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1 Introduction

The notion of computational complexity is original from computer science and generally

refers to the minimum number of fundamental operations needed to implement a given

task. In the context of quantum mechanics [1], the typical task is that of using a unitary

transformation U (a quantum circuit) to prepare a target state |ΨT〉 from a given reference

state |ΨR〉, that is,
|ΨT〉 = U|ΨR〉 . (1.1)

The unitary U is assumed to be constructed as a sequence of fundamental operations called

gates that act on a small number of degrees of freedom (e.g., only 2-qubit operations in

a multi-qubit system). If we denote by D(U) — the circuit depth — the total number of

gates used in a particular U , the circuit complexity is simply

C(|ΨT〉, |ΨR〉) = min
U

D(U) = D(Uoptimal) , (1.2)

where Uoptimal is the circuit having the minimal number of gates.
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In [2], Nielsen et al. introduced a nice geometric approach to quantum complexity. The

basic idea was to assume that U is generated by some time-dependent Hamiltonian H(t),

such that each particular circuit can be understood as a particular path γ in the space

of unitaries,

Uγ(t) = P exp

(
i

∫

γ
H(t)dt

)
. (1.3)

Here the parameter t can be taken to be in the range [0, 1] and, as dictated by (1.1),

the paths are constrained to obey the boundary conditions Uγ(0) = I and Uγ(1) = U .
The main advantage is that, under appropriate definition of the circuit depth functional

D[Uγ(t)], the problem of finding the optimal circuit reduces to one of finding geodesics

in a curved Riemannian manifold. The complexity (1.2) then is simply the length of this

geodesic. To be precise, whenever it is possible to argue that the effective Hamiltonian

H(t) is of the form

H(t) =
∑

I

YI(t)OI , (1.4)

where {OI} (the set of fundamental gates) are the generators of some Lie algebra, by

using D[Uγ ] ≡
∫ 1
0 dt

∑
I |YI(t)|2 the problem reduces to the one of finding geodesics γ

(parametrized by the control functions YI(t)) in the corresponding Lie group manifold.

This geometric approach to circuit complexity has recently found its use in high energy

physics motivated by two competing proposals for the complexity in conformal field theory

states with a holographic dual, the so called “complexity = volume” [3] and “complexity

= action” [4] conjectures. The ground state complexity of a free scalar field was studied

in [5] (see also [6] for a related approach using the Fubini-Study metric), which was later

generalized to coherent states [7], free fermions [8, 9], complex scalar [10], weakly inter-

acting theories [11], non-equilibrium states [12–15], thermofield double states [16–19], and

recently to ground states of lattice models displaying quantum phase transitions [20, 21]

(see also [22–26] for further developments). A common feature of all these calculations

is that they were carried out for free or weakly interacting theories. At the moment it

remains unclear from a field theoretic point of view how to make sense of the complexity

of states in strongly interacting theories, which would provide a better understanding of

the holographic conjectures mentioned above. An exception here is the case of 2d CFTs,

which has been studied recently in [27, 28] and leads to results similar to the path integral

optimization approach of [29–32].

In the present paper, we consider a two-step problem: first we define what may be

called topological complexity for knots as the minimal number of modular S and T opera-

tions on the torus T 2 that are necessary in order to produce a generic knot from a reference

knot. Then we consider the representation of these knots as states in the Hilbert space of

Chern-Simons theory with compact gauge group G and level k. We define in a similar way

the circuit complexity of this knot state as the size of the optimal circuit built from the

unitary representations of the modular transformations, S and T . The two in general will

not be equivalent.

The quantum Chern-Simons theory is well-known to have only global topological de-

grees of freedom. Its quantization inside a solid torus gives rise to a finite-dimensional
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Hilbert space H(T 2;G, k) whose states correspond to 3-manifolds M having a boundary

∂M = T 2. For G = SU(N), the same Hilbert space is known to appear also in the quan-

tization of the SU(N)k Wess-Zumino-Witten conformal field theory on T 2 [33–36]. The

finite-dimensional nature of the Hilbert space makes the quantum theory remarkably simple

(essentially an instance of quantum mechanics), despite of the intricate non-perturbative

interactions appearing in the action. A similar story holds for a generic Riemann surface

Σ (eventually with punctures) at ∂M.

