) provides us

with the term like ε2e−2yi u̇
(1)
i u̇

(1)
i in δγi, which implies the leading corrections contain the

hyperbolic geometry H
2 for every mode. Secondly, the corrections on δγi from the first

term in (4.38) provide terms which are quadratic in Z(1) and Ż(1), and hence we solve the

corresponding equations of motion with Z(1) = 0. Finally, as eq. (3.28), we consider the

square of Schatten norm

‖V ‖21 =
(

N
∑

i=1

√
γi

)2

=

N
∑

i=1

γi + 2
∑

i>j

√
γiγj . (4.43)

Now the first term is precisely the κ = 2 cost function, which in our perturbative expansion

describes motion in the restricted subspace (H2)N of the full geometry, as above. Combining

these observations with the arguments at the end of section 3.2, it is straightforward to

show that to leading order, the simple geodesics for each of the individual modes extremize

the above squared cost function and then the p = 1 Schatten cost function. Hence we may

simply sum the leading order results for the change in complexity given in eq. (3.34) for

each of the decoupled modes to find the expression for ∆CSchat given in eq. (4.30).26

Lastly, to close this section, we consider the case of small excitations with F1 cost

function. Firstly, we re-iterate that the F1 cost function depends on the choice of the

basis of generators MI . Here we work with the normal mode basis where the M take the

simple form given in eq. (2.16), i.e., [Mai] cd = δac δid. Again we construct a perturbative

expansion with the ai ∼ O(ε) and at zeroth order, we begin with the simple straight-line

solution (without any excitations). We then consider perturbations of the F1 cost function,

F1(U, Y ) =
∑

I

∣

∣Y I
∣

∣ , (4.44)

where the index I ∈ {ij, 0i} with i, j = 1, · · ·N , and given the simple form of the generators,

the components Y I are read off from the entries of V = ∂sÛ Û
−1. As above, we assume

uT = εu(1)T +O(ε2) and expand UN as in eq. (4.34), which yields

V = ∂sÛ Û
−1 =

(

ḊD−1 0

0 0

)

+ ε

(

Ż(1)D−1 − ḊD−1Z(1)D−1 0

u̇(1)TD−1 0

)

+O(ε2) . (4.45)

26Let us note that this discussion can be easily adapted to show that for states in which a single mode

is excited, the full result of the simple geodesics can be applied. That is, the increase in the complexity

is given by eq. (3.33) with the substitution w+, a+ → wi, ai, where the subscript i indicates the mode

which is excited. The discussion is almost the same. We only need to replace the original solutions by

u(s) = (0, · · ·ui · · · , 0) and notice the eigenvector for this mode is also (0, · · · 1 · · · , 0). While the simple

geodesic is clearly a solution of the restricted cost function analogous to eq. (3.27), we can perturb around

this trajectory to find that it is also extremizes the full cost function.

– 39 –



J
H
E
P
1
0
(
2
0
1
8
)
0
1
1

Now the leading perturbation of eq. (4.44) comes from the second term above which pro-

duces O(ε) contributions with |Y ij | with i 6= j and |Y 0i|. Here we are using the fact

that the original simple solution, i.e., the first term, only contains Y ii components. Now

because of the absolute value for all of the terms in (4.44) and the boundary conditions

Z(1)(s = 0) = 0 = Z(1)(s = 1), we minimize the |Y ij | (with i 6= j) contribution by setting

Z(1)(s) = 0. Finally the measure of the optimal path should have N copies of the analogous

structure in eq. (3.7), which are extremized by the L-shaped paths (for small ai). Hence

to leading order in our expansion, the F1 complexity becomes the sum of the DL costs in

eq. (3.14) for the individual modes and then ∆C1 is given by the expression in eq. (4.30).

5 Fubini-Study approach for circuit complexity

In this section, we apply the Fubini-Study approach proposed in [2] to examine the com-

plexity of coherent states (2.5) for a pair of coupled harmonic oscillators. In contrast to

the Nielsen approach, which defines a geometry on the space of unitaries (1.3), this method

makes use of the Fubini-Study metric to define a geometry on the space of states.

First, to introduce the basic definitions, let us imagine that the space of states of

interest is covered by some convenient set of coordinates λµ — we will be explicit about

the coordinates in our calculations but for the time being one might think of the coordinates

in eq. (2.24). In the following, we focus on a family of pure states |ψ(λ)〉 and then we can

consider the quantum fidelity as the inner product between two such states, e.g., [67, 68],

F (λ, λ′) = |〈ψ(λ)|ψ(λ′)〉| . (5.1)

The quantum information metric then measures the distance between nearby states as

F (λ, λ+ dλ) = 1− 1

2
gµν dλ

µ dλν +O(dλ3) (5.2)

with

gµν =
1

2
(〈∂µψ|∂νψ〉+ 〈∂νψ|∂µψ〉)− 〈∂µψ|ψ〉〈ψ|∂νψ〉 . (5.3)

The quantum information metric is also known as the fidelity susceptibility since it encodes

the response of the fidelity to small changes in one of the states.27 In the present case of

pure states, eq. (5.3) also corresponds to the desired Fubini-Study metric. This metric may

also be evaluated with the following expression

gµν = − ∂2F (λ, λ′)

∂λµ ∂λν

∣

∣

∣

∣

λ′=λ

. (5.4)

Then following [2], we consider curves λµ(σ) on the space of states parameterized by

σ ∈ [0, 1] which take us from the reference state to the desired target state, i.e.,

|ψ(σ = 0)〉 = |ψR〉 , |ψ(σ = 1)〉 = |ψT〉 . (5.5)

27We might add that in the context of the AdS/CFT correspondence, the information metric or fidelity

susceptibility for boundary states deformed by a marginal operator was proposed to be described by the

volume of maximal time slice in AdS spacetime in [69]. Of course, the latter is also the conjectured dual of

complexity according to the CV proposal [15, 16]. Different proposals for the holographic dual of information

metric are also discussed in [70–73].
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We then assign a cost to each of these trajectories as the distance as measured by the

Fubini-Study metric (5.3),

DFS =

∫ 1

0
ds

√

gµν λ̇µ λ̇ν , (5.6)

where λ̇µ(s) = dλµ(s)
ds specifies the tangent vector to the trajectory. The complexity assigned

to the target state is then the minimal distance according to this measure, i.e., the complex-

ity is the length of the geodesic in the state space equipped with the Fubini-Study metric.

