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Abstract: Quantum circuit complexity has played a central role in recent advances

in holography and many-body physics. Within quantum field theory, it has typically

been studied in a Lorentzian (real-time) framework. In a departure from standard

treatments, we aim to quantify the complexity of the Euclidean path integral. In this

setting, there is no clear separation between space and time, and the notion of unitary

evolution on a fixed Hilbert space no longer applies. As a proof of concept, we argue

that the pants decomposition provides a natural notion of circuit complexity within the

category of 2-dimensional bordisms and use it to formulate the circuit complexity of

states and operators in 2-dimensional topological quantum field theory. We comment

on analogies between our formalism and others in quantum mechanics, such as tensor

networks and second quantization.
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1 Introduction

The past decade has seen considerable interest in the relevance of quantum circuit com-

plexity1 to holography and quantum gravity. Following Harlow and Hayden’s proposed

complexity-theoretic resolution of the firewall paradox [1], this interest gained traction

with the proposal of potential holographic duals to the complexity of CFT states [2–6].

These developments have in turn motivated various attempts to understand complexity

in the context of quantum field theory [7–27], a markedly different setting than that of

the many-qubit systems in which complexity is usually discussed.

This paper represents another such attempt, albeit one that takes a rather different

approach to the problem. Rather than invoking a lattice regularization and reducing

the problem of complexity to one in quantum mechanics—or, indeed, referring to any

complexity measure on a space of unitaries at all—we take as our starting point the

axioms of quantum field theory.

It has long been known that a quantum field theory, depending on its assumed

symmetries, can be defined as a functor from an appropriate category of bordisms to

the category of Hilbert spaces.2 A bordism between (d−1)-dimensional closed manifolds

A and B is a d-dimensional compact manifold whose boundary is the disjoint union of

A and B. In d spacetime dimensions, the QFT functor (understood as evaluation of

the path integral) identifies (d − 1)-dimensional closed manifolds with Hilbert spaces

and d-dimensional bordisms with linear operators between Hilbert spaces in such a way

that gluing of bordisms goes to composition of linear maps. Such an axiomatization is

most well-established for topological and conformal field theories [28–31].

In this paper, we propose that a quantum field theory inherits a notion of complex-

ity for states and operators from one on its corresponding category of bordisms. The

latter form of complexity is determined by the geometry of the Euclidean path integral.3

1Quantum circuit complexity is roughly the number of basic quantum operations, or gates, needed

to construct a quantum operator or to prepare a quantum state from a simple reference state.
2A category is a mathematical structure that consists of objects (e.g., sets, groups, vector spaces)

along with “arrows” or maps between them (e.g., functions, homomorphisms, linear operators). A

functor is a homomorphism of categories. See Appendix A for details.
3Our perspective, while independent of holographic considerations, bears some conceptual similar-

ities to tensor network toy models of holography [32–40], in which the geometry of a spatial slice is

understood as a quantum circuit and thereby provides a natural notion of complexity for boundary

states.
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Our concrete implementation of this idea takes place in the setting of topological

quantum field theory (TQFT), the simplest class of QFT that can be described in func-

torial language. A d-dimensional TQFT is a functor from the category of d-dimensional

bordisms up to homeomorphism (called dCob) to the category of Hilbert spaces Hilb:

Z : dCob→ Hilb. (1.1)

Topological field theories circumvent the complications of infinite-dimensional Hilbert

spaces, and their axiomatization renders the path integral completely finite and unam-

biguous.

Our task is thus to formulate a definition of computational complexity in functorial

TQFT. To simplify this task, it is useful to narrow our attention to certain TQFTs for

which the basic principles of complexity can be made especially clear. In dimension d =

1, the limited structure of bordisms allows for no possibility of preparing a nontrivial

manifold of target states from any reference state (1D TQFTs are simply isomorphic to

finite-dimensional vector spaces). On the other hand, in dimensions d ≥ 3, the objects

of dCob are not finitely generated with respect to disjoint union, so a d-dimensional

TQFT requires an infinite amount of algebraic data to specify [41]. We are therefore

led to focus on the tractable and still interesting case of 2D TQFT [42, 43]. In d = 2,

bordisms allow for nontrivial propagation in spacetime, yet the category 2Cob admits

a presentation in terms of finitely many generators and relations.

In fact, the category 2Cob comes equipped with a natural notion of complex-

ity. Roughly speaking, any 2-dimensional bordism can be decomposed into disks and

pairs of pants, which provide a finite and exactly universal4 “gate set” on 2Cob. The

complexity of a given bordism follows from counting the minimum number of these

component surfaces needed to construct it.

Given that a 2D TQFT can be thought of as a functor from this category to that

of Hilbert spaces, our main claim is that complexity in 2Cob induces a useful notion

of complexity on the image of the TQFT functor in Hilb. We interpret the latter as a

quantum complexity in 2D TQFT.

The remainder of this paper is devoted to expounding this idea. It is structured

as follows. In Section 2, we start by reviewing various notions of quantum complexity

and adapting them to our context. In Section 3, we assemble the tools of functorial

TQFT that feature in our analysis, focusing on the classification of 2D TQFTs and

their equivalence to commutative Frobenius algebras. In Section 4, we develop the

4The set of elementary gates inherent in the definition of complexity should be universal in the

sense of enabling the construction of all gates or states of interest, whether exactly or to any desired

accuracy.
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idea of induced complexity in functorial TQFT. A key point is that the image of the

natural gate set of 2Cob under the TQFT functor does not generically allow for the

construction of arbitrary states. Indeed, one might (correctly) suspect that due to

the mismatch between the discrete infinity of topologies and the continuous infinity of

states, the TQFT path integral has no hope of populating the entire TQFT Hilbert

space. We instead focus on the class of semisimple 2D TQFTs, for which the path

integral allows for the construction of a continuous submanifold of states (which turns

out to be a torus) within the Hilbert space associated to an arbitrary spatial manifold.

In Section 5, we discuss interesting extensions of this point of view.

Two appendices contain some useful background material. In Appendix A, we

provide a self-contained review of the relevant elements of category theory. In Appendix

B, we summarize the classification of “two-level” 2D TQFTs (2D TQFTs with 2D

Hilbert space on a circle), which serve as examples throughout this paper.

2 Complexity

Before studying complexity in specific physical systems, we establish some key concepts

by discussing complexity in groups and in categories. The idea of complexity in these

two mathematical settings closely mirrors that in quantum mechanics and quantum

field theory, respectively. In all of these contexts, we distinguish between two types of

circuit complexity: operator complexity and state complexity.

2.1 Groups

Let G be a group. Any generating set S ⊂ G (possibly infinite) can be said to form a

universal gate set on G in the sense that any element g ∈ G admits a decomposition

into a finite product or circuit g = s1 · · · sk, where si ∈ S. We define the size of such

a circuit to be the number of generators k appearing therein, and we define the circuit

complexity C(g) to be the smallest size of any circuit that evaluates to g. We further

define the complexity of g relative to a reference group element g0 as C(g, g0) ≡ C(gg−10 ).

Assuming that S is closed under inverse (S = S−1), the relative complexity C(g, h) for

g, h ∈ G defines a metric on G—the “word metric” with respect to S [44].

In practice, we wish to restrict to finite S, which leads us to distinguish the notions

of exact and approximate universality. If G is finitely generated, then every g ∈ G

can be prepared exactly by a finite-size circuit drawn from a finite S. Otherwise,

we call a finite gate set S ⊂ G universal up to the tolerance ε if any g ∈ G can be

prepared to within a given tolerance ε > 0 by a circuit constructed from si ∈ S. More

precisely, we equip G with a metric d(·, ·) and say that a circuit of size k prepares g if

d(g, s1 · · · sk) ≤ ε. We denote the corresponding circuit complexity by Cε(g).

– 4 –



Now let X be a set equipped with a transitive group action by G. We can define

the state complexity of any x ∈ X relative to some reference x0 ∈ X as the minimum

circuit complexity of any group element g for which x = gx0. In other words, operator

complexity in G induces state complexity in X. If the group action is not transitive,

then only elements in the orbit of x0 have a sensible complexity. This definition can be

extended to accommodate approximate universality on both G and X.

2.2 Categories

Categories are structures with both objects and morphisms. Operator complexity in

this case is tantamount to “morphism complexity,” which is analogous to circuit com-

plexity on a group. Setting aside issues of universality and tolerance, it is defined as

the minimum number of appropriately chosen “elementary morphisms” needed to con-

struct a given morphism by composition. On the other hand, state complexity assigns

a complexity to every state, given a reference state. This is analogous to complexity

on a space that carries a group action.

To make sense of the latter notion, we must first define a “state” in the categorical

setting. This is easy to do for a monoidal category (see Appendix A), which in partic-

ular has a distinguished unit object. Given any object x, we may define a state as a

morphism 1→ x where 1 is the unit object. If we fix a reference state r : 1→ x, then

we can obtain another state f : 1→ y by composing with a morphism O : x→ y, and

we can identify the state complexity of f as the minimum operator complexity over all

O’s (as morphisms) such that O ◦ r = f . By choosing x = y, we restrict to only those

states “belonging to” the object x.

Note that state complexity, as we have defined it, is not synonymous with “object

complexity” in the sense of the minimum number of elementary morphisms needed to

go between a reference object x and a target object y. Object complexity is coarser

than state complexity because every object can be associated with a multitude of states.

However, object and state complexity would coincide if we were to instead define a state

as a morphism I → x where I is an initial object of the category.5

While the above definitions may seem abstract, their motivation is decidedly non-

esoteric. Consider the example of classical computation. A classical circuit implements

a function from n bits to m bits, and its circuit complexity is defined with respect to

a universal gate set (e.g., the singleton set {NAND}). Not only are such functions

generally not invertible, but they generally do not even have the same domain and

5An initial object I in a category is an object such that for every object x, there is precisely one

morphism I → x.
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codomain. The case of classical circuit complexity makes clear that complexity is not

a notion restricted to groups.6

Rather, we may regard classical circuit complexity as being defined on a category

where each object is the set of all n-bit strings {0, 1}n for some n ≥ 0, and where the

morphisms are set functions. This category has a symmetric monoidal structure with

respect to Cartesian product (element-wise concatenation), where the unit object is

the set consisting of the empty string. We may then take certain of these set functions

to be gates, circuits to be compositions of gates, and the complexity of an arbitrary

function to be the minimum number of gates which must be composed to build that

function. Note that a logic gate in the conventional sense (e.g., a Boolean function

{0, 1}2 → {0, 1} or {0, 1} → {0, 1}) actually gives rise to an infinite family of gates in

the categorical sense, each coming from starting with a different number of bits and

then choosing a particular subset of those bits as input to the logic gate.

Returning to physics, our primary interest will lie in the monoidal categories 2Cob

(where the unit object with respect to disjoint union is the empty set) and Hilb (where

the unit object with respect to tensor product is C). Our definition of state complexity

makes as much sense for 2Cob as for Hilb, but is richer in Hilb due to the far greater

variety of reference states and target states.

2.3 Quantum Mechanics

The usual notion of quantum complexity corresponds to the case of the unitary group

U(H) acting on a Hilbert space H.7 There are thus two distinct formulations of com-

plexity in quantum computing: circuit complexity for unitary transformations and state

complexity for quantum states [45]. Since U(H) is not finitely generated, a tolerance ε

is assumed:

• The complexity of an operator O is the smallest number of gates in any circuit

Q such that |O −Q| ≤ ε, where we can take | · | to be the operator norm.

• The complexity of a state |ψ〉 relative to a reference state |r〉 is the minimum

complexity of any unitary U such that U |r〉 = |ψ〉.