A canonical basis on H(T 2;G, k) is constructed by inserting circular Wilson loop

operators colored with an integrable highest weight representation of G along the non-

contractible cycle of the solid torus [33]. The specific states we will consider correspond

to Wilson lines tied in the form of an arbitrary torus knot Kn,m and to a simple class of

links made of many torus knots [37]. These torus knots are classified by a pair of coprime

integers (n,m) that count how many times the knot winds around the two fundamental

cycles of the torus. Recalling that different integer linear combinations of cycles are related

by the action of the modular group PSL(2,Z), one finds that the (n,m) torus knot can

be obtained from a simple circular line parallel to the non-contractible cycle (the unknot

K1,0) through a modular transformation. Since PSL(2,Z) has a unitary representation on

H(T 2;G, k), this naturally defines a quantum circuit building the state |Kn,m〉 from the

unknot state |K1,0〉.
The topological complexity corresponds to the shortest word of PSL(2,Z) generators

yielding the desired knot transformation, which reduces the problem of finding the complex-

ity to a number theory problem. We also briefly discuss the case of rational (or 2-bridge)

knots and links [37] by adopting the standard presentation of knots as the closure of braid

words. For the specific case of 2-bridge knots, the problem can again be translated into

the same one of PSL(2,Z) generators.

When the study of complexity is extended to the knot states in the quantum Hilbert

space the representation constraints need to be taken into account.1 These constraints

lead to non-trivial linear relations between the states. In simple words, states with (n,m)

and (q, p) can become equivalent if they are related by one such constraint. Therefore the

analysis based on a simple counting of the word generators, in general, only gives an upper

bound on the circuit complexity.

Keeping in mind this caveat we denote Umin
n,m the optimal topological circuit made

of the smallest number of PSL(2,Z) generators needed to construct a generic knot, and

Umin
n,m the optimal quantum circuit operator in the unitary representation acting on the

corresponding Hilbert space. We show that different realizations of a topological circuit

Un,m are associated with different continued fraction decompositions of the rational n
m ,

showing an interesting interplay between our problem and number theory. In particular,

we prove (see proposition 1) that the optimal circuit Umin
n,m = T a1S · · ·T arS corresponds to

ai = (−1)i+1bi, where bi > 0 are the regular (or Euclidean) continued fraction coefficients.

The “topological complexity” of this knot (the minimal number of S and T transformations

1We thank the anonymous referee for reminding us about it.
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needed to produce it from the unknot) is then simply

Cn,m =

r∑

i=1

(bi + 1) + |f | , (1.5)

where |f | is a further contribution due to possible framing of the knot. The corresponding

quantum complexity Cn,m of the knot state |Kn,m〉 will in general be lower than (1.5) due to

additional constraints on the corresponding optimal quantum circuit Uopt
n,m, i.e. Cn,m ≤ Cn,m.

We propose a geometric interpretation of Cn,m in terms of geodesic paths on a graph

connecting rational numbers (the Farey graph), which has a natural representation in

the upper-half plane. We also discuss a related interpretation in the Stern-Brocot tree

of rational numbers, which is related to the view of topological complexity in terms of

geodesics on the Cayley graph of S and T generators [38]. We find evidence that, in addition

to Euclidean continued fractions, the ancestral path continued fractions introduced in [39]

also yield an optimal circuit, indicating that the complexity appears as an invariant related

to different continued fractions.

The upper bound on quantum state complexity is saturated in the semiclassical limit

of the Chern-Simons theory. Intuitively, this topological complexity of semiclassical knot

states in Chern-Simons is related to the old problem of classifying knots, even though

nowadays there are many known knot invariants designed to solve this problem.2 We find

that an obvious extension of the torus knot discussion to rational links (understood as

four-strand braid closures) recovers the same results for complexity when applied to torus

knots, which are special members of the rational class.

We also discuss the relation with the path integral optimization approach to complexity

developed in [29–32] by generalizing the construction to spaces whose topology is non-

trivial. In this way, the optimization procedure is seen to include also a variation over the

moduli space and a connection with our problem is then established.

We note that the relation of knots to quantum Chern-Simons theory as described

above puts them in the quantum information context. Indeed, the connection between

knots and quantum computing has long been appreciated — they are alike quantum algo-

rithms and their complexity should tell us about the complexity of the underlying quantum

tasks [40–42]. Complexity, in the sense discussed here, can be related to complexity (in an

abstract sense) of certain algorithms for computing knot invariants, cf. [43–45].