Before proceeding with our calculation of the Fubini-Study complexity for coherent

states, it is interesting to express this approach in a way that is closer to the circuit con-

struction introduced in eq. (1.3). In particular, given a trajectory described by a particular

choice of λµ(σ), we may express the corresponding states as

|ψ(σ)〉 = ~P exp

[

−i
∫ σ

0
dsH(s)

]

|ψR〉 where H(s) =
∑

µ

λ̇µ(s)Oµ(λ) (5.7)

where Oµ(λ) is the set of Hermitian operators which generate the evolution of state |ψ(λ)〉
in the λµ direction, i.e.,

i∂µ|ψ(λ)〉 = Oµ(λ) |ψ(λ)〉 . (5.8)

Note that we may think of the operators Oµ(λ) as being linear combinations of the OI

appearing in eq. (1.3). We show a λ dependence to indicate that these linear combinations

vary as we move through the space of states. However, this leaves the definition of the

Oµ(λ) ambiguous since, at any particular point, there will be degenerate operations which

leave the state unchanged, i.e., O0(λ)|ψ(λ)〉 = 0. Therefore, in general, one finds that the

space of states has a smaller dimension than the space of unitaries, as will be illustrated by

the example discussed below. Given eq. (5.8), we can also rewrite the Fubini-Study metric

as connected correlation functions of the operators Oµ,

gµν(λ) =
1

2
〈ψ(λ)|{Oµ ,Oν}|ψ(λ)〉 − 〈ψ(λ)|Oµ|ψ(λ)〉〈ψ(λ)|Oν |ψ(λ)〉,

=
1

2
〈{Oµ − 〈Oµ〉λ ,Oν − 〈Oν〉λ}〉λ .

(5.9)

Let us also add that ref. [2] also proposed an alternative formulation where only one

gate acts at any given point in the circuit. In preparing the vacuum state of the scalar

field theory, this formulation gave a result similar to that of the F1 measure. However, this

formulation was developed in [2] with a limited gate set and so it would be interesting to

extend it to the more general setting discussed here.28

5.1 FS complexity of two harmonic oscillators

We would like to describe the coherent states discussed in section 2 as

ψ(x+, x−) =
(detA2)

1/4

√
π

exp

[

−1

2
(xi − ai) [A2]

ij(xj − aj)

]

, (5.10)

28We thank Shira Chapman for a discussion on this point.
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where i, j ∈ {+, −}. The 2×2 coefficient matrix A2 is given by

A2 = U2AR U
T
2 where AR = ω2

R ✶2 (5.11)

and U2 is the GL(2,R) matrix given in eq. (2.22). The explicit form of A2 is given by the

upper left 2×2 block found in eq. (2.24), and as noted there, A2 is independent of z.29

Let us parametrize the displacements of the coherent states in terms of the dimensionless

coordinates v± with a± ≡ x̃0 v±, where we have introduced a convenient length scale x̃0 in

this definition.30 Then our family (5.10) of coherent states is described by five dimensionless

coordinates λµ = {y, ρ, x, v±}, and by construction, the origin of this coordinate system

corresponds to the reference state (2.4). Of course, this is one less coordinate than described

the unitary transformations in section 2.

Now by the methods introduced above, we can define the Fubini-Study metric for the

space of states |ψ(y, ρ, x, v±)〉. The metric can be constructed with eq. (5.3) by evaluating

the integrals

gµν =
1

2

∫

dx+dx−
(

∂µψ̄ ∂νψ + ∂νψ̄ ∂µψ
)

−
∫

dx+dx− ψ ∂µψ̄ ×
∫

dx+dx− ψ̄ ∂νψ , (5.12)

where the wave function ψ(x+, x−; y, ρ, x, v±) is defined in eq. (5.10). Alternatively, we can

calculate the fidelity (5.1)

F (λ, λ′) =

∫

dx+dx− ψ̄(x+, x−; y, ρ, x, v±)ψ(x+, x−; y
′, ρ′, x′, v′±) , (5.13)

and then evaluate the metric with eq. (5.4).

Using either method, we find the Fubini-Study metric is given by

ds2FS = dy2 + dρ2 + sinh2(2ρ) dx2 +
κ̃2

2
e2y
[

2 sin(2x) sinh(2ρ) dv+dv− (5.14)

+ (cosh(2ρ) + cos(2x) sinh(2ρ)) dv2+ + (cosh(2ρ)− cos(2x) sinh(2ρ)) dv2−

]

,

where κ̃ = ωR x̃0.