The definition of quantum circuit complexity suffers from a number of ambiguities

involving the choice of universal quantum gate set, the choice of tolerance parameter,

and (in the case of state complexity) the choice of reference state.

6Reversible classical computation, however, corresponds to the case of the permutation group on

2n elements acting on the set of all n-bit strings [44].
7It is physically more appropriate to say that the action is on the projective Hilbert space P(H).

When we discuss TQFT, we will switch between H and P(H), but note that physics only distinguishes

between states in the latter.

– 6 –



Again, note that the word “gate” as used in the definitions above does not quite

correspond to a gate in the conventional sense. For instance, the CNOT gate of quan-

tum computing does not correspond to a single operator on the Hilbert space of n

qubits, but rather to n(n − 1) different operators, obtained by applying CNOT to

specific qubits in all possible ways. In the above definitions, each of these n(n − 1)

operators must be included as a separate gate.

The notion of complexity that we will employ in this work is discrete, in contrast

to the continuous “complexity geometry” approach that relies on a metric on the space

of unitary operators on the relevant Hilbert space [46–48]. Hence “universality” will

always refer to the constructibility of unitaries or the ability to prepare arbitrary states

to a given accuracy.

2.4 Quantum Field Theory

It is not immediately clear how to extend complexity to a continuum field theory. For

instance, what should we take as the reference state in a field theory setting, and how

should we choose a set of elementary gates to ensure universality? The interest in

holographic complexity has spurred much initial work on answering these questions:

definitions of circuit complexity in QFT have been proposed for abelian gauge theory

[7, 26, 27], free scalar field theory [8, 9, 12, 14, 15], free fermionic field theory [10, 11],

interacting scalar field theory [13], 2D CFT [16–21], higher-dimensional CFT [22, 23],

and Chern-Simons theory [24, 25]. In general, however, these efforts have not identified

a universal gate set in their particular settings. For instance, discussions of free field

theory and 2D CFT tend to focus on non-universal gate sets (e.g., “symmetry gates”)

that relate only Gaussian states and states in the same Verma module, respectively.

More broadly, previous treatments of circuit complexity in QFT have focused on

unitary time evolution on a fixed spatial geometry.8 One crucial point missing from

these discussions is that while QFT can be formulated in Lorentzian signature on space-

time manifolds of the form “space × time,” it can also be formulated in Euclidean

signature on spacetimes of arbitrary topology. This leads to possibilities beyond the

Hamiltonian evolution familiar from quantum mechanics, and is responsible for much

of the richness of QFT. In this paper, we address questions of state preparation and

complexity in the context of the Euclidean path integral. Our central point is that

topology change in the Euclidean path integral can have nontrivial computational ef-

8Notable exceptions include the “path integral optimization” of [35–37] as well as the definition

of relative complexity for holographic CFT states proposed in [49, 50]. The latter is based on the

distance between coherent states prepared by the Euclidean path integral with sources for single-trace

operators. These Euclidean methods rely on continuous cost or distance functionals, unlike ours.
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Figure 1: A bordism representing a map H⊗pS1 → H⊗qS1 in a 2D TQFT.

fects, particularly via the implementation of inherently non-unitary transformations.

These effects are intrinsic to QFT and absent from quantum mechanics.

This point is especially stark in the context of TQFT, where the only nontrivial

amplitudes arise from topology change. Our definition of complexity in 2D TQFT, to

be made more precise later on, goes roughly as follows. Let HS1 denote the Hilbert

space on S1. Consider states |ψp〉 ∈ H⊗pS1 and |ψq〉 ∈ H⊗qS1 , prepared by path integrals on

oriented surfaces with p and q outward-oriented circle boundaries, respectively. Con-

sider further an oriented bordism from p “in-circles” to q “out-circles” composed of

some network of tubes and handles, as shown in Figure 1 (we also allow for the pos-

sibility of multiple connected components). Finally, consider composing this bordism

with |ψp〉 to obtain a state
∣∣ψ′q〉 ∈ H⊗qS1 . Then topological circuit complexity should

quantify the simplest bordism needed to approximate |ψq〉 by
∣∣ψ′q〉, starting from a

given |ψp〉. If our topological “gate set” is non-universal, then it may not be possible

to achieve this approximation to arbitrary accuracy.

It is convenient to consider bordisms with only out-boundaries (p = 0). This setup

allows for various choices of reference state. For example, one could take as a reference

the state corresponding to q copies of the disk, each viewed as a bordism from ∅ to S1.

An arbitrary state, viewed as a bordism from ∅ to (S1)q, could then be constructed

as the composition of a bordism from (S1)q to (S1)q with this reference state. This

perspective has the advantage of operating within a fixed Hilbert space, namely H⊗qS1 .

However, we emphasize that the choice of reference state is not essential to our

complexity-theoretic considerations. Physically, it makes sense to consider arbitrary
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reference states because any state in the TQFT Hilbert space can be evolved according

to the TQFT dynamics, even if the preparation of the state is external to the TQFT.

Indeed, most states lie outside the image of the TQFT functor and thus cannot be

represented in path integral language as bordisms from the empty set.

Our definition of complexity in TQFT differs fundamentally from the usual defini-

tion of quantum circuit complexity (which concerns unitary transformations between

states in a fixed Hilbert space) in that the linear maps associated to bordisms are typ-

ically not invertible or unitary.9 The irreversible nature of topological gates resembles

that of classical logic gates. This is a manifestation of the fact that, unlike in quantum

mechanics, the Hilbert space is not fixed at all intermediate (Euclidean) times. Since

time evolution along the cylinder is trivial (the Hamiltonian vanishes in a TQFT),

our construction quantifies precisely those aspects of complexity that are intrinsic to

topology change.

3 Functorial TQFT

We now introduce the functorial language in which the ideas of the previous section

can be made precise. We provide only the barest introduction to the formalism, leaving

additional details to Appendix A. Throughout, we work over C, and we assume smooth

manifolds with boundary.

3.1 Generalities

Following Atiyah [28], a d-dimensional TQFT Z is a “rule” that assigns a vector space

Z(Σ) (state space) to every closed, oriented (d− 1)-dimensional manifold Σd−1 (spatial

slice) and a linear map Z(M) : Z(Σin) → Z(Σout) (time evolution operator) to every

oriented d-dimensional bordism Md with boundary ∂M = ΣintΣout (spacetime). This

rule satisfies several physically motivated axioms, as encapsulated by the following

definition:

A d-dimensional TQFT is a symmetric monoidal functor Z from the cate-

gory dCob of d-dimensional bordisms to the category VectC of vector spaces

over C, or equivalently, a linear representation of dCob.

(This definition makes no reference to an inner product, so we phrase it in terms of

VectC rather than the category of Hilbert spaces Hilb.)

9Early investigations of the computational power of TQFT [51, 52] were also restricted to unitary

transformations on a fixed Hilbert space, or the strictly “2D part” of a unitary 3D TQFT (formalized

as a unitary topological modular functor). We, by contrast, consider arbitrary bordisms.
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In physical terms, the path integral on a closed manifold computes a linear map

C → C (the partition function), while the path integral on a manifold with outward-

oriented boundary prepares a boundary state (interpreted as a linear map fromH(∅) =

C to the boundary Hilbert space). Such boundary states are wavefunctionals of bound-

ary field configurations—fixing boundary conditions for the fields yields the state eval-

uated at a particular point in field space. A choice of boundary conditions is a choice

of basis for the boundary Hilbert space.

As a special case, a unitary TQFT is a symmetric monoidal functor Z from dCob

to Hilb that satisfies Z(M) = Z(M)†, where bar denotes orientation reversal and

dagger denotes adjoint [53, 54]. Note that the axiomatic definition of a “unitary” (or

more precisely, reflection-positive) TQFT is broader than the Hamiltonian definition

of unitarity in Lorentzian signature. Indeed, axiomatic TQFTs can be thought of as

formulated in Euclidean signature (imaginary time), where the linear operators asso-

ciated to bordisms are not generally unitary and therefore act on projective Hilbert

space. The Lorentzian notion of unitarity applies in the absence of topology change.

It will be important for us that there exists a direct sum construction of TQFTs [53].

Given two d-dimensional TQFTs Z ′ and Z ′′, their direct sum Z = Z ′ ⊕ Z ′′ associates

to any connected Σ the vector space Z(Σ) ≡ Z ′(Σ)⊕ Z ′′(Σ), and to any connected M

the linear map Z(M) ≡ Z ′(M) ⊕ Z ′′(M). The map extends to disconnected (Σ,M)

via tensor products.

3.2 2D TQFT

A 2-dimensional (2D) TQFT is a symmetric monoidal functor from 2Cob to VectC.

2Cob is the monoidal category of oriented bordisms in 2D. Its objects are closed,

oriented 1-manifolds (disjoint unions of circles). A morphism from Σ to Σ′ is an ori-

ented 2-manifold whose in-boundary is Σ and whose out-boundary is Σ′ (depending on

whether the positive normal vector points inward or outward). Two bordisms are re-

garded as equivalent (∼=) if they are related by an orientation-preserving diffeomorphism

relative to the boundary.10

3.2.1 Frobenius Algebras

It is well-known that every 2D TQFT is uniquely specified by a commutative Frobe-

nius algebra. In particular, a unitary 2D TQFT is a commutative H∗-algebra, also

called a C∗-Frobenius algebra [54]. (See [43] for a review and historical account of this

equivalence, and [41, 42] for modern reviews of low-dimensional TQFT.)

10Since two smooth surfaces are diffeomorphic if and only if they are homeomorphic, we use home-

omorphism from now on; moreover, every topological surface admits a smooth structure.
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(a) Cup (b) Cap (c) Cylinder (d) Pants (e) Copants (f) Swap

Figure 2: The generators of all bordisms in d = 2.

∼= ∼= ∼=

(a) Associative unital multiplication

∼= ∼= ∼=

(b) Coassociative counital comultiplication

∼= ∼=

(c) Frobenius identity

∼= ∼=

(d) (Co)commutativity

Figure 3: The equivalence relations of 2Cob. Under the TQFT functor, these become

the defining relations of a commutative Frobenius algebra on the Hilbert space of the

TQFT on a circle.

This algebraic interpretation proceeds as follows. The key simplification in d = 2 is

that the category 2Cob admits a description in terms of generators and relations, since

surfaces can be completely classified. Namely, any 2-bordism can be decomposed in

terms of a finite set of simple bordisms that generate all other bordisms by composition.

The generators of 2Cob are shown in Figure 2—we refer to them as the cup, cap,

cylinder, pants, copants, and swap. A 2D TQFT is completely determined by specifying

the linear maps that it associates to the bordisms in this generating set.

Since bordisms are regarded as equivalent up to homeomorphism, these generators
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Bordism Z(Bordism) Algebraic Operation

cylinder idHS1 : HS1 → HS1 identity

cup η : C→ HS1 unit

cap ε : HS1 → C counit

pants µ : HS1 ⊗HS1 → HS1 multiplication

copants δ : HS1 → HS1 ⊗HS1 comultiplication

swap τ : HS1 ⊗HS1 → HS1 ⊗HS1 swap

Table 1: Elementary bordisms in 2Cob, their images under the TQFT functor Z,

and their Frobenius algebra interpretation. The swap operator is the isomorphism of

2-party Hilbert spaces that takes |i〉 ⊗ |j〉 7→ |j〉 ⊗ |i〉. A unitary 2D TQFT is one for

which ε = η† and δ = µ†.

obey various relations. The relations in 2Cob are summarized in Figure 3. In anticipa-

tion of their algebraic nature, we refer to these relations as the (co)unit relations (Fig-

ures 3a and 3b, right), (co)associativity (Figures 3a and 3b, left), (co)commutativity

(Figure 3d), and the Frobenius identity (Figure 3c).11 For brevity, we omit relations

that involve sewing cylinders onto the other generators, as well as relations between

disconnected bordisms involving swaps [43].