The remainder of this paper is organized as follows. In section 2, we review the

construction of the Hilbert space of Chern-Simons theory on the torus and give a detailed

definition of torus knots states to be studied in the sequence. We also discuss the subtleties

involved when going from the modular group to its unitary representation and the eventual

conditions on the parameters of the theory which allow the given set of torus knot states to

be non-degenerate. In section 3, we compute the topological complexity of torus knots after

proving a set of statements about continued fractions and then discuss the results through

2As in the case of the degeneracy of torus knots states mentioned above, knot invariants can appear

degenerate on inequivalent knots. However, by adjusting parameters k, G, or the representation R coloring

the knot, one seems to always be able to find a polynomial distinguishing a given knot from an arbitrary

collection of other knots [37].
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examples. We also give a geometric interpretation of the result and discuss relations with

mathematical results on geodesic paths on the Farey graph. A comprehensive discussion

then follows on the circuit complexity of knot states and its relation with the topological

result, which constitutes an upper bound as anticipated above. In section 4 we extend the

discussion to the case of other knots and links. In section 5 we discuss a connection with

the path integral optimization approach to complexity. We summarize our findings in the

closing section 6. Some additional details about torus knot states are left for appendix A.

2 Knot states in Chern-Simons theory

2.1 Knot complement states

The Chern-Simons theory with gauge group G and level k, denoted by Gk, is defined on a

(compact, connected, oriented) 3-manifold M by the action

SCS[A] =
k

4π

∫

M
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (2.1)

where A = Aµ dx
µ is the gauge field and the trace is taken in the fundamental representa-

tion of the Lie algebra of G. The level k is an integer in order to ensure gauge invariance

of the path integral defining the quantum theory [33].

This action is topological in the sense that it is independent of the metric chosen in M.

As a consequence, the expectation value of any gauge invariant and metric independent

observable of the theory defines a topological invariant in M. The natural example is the

Wilson loop operator associated with an oriented closed curve (e.g., a knot) K,

WR(K) = TrR P exp

(∮

K
A

)
, (2.2)

obtained by tracing in a given representation R the holonomy of the gauge field around

K. More generally, the expectation value of any product WR(L) ≡
∏

iWRi
(Ki) of Wilson

loops computes a topological invariant of the link L =
∐

iKi obtained by joining the

(non-intersecting) knots Ki.
3 This is calculated as usual by the path integral

〈
WR(L)

〉
M

=

∫

M
DA

(
∏

i

WRi
(Ki)

)
eiSCS[A] , (2.3)

where the normalization factor Z(M)−1 is omitted for brevity
(
Z(M) =

∫
MDA eiSCS[A]

)
.

When the gauge group G is SU(2) and the Ri are all fundamental representations, this

reduces to the celebrated Jones polynomial of L [33]. Similarly, for SU(N) and SO(N)

one gets the HOMFLY-PT [46, 47] and the Kauffman [48] polynomials, respectively. In

general (2.3) gives access to infinitely many link invariants as the gauge group and repre-

sentations are changed.

We are interested in Chern-Simons theory defined on a topological 3-manifold M with

a 2-torus as a boundary, ∂M = T 2. Any suchM can be understood as the knot complement

3The symbol
∐

i
Ui means the disjoint union of the sets Ui.
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Figure 1. The knot complement manifold M corresponding to the trefoil knot (gray region). It is

constructed by removing from S3 a small tubular neighbourhood Ktub (white region) of the knot

(black curve).

of some knot K in a closed 3-manifold, which here for simplicity we take to be the 3-sphere.

Namely, we will be interested in 3-manifolds M = S3\Ktub constructed by removing from

S3 a small tubular neighborhood Ktub of a knot K. The simplest example is provided by

the trivial knot or unknot, in which case the region Ktub is a simple (i.e., unknotted) solid

torus and its complement M turns out to be another solid torus [49]. For a non-trivial

knot the situation is illustrated in figure 1.

The Chern-Simons path integral on M defines a state in the Hilbert space H(T 2;G, k)

associated with the T 2 boundary. We shall denote this by |K〉 (because |S3\Ktub〉 would

be too cumbersome) and refer to it as the knot complement state associated to K.4 Since

the theory is topological, states constructed in this way only depend on the topology of

M, not on its precise geometry. Therefore, different quantum states on the torus can be

constructed by considering different knot complements.

A canonical basis for the torus Hilbert space H(T 2;G, k) can be constructed taking

M to be a solid torus (the complement of the unknot, in the spirit above) and insert-

ing Wilson lines in it [33]. Namely, the path integral on the solid torus with a Wilson

line in the representation Rj inserted along the non-contractible cycle defines a state |j〉
on the boundary (its conjugate 〈j| corresponds to the insertion of a Wilson line in the

conjugate representation Rj with inverted boundary orientation). An orthonormal basis

for H(T 2;G, k) then consists of the set
{
|j〉
}
where j runs over integrable highest weight

representations of the gauge group G at level k. For instance, in the case of U(1)k these in-

tegrable representations are labelled by an integer j = 0, 1, . . . , k−1, while for SU(2)k they

are labelled by a half-integer j = 0, 12 , . . . ,
k
2 . The resulting Hilbert spaces H(T 2; U(1), k)

and H(T 2; SU(2), k) have dimensions k and k + 1, respectively.