If we begin by focusing on Gaussian states with a± = 0, we expect that the optimal

trajectories will not involve motion in the v± directions and hence we focus on the first

three terms in eq. (5.14). This three-dimensional subspace has the geometry R × H
2. As

noted above, the reference state corresponds to the origin, i.e., y = 0 = ρ (while the angle

x is unspecified). Hence the geodesics are simply lines moving along the R and radially

outward in the hyperbolic space, i.e., y = y1 s, ρ = ρ1 s and x = x1 where (y1, ρ1, x1)

is the position specifying the target state [2]. However, the complexity or the length of

the geodesic is precisely the same as found using the Nielsen approach [1], except for the

overall constant factor.31

29Therefore detA2 = ey ωR in the normalization factor in eq. (5.10).
30This scale appears in a similar role to x0 in section 2 but we use the notation x̃0 here to distinguish the

two. We also emphasize that x̃0 was introduced here for the convenience of producing the dimensionless

coordinates v± but in the end, this scale will not appear in the results for the complexity.
31Note that our conventions were such that the metric (2.28) for the Nielsen geometry had an extra

overall factor of 2 compared to the Fubini-Study metric (5.14), i.e., ds2Nielsen = 2dy2 + 2dρ2 + · · · while

ds2FS = dy2 + dρ2 + · · · .
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The full Fubini-Study metric (5.14) has a form similar to the Nielsen metric in eq. (2.28)

defined on the space of unitaries, although the dimension of the geometry differs by one as

we already noted. In order to define complexity with this metric (5.14), we would need to

solve the corresponding geodesic equations, but generally the only tractable approach is to

find numerical solutions, as we did in section 2.4 for the Nielsen geometry. However, as in

section 2.3, we can find a simple analytic solution here for states with a single excitation,

e.g., a+ 6= 0 and a− = 0. Examining the full geodesic equations, we find it is consistent to

set x = 0 and v− = 0 in this case. Hence we are simply solving for the geodesic equations

in the reduced Fubini-Study metric

ds2FS =
1

2

(

dy2+ + dy2− + e2y+ dv2+
)

, (5.15)

where as before y± = y ± ρ and for convenience, we have set κ̃ = 1. We note that this

geometry again has the familiar form H
2×R but comparing to the corresponding geometry

in section 2.3, we see that to identify this metric with eq. (2.40) and the corresponding

geodesic equations, we must set

(y+, y−, v+)FS = (−y+, y−, u+)Nielsen . (5.16)

The initial boundary conditions are simply y+0 = 0 = y−0 = v+0 and to match the final

target state (2.5) with a− = 0, the final boundary conditions are

y+1 =
1

2
logw+ , y−1 =

1

2
logw− , v+1 = ã+ , (5.17)

where w± are the same dimensionless ratios as in eq. (2.43), while ã± ≡ ωR a±.
32 We note

that, of course, the boundary conditions for y± are the same here as in eq. (2.42), but u+
and v+ are different coordinates and so their boundary conditions do not match.

Using the above observations, we can use the solution found in section 2.3 given by

eqs. (2.45) and (2.46) to produce the simple geodesics for the Fubini-Study metric (5.15),

which take the form

y+(s) = −1

2
log

(

∆2
FS

B2
FS

sech2(αFS(s))

)

, v+(s) =
∆FS

BFS

tanh(αFS(s)) +
AFS

BFS

, y−(s) = Cs ,

(5.18)

where ∆FS =
√

A2
FS +B2

FS and αFS(s) = s∆FS − arctanh(AFS

∆FS
). The final boundary condi-

tions (2.42) fixes the integration constants as

AFS =
ã2+w+ −w+ + 1

√

(ã2+w+ −w+ + 1)2 + 4ã2+w
2
+

arccosh

(

ã2+w+ +w+ + 1

2
√
w+

)

,

BFS = ±2

√

ã2+w
2
+

(ã2+w+ −w+ + 1)2 + 4ã2+w
2
+

arccosh

(

w+ã
2
+ +w+ + 1

2
√
w+

)

,

C =
1

2
logw− ,

(5.19)

32Recall that in eq. (5.15), we set κ̃ = 1 and hence x̃0 = 1/ωR.
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where the sign of BFS is chosen to match that of ã+. The coefficients above can also be

derived from eq. (2.46) by replacing a2+w+ → ã2+ and w+ → 1/w+ at the same time.

Further, one can verify the above solutions satisfy

ẏ2+ + e2y+ v̇2+ = ∆2
FS , (5.20)

and as expected, this combination of the velocities is constant along the geodesic.

Certainly the new trajectories in the Fubini-Study geometry (5.15) should be different

from those in the Nielsen geometry (2.40) because of the differences in AFS, BFS compared

to A,B in eq. (2.46). Of course, the y− part of the trajectory is identical in both cases.

However, to make clear that the simple geodesics describe distinct circuits in the Nielsen

and Fubini-Study geometries, we compare the evolution of the states as described by the

3×3 coefficient matrix in eq. (2.24), which for the simple geodesics reduces to

ANiel(s)=ω2
R







e2y+ 0 ey+u+
0 e2y− 0

ey+u+ 0 cT






, AFS(s)=ω2

R







e2y+ 0 − e2y+v+
ωRx0

0 e2y− 0

− e2y+v+
ωRx0

0 cT






. (5.21)

The scale x0 appears in AFS because by definition this 3×3 matrix is contracted with

xa = (x+, x−, x0) to construct the wave function. In general, the comparison depends

on the combination ωRx0 appearing in [AFS]
0+,33 however, to simplify the comparison we

might simply set ωRx0 = 1. With this choice, figure 8 illustrates an example comparing the

components of ANiel and AFS for a fixed target state (and reference state). As expected,

the evolution of [A]−− ∝ ω− is identical in both approaches because this component is con-

trolled entirely by y−(s), which we already noted is the same in the two cases. The evolution

of [A]0+ ∝ Λ+ distinguishes the two trajectories, but in both cases, this component is mono-

tonically increasing from zero to the final value in both cases. The difference between the

two circuits is shown most dramatically in [A]++ ∝ ω+. In the Nielsen approach, the evolu-

tion of this component is concave down, i.e., it begins by increasing but it overshoots the fi-

nal value and so it must decrease again towards the end of the trajectory. In contrast, for the

Fubini-Study approach the evolution is concave up, i.e., this component begins by decreas-

ing but this direction is reversed in the latter part of the geodesic so that it can reach the

final positive value. This reversal of the concavity might be expected from the fact that the

metrics look identical under the identification (5.16), i.e., where the sign of y+ is reversed.