We list the images of the generators in 2Cob under the TQFT functor in Table 1.

The complex vector space HS1 is said to be a Frobenius algebra over C if there exist

linear maps as listed in Table 1 that satisfy the following relations:

(1) associative unital multiplication:

µ ◦ (idHS1 ⊗ µ) = µ ◦ (µ⊗ idHS1 ), (3.1)

µ ◦ (idHS1 ⊗ η) = idHS1 = µ ◦ (η ⊗ idHS1 ), (3.2)

(2) coassociative counital comultiplication:

(idHS1 ⊗ δ) ◦ δ = (δ ⊗ idHS1 ) ◦ δ, (3.3)

(idHS1 ⊗ ε) ◦ δ = idHS1 = (ε⊗ idHS1 ) ◦ δ, (3.4)

(3) Frobenius identity :

(µ⊗ idHS1 ) ◦ (idHS1 ⊗ δ) = δ ◦ µ = (idHS1 ⊗ µ) ◦ (δ ⊗ idHS1 ). (3.5)
11These relations are not minimal—the Frobenius and (co)unit relations imply the (co)associativity

relations [43].
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HS1 is a commutative Frobenius algebra if, in addition to the above, we have

µ ◦ τ = µ. (3.6)

A commutative Frobenius algebra is automatically cocommutative (τ ◦ δ = δ) [43]. In

light of the relations in 2Cob (Figure 3), we see that a 2D TQFT imbues its S1 Hilbert

space HS1 with the structure of a commutative Frobenius algebra.

It is useful to have a more economical definition of a Frobenius algebra. To that

end, let A be a finite-dimensional algebra over C. Recall that any linear functional

ε : A → C canonically determines an associative bilinear form σ : A × A → C (via

σ(x, y) = ε(xy)) and vice versa (via ε(x) = σ(1A, x) = σ(x, 1A)), where associativity

means σ(xa, y) = σ(x, ay). Then:

A Frobenius algebra is a finite-dimensional C-algebra A equipped with a lin-

ear functional ε (the counit) such that the corresponding associative bilinear

form σ (the Frobenius form) is nondegenerate.12

In terms of the associated linear map σ : A⊗A→ C, the Frobenius form is defined as

σ = ε ◦ µ, (3.7)

where µ : A⊗ A→ A is the multiplication operation on A. The nondegeneracy of the

Frobenius form guarantees the existence of a dual coform γ : C→ A⊗A, which allows

one to construct the comultiplication operation as δ = (idA ⊗ µ) ◦ (γ(1)⊗ idA).

In 2D TQFT, HS1 has the structure of a commutative, associative algebra with

multiplication given by the pair-of-pants operation in the path integral. Specifying a

counit (cap) further yields a nondegenerate bilinear form σ : HS1 ⊗HS1 → C, or “U-

tube” (pants composed with cap operation). This givesHS1 the structure of a Frobenius

algebra, which is moreover commutative. When we writeHS1 = A where A is an algebra

over C, we mean that HS1
∼= A as a C-vector space and that the corresponding 2D

TQFT is defined by the Frobenius algebra obtained from A by specifying a counit (or

equivalently, a Frobenius form).

3.2.2 Classification

A basic observation is that Frobenius structures are compatible with direct sum. Given

two Frobenius algebras (A′, ε′) and (A′′, ε′′), their direct sum (A, ε) is defined by A =

A′ ⊕ A′′ and ε : a′ ⊕ a′′ 7→ ε′(a′) + ε′′(a′′), where nondegeneracy of ε′ and ε′′ implies

12The terminology for ε comes from an alternative characterization of a Frobenius algebra as an

algebra that is simultaneously a coalgebra, with a compatibility condition between multiplication and

comultiplication given by the Frobenius identity.
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nondegeneracy of ε. For 2D TQFTs, the direct sum operation of [53] corresponds

simply to the direct sum of Frobenius algebras [54].

Any 2D TQFT can be written as a direct sum of two types of theories: nilpotent

and semisimple. We define them as follows [54].

For each nonzero z ∈ C, let Sz denote the Frobenius algebra C with ε being

multiplication by z−1. Each Sz furnishes a distinct 2D TQFT with 1D Hilbert space on

S1. Any indecomposable commutative Frobenius algebra with no nilpotent elements

is isomorphic to Sz for some z, and we call such a 2D TQFT simple. On the other

hand, we call a 2D TQFT nilpotent if, as a commutative Frobenius algebra, it is

indecomposable and contains at least one nilpotent element (see [54] for details of their

characterization).13 Then we have the following basic classification result:

Every 2D TQFT is a direct sum of simple and nilpotent theories.

In particular, every indecomposable commutative H∗-algebra takes the form Sλ for

some positive real λ, and every unitary 2D TQFT can be written as a direct sum of

such theories Sλ [53].

We refer to a direct sum of simple TQFTs as semisimple; such theories will be our

primary focus. Semisimple 2D TQFTs are precisely those in which the handle operator

µ ◦ δ : HS1 → HS1 (3.8)

(the linear operator corresponding to composition of pants with copants) is diagonaliz-

able. In a unitary 2D TQFT, the handle operator is diagonalizable by virtue of being

Hermitian [53].

All 2D TQFTs with 2D Hilbert space on a circle may be classified up to isomor-

phism [55], as we review in Appendix B. There, we give explicit representations of the

linear maps in Table 1 in all possible cases.

4 Induced Complexity in TQFT

We now define complexity in the context of functorial 2D TQFT. Our main claim is

that there exists a simple and natural notion of complexity on 2Cob arising from the

pants decomposition, and that this definition of complexity induces one on Hilb via

the TQFT functor. In physical terms, the complexity of the background topology for

the TQFT path integral should determine the complexity of the corresponding states

13Nilpotent 2D TQFTs satisfy the property that any bordism of genus two or higher corresponds

to the zero operator on the appropriate space [54].
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in the TQFT Hilbert space and that of the linear maps that prepare them from some

reference state.

However, this näıve definition of complexity is clearly deficient. The TQFT functor

from 2Cob to Hilb need not be surjective: in general, not all linear maps between

Hilbert spaces can be realized as the image of some bordism. Moreover, the set of

linear maps that can be realized in this way need not be universal. Put another way,

the TQFT path integral generally cannot prepare a set of states that is anywhere

near dense in the boundary Hilbert space. Therefore, despite that 2Cob contains a

universal set of elementary gates (morphisms), the image of this universal gate set

under the TQFT functor is not universal for Hilb. This would seem to be a major

obstacle to defining induced operator and state complexity on Hilb.

We will partially surmount these difficulties by showing that in semisimple 2D

TQFTs, the TQFT functor induces a “weak” form of universality on Hilb, thereby re-

alizing a one-to-one correspondence between bordism complexity and state complexity

for a specific class of states.

4.1 Categorical Definition

We first define complexity in 2Cob. This is a relatively simple task because the mor-

phisms of 2Cob are finitely generated by the bordisms in Figure 2, which comprise an

exactly universal gate set. The complexity of a given 2-bordism is then the minimum

number of elementary gates required to build it.

In fact, for a generic bordism, we may ignore the cup, cap, cylinder, and swap gen-

erators altogether and simply quantify the circuit complexity using the pants decom-

position. Namely, the number of pairs of pants into which we may divide a connected

bordism of genus g with m boundary components is

# pants = 2g − 2 +m = −χ(g,m), (4.1)

where χ(g,m) is the Euler characteristic.14 (Our usage of the word “pants” here ignores

orientation, and hence includes both the pants and copants generators in Figures 2d

and 2e, respectively.)

To phrase this definition of complexity in a way that will be more useful when

passing to Hilb, we recall some facts about surfaces. Two connected, compact, oriented

surfaces with oriented boundary are homeomorphic if and only if they have the same

14This formula holds for a connected surface with negative Euler characteristic, i.e., one for which

a pants decomposition exists. On such a surface, the maximum number of simple closed curves that

are disjoint, homotopically distinct, and homotopic to neither a point nor a boundary component is

3g − 3 +m, and a collection of such curves cuts the surface into 2g − 2 +m pairs of pants [56].
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genus and the same number of in- and out-boundaries. Moreover, the only invertible

2-bordisms are the permutation bordisms built solely from cylinders and swaps, since

the genus is additive under composition of bordisms. Every connected 2-bordism can

be expressed as a composition and disjoint union of the five non-swap generators. Every

2-bordism (possibly disconnected) factors as a disjoint union of connected 2-bordisms,

preceded and followed by permutation bordisms. We focus on connected bordisms for

simplicity.

We now introduce the normal form [43] of a connected bordism, as sketched in

Figure 1. This is a canonical decomposition into generators in which the surface “fans

in” to a single S1 from the in-boundaries, decomposes into a sequence of handles, and

then “fans out” to the out-boundaries. If there are no in- or out-boundaries, then the

in- or out-part is a cup or a cap. Algebraically, this decomposition entails writing the

linear map corresponding to an arbitrary connected bordism from (S1)p to (S1)q as

Op,qg = ∆q ◦ (µ ◦ δ)g ◦Mp, (4.2)

where Mp : H⊗pS1 → HS1 denotes p-fold multiplication, ∆q : HS1 → H⊗qS1 denotes q-fold

comultiplication, and µ ◦ δ : HS1 → HS1 is the handle operator. We define M0 = η and

∆0 = ε, as well as M1 = ∆1 = idHS1 . For p, q ≥ 1, we define Mp and ∆q recursively by

Mp+1 = Mp ◦ (µ⊗ idHS1 ⊗ · · · ⊗ idHS1 )︸ ︷︷ ︸
p factors

, (4.3)

∆q+1 = (idHS1 ⊗ · · · ⊗ idHS1 ⊗ δ)︸ ︷︷ ︸
q factors

◦∆q. (4.4)

Of course, we could simply define the complexity of the linear operator Op,qg in Hilb

to be the complexity of its preimage in 2Cob according to (4.1), regardless of whether

we present the corresponding bordism in normal form:15

C(Op,qg ) = 2g − 2 + p+ q. (4.5)

But the essential point of normal form is that for fixed p, q, the complexity of a con-

nected bordism from (S1)p to (S1)q is determined solely by the genus g (the operations

of fanning in or out incur only a constant overhead). In this sense, the only computa-

tionally useful gate in 2Cob is the handle bordism from S1 to S1 (which is a composite

of two of the generators in Figure 2), and likewise, the handle operator µ ◦ δ should

be regarded as the only elementary gate in Hilb for the purposes of complexity in 2D

15Again, this formula holds up to edge cases (small g, p, q) because it assumes that the bordism can

be decomposed solely into (co)pants. It fails when g = 0 and p+ q ≤ 2, or g = 1 and (p, q) = (0, 0).
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TQFT. The complexity of a morphism in Hilb that lies in the image of the TQFT

functor is then determined by the number of occurrences of this operator.

To illustrate these considerations, we next compute the 1-party states attainable

from the TQFT path integral in two example theories, as well as their corresponding

complexities. For state complexity in Hilb, we choose as our reference state the image

of the cup η(1), which is the simplest state that can be constructed directly from the

TQFT path integral.

4.1.1 Nilpotent Example: C[x]/(xn)

The prototypical example of a nilpotent 2D TQFT has HS1
∼= C[x]/(xn) (n > 1), with

counit xn−1 7→ 1 and xi 7→ 0 for i < n− 1 [42, 43].