4The construction here is a particular case of the link states used in [50–54] to study the relation between

entanglement and topology in Chern-Simons, where the knot K is replaced by a link L =
∐

i
Ki and the

resulting manifold M has multiple torus boundaries.

– 6 –



J
H
E
P
0
7
(
2
0
1
9
)
1
6
3

The knot complement state |K〉 ∈ H(T 2;G, k) obtained by path-integrating over M
can be expanded in the |j〉 basis as

|K〉 =
∑

j

ψj(K) |j〉 . (2.4)

The coefficients ψj(K) = 〈j|K〉 are computed by the inner product corresponding to gluing

the two manifolds that define |K〉 and 〈j| along their common T 2 boundary. The result is

a sphere with the Wilson line inserted, which is nothing but the knot invariant (2.3) on S3,

ψj(K) =
〈
WRj

(K)
〉
S3 . (2.5)

In other words, the state |K〉 contains all the Wilson loop knot invariants of the knot K at

level k.

2.2 The framing ambiguity

Strictly speaking, the invariants (2.3) are only well-defined for framed knots (links) [33, 55].

Informally, a framed knot K is just the usual knot K constructed using a ribbon instead of

a dimensionless string. In other words, it is the object obtained by stretching the curve K
a little bit at each point along a direction specified by a normal vector field v (called the

framing), as illustrated in figure 2. The resulting framed knot has twists in the ribbon,

the number f of which is called framing number or self-linking number of K. The issue

becomes clear in the case of U(1) Chern-Simons theory, where the action (2.1) is quadratic

and correlators can be computed in closed form. Namely, for a link L =
∐

α Kα, [33]

〈
W (L)

〉
S3 = exp


2πi

k

∑

α,β

nαnβℓαβ


 , (2.6)

where the integer nα labels the representation of the corresponding Kα and

ℓαβ =
1

4π

∮

Kα

dxµ
∮

Kβ

dyν ǫµνρ
(x− y)ρ

|x− y|3 (2.7)

is the Gauss linking number, a well-known topological invariant counting how many times

the knots Kα and Kβ (α 6= β) wind around each other. There is an inherent ambiguity

in (2.6), however, coming from the contributions when α = β, where a prescription is needed

to deal with the integration over coincident points. The problem is similar to the ambiguity

in the definition of the composite operator (
∮
Kα
A)2 in the quantum theory. Even though a

careful inspection of the integral in ℓαα shows that it is well-defined and finite [56], it turns

out to be metric-dependent and hence not invariant under deformations of Kα, which spoils

the desired topological invariance of the result. A regularization prescription that restores

this topological property amounts to introducing a framing for Kα, as explained above,

and defining ℓαα as the linking number between Kα and its framing, which is precisely the

self-linking number fα.

– 7 –
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(a) (b)

Figure 2. Two different framings of the trefoil knot. (a) is the simplest to visualize, the so called

blackboard framing, where the normal vectors point all to the same vertical direction and the ribbon

lies flat on the projection plane. According to Calugareanu’s theorem [58], the self-linking number

in this case is the writhe number of the knot (w = 3 here). (b) shows another choice of framing

having 4 extra twists on the ribbon (in general, any framing can be drawn as a blackboard framing

with a number of extra twists). Note that each twist may increase or decrease the self-linking

number, depending on whether it is a positive or negative twist. In particular, the self-linking

number can always be set to zero by an appropriate number of twists — this defines the so called

canonical framing.

In general, there is no natural choice of framing and generic observables will depend

on this choice (see, e.g., [57] for the framing dependence of Wilson loops in SU(N) Chern-

Simons).5 However, this by no means takes away the merit of Chern-Simons theory, since

the transformation rule for expectation values of Wilson loops under a change of framing

is well-defined. Namely, if the knot Kα has its framing shifted by t units, ℓαα is increased

by t and, as a result, it is clear from (2.6) that the Wilson loop picks up a phase factor,

〈
W (L)

〉
S3 −→ exp (2πi t hα)

〈
W (L)

〉
S3 , hα ≡ n2α/k . (2.8)

Even though we have only discussed here U(1)k, the same conclusion holds in SU(N)k as

well, where hα in that case is the conformal weight of the Wess-Zumino-Witten primary

field corresponding to the representation Rα [33].

2.3 Modular transformations and torus knots

There is a natural set of unitary transformations acting on the Hilbert space H(T 2;G, k).