We should also examine the length of the simple geodesics in the Fubini-Study ge-

ometry. Towards this end, we first evaluate ∆FS =
√

A2
FS +B2

FS using the expression in

eq. (5.19) to find

∆FS = arccosh

(

w+ã
2
+ +w+ + 1

2
√
w+

)

= arccosh

(

ω2
Rx

2
0w+a

2
+ +w+ + 1

2
√
w+

)

, (5.22)

where we are again using x̃0 = 1/ωR in expressing the result in terms of a+. Comparing

this result to ∆ in eq. (2.47) for the Nielsen construction, we see that the two expressions

33We might note that the coefficient in [AFS]
0+ is actually x̃0/x0, but we set x̃0 = 1/ωR above to simplify

the metric (5.15) and the subsequent analysis.
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Figure 8. Example of simple geodesics connecting the reference state to a same target state with

a+ nonvanishing, using Fubini-Study metric and Nielson approaches. In this particular example,

we chose m
ω2

R
ω+(s = 1) = 1.221, m

ω2

R
ω−(s = 1) = 9.025, Λ+(s = 1) = 1.105. (Recall from eq. (2.24)

that Λ± = [A]0±/ω2
R, and we defined mω± = [A]±±.) We note that [A]+−(s) = 0 = Λ−(s)

throughout the preparation of the target state. This figure shows that the optimal circuits from

the two approaches follow different trajectories even though they begin and end at the same states.

This difference appears most dramatically for mω+(s)/ω
2
R in the first plot.

generally differ because of the factor of ω2
Rx

2
0 in the final expression above. However, quite

remarkably if we set ωRx0 = 1 (as above), we find that ∆FS = ∆. Now the Fubini-Study

complexity is given by

CFS(ω±, a+) =
√

∆2
FS + C2 . (5.23)

This result is naturally compared with the F2 complexity in the Nielsen approach, and

while the two complexities differ in general, there is a remarkable agreement between the

two complexities if we simplify the analysis by choosing ωRx0 = 1. We emphasize that with

this choice, the Fubini-Study and Nielsen complexities agree even though we have shown

above that the two approaches are constructing different optimal circuits.

We can highlight the difference between the Nielsen and Fubini-Study geometries by

introducing the same coordinate systems for both. In fact, the coordinates (y, ρ, x, v±)

match those introduced in footnote 7. If we focus on the subspace x = 0 = v−, we can

compare the coefficient matrices in eq. (5.21) to find u+ = −ey+v+ (where we also set

ωRx0 = 1 as before). Then the Nielsen geometry (2.40) becomes

ds2Niel = (1 + v2+)dy
2
+ + 2v+ dv+ dy+ + dv2+ + dy2− . (5.24)

Comparing this expression to the Fubini-Study metric (5.15) we see that even though both

describe an H
2×R geometry, the physical states are assigned to the geometries in different

ways. That is, if we choose a particular state described by particular values of the coordi-

nates (y+, y−, v+) in eq. (5.21), then the distances to nearby states (y+ + δy+, y− + δy−,

v++δv+) are very different in the two metrics in eqs. (5.15) and (5.24). Of course, if we fix

our attention on the plane v+ = 0, e.g., to evaluate the ground state complexity, the met-

rics are the same (except for an overall factor of 1/2). However, when we move away from

this ‘normal mode subspace’ [1], we should not expect that the optimal circuits between

two states (or the corresponding complexities) to be the same in the two geometries.

The comparison above highlights that when considering coherent states, the Nielsen

and Fubini-Study approaches to complexity are really different systems. That is, for a
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Figure 9. Example of geodesics connecting the reference state to a same target state with both

a± nonvanishing using Fubini-Study metric and Nielson approaches. In this particular example, we

chose m
ω2

R
ω+(s = 1) = 1.221, m

ω2

R
ω−(s = 1) = 9.025, Λ+(s = 1) = 1.105 and Λ−(s = 1) = 3.004.

(Recall from eq. (2.24) that Λ± = [A]0±/ω2
R, and we defined mω± = [A]±±.) From this figure, we

see that the optimal circuits from the two approaches follow different trajectories even though they

begin and end at the same states. This difference appears most dramatically for mω+(s)/ω
2
R and

[A]+−(s)/ω2
R in the upper two plots.

given reference state and target state, the optimal preparation chosen by these two ap-

proaches moves through different families of intermediate states. This stands in contrast

to the preparation of simple Gaussian states, where the optimal trajectories were the same

for both approaches. We have seen that these differences already arise for the simple

geodesics preparing states where only one of a± is nonvanishing. We provide another ex-

ample in figure 9 for a general target state in which both a± are nonzero (where we again

set ωRx0 = 1). We solved for the optimal trajectory for the Fubini-Study and the Nielsen

approaches numerically and then translated to trajectories into the corresponding (physi-

cal) components of the A matrix in eq. (2.12). As shown in the plots, the two approaches

prepare the same target state through different families of intermediate states. Further

for general states like this in which both a± are nonvanishing, the complexity derived

by the two methods also differs. In the example shown in the figure, CFS = 1.518 while

C1 = 1.511.34 For comparison purposes, let us note that the ground state complexity is

CFS,vac = C1,vac = 1.221 for this example.