We denote the basis states xi in Dirac notation by

|i〉 , i = 0, . . . , n− 1. (4.6)

This vector space has the structure of a commutative Frobenius algebra with unit,

counit, multiplication, and comultiplication defined as

η(1) = |0〉 , µ(|i〉 ⊗ |j〉) = δi+j<n |i+ j〉 , (4.7)

ε(|i〉) = δi,n−1, δ(|i〉) =
∑n−1

j=i |n− 1 + i− j〉 ⊗ |j〉 , (4.8)

where we have introduced a generalized Kronecker delta function:

δP ≡

{
1 if P is true,

0 if P is false.
(4.9)

The generalized p-fold multiplication map Mp : H⊗pS1 → HS1 (p ≥ 2) is

Mp(|i1〉 ⊗ · · · ⊗ |ip〉) = δ∑p
k=1 ik<n

|
∑p

k=1 ik〉 , (4.10)

and the generalized q-fold comultiplication map ∆q : HS1 → H⊗qS1 (q ≥ 2) is

∆q(|i〉) =
n−1∑
j1=0

n−1∑
j2=j1

· · ·
n−1∑

jq=jq−1

δi,j1 |n− 1 + j1 − j2〉 ⊗ · · ·
⊗ |n− 1 + jq−1 − jq〉 ⊗ |jq〉 .

(4.11)

To a closed, connected surface of genus g, this TQFT associates the invariant dimHS1 =

n if g = 1 and 0 otherwise, as can be seen from the nilpotence of the corresponding

handle operator.

To examine state complexity, we must know which states can be constructed from

the TQFT path integral. We first determine the states that can be prepared in HS1
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via the path integral on connected surfaces with S1 boundary. The unit itself allows

us to construct |0〉. Using (4.7) and (4.8), we find that

O1,1
g (|0〉) = (µ ◦ δ)g(|0〉) =


|0〉 if g = 0,

n |n− 1〉 if g = 1,

0 if g ≥ 2.

(4.12)

Similarly, the states that can be prepared in H⊗qS1 using the TQFT path integral on

connected surfaces with (S1)q boundary are the following:

O1,q≥2
g (|0〉) = ∆q ◦ (µ ◦ δ)g(|0〉) =


∆q(|0〉) if g = 0,

n |n− 1〉⊗q if g = 1,

0 if g ≥ 2.

(4.13)

Acting on |0〉 with an operator O1,q
g for which g = 0 and q ≥ 2 produces entangled

q-party states. Restricting our attention to the accessible 1-party states in HS1 , all of

which may be prepared by connected bordisms, we conclude that only the basis states

|0〉 and |n− 1〉 have finite complexity. That is, the state complexity of a 1-party state

|ψ〉 with respect to the reference |0〉 (as measured by the pants decomposition of the

bordism that prepares it) is

C|0〉(|ψ〉) =


0 if |ψ〉 ∼ |0〉,
2 if |ψ〉 ∼ |n− 1〉,
∞ otherwise.

(4.14)

Above, ∼ denotes equivalence in the projective Hilbert space P(HS1) ∼= CPn−1. These

complexities are a manifestation of the generic lack of universality in 2D TQFT.

4.1.2 Semisimple Example: C[x]/(xn − 1)

The prototypical example of a semisimple 2D TQFT has HS1
∼= C[x]/(xn − 1) (the

group algebra of Zn), with counit 1 7→ 1 and xi 7→ 0 for i > 0 [42, 43].

Again, we denote the basis states xi by |i〉 with i = 0, . . . , n− 1. The unit, counit,

multiplication, and comultiplication are given by

η(1) = 0, µ(|i〉 ⊗ |j〉) = |(i+ j) mod n〉 , (4.15)

ε(|i〉) = δi,0, δ(|i〉) =
∑n−1

j=0 |(i− j) mod n〉 ⊗ |j〉 , (4.16)

while p-fold multiplication and q-fold comultiplication (for p, q ≥ 2) take the form

Mp(|i1〉 ⊗ · · · ⊗ |ip〉) = |(
∑p

k=1 ik) mod n〉 , (4.17)
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∆q(|i〉) =
n−1∑

j1,...,jq=0

δi,j1 |(j1 − j2) mod n〉 ⊗ · · · ⊗ |(jq−1 − jq) mod n〉 ⊗ |jq〉 . (4.18)

In this case, the handle operator is simply multiplication by n, so this TQFT associates

to a closed, connected surface of genus g the invariant ng.

The states that can be prepared from the reference |0〉 via connected bordisms take

the form

(µ ◦ δ)g(|0〉) = ng |0〉 , O1,q≥2
g (|0〉) = ng∆q(|0〉), (4.19)

where the q-party states are entangled for any g. The prefactor of ng is irrelevant in

the projective Hilbert space, so the only accessible 1-party state in this example is |0〉,
with complexity 0.

4.2 Universality

The 2D TQFTs considered above lack even approximate universality on 1-party states,

and more generally on Hilb, despite the presence of an exactly universal gate set in

2Cob. These examples highlight that the universality of the generators in 2Cob fails

to be preserved under the TQFT functor.

Without universality, complexity as a descriptor lacks any nuance. We would say

that non-constructible circuits and states have infinite complexity. To develop a good

notion of complexity for TQFT, we ask: which 2D TQFTs, if any, allow for a positive-

dimensional manifold of (approximately) constructible states? In this scenario, there

would exist states with arbitrarily large but finite complexities.

This question has a simple answer: even though the TQFT path integral is gener-

ically non-universal, for certain TQFTs in which the handle operator has multiple

(nonzero) eigenvalues of largest norm, the path integral is capable of preparing to ar-

bitrary accuracy all states in a toroidal submanifold of Hilbert space. For states in

this submanifold, the complexity of state preparation is meaningful and correlates pre-

cisely with the topological complexity of the path integral (either a minimum number

of handles or a minimum number of pairs of pants).

To illustrate, consider a 2D TQFT with dimHS1 = n, and suppose that the handle

operator H ≡ µ ◦ δ may be diagonalized into the form

H = diag(eiφ0 , . . . , eiφn−1), φi ∈ R, (4.20)

up to an overall factor. In this case, all of the eigenvalues have equal magnitude. Let

(c0, . . . , cn−1) denote the coefficients of a generic reference state |ψ0〉 in the eigenbasis

of H (ci ∈ C). Using obvious shorthand, applying the handle operator g times prepares

the state

Hg |ψ0〉 = (c0e
igφ0 , . . . , cn−1e

igφn−1). (4.21)
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For generic phases φi (meaning incommensurate, irrational multiples of 2π), there exists

some g for which Hg |ψ0〉 approximates any target state of the form

(c0e
iθ0 , . . . , cn−1e

iθn−1), θi ∈ R (4.22)

to within any tolerance ε. Universality for this subset of states is guaranteed by the

ergodicity of irrational rotations, and the complexity reflects the hitting time for an

interval corresponding to an ε-ball around the target state.

Since the overall phase is irrelevant, the set of states that can be prepared exactly

is dense in a real (n− 1)-dimensional torus Tn−1 inside the projective 1-party Hilbert

space P(HS1) ∼= CPn−1, parametrized by n − 1 independent phase angles. This torus

has half the dimension of the projective Hilbert space.

There are various special cases that one could consider. If one of the phases φi is

a rational multiple of 2π for some reduced fraction p/q, then universality persists as

long as we choose the tolerance sufficiently large relative to 1/q. Moreover, one can

start with a state where one of the amplitudes ci is zero, leading us to access a torus of

dimension less than n− 1. Something similar happens if at least one pair of the phases

is commensurate.

The above discussion concerns 1-party states. Restricting to reference states that

can be prepared by the TQFT path integral, this discussion extends to N -party states

by considering both connected and disconnected bordisms from ∅ to (S1)N . The N -

party states that are accessible via connected bordisms are obtained by applying all

necessary handle operators at the 1-party level, followed by q-fold comultiplication.

“Disconnected” states in N parties are obtained by tensoring connected states of fewer

parties. We may restrict our attention to bordisms whose number of connected com-

ponents does not exceed the number of parties, since connected components with no

boundaries correspond to multiplication by an overall factor.

How much of the N -party Hilbert space can the TQFT path integral access? In the

generic case, the accessible 1-party states comprise a torus Tn−1. Up to permutation

bordisms, the accessible N -party states are classified by the integer partitions of N , and

the dimensionality of the submanifold that they occupy is determined by the number of

parts in the partition. Clearly, the “maximally” disconnected N -party states (N -fold

tensor products of 1-party states) maximize the number of free parameters. Such states

comprise an N(n− 1)-dimensional torus TN(n−1) inside the N -party projective Hilbert

space P(H⊗NS1 ) ∼= CPnN−1. The ratio

dimTN(n−1)

dimCPnN−1 =
N(n− 1)

2(nN − 1)
(4.23)
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decreases exponentially with N , starting at 1/2 for N = 1. The situation is only worse

for other disconnected states, obtained by considering connected components with more

than one party: such states occupy lower-dimensional tori. Hence the relative size of

the maximal constructible state space within the entire Hilbert space decreases with

the number of parties N . Even for those TQFTs with some degree of universality, the

dimension of the state space that the path integral can access is limited to no more

than half of the Hilbert space dimension.

We now sharpen some of the preceding points, first in the context of TQFTs with

n = 2 and then in the context of general semisimple TQFTs.

4.2.1 “Two-Level” TQFTs

When n = 2, the previous discussion can be made very concrete using the classification

of 2D Frobenius algebras presented in Appendix B. For 2D TQFTs with n = 2, we

determine the toroidal submanifolds of constructible states and illustrate the N -party

dimension counting discussed above. Such TQFTs fall into two classes, which we refer

to as type I or type II depending on whether the Frobenius form satisfies σ(|00〉) = 0

or σ(|00〉) 6= 0, respectively, where η(1) ≡ |0〉 is the unit for µ. We define the state |1〉
such that {|0〉 , |1〉} is an orthonormal basis for HS1 . TQFTs of type I are specified by

a single complex number c ∈ C, while TQFTs of type II are specified by two complex

numbers c ∈ C and d ∈ C \ {0}.
We first discuss the 1-party states that can be prepared by the TQFT path integral,

which amounts to computing the action of powers of the handle operator µ ◦ δ.
For TQFTs of type I, the handle operator is the following linear operator on HS1

in the {|0〉 , |1〉} basis:

µ ◦ δ = 2

(
0 c

1 0

)
. (4.24)

Hence the attainable 1-party states are

[(µ ◦ δ)g ◦ η](1) = 2gcbg/2c |g mod 2〉 . (4.25)

For c 6= 0, the boundary state alternates between |0〉 and |1〉 in the projective Hilbert

space CP1 as we add handles. Equivalently, assuming c 6= 0, we have in terms of the

unnormalized eigenvectors |v±〉 = ±
√
c |0〉+ |1〉 with eigenvalues λ± = ±2

√
c that

(µ ◦ δ)g |0〉 ∼ λg+ |v+〉 − λ
g
− |v−〉 ∼ |v+〉 − (−1)g |v−〉 . (4.26)

Thus type I TQFTs can prepare only a finite set of 1-party states.