34The difference is small but significant, i.e., we are confident that the accuracy of our numerical calcu-

lations goes well beyond the fourth significant digit here.
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6 Discussion

Refs. [1, 2] provided the first calculations of complexity in quantum field theory. In the

present paper, we extended this analysis, which examined the ground state of a free scalar

field theory, to evaluate the complexity of excited states in the same theory. In particular,

we considered coherent states with a nonvanishing expectation value of the scalar field (but

for which the expectation value of the conjugate momentum was vanishing). Following the

analysis of [1], we began by examining in detail the complexity of the analogous coherent

states in a pair of coupled harmonic oscillators in sections 2 and 3, and then extending the

results to the free scalar in section 4. The generators of the gates preparing our coherent

state naturally gave rise to a group structure RN
⋊GL(N,R), which is a simple extension of

the GL(N,R) structure found in [1].35 While this analysis focused on Nielsen’s geometric

approach [54–56] for evaluating circuit complexity, we also considered the Fubini-Study

approach proposed by [2] in section 5.

Before proceeding, let us remind the reader that a brief discussion of the complexity

of coherent states appeared in [48]. This recent work was one of the first investigations of

the application of Nielsen’s geometric approach to evaluate state complexity in a quantum

field theory, and as an example in a free scalar field theory, they consider coherent states

where both 〈x〉 and 〈p〉 can be nonvanishing for a single mode. However, their analysis

differs from ours in a number of essential ways: first of all, rather than considering an

unentangled reference state, [48] considers preparing their coherent states beginning with

the vacuum state of the field theory. Further, the gate scale introduced for the shift gates

in eq. (2.9) is implicitly set by the frequency of the excited mode in [48]. In particular,

x20 = 2/(mωk) is chosen there. Finally, we would add that the complexity is evaluated

there by optimizing a somewhat unconventional cost function and the circuits considered

are generally not unitary. Hence there is no substantive overlap between our work and the

discussion in [48].

Optimal trajectories/circuits. When applying the Nielsen or the Fubini-Study ap-

proach to coherent states for the system of two coupled harmonic oscillators, we could only

find the desired geodesics numerically for states in which both normal modes were excited,

i.e., both a± 6= 0. One of the interesting features of these geodesics was that generally they

pass through nonvanishing values of x. The physical significance of this feature appears in

eq. (2.24), where we see that [A]+− 6= 0 ( 6= [A]−+) with x 6= 0 (and also ρ 6= 0). Therefore,

even though the two normal modes are unentangled in both the reference state (2.13) and

target state (2.14), they become entangled in the intermediate states that appear in the

optimal circuit joining these states. This behaviour is illustrated schematically in figure 10.

It is also exhibited by the explicit examples shown in figures 4 and 9. We emphasize again

that this behaviour is common to both the Nielsen and Fubini-Study approaches.

35We reiterate that for the most general coherent states (e.g., for which the expectation values of the

momenta are also nonvanishing), this group structure is enlarged to R
2N

⋊ Sp(2N,R), which extends the

Sp(2N,R) for general bosonic Gaussian states (with vanishing expectation values) [42, 49].
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Figure 10. Schematic diagram of the paths followed by the optimal circuits connecting the unen-

tangled product state AR to three different target states ATi. The states AT1 and AT2 have a+ = 0

and a− = 0, respectively. The optimal circuits preparing such states in which only one of the

normal modes is shifted remain in the x = 0 plane, i.e., [A]+− = 0. Therefore the normal modes

are unentangled for all of the states along these trajectories. In contrast, the trajectory preparing

AT3 begins and ends with [A]+− = 0 but this component is nonvanishing everywhere away from

these endpoints. That is, both the reference state and target state are unentangled but the optimal

circuit introduces entanglement in the intermediate states when both a± 6= 0 in the final state.

In section 4, we showed that the ‘complexity’ of determining the optimal trajectories

grew with a larger number of excitations. In particular, determining the optimal circuit

for states with K normal modes excited, required studying the geodesic equations on a

R
K
⋊ GL(K,R) manifold. The remaining unexcited modes decouple and they are simply

prepared with the linear application of the corresponding scaling gates. It maybe interesting

to use numerical methods to investigate the general properties of optimal circuits and

corresponding complexity for states where K ≥ 3.

However, a particularly simple case is K = 1, i.e., only one normal mode was excited.

In this case, we found analytic solutions for a class of simple geodesics for the Nielsen

approach in section 2.3. These geodesics moved in a H
2 slice of the full geometry, involving

the coordinates corresponding to scaling and shift gates for the excited mode, e.g., y+ and

u+ in eq. (2.40). However, we still had to rely on numerical tests to support the claim that

these simple geodesics were the optimal geodesics connecting the reference state (2.13) to

a target state (2.14) with only one normal mode excited. These simple geodesics played a

role not just for the F2 and κ = 2 cost functions as discussed in section 2.3, but also for

the Schatten p = 1 cost function as described in section 3.2 and also with the Fubini-Study

approach in section 5. The analysis of these states showed a similar behaviour for the F1

cost function, in that the optimal circuit only involved the scaling and shift gates for the

excited mode, while the other modes decoupled.
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Schatten measures. In section 3.2, we investigated the complexity of our coherent states

for a cost function constructed from the p = 1 Schatten norm (3.19). This cost function

was first suggested in [42] as a replacement for the F1 cost function. There it was observed

that in preparing the ground state, this Schatten cost function would produce the same

optimal circuit and complexity as the F1 measure constructed in the normal mode basis.

However, these results are basis independent when described in terms of the Schatten

norm. In comparing the results in sections 3.1 and 3.2, one of the most striking results is

that the F1 and Schatten measures no longer give the same circuits or complexities when

considering coherent states. For example, the increase above the complexity produced by

a small amplitude excitation produced by the F1 measure gave ∆C1 ∝ |a| (see eq. (3.17))

while the Schatten norm gave ∆CSchat ∝ a2 (see eq. (2.51)). We return to these different

behaviours for these two cost functions below.

The examination of the Schatten cost function in section 3.2 focused on the complexity

of coherent states for two coupled harmonic oscillators. However, this is easily extended to

the (regulated) scalar field theory where the circuits act in the group R
N
⋊GL(N,R). For

example, with p = 1, eq. (3.25) is replaced by

‖V ‖1 =
N
∑

i=1

√
γi , (6.1)

where the γi are the eigenvalues of V TV . Note that the range of i implicitly indicates

that γN+1 = 0, i.e., V TV is represented by a square (N+1)×(N+1) matrix but one of the

eigenvalues automatically vanishes (because the last column of V is filled by zeros, as in

eq. (3.20)). We note that the number of eigenvalues matches the number of types of gates

that are applied to prepare the ground state, i.e., the optimal circuit only uses the scaling

gates for each of the N normal modes. This match is why the p = 1 Schatten complexity

agrees with the F1 complexity for the ground state. However, the N eigenvalues encode

information about the shift gates, as well as the scaling gates, when preparing the coherent

states, and so as noted above, this agreement does not extend to these states.

Generally the p = 1 Schatten cost function also involves a complicated coupling be-

tween the different modes, e.g., as is implicit in the singular values given in eq. (3.23).

However, the modes seem to decouple when evaluating the complexity of coherent states

where a single mode is excited, and the optimal circuit follow the same simple geodesics

described above for the F2 or κ = 2 cost function. We were able to prove these geodesics

extremized the full Schatten norm (3.25) by considering a new cost function L′
0 = ‖V ‖21,

see eq. (3.28). This could be decomposed into two parts: L0 = γ1 + γ2 and L1 = γ1γ2.

The first coincides with the κ = 2 cost function and so the simple geodesics extremized

this term. It was then straightforward to show that they also extremized L1.

If we recall that there is a family of Schatten norms (3.19) labeled by a positive integer

p, it is interesting that the previous reasoning can be extended to the higher p norms. That

is, we can argue that the simple geodesics extremize the Schatten cost functions for general

p as follows: first it is straightforward to show the recursion relation

(‖V ‖p+1)
p+1 = (‖V ‖p)p ‖V ‖1 −

√

L1 (‖V ‖p−1)
p−1 . (6.2)
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Now we have shown that the simple geodesics extremize ‖V ‖1 and L1 and therefore if they

also extremize ‖V ‖p and ‖V ‖p−1, then the same geodesics will extremize ‖V ‖p+1.
36 Since

the p = 2 norm corresponds to the F2 norm, it is also extremized by these simple geodesics.

Hence beginning with p = 1, 2, we can work iteratively to show that our simple geodesics

are in fact also geodesics for the general p Schatten cost functions.

Given the previous result, we can apply the interesting property of Schatten norms that

‖A‖p ≥ ‖A‖q for 1 ≤ p ≤ q ≤ ∞ [65]. This leads us to conclude that given a particular

simple geodesic describing the optimal circuit for a particular state, the complexity of

the same circuit increases if we increase the index of the Schatten norm with which the

complexity is evaluated, i.e.,

CSchat,p(w+, a+) ≥ CSchat,q(w+, a+) , for 1 ≤ p ≤ q ≤ ∞ . (6.3)

We stress that our discussion above focused on the simple geodesics describing the

optimal circuits for states with a single excitation (and this discussion easily generalizes to

the case of N normal modes but only a single excitation). General geodesics of the F2 or

κ = 2 measures, i.e., for states with multiple excitations, will not extremize the auxillary

functional L1 and so they will not be optimal trajectories for any of the Schatten norms

except p = 2. However, we did argue at the end of section 4.2 that it is possible to consider

multiple excitations as long as the amplitudes are small, i.e., ai ≪ 1. In this case, the

different normal modes can be decoupled at least to first order in a perturbative expansion.

To close here, we would like to point out that we can use a modified Schatten cost

function of the form,

(‖A‖p)p = Tr

[

(

A†A
)p/2

]

, (6.4)

i.e., we eliminate the overall p’th root in eq. (3.19). These cost functions are rather analo-

gous to the κ cost functions (1.8) with κ = p, i.e., optimizing these new cost functions would

yield the same optimal circuit and complexity as the κ = p cost function constructed in the

normal mode basis when considering Gaussian states. Therefore, the divergence structure

of the ground state complexity would match for these two sets of cost functions. Of course,

the advantage of using eq. (6.4) would be that the results are basis independent. However,

as with the case of κ = p = 1, this agreement would not extend to the coherent states

considered here. We should also note that like the κ measures, these modified Schatten

cost functions are not homogeneous, i.e., the total cost associated with a path is generally

not invariant under reparametrizations of s.

Fubini-Study approach. In section 5, we examined the Fubini-Study approach devel-

oped in [2] in some detail. In particular, we applied this approach to examine the complex-

ity of coherent states for a pair of coupled harmonic oscillators, the same problem that we

studied using the Nielsen approach in section 2. Both the Nielsen and the Fubini-Study

36Further, evaluated on the simple geodesics, we have γ1 = ∆2 and γ2 = C2, with C and ∆ given in

eqs. (2.46) and (2.47), respectively. It is important that the singular values are both constants along the

simple geodesic because this eliminates potential contributions arising from integration by parts in the

following argument.
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approaches identify the complexity of a state as the distance from a simple reference state

in some geometry. Nielsen’s method [54–56] is motivated by the definition of complexity

as the number of elementary gates in the optimal circuit, and so in this case, a metric is

defined on the space of quantum circuits or unitary transformations, e.g., as in eq. (2.28).

Optimizing the trajectory in this space then has a direct interpretation as minimizing the

number gates used in the circuit preparing the desired target state (or at least, optimizing

this number according to some cost function). The Fubini-Study approach instead accounts

for the complexity by keeping track of the changes of the state throughout the preparation

of the target state. As its title indicates, this method makes use of the Fubini-Study metric,

which defines a geometry directly on the space of states. An important difference is then

that the latter geometry assigns a variable cost to specific gates, i.e., the cost depends on

the details of the state on which they act, whereas the gates are assigned fixed costs in the

Nielsen approach. Further, at any point in the space of states, there will be degenerate

operations which leave the state unchanged, i.e., |ψ〉 = U0|ψ〉. Therefore, in general, one

finds that the space of unitaries has a larger dimension than the space of states, as illus-

trated by comparing the geometries in sections 2 and 5.37 For a more detailed discussion

comparing these two approaches, the interested reader is referred to [62].