On the other hand, for TQFTs of type II, we have

µ ◦ δ =
1

d

(
2 c

c 2 + c2

)
(4.27)

– 21 –



in the {|0〉 , |1〉} basis. Iterating this matrix, we obtain

[(µ ◦ δ)g ◦ η](1) =
λg−1+ + λg−1−

d
|0〉+

λg+ − λ
g
−√

4 + c2
|1〉 , (4.28)

where the eigenvalues and corresponding eigenvectors of the handle operator are

λ± =

√
4 + c2

2d

(√
4 + c2 ± c

)
, |v±〉 =

−c±
√

4 + c2

2
|0〉+ |1〉 . (4.29)

Assuming c 6= ±2i, we have in CP1 that

(µ ◦ δ)g |0〉 ∼ λg+ |v+〉 − λ
g
− |v−〉 ∼

(√
4 + c2 + c

)g
|v+〉 −

(√
4 + c2 − c

)g
|v−〉 . (4.30)

If the eigenvalues λ± have different magnitudes, then one of the eigenvectors |v+〉 or

|v−〉 becomes an accumulation point for the action of the handle operator. We are

interested in the case that |λ+| = |λ−|. This occurs precisely when

c2 = 2(cosφ− 1), φ ∈ R, (4.31)

in which case

(µ ◦ δ)g |0〉 ∼ |v+〉 − eigφ |v−〉 . (4.32)

As long as φ is an irrational multiple of 2π, the handle operator acting on |0〉 can be used

to approximate any possible phase on − |v−〉 to arbitrary precision, so the constructible

1-party states densely fill a circle. The corresponding c is purely imaginary, so the

TQFT is non-unitary (in the functorial sense discussed in Section 3.1).

Note that the handle operator fails to be diagonalizable, and that the TQFT is

therefore nilpotent, precisely when c = 0 in the type I case and c = ±2i in the type

II case. The TQFT is semisimple otherwise, and it assigns to a closed manifold the

invariant

[ε ◦ (µ ◦ δ)g ◦ η](1) = λg−1+ + λg−1− , (4.33)

where λ± are the nonzero eigenvalues of the handle operator.

We now examine the constructible N -party states when n = 2, focusing on the

case N = 2 for concreteness. There are two essentially distinct classes of bordisms in

2Cob for N = 2. Under the TQFT functor, they correspond to the connected maps

O0,2
g = δ ◦ (µ ◦ δ)g ◦ η (4.34)

(see (4.2)) and the disconnected maps

Õ2
g1,g2

= [(µ ◦ δ)g1 ◦ η]⊗ [(µ ◦ δ)g2 ◦ η]. (4.35)
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· · ·

genus g

(a) Connected Map O0,2
g

· · ·

genus g2

· · ·

genus g1

(b) Disconnected Map Õ2
g1,g2

Figure 4: Bordisms that generate all physically distinct constructible 2-party states

(N = 2) in 2D TQFT.

The former has one genus parameter while the latter has two. We depict these maps

in Figure 4.

We restrict our attention to TQFTs that can prepare a positive-dimensional sub-

manifold of 1-party states, namely type II TQFTs with c as in (4.31) and φ/2π ∈ R\Q.

For such TQFTs, the constructible 2-party disconnected states are clearly

Õ2
g1,g2

(1) ∼ (|v+〉 − eig1φ |v−〉)⊗ (|v+〉 − eig2φ |v−〉). (4.36)

These states are separable, and they densely fill a 2-torus consisting of the states

|θ1, θ2〉 ≡ (|v+〉 − eiθ1 |v−〉)⊗ (|v+〉 − eiθ2 |v−〉), θ1, θ2 ∈ R. (4.37)

On the other hand, by writing the map δ from Appendix B in the |v+〉 , |v−〉 basis, we

find that the constructible 2-party connected states are

O0,2
g (1) ∼ |v+〉 ⊗ |v+〉+ ei(g+1)φ |v−〉 ⊗ |v−〉 . (4.38)

These states are entangled, and they densely fill a circle. We see that the constructible

2-party states comprise submanifolds of dimension strictly less than half that of the

physical 2-party Hilbert space CP3, in contrast to the 1-party case in which the dimen-

sion of the relevant submanifold is precisely half that of the physical Hilbert space.

4.2.2 General Semisimple TQFTs

It is easy to see that a generic diagonal handle operator is realizable in a (generally non-

unitary) semisimple 2D TQFT, constructed as a direct sum of simple 2D TQFTs with
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dimHS1 = 1 [53, 54]. Indeed, the handle operator of a direct sum of Frobenius algebras

A = A′ ⊕ A′′ (with counit ε = ε′ + ε′′) is the direct sum of the handle operators of A′

and A′′ [43]. Taking a direct sum of n 1D Frobenius algebras, we get an n-dimensional

Frobenius algebra whose handle operator is an arbitrary invertible diagonal matrix.

Specifically, recall from Section 3.2.2 that a simple 2D TQFT Sz is a 1D Frobenius

algebra over C defined as follows. The unit map and multiplication are given by

η : 1 7→ 1, µ : 1⊗ 1 7→ 1, (4.39)

extending to other elements by linearity. On the other hand, any nonzero linear map

C→ C defines a counit:

ε : 1 7→ z−1, z ∈ C \ {0}, (4.40)

where different values of z correspond to non-isomorphic Frobenius structures. The

TQFT axioms then imply that

δ : 1 7→ z(1⊗ 1). (4.41)

Hence the handle operator µ ◦ δ is multiplication by z.

Now consider the semisimple TQFT
⊕n−1

i=0 Szi . Choosing a basis {|0〉 , . . . , |n− 1〉}
for Cn, we can write

ε : |i〉 7→ z−1i , µ ◦ δ : |i〉 7→ zi |i〉 , δ : |i〉 7→ zi |ii〉 , (4.42)

where µ : |ij〉 7→ δij |i〉 (no sum) and the multiplicative identity element is |0〉 + · · · +
|n− 1〉. This TQFT assigns the invariant

Z(Σg) =
n−1∑
i=0

zg−1i (4.43)

to a closed, connected surface of genus g. For example, for the TQFTs of Section 4.1.2,

this invariant takes the form
∑n−1

i=0 n
g−1 = ng.

We now return to the questions of universality and complexity in semisimple 2D

TQFT. As emphasized in Section 4.1, the only fundamental topological gate in the

image of the TQFT functor is the handle operator, in the sense that the operations of

“fan-in,” “fan-out,” and crossing don’t essentially increase the number of states that

we can access in H⊗NS1 . In particular, the attainable 1-party states are the images of

a reference state under nonnegative powers of the handle operator. In a semisimple

TQFT, the handle operator rescales the components of a given state in the directions

of the eigenstates. In particular, repeated application of this operator magnifies the

component in the direction of the eigenvector with largest eigenvalue. If there exist
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multiple eigenvalues of largest magnitude but with different relative phases, then the

image converges to a nontrivial (dim > 0) torus rather than a single accumulation point.

States in this torus allow for a one-to-one correspondence between bordism complexity

and state complexity. In other words, the TQFT path integral is universal for this set

of states.

To be precise, consider a generic semisimple TQFT. Without loss of generality,

we may rescale the handle operator so that it has unit spectral radius (eigenvalues

of magnitude ≤ 1) and order the eigenvalues in decreasing order of magnitude. The

handle operator then becomes

H = diag(eiϕ0 , . . . , eiϕm−1 , rme
iϕm , . . . , rn−1e

iϕn−1) (4.44)

for some phases ϕ0, . . . , ϕn−1 ∈ R and magnitudes rm, . . . , rn−1 ∈ R>0, where 1 >

rm ≥ · · · ≥ rn−1 and we denote the number of largest eigenvalues by m (1 ≤ m ≤
n). Generically, the phase angles are irrational multiples of 2π and incommensurate

(linearly independent over Q).

Consider a generic reference state |ψ0〉 = (c0, . . . , cn−1). Let S denote the set

of images of this state under powers of the handle operator: S ≡ {Hk|ψ0〉 | k ≥ 0}.
From (4.44), any limit point of S must have vanishing amplitude in the m, . . . , n − 1

directions and amplitudes of magnitude |c0|, . . . , |cm−1| in the 0, . . . ,m − 1 directions.

Conversely, assuming that the normalized phases ϕ̂0 ≡ ϕ0/2π, . . . , ϕ̂m−1 ≡ ϕm−1/2π

are both irrational and rationally independent, iterating the rotation (eiϕ0 , . . . , eiϕm−1)

suffices to approximate any rotation on the m-torus to arbitrary accuracy.16 Therefore,

iterating H suffices to prepare any state on the torus

(|c0|eiθ0 , . . . , |cm−1|eiθm−1 , 0, . . . , 0), θ0, . . . , θm−1 ∈ R (4.46)

to arbitrary accuracy starting from |ψ0〉, as the components in the m, . . . , n− 1 direc-

tions can be made arbitrarily small. We conclude that the limit points of S, namely the

states that can be approximated to arbitrary accuracy by the TQFT path integral start-

ing from the reference |ψ0〉, comprise precisely the torus (4.46). Every neighborhood

of such a state contains infinitely many points of S.

This settles the question of universality. One can then ask: how many times must

H be iterated to attain a target state to a given accuracy?

16Let T denote the closure of the additive subgroup generated by (ϕ̂0, . . . , ϕ̂m−1) in Rm/Zm (which

may have multiple connected components). Then we have [57]:

dimT = dimQ〈1, ϕ̂0, . . . , ϕ̂m−1〉 − 1. (4.45)

In particular, if ϕ̂0, . . . , ϕ̂m−1 are irrational and rationally independent, then T = Rm/Zm.
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Rather than giving a complete answer to this question, we merely note that there

exists a simple answer when n = 2.17 The starting point is the following basic result on

approximating rotations on a circle by powers of a fixed rotation [58]. Suppose ϕ/2π is

irrational with irrationality measure µ.18 Then for any ε > 0, for any φ and any δ > 0,

there exists some integer k with |kϕ− φ| ≤ δ and with

k = O

(
1

δµ+ε

)
, (4.47)

where the absolute value signs denote distance modulo 2π. The constant factor in these

asymptotics depends on ε.

Now note that a semisimple 2D TQFT with n = 2 that admits some degree of

state universality in the sense described above necessarily also has m = 2, i.e., both

eigenvalues of its handle operator H have equal magnitude. As an operator on the

projective Hilbert space CP1, we may therefore write it as H = diag(1, eiϕ) for some

phase ϕ, where we assume ϕ/2π ∈ R \Q. Then, writing an arbitrary 1-qubit reference

state in the Bloch sphere parametrization of CP1 as |θ0, φ0〉 for some θ0 ∈ [0, π] and

φ0 ∈ [0, 2π), we have

Hg |θ0, φ0〉 = cos

(
θ0
2

)
|0〉+ ei(φ0+gϕ) sin

(
θ0
2

)
|1〉 . (4.48)

Therefore, by choosing g appropriately, we may prepare any state of the form |θ0, φ〉
for φ ∈ [0, 2π) to arbitrary accuracy. The result (4.47) directly gives an upper bound19

on the complexity of any such state |θ0, φ〉, with tolerance δ.20

In summary, we have characterized the complexity of semisimple 2D TQFTs in

terms of irrational rotations on a torus.
17In the remainder of this section, we use µ and δ to denote specific numerical quantities rather

than the multiplication and comultiplication operations in a Frobenius algebra. We apologize for the

degeneracy of notation.
18The irrationality measure µ of a real number x is defined as the smallest number such that for

any ε > 0, we have |x− p/q| > 1/qµ+ε for all integers p and q with q sufficiently large. Almost all real

numbers have µ = 2.
19For lower rather than upper bounds on gate complexity, see [59].
20In generalizing this result to the m-torus, we would consider a rotation (eiϕ0 , . . . , eiϕm−1) where

the normalized angles ϕ̂i ≡ ϕi/2π are irrational and rationally independent, so that powers of this

rotation are dense in the set of all rotations of the m-torus. For a given δ and a given (eiφ0 , . . . , eiφm−1),

we would then seek to bound k such that |kϕi − φi| ≤ δ for all i. The answer is not so simple to state

because it depends on the “extent to which” the ϕ̂i are linearly independent over Q (or Z).