However, we want to stress that the definition of Fubini-Study metric only depends on

the physical parameters which characterize the states. This is clear from the definitions

in terms of the fidelity in eqs. (5.2) and (5.4). For example, even though the coordinates

λµ may be dimensionful, producing a dimensionful metric, the cost is dimensionless due

to the appearance of the compensating factors of λ̇ in eq. (5.6). Hence, the parameter

x̃0, which was introduced to define the dimensionless coordinates v± = a±/x̃0 and which

appears in the metric (5.14), will never appear in the complexity or in the distance along

any trajectories. Instead it will be absorbed by the boundary conditions which would be

defined in terms of the dimensionful displacements a±. In contrast, the parameter x0 is an

essential ingredient in the definition of the shift gates (2.9), which must have dimensionless

generators.38 This parameter reflects a true freedom in the choice of the fundamental gates

and it will affect the final complexity evaluated using the Nielsen approach. For example,

it implicitly appears in eqs. (2.51) and (2.52) through the definition of a± = a±/x0

Hence we see that the Fubini-Study and Nielsen approaches must define different com-

plexities for the optimal circuit with the same target and reference state. However, we

remind the reader that the ground state complexities, and in fact the optimal circuits,

were found to agree with these two different approaches [1, 2]. In this case, the optimal

circuits only involved GL(N,R) gates and so no additional scale was needed to define the

corresponding generators. In fact, in this case, the Fubini-Study geometry can be embed-

ded in the corresponding Nielsen geometry. However, in the case of coherent states, we saw

37At a pragmatic level, this proves to be an advantage for the Fubini-Study approach since in many cases,

one will find a single geodesic connecting the reference state and the target state. In contrast, as discussed

in section 2, the Nielsen approach yields a family of geodesics connecting these states and the complexity

is determined by the length of the shortest geodesic in this family.
38A similar gate scale appears in defining gates for the full Sp(2N,R) group of Bogoliubov transformations

acting on bosonic Gaussian states, e.g., see [49].
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in section 5.1 that the Nielsen and Fubini-Study approaches produced different optimal cir-

cuits for a fixed pair of reference and target states. We were able to show this analytically

for the simple geodesics where only one of a± is nonvanishing. However, even though the

optimal circuits are clearly different (see figure 8), a somewhat surprising result was that

the Fubini-Study complexity still matched the Nielsen complexity (measured with the F2

cost function) if we make the choice x0 = 1/ωR. It would be interesting to better under-

stand this agreement. Nevertheless, when we explored the geodesics for coherent states

with both a± nonvanishing, we found that the optimal circuits produced by the Nielsen

and Fubini-Study approaches were again different (see figure 9) and that the corresponding

complexities were also distinct.

Complexity for free scalar field. As we described in section 4.2, the complexity of

coherent states (or any state) in the free scalar field theory is UV divergent. However,

considering the difference ∆C = Ccoh − Cvac yields an interesting UV finite quantity. Hence

in the following, we focus on discussing this difference, i.e., the increase of the complexity of

the coherent state over the complexity of the vacuum state. However, we must add that as

explained with eq. (4.29), this difference vanishes for the F2 complexity. This same reason-

ing would apply for the complexity evaluated with the Schatten cost functions (3.19) with

p≥2. Further, this difference would also vanish for the Fubini-Study complexities if we were

to extend the result of section 5 to the quantum field theory. However, we can still consider

this difference when evaluating the complexity with F1 cost function, κ = 2 cost function

and the p = 1 Schatten norm, and as we will discuss below the QFT complexities produced

with these cost functions are most closely aligned with the result of holographic complexity.

If we only excite a single mode of the field theory, we can use the analytic results for

the simple geodesics found for the κ = 2 cost function or the p = 1 Schatten norm. That

is, eqs. (2.50) and (3.33) would produce ∆Cκ=2 and ∆CSchat for the full field theory with

w+, a+ corresponding to the frequency and shift of the excited mode. Similarly, eq. (3.15)

could be used to evaluate ∆C1 for a field theory state with a single excitation. In principle,

one could use numerical methods, e.g., as in section 2.4, to study the increase in complexity

for coherent states in which more than one mode is excited.

However, a simpler and more interesting situation is one where many modes are excited

in the coherent state but with small shifts, i.e., ak ≪ 1 for all of the modes. As we argued

in section 4.2 for these three cost functions, to leading order, the shift in the complexities

for each of the individual modes can be added together to produce

∆C1 ≃
∑

wk≤1

√
wk |ak|+

∑

wk≥1

|ak|

∆Cκ=2 ≃
∑

k

logwk

|wk − 1| wk a
2
k , ∆CSchat ≃

∑

k

wk a
2
k

|wk − 1| ,
(6.5)

where the sums run over the excited modes. We would like to stress that verifying these

results required a nontrivial analysis and relied on the special form of the simple trajectories

for the individual modes. Here we might recall the definitions of the dimensionless ratios
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from eq. (2.43)

wk =
ωk

δ ω2
R

and ak =
δd/2 〈φk〉

x0
(6.6)

where we have also substituted m = 1/δ (i.e., the inverse of the lattice spacing) and

ak = δd/2 〈φk〉 from the discussion of the lattice regularization of the scalar field theory at

the beginning of section 4. While the full dispersion relation for arbitrary modes is given

in eq. (4.5), we would typically only be interested in exciting low energy modes, i.e., with

ωk ≪ 1/δ, and so the dispersion relation would be well approximated by ω2
k = |~k|2 + µ2

(where µ is the mass of the scalar in eq. (4.1)). One interesting difference here is that

the leading contribution for the F1 complexity scales as ∆C1 ∝ |ak| while in the other two

cases, we have ∆C ∝ a2k. We return to this point below.

Another observation is that, at least with the κ = 2 and p = 1 Schatten metrics, the

appropriate expansion parameter is actually the combination

wk a
2
k =

δ
d−2
2

ω2
R x

2
0

ωk 〈φk〉2 . (6.7)

This is immediately obvious from examining eqs. (2.50) and (3.33) and seeing that the

shift only appears in this combination wka
2
k for the full nonlinear results for the cost of

the simple geodesics. A further comment is that if we make the choice x0 = 1/ωR, then

the above expression simplifies to wk a
2
k = δ

d−2
2 ωk 〈φk〉2, which is now only dependent on

physical parameters defining the state (and with δ, defining the quantum field theory).

This choice of identifying x0, the scale appearing in the shift gates, with ωR, the frequency

defining the reference state simplifies our complexity model in that with this choice, there

is a single (dimensionful) free parameter appearing in the definition of the complexity —

of course, there is still also the freedom in choosing the cost function. Recall that ωRx0 = 1

also appeared in section 5 where this choice ensured that the F2 complexity of the simple

geodesics matched the Fubini-Study complexity.

Examining eq. (6.5), we can see that generally ∆C increases as ωk increases (when

we begin with a small wk). However, we cannot rely on these expressions for very large

energies because we explained above the correct expansion parameter is the combination

of the frequency and amplitude given in eq. (6.7). Hence let us focus on coherent states

with a single excited mode, for which our full nonlinear results for the simple geodesics

apply, and consider the limit when wk becomes large with a fixed value of ak. Then using

eqs. (2.50), (3.15) and (3.33), we find that this limit yields

∆C1 = |ak| for |ak| < 2 , or log
a2k

4
+ 2 for |ak| > 2 , (6.8)

∆Cκ=2 = log
(

1 + a
2
k

)

log
((

1 + a
2
k

)

wk

)

+
a2k log

(

(1 + a2k)
2wk

)

(

1 + a2k

)2
wk

+O
(

logwk

w2
k

)

,

∆CSchat = log
(

1 + a
2
k

)

+
a2k

(1 + a2k)
2wk

+
a2k(2− a2k)

2(1 + a2k)
4w2

k

+O
(

1

w3
k

)

.

Hence we see that in fact with the F1 and the Schatten metrics, the increase in the com-

plexity saturates at some fixed value determined by ak at large energies. In contrast, the

κ = 2 complexity continues to grow logarithmically at very large energies.
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It is interesting to compare this behaviour to that of the complexity for excited states

in free fermion theories found in [42]. As discussed there, a broad class of states with

particle and antiparticle excitations remain Gaussian states and so their complexity is

easily computed using the same methods (i.e., the same gates) as were used to evaluate the

complexity of the vacuum state. In particular, the space of Gaussian fermionic states has

two disconnected components, i.e., states with odd and even particle number, where the

component with even particle number contains the vacuum. It is the excited states in this

component whose complexity was evaluated in [42]. The precise increase in the complexity

depends on the details of the excited state, but generally ∆C is finite and larger for lower

energy modes. For example, considering the class of states with n particle excitations and

n antiparticle excitations, but where the momenta of all of these excitations are different,

∆Cκ=2 = nπ2 −
∑

i

[

tan−1
(

|~ki|/µ
)]2

, (6.9)

∆CSchat = nπ −
∑

i

tan−1
(

|~ki|/µ
)

,

where µ is the fermion mass. For these states, we see that with the κ = 2 cost function,

∆Cκ=2 ≃ nπ2 if all of the excitations have low energy (i.e., |~ki| ≪ µ) whereas ∆Cκ=2 ≃
1
2 nπ

2 with all high energy excitations (i.e., |~ki| ≫ µ). Even more dramatically, p = 1

Schatten cost function yields ∆CSchat ≃ nπ if all |~ki| ≪ µ and ∆CSchat ≃ 0 if all |~ki| ≫ µ.

Hence the behaviour of the fermionic states (with even particle number) contrasts with

the bosonic coherent states above since for the latter, excitations in the higher momentum

modes generally produces a larger ∆C.
Let us conclude with a few comments on possible future extensions. One obvious

extension would be to consider more general coherent states with expectation values for

both the field modes and their conjugate momenta. As we commented before, this would

require extending the R
N
⋊GL(N,R) group structure found here to R

2N
⋊ Sp(2N,R). In

particular, this would allow us to follow the time evolution of the coherent states. An

obvious question would be to then to examine if the complexity increases, decreases or

remains constant as a coherent state evolves. Coherent states also provide an interesting

forum to compare to the QFT complexity with holographic complexity. Recall that the

leading divergences appearing in the QFT calculations of complexity compared well with

those appearing in holographic complexity (1.1) with an appropriate choice for the cost

function [1, 2]. The holographic analog of our coherent states would be a bulk configuration

where a bulk scalar has excited in the vacuum AdS spacetime. Here we observe that to

leading order, modification of the bulk geometry will be proportional to the square of

the scalar amplitude since the bulk scalar backreacts on the geometry through the stress

tensor in Einstein’s equations, which is quadratic in scalar field. Hence we expect that

the change in the holographic complexity must also be quadratic in the scalar amplitude,

which is in agreement with our results in eq. (6.5) for the κ = 2 and p = 1 Schatten cost

functions. However, the F1 cost function does not exhibit this behaviour. We plan to

return to this topic and make a detailed comparison between our results for the complexity

of QFT coherent states and holographic complexity in [74].
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