On the other hand, rather than bounding the exact complexity, one can argue that the average-

case complexity is polynomial in 1/δ. If all of the rotation angles ϕi and target angles φi are chosen

uniformly at random from [0, 2π), then on average, one would expect to apply the rotation on the

order of 1/δm times to approximate the target to accuracy δ as δ → 0.
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U1

U2

Figure 5: Schematic of a decorated bordism corresponding to evaluation of the path

integral in an enriched TQFT. Each colored circle is a separate “universe” on which

unitary transformations U1,2 : HS1 → HS1 may act.

5 Applications and Extensions

One can draw various interesting analogies between 2D TQFTs and other quantum-

mechanical systems, such as many-particle systems, tensor networks, and anyons. In

this section, we mention some of these analogies, permitting ourselves some room for

speculation.

5.1 Enriched TQFT

We have regarded 2D TQFT as a model for topology change in quantum field theory.

These topology-changing operations are inherently non-unitary, in contrast to non-

unitary operations on open quantum systems.21 It is natural to wonder whether there

exists a framework that allows one to formulate the quantum complexity of unitary

gates and non-unitary topology-changing processes in a uniform way—e.g., to define a

cost function that encompasses both simultaneously.

We do not attempt to answer this question here (one obstacle is that Euclidean

and Lorentzian time are not directly comparable). Rather, we simply remark that one

language in which to potentially approach this question is that of second quantization

in ordinary quantum mechanics.

To motivate this picture, note that within a given (Euclidean) time slice, each

circle can be thought of as representing a disjoint “universe,” and the role of the

TQFT dynamics is to produce entanglement between universes. Within an individual

universe, it makes sense to consider unitary Lorentzian time evolution according to

dynamics that are external to the TQFT. Correspondingly, we define an “enriched” 2D

TQFT as one whose non-unitary topology-changing operations are supplemented by

arbitrary unitary operations on 1-party Hilbert spaces. That is, an enriched TQFT is

a 2D TQFT in which each tube can be decorated with a unitary operation (Figure 5).

21In quantum mechanics, non-unitarity arises only from adding or discarding subsystems, i.e., from

tensoring with an extra system or taking a partial trace.
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We raise two points in relation to this idea:

1. By introducing an infinite-dimensional “meta-Hilbert space” (Fock space) of cir-

cles, we obtain a unified framework in which to discuss both standard unitary

transformations and topology-changing operations. The latter operations change

the occupation number of circles and are therefore represented non-unitarily on

the meta-Hilbert space. The problem of defining complexity in enriched TQFT

is then mapped to that of defining complexity in second-quantized Fock space.22

2. By construction, an enriched TQFT enjoys 1-party universality (any 1-party state

can be constructed from any 1-party reference state) and therefore has access to a

larger portion of the N -party Hilbert space than an ordinary TQFT. It is natural

to ask how much of the N -party Hilbert space it can access. In particular, does

multipartite universality follow from 1-party universality?

We elaborate further on these two points below.

For clarity, the most concrete calculations below are carried out using qubits, for

which dimHS1 = 2. However, we keep much of the discussion general to any (finite)

Hilbert space dimension.

5.1.1 Fock Space of Circles

We would like to spell out the relation between creation/annihilation of circles and

topology change. To do so, we define the “many-circle Hilbert space” of the TQFT as

the direct sum of all tensor powers of the S1 Hilbert space:

H ≡
∞⊕
N=0

H⊗NS1 . (5.1)

Implicit in this definition is a notion of ordering of the circles, which allows us to apply

TQFT operations accordingly. The symmetric sector of H, consisting of states of the

TQFT that are symmetrized over all circles, is isomorphic to a bosonic Fock space:

H ⊃ HB ≡
∞⊕
N=0

SymN(HS1). (5.2)

22We emphasize that, despite superficial similarities between our language and that of “baby uni-

verses” [60–63] (see [64–67] for some recent revivals of this idea, and in particular [68, 69] for connec-

tions to 2D TQFT), we are not dealing with a theory of dynamical gravity. The spacetime topology

is fixed, not summed over. This is merely second quantization, not third quantization.
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The Fock space is constructed as follows. We define operators ai, a
†
i satisfying [ai, a

†
i ] =

1 (i = 0, . . . , n− 1), where a†i creates a circle in the state |i〉 when acting on the Fock

vacuum |vac〉. The action of ai, a
†
i on the properly normalized Fock states

|N0, . . . , Nn−1〉 ≡
(a†0)

N0

√
N0!
· · ·

(a†n−1)
Nn−1√

Nn−1!
|vac〉 , (5.3)

which form a basis (the “occupation number basis”) for HB, is as follows:

ai |. . . , Ni, . . .〉 =
√
Ni |. . . , Ni − 1, . . .〉 , (5.4)

a†i |. . . , Ni, . . .〉 =
√
Ni + 1 |. . . , Ni + 1, . . .〉 . (5.5)

In terms of the standard basis for H (the “circle basis”), we have

|N0, . . . , Nn−1〉 =
1√

N !N0! · · ·Nn−1!

∑
α∈SN

α
(∣∣0N0 · · · (n− 1)Nn−1

〉)
, (5.6)

where N = N0 + · · · + Nn−1 and SN is the symmetric group on N elements. We have

introduced the shorthand notation∣∣0N0 · · · (n− 1)Nn−1
〉
≡ |0〉⊗N0 ⊗ · · · ⊗ |n− 1〉⊗Nn−1 . (5.7)

The sum in (5.6) contains N !/(N0! · · ·Nn−1!) distinct terms.

Any linear map T : H⊗pS1 → H⊗qS1 descends to a linear map Sym(T ) : Symp(HS1)

→ Symq(HS1) by symmetrization. Hence the morphisms induced by the TQFT path

integral, appropriately symmetrized, can be interpreted as linear operators on the sub-

space (5.2) (note that the swap morphism acts trivially). It is straightforward to write

these symmetrized TQFT operations as linear operators on the Fock space (5.2) in the

occupation number basis. We illustrate this procedure in the case that n = 2. The

classification of Appendix B allows us to consider all such two-level TQFTs, which are

classified as type I or type II according to (B.1) or (B.2).

For illustration, consider the following four processes that could occur in a symmet-

ric state of N circles: the creation of a single circle, the annihilation of a single circle,

the joining of any two circles to form a single one, and the splitting of any circle into

two. We denote these processes by the following linear maps from SymN(HS1) to either

SymN+1(HS1) or SymN−1(HS1), which are built on the elementary TQFT operations

η, ε, µ, δ:

TNbirth ≡ Sym
(
η ⊗ id

⊗N
S1

)
, TNjoin ≡ Sym

(
µ⊗ id

⊗(N−2)
S1

)
, (5.8)

TNdeath ≡ Sym
(
ε⊗ id

⊗(N−1)
S1

)
, TNsplit ≡ Sym

(
δ ⊗ id

⊗(N−1)
S1

)
. (5.9)

– 29 –



To determine the action of these operators on the Fock states of the TQFT, it is

convenient to work in the circle basis and to leave symmetrization implicit. Thus we

have, for instance (taking n = 2),

|N0, N1〉 =

√
N !

N0!N1!

∣∣0N01N1
〉
, (5.10)

where the equality is understood in SymN(HS1) (N = N0 + N1). The unit η simply

creates a circle in the |0〉 state, so that

TNbirth(|N0, N1〉) = η(1)⊗ |N0, N1〉 =

√
N !

N0!N1!

∣∣0N0+11N1
〉

=
a†0√
N + 1

|N0, N1〉 . (5.11)

On the other hand, for any symmetric linear map T : H⊗pS1 → H⊗qS1 with p ≤ N , we can

write the action of TN ≡ Sym(T ⊗ id
⊗(N−p)
S1 ) as

TN(|N0, N1〉) =

√
N0!N1!

N !

p∑
k=0

(
p

k

)(
N − p
N1 − k

)
T (
∣∣0p−k1k〉)⊗ ∣∣0N0+k−p1N1−k

〉
, (5.12)

with the right side re-symmetrized as necessary. We thus compute, using (B.1) and

(B.2) for type I and type II TQFTs, that the remaining maps are as follows:

TNdeath =
1√
N
×

{
a1 (I),

da0 (II),
(5.13)

TNjoin =
1

(N − 1)
√
N
×

{
a†0a

2
0 + 2a0a

†
1a1 + ca†0a

2
1 (I),

a†0a
2
0 + 2a0a

†
1a1 + a†0a

2
1 + ca†1a

2
1 (II),

(5.14)

TNsplit =
1

N
√
N + 1

×

2a†0a0a
†
1 + c(a†0)

2a1 + (a†1)
2a1 (I),

d−1
[
(a†0)

2a0 + a0(a
†
1)

2 + 2a†0a
†
1a1 + c(a†1)

2a1

]
(II),

(5.15)

where the operators on the left and right of the above equations have identical actions

on Fock states |N0, N1〉. Up to a factor that depends on the eigenvalue N of the total

circle number operator a†0a0 + a†1a1, all of these TQFT maps can be written as normal-

ordered polynomials in the circle creation and annihilation operators.23 These maps

do not preserve the normalization of states.24

23More generally, the symmetrization of any linear map T : H⊗pS1 → H⊗qS1 given by T : |i1 · · · ip〉 7→∑
j1,...,jq

T i1···ip j1···jq |j1 · · · jq〉 has the Fock space representation

Sym(T ) =
1√
p!q!

∑
i1,...,ip

∑
j1,...,jq

T i1···ip j1···jq (aj1)† · · · (ajq )†ai1 · · · aip . (5.16)

24An exception to this statement is that in type II TQFTs, the comultiplication operation δ is an

isometry when c = 0 and d =
√

2.
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Conversely, it is interesting to note that in type I TQFTs, the bosonic creation and

annihilation operators can be written purely in terms of topological maps:

a†0 =
√
N + 1 Sym

(
η ⊗ id

⊗N
S1

)
, a0 =

√
N

2
Sym

[
(ε ◦ µ ◦ δ)⊗ id

⊗(N−1)
S1

]
, (5.17)

a†1 =

√
N + 1

2
Sym

[
(µ ◦ δ ◦ η)⊗ id

⊗N
S1

]
, a1 =

√
N Sym

(
ε⊗ id

⊗(N−1)
S1

)
, (5.18)

where a†i : SymN(HS1) → SymN+1(HS1) and ai : SymN(HS1) → SymN−1(HS1). The

key property in this case is that the handle operator µ ◦ δ maps the states |0〉 and |1〉
into each other: in particular, (µ ◦ δ) |0〉 = 2 |1〉.

Finally, we note in passing that a similar story can be developed for the antisym-

metric sector of (5.1), namely

H ⊃ HF ≡
n⊕

N=0

∧N
(HS1), (5.19)

which is isomorphic to a fermionic Fock space. In this subspace, the swap morphism

effects a sign flip. However, the fermionic story is far less interesting than the bosonic

one in our context, both due to the finite number of nonzero Fock states and because

(co)commutativity implies that the images of µ and δ are trivial.

5.1.2 Toward Universality

A more immediate question than that of complexity is whether enriched TQFTs, de-

fined as 2D TQFTs in which arbitrary local (1-party) unitaries are allowed to act on

individual circles,25 are universal: namely, can they prepare all states in their N -party

Hilbert space? A first guess might be that the answer is “yes,” in light of the following

theorems about quantum circuits:

• A universal 1-qudit gate set plus any 2-qudit gate that does not map separable

states to separable states is universal for quantum computation [73]. In other

words, “1-qudit universality + 2-qudit entanglement = N -qudit universality.”

• 2-qubit gates are exactly universal for quantum computation [74].

Unfortunately, neither theorem applies in our context because the TQFT analogues of

2-party “gates” (linear maps from H⊗2S1 → H⊗2S1 ) are weaker than unitaries by virtue

25In fact, it suffices to consider the action of two judiciously chosen unitaries because two generic

unitaries generate a dense subset of SU(n), the group of unitaries on the projective Hilbert space

CPn−1 of an n-level qudit [70, 71]. For instance, the Hadamard gate and an appropriately chosen

phase gate generate SU(2). An algorithm for finding such unitaries is given in [72].
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Figure 6: The composition δ ◦µ of comultiplication and multiplication. This operator

creates entanglement between the two input universes. The same is true of decorated

versions of this bordism.

of being non-invertible. For instance, the operation δ ◦ µ of multiplication followed by

comultiplication creates entanglement when acting on separable 2-party states (Figure

6), but this map has rank dimHS1 < (dimHS1)2 and is therefore not invertible. This

is simply because the image of δ has dimension dimHS1 inside H⊗2S1 .

In fact, by considering the normal form, we see that any linear map induced by

a connected bordism from p to q circles has rank at most dimHS1 (the dimensional

“bottleneck” being the cylinder), and this remains true for enriched TQFT. Due to

these rank restrictions, it is impossible to approximate any 2-party unitary to arbitrary

accuracy using TQFT operations combined with 1-party unitaries.26

Rather than addressing the question of whether enriched TQFTs are universal

in complete generality, we make two simplifications. First, as a small step toward

answering this question, we ask whether enriched TQFTs can prepare all 2-party states

(rather than N -party states for arbitrary N). Second, we focus on the case of qubits

(n = 2). In fact, we further restrict to 2D TQFTs of type I, for which the subsequent

calculations are especially simple.

To begin, note that by the assumption of 1-party universality, an enriched TQFT

can prepare any separable state |ψ1〉 ⊗ |ψ2〉 ∈ H⊗2S1 . We would like to know whether,

by applying a TQFT morphism that acts as an entangler (the simplest of which is

δ ◦ µ) in addition to local unitaries (which preserve the entanglement structure of a

bipartite state), one can obtain any |ψ〉 ∈ H⊗2S1 . In fact, because any entangler such as

δ ◦ µ can be written as the composition of a morphism HS1 → H⊗2S1 with a morphism

H⊗2S1 → HS1 , and universality on HS1 is assumed, the question of 2-party universality

in enriched TQFT boils down to:

Can the comultiplication operation δ create all possible kinds of entangle-

ment between two qubits, starting from an arbitrary 1-qubit state?

More precisely, two pure states of a bipartite quantum system are locally unitarily

equivalent if and only if their Schmidt coefficients (or alternatively, reduced density

26A universal gate set for non-unitary quantum circuits is exhibited in [75], but those results do not

apply here because they rely on the unitary CNOT gate.
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matrix eigenvalues) coincide. To show that an enriched TQFT is universal on two

parties, it suffices to show that the image of δ contains states with all possible Schmidt

coefficients.

To this end, we consider an arbitrary type I TQFT specified by a single complex

number c, with the corresponding map δ given in (B.1). An arbitrary 1-qubit state

cos(θ/2) |0〉 + eiφ sin(θ/2) |1〉 with θ ∈ [0, π] and φ ∈ [0, 2π) maps via δ to the 2-qubit

state

|ψ12〉 ∝ eiφ sin

(
θ

2

)
(c |00〉+ |11〉) + cos

(
θ

2

)
(|01〉+ |10〉), (5.20)

up to normalization, whose reduced density matrix is

ρ1 = Tr2 |ψ12〉〈ψ12| ∝

cos2
(
θ

2

)
+ |c|2 sin2

(
θ

2

)
1

2
sin(θ)(e−iφ + ceiφ)

1

2
sin(θ)(eiφ + c∗e−iφ) 1

 . (5.21)

The state |ψ12〉 is maximally mixed when θ = 0, regardless of φ and c (in which case

the largest eigenvalue of ρ1, properly normalized, is 1/2). Since the largest eigenvalue

of ρ1 is a continuous function of (θ, φ), to show that it attains all possible values in the

range [1/2, 1] as (θ, φ) range over the entire Bloch sphere, it suffices to show that for

any given c, there exist some (θ, φ) for which the state |ψ12〉 is separable (i.e., for which

the largest eigenvalue of ρ1 is 1).

The separability of |ψ12〉 is equivalent to the condition that det ρ1 = 0, which can

be written as

[x− c′(1− x)] [x− c′∗(1− x)] = 0, x ≡ cos2
(
θ

2

)
, c′ ≡ ce2iφ. (5.22)

This equation is satisfied when

x =
c′

1 + c′
or x =

c′∗

1 + c′∗
. (5.23)

Since 0 ≤ x ≤ 1, a solution exists only when c′ is real and c′ ≥ 0. But by choosing

φ, we can satisfy these conditions on c′ for any given c. Hence there indeed exists a

1-qubit state whose image under δ is separable, regardless of c.

We have thus demonstrated 2-party universality for type I TQFTs with n = 2. We

leave open the question of whether N -party universality follows from 2-party univer-

sality. Again, we stress that such a statement does not follow from the universality of

2-qubit quantum gates, because our 2-qubit topological “gates” are non-unitary.
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5.2 Extended TQFT

A different way of extending our formalism is to enlarge our conception of functorial

QFT, which we have so far used only in the most limited of circumstances. In partic-

ular, we have seen that for 2D TQFTs described by commutative Frobenius algebras,

the path integral lacks sufficient power to prepare most states in the Hilbert space on a

closed 1-manifold. Said differently, our topological “circuits” are highly non-universal.

This crude axiomatization also precludes the possibility of computing nontrivial cor-

relation functions (e.g., of Wilson lines), an option that would be available in TQFTs

arising from gauge theories with a Lagrangian description. Such operator insertions

would dramatically increase the number of states that one could prepare via the path

integral.

One way of going beyond our simple axiomatization is to work in the framework of

extended QFT, which formalizes in terms of higher categories of bordisms the notion

of a fully local QFT (such as one arising naturally in physics) as assigning data to

manifolds of arbitrary codimension.27 The most prominent examples are extended

TQFT [76] and (2D) CFT [30, 31], with Frobenius algebras again playing a role in the

latter. An advantage of non-topological functorial QFTs is that Euclidean propagation

along a cylinder (i.e., in the absence of topology change) is nontrivial, which suggests a

way to achieve universality without leaving the setting of Euclidean time (in contrast

to the ad hoc construction of Section 5.1).

Another way of augmenting the computational power of the path integral is to

pass directly to theories with Lagrangian descriptions—for instance, 2D BF or Yang-

Mills theory, the latter of which is only quasi-topological [77, 78]. The first step would

be to classify the states that can be prepared by the path integral in these cases. A

classification of this nature already exists for U(1) and SO(3) Chern-Simons theory

on 3-manifolds with torus boundaries [79], where the incorporation of Wilson lines is

crucial for achieving state universality in certain cases. Related studies of topological

entanglement entropy have also been carried out in Chern-Simons theory [25, 80–82]

and in 2D TQFT [83].

5.3 Holographic Complexity

So far, our discussion has been restricted to exploring circuit complexity in the context

of 2D TQFT. However, a version of the same functorial story also applies to CFT, and

27One could also contemplate simpler modifications of the input category, such as symmetric →
braided rather than ordinary → higher. A symmetric monoidal category is a special case of a braided

monoidal category in which the braid map squares to the identity. Relaxing this requirement suggests

a generalization of 2D TQFT to use braids rather than swaps [43]. In this “anyonic” generalization,

the path integral on surfaces is sensitive to their embedding in ambient R3.
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this naturally leads one to consider whether this story could tell us anything about

holographic complexity, particularly in AdS3/CFT2.

The complexity of a holographic CFT state, modulo the usual ambiguities in defi-

nition, has been proposed to be dual to either the volume of a maximal slice in the bulk

(“Complexity = Volume,” or CV) or the action evaluated on the causal development

of such a slice (“Complexity = Action,” or CA) [2–6]. Let us consider an instructive

and motivating example: the n-sided, genus-g AdS3 wormhole solution. For such ge-

ometries, the “complexity of formation” according to both CV and CA was computed

in [84], with the reference state being n copies of the M = 0 BTZ black hole.28 After

subtracting the complexity of the reference state, the resulting quantity ∆C has the

property of being UV-finite. The results of [84] are as follows:

∆C(n, g) =


2πL

G
(2g − 2 + n) = −4

3
πcχ for CV,

L

4G
(2− 2g − n) =

1

6
cχ for CA,

(5.24)

where L is the AdS curvature scale, G is Newton’s constant, c = 3L
2G

is the central

charge of the CFT, and χ = 2− 2g − n is the Euler characteristic.

It is interesting, though perhaps not unexpected, that both of these expressions are

proportional to the Euler characteristic of the t = 0 spatial slice, which in turn measures

the size of its pants decomposition. It is tempting to think of this spatial slice as a

bordism, and the complexity of formation as quantified by the pants decomposition.

A toy model in which this point of view could potentially be justified is the Chern-

Simons/chiral Wess-Zumino-Witten duality, which comes in both an “AdS/CFT-like”

version and a “dS/CFT-like” version. The latter of these relates the wavefunction of

the CS theory on a spatial slice to a Euclidean WZW theory living on that slice. By

viewing this slice as a bordism that prepares a state in the Lorentzian dual theory, we

see that such a boundary state can be prepared by either a Lorentzian circuit on the

boundary or a Euclidean circuit in the bulk. The complexity of the former may lead to

a derivation of the complexity of the latter as a circuit whose gates are pairs of pants.

Finally, note that a 2-bordism, whether representing a spatial slice in a 3D gravi-

tational bulk or the Euclidean spacetime of a 2D field theory, resembles a circuit that

prepares a tensor network state from rank-3 tensors (in which each pair of pants is a

gate). In a topological theory, the path integral maps non-uniquely onto such a ten-

sor network, or trivalent graph. The tensor network complexity (minimum number of

elementary tensors) then coincides with the circuit complexity of the bordism. In our

context, the circuit complexity can also be interpreted as a path integral complexity

28The entanglement structure of the dual CFT states has been studied in [85–89].
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in the sense of [35–37], but one which involves optimizing over topologies rather than

over metrics (with respect to a complexity measure that is monotonic in the genus).

6 Conclusion

We have argued that the pants decomposition provides a natural notion of complexity

in the category 2Cob, and furthermore, that this induces a notion of complexity on

2D TQFT states prepared by the Euclidean path integral. However, this notion of

complexity is far from universal. One avenue for rectifying this deficiency might be to

consider TQFT extended down to points, while another might be to include gates on

the Hilbert space associated to a single circle which are not represented by bordisms.

In addition, we have briefly speculated on applications to AdS3 holography, and in

particular to the holographic complexity conjectures.

While this work has focused on 2D TQFT, our hope is that similar considerations

apply to higher-dimensional TQFT as well as to CFT. For d ≥ 3, dCob has no simple

analogue of the pants decomposition, and the gate set relevant for higher-dimensional

bordisms would likely need to be infinite, although the language of higher categories

may make the generalization more tractable [41].29 The same caveats apply to higher-

dimensional CFT. An extension of this work to 2D CFT (as required for the proposed

holographic applications) may be easier, but is left to future work.

It is worth noting that complexity is not the only information-theoretic quantity

that can be studied in the framework of category theory. The axiomatic point of view

has also led to quantitative results for entanglement entropy in 2D open-closed TQFT

[90, 91]. One can contemplate similar generalizations to CFT and to higher dimensions

in that context.

We end by pointing out some even more speculative directions for future work:

• One can extend this story by forgetting structure (e.g., orientation) or by adding

structure (e.g., spin structure), or more generally, by extending the analysis to

G-equivariant TQFTs [69].

• Our notion of complexity is strictly discrete. Can one make contact with Nielsen’s

complexity geometry [46–48] (for a manifold of non-unitary transformations) by

combining topological gates and unitary gates? Note that topology change can be

used as a mechanism for achieving universality in certain non-universal schemes

for topological quantum computation [79].

29Modifying the input category or passing to higher dimensions could also allow for heterogeneous

gate sets and hence the possibility of different penalty factors for different gates—unlike in 2D, where

all elementary gates are essentially the same (pairs of pants).
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• Complexity has been proposed as a general tool in category theory, where it

generalizes classical circuit complexity [92]. Independently of TQFT, one could

ask: how does one “quantize” the formalism of [92] (i.e., formulate the analogue

for quantum circuit complexity)?

• This work suggests exploring quantum complexity theory in imaginary time.
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A Category Theory

We review here some essential terminology from category theory, ignoring many sub-

tleties. We then introduce the categories dCob and Hilb, which allow us to define an

axiomatic TQFT in functorial language.

A category is a class of objects equipped with a class of morphisms. The morphisms

satisfy three key properties:

(1) composition: for any three objects a, b, c and any two morphisms f : a → b and

g : b→ c, there exists a morphism g ◦ f : a→ c,

(2) associativity : for any three morphisms f : a → b, g : b → c, and h : c → d, the

compositions (h ◦ g) ◦ f and h ◦ (g ◦ f) are equal,

(3) identity : for any object a, there exists a morphism ida : a→ a such that for any

morphisms f : a→ b and g : c→ a, we have f ◦ ida = f and ida ◦ g = g.

For concreteness, we may depict the objects as points and the morphisms as arrows.

See Figure 7 for an example.

Many categories of interest are infinite. Familiar examples include Grp (the cat-

egory of groups, with morphisms being group homomorphisms), Top (the category of

topological spaces, with morphisms being continuous maps), and Vectk (the category

of vector spaces over a field k, with morphisms being linear maps).
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• •

•
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••

•

Figure 7: A category consisting of points and arrows. The loops are identity mor-

phisms, and the composition of any combination of arrows is found by following them

in order.

Given two categories C and D, a functor is a map F : C → D that sends each

object in C to an object in D while preserving the morphism structure. Namely, for

any morphism f : a→ b in C, there exists a morphism F (f) : F (a)→ F (b) in D such

that F (ida) = idF (a) and F (g ◦ f) = F (g) ◦ F (f).

A monoidal category is a category equipped with a notion of multiplication and a

corresponding neutral object, while a monoidal functor between such categories pre-

serves the monoidal structure. For example, the category Set is a monoidal category

with respect to disjoint union t (with neutral object ∅), and the “swap” map under

which the two sets A t B and B t A are canonically isomorphic is the prototype of a

symmetric structure on such a category.30 In general, we call C a symmetric monoidal

category if there exists a bifunctor

⊗ : C × C → C (A.1)

that is associative, commutative, and has an identity element in C, i.e., for any objects

a, b, c ∈ C and some 1 ∈ C,

(a⊗ b)⊗ c ∼= a⊗ (b⊗ c), a⊗ b ∼= b⊗ a, 1⊗ a ∼= a⊗ 1 ∼= a, (A.2)

where ∼= denotes isomorphism. An example is the category Vectk, with the bifunctor

being the tensor product and the identity being k.

30Swap morphisms on monoidal categories are examples of braid morphisms, where the latter do not

necessarily square to the identity. For the categories of interest to us, only swaps (symmetric braids)

are needed.
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For any category C, we define its dual category C∗ by reversing the arrows. We call

C a dagger or †-category [93] if there exists a functor

† : C∗ → C (A.3)

that sends objects to themselves and, for any morphism f ∗ : a → b in C∗, sends f ∗ to

a morphism f † : a→ b in C such that

id†a = ida, (g ◦ f)† = f † ◦ g†, (f †)† = f. (A.4)

This is the category-theoretic version of the Hermitian conjugate, with f † being called

the adjoint of f : b→ a.

We will find that both dCob and Hilb may be given a symmetric monoidal struc-

ture and a † functor. The TQFT functor always preserves the former property and

may also preserve the latter.

A.1 Category of Bordisms

We define the category dCob for integer d ≥ 1 as follows: the objects are closed, ori-

ented (d−1)-manifolds, the morphisms are equivalence classes of oriented d-dimensional

bordisms (bordism classes),31 and composition is “gluing together” of bordisms.

(dCob,t,∅) is a symmetric monoidal category. The relevant bifunctor is disjoint

union t, and the neutral object is the empty set ∅ as a (d−1)-manifold. The symmetric

structure is given by the swap bordism. We may also give dCob the structure of a †-
category, where taking the adjoint of a bordism switches the “input” and “output”

(d− 1)-manifolds.

Of particular importance to our work is 2Cob, discussed extensively in [43]. The

only closed, connected 1-manifold is S1, so the objects are finite disjoint unions of

circles. The bordisms are oriented surfaces with arbitrary genus and circle boundaries.

An example is shown in Figure 8. Any 2-bordism may be written as a composition and

disjoint union of the elementary bordisms shown in Figure 2 [43].

A.2 Category of Hilbert Spaces

We denote by VectC the category whose objects are finite-dimensional complex vector

spaces and whose morphisms are linear maps. (VectC,⊗,C) is a symmetric monoidal

31Formally, for two closed (d− 1)-manifolds M and N , a d-dimensional bordism from M to N is a

quintuple (W,M,N, iM , iN ) where W is a compact d-manifold with boundary ∂W and iM : M → ∂W

and iN : N → ∂W are embeddings such that

iM (M) ∩ iN (N) = ∅, iM (M) ∪ iN (N) = ∂W. (A.5)

It is a common abuse of terminology simply to refer to the manifold W as such [94].
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M N

Figure 8: A 2-bordism from M ∼= S1 to N ∼= S1 with genus g = 1. Cutting along the

dashed lines gives a pants decomposition.

category. The associated bifunctor is the tensor product ⊗, and the neutral object is

C. The symmetric structure is given by the swap map that exchanges the factors of a

tensor product.

By equipping VectC with a †-structure, we promote it to the category of finite-

dimensional Hilbert spaces Hilb [93]. By the one-to-one correspondence between vec-

tors in a complex vector space V and linear maps C → V , this extra structure au-

tomatically provides the notions of bra, ket, and conjugate-symmetric inner product

〈ψ|φ〉 = 〈φ|ψ〉 on all objects in the category.

Note that only the vector space structure of the objects is preserved by generic

morphisms. Morphisms that preserve the inner product are called isometries, with any

unitary operator U being an example: 〈ψ|U †U |φ〉 = 〈ψ|φ〉. We note also that the †
functor interacts with the ⊗ bifunctor as follows: (f ⊗ g)† = f † ⊗ g†.

A.3 Atiyah’s TQFT Functor

We define a d-dimensional TQFT [28] as a symmetric monoidal functor

Z : dCob→ VectC. (A.6)

Less succinctly, but in more physically intuitive language, the map Z satisfies six ax-

ioms, which we state in words (for careful definitions, see [43]):

1. Equivalent bordisms have the same image. (Two bordisms are equivalent if they

are related by a boundary- and orientation-preserving diffeomorphism.)

2. The cylinder over Σ goes to the identity map on Z(Σ).

3. Composition of bordisms goes to composition of linear maps.

4. Disjoint union of manifolds (resp. bordisms) goes to tensor product of vector

spaces (resp. linear maps).

5. The empty manifold (resp. bordism) goes to the ground field C (resp. the identity

map on C).
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6. The bordism that interchanges Σ and Σ′ goes to the linear isomorphism Z(Σ)⊗
Z(Σ′)→ Z(Σ′)⊗ Z(Σ) given by a⊗ a′ 7→ a′ ⊗ a.

Axiom 1 says that the map Z : dCob → VectC is well-defined (depends only on the

equivalence class of M). Axioms 2 and 3 say that Z is a functor (preserves identity and

composition). Axioms 4 and 5 say that this functor preserves the monoidal structure.

Axiom 6 says that this functor preserves the symmetric structure. The axioms together

imply that for any Σ, there exists a nondegenerate pairing Z(Σ) × Z(Σ) → C, which

in turn implies that Z(Σ) is finite-dimensional [43].

The d-dimensional TQFT defined by Z is said to be unitary if, viewed as a functor

from the †-category dCob to Hilb, it preserves the †-structure [93]: Z(M †) = Z(M)†.

Other categories such as the bordism bicategory of [31] may be used to introduce

additional structure on the input side of the functor, thus defining other types of QFTs

such as extended TQFTs [76] or CFTs [30, 31].

B Classification of 2D Frobenius Algebras

2D TQFT with dimHS1 = 2 (H ∼= C2) is the case most analogous to quantum circuits

operating on qubits. This is the simplest case in which a notion of complexity exists.32

2D Frobenius algebras can be classified completely up to isomorphism [55]. Since

all 2D Frobenius algebras are automatically commutative, such a classification amounts

to a classification of 2D TQFTs with dimHS1 = 2. To state the results of [55], we fix

an orthonormal basis {|0〉 , |1〉} for HS1 . We denote the unit, counit, multiplication,

comultiplication, and Frobenius form by η, ε, µ, δ, and σ, respectively, and we set

η(1) ≡ |0〉 by convention. (The canonical reference state is the image of 1 ∈ C under

the cup, which is the multiplicative identity, but we are free to choose a basis.) Then

2D Frobenius algebras fall into two classes, depending on the Frobenius form:

(I) Every 2D TQFT with dimHS1 = 2 and σ(|00〉) = 0 takes the form

ε :

{
|0〉 7→ 0,

|1〉 7→ 1,
µ :


|00〉 7→ |0〉 ,
|01〉 7→ |1〉 ,
|10〉 7→ |1〉 ,
|11〉 7→ c |0〉 ,

δ :

{
|0〉 7→ |01〉+ |10〉 ,
|1〉 7→ c |00〉+ |11〉 ,

(B.1)

for some c ∈ C.

32E.g., an invertible TQFT—one whose Hilbert space on any spatial manifold is spanned by a single

state and that is nonzero on all bordisms—has no notion of complexity.
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(II) Every 2D TQFT with dimHS1 = 2 and σ(|00〉) 6= 0 takes the form

ε :

{
|0〉 7→ d,

|1〉 7→ 0,
µ :


|00〉 7→ |0〉 ,
|01〉 7→ |1〉 ,
|10〉 7→ |1〉 ,
|11〉 7→ |0〉+ c |1〉 ,

δ :


|0〉 7→ 1

d
(|00〉+ |11〉),

|1〉 7→ 1

d
(|01〉+ |10〉+ c |11〉),

(B.2)

for some c, d ∈ C with d 6= 0.

One can also classify 2D H∗-algebras. An H∗-algebra is a Frobenius algebra for which

the Frobenius form defines an inner product with respect to which δ = µ† and ε = η†

(the inner product on H⊗NS1 is defined in the canonical way in terms of that on HS1).

The classification implies:

(II∗) Every unitary 2D TQFT with dimHS1 = 2 takes the form (B.2) with c, d ∈ R,

d > 0, and

σ(|00〉) = σ(|11〉) = d, σ(|01〉) = σ(|10〉) = 0. (B.3)

For illustration, note that the n = 2 cases of the examples discussed in Section 4.1.1

and 4.1.2 fit into the above classification. The Frobenius algebra based on C[x]/(x2) is

a 2D TQFT of type I with c = 0, while the Frobenius algebra based on C[x]/(x2 − 1)

is a 2D TQFT of type II∗ with c = 0 and d = 1.
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[49] A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form,

Phys. Lett. B 789 (2019) 71 [1806.10144].
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