They correspond to the unitary representations of the modular group PSL(2,Z) of large dif-

feomorphisms of the torus. The modular group is generated by the S and T transformations

S =

(
0 −1

1 0

)
, T =

(
1 1

0 1

)
(2.9)

5It is interesting to mention that the entanglement structure of link complement states has been shown

to be framing-independent [51, 53].
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Figure 3. The first few non-trivial torus knots as told by their crossing number, namely K3,2 (the

trefoil), K5,2, K7,2, K4,3, K9,2, K5,3, K11,2, and K13,2 (figure taken from [60]). We recall that the

crossing number of a (n,m) torus knot is cr(Kn,m) = min
{
(n− 1)m, (m− 1)n

}
= (m− 1)n.

that act on the torus modular parameter τ as S : τ → − 1
τ , T : τ → τ + 1. They satisfy

S2 = (ST )3 = 1 and the P in front of PSL(2,Z) means that SL(2,Z) matrices M and −M
should be identified. It is easy to see that S exchanges the two fundamental cycles of the

torus, while T generates twists around the contractible cycle (the so-called Dehn twists).

Any modular transformation can be written as a sequence of S and T transformations.

These act naturally on the torus Hilbert space through their unitary matrix representations

S and T (of dimension dimH(T 2;G, k)), which take particularly simple forms in the |j〉
basis. For instance, in the U(1)k theory, they are given by [59]

Sj1,j2 =
1√
k
e2πi

j1j2
k , Tj1,j2 = e2πihj1 δj1,j2 (2.10)

with hj =
j2

2k , while for SU(2)k they read

Sj1,j2 =

√
2

k + 2
sin

(
π(2j1 + 1)(2j2 + 1)

k + 2

)
, Tj1,j2 = e2πihj1 δj1,j2 (2.11)

with hj =
j(j+1)
k+2 .

From a knot theory perspective, a sequence of S and T diffeomorphisms transforms a

circular Wilson loop (the unknot) inside the solid torus into an arbitrary torus knot. We

recall that torus knots, which we denote by Kn,m or by the pair (n,m), are knots that can

be drawn on the surface of a torus without self-intersections. Non-trivial knots are labelled

by two coprime6 numbers (n,m) that count how many times the knot winds around the two

fundamental cycles of the torus (the non-contractible and contractible one, respectively).

With no loss of generality, they can be taken to be n > m > 1.7 The unknot instead

corresponds to the equivalence class of pairs (n,m) with either n or m (or both) equal to

1; with a slight abuse of notation we will chose the unknot representative as K1,0. The first

few non-trivial torus knots are listed in figure 3.

The pair of coprime numbers (n,m) defines the family of diffeomorphisms

Un,m =

(
n γ

m δ

)
(2.12)

that transform the unknot to Kn,m, i.e., Kn,m = Un,mK1,0 since Un,m ( 10 ) = ( n
m ). Here,

γ, δ are constrained by the unit determinant condition |nδ −mγ| = 1.

6When they are not coprime, Kn,m denotes instead the torus link made of N=gcd(n,m) copies of K n

N
,m
N
.

7Namely, it is not hard to check that i) Kn,m ≡ Km,n; ii) Kn,−m is the mirror image of Kn,m; iii)

K−n,−m is Kn,m with the opposite orientation.

– 9 –



J
H
E
P
0
7
(
2
0
1
9
)
1
6
3

(a) (b)

Figure 4. The action (2.13) of Un,m on the basis vectors corresponding to a given representation

Rj . It transforms the circular Wilson loop |j〉 depicted in (a) into the (n,m) torus knot |jn,m〉
illustrated in (b).

In a generic situation the representation of a torus diffeomorphism of the form (2.12) on

the torus Hilbert space, characterized by the operator Un,m, defines a new quantum state

|jn,m〉 ≡ Un,m|j〉 =
∑

i

(
Un,m

)
ji
|i〉 . (2.13)

Non-trivial relations for the operator Un,m that depend on the chosen representation will

be discussed in section 2.4; these will reduce the size of the space of states (2.13) compared

to the corresponding knot space, but for the moment let us assume that such relations are

not present. The interpretation of |jn,m〉 is clear: it corresponds to a solid torus with a

Wilson loop inserted along the torus knot Kn,m, i.e., WR∗

j
(Kn,m), in contrast to WR∗

j
(K1,0)

that defines the original |j〉 (see figure 4). Notice that the unitary nature of Un,m ensures

that the states
{
|jn,m〉

}
are also orthonormal. In other words, a diffeomorphism on the

torus amounts to a change of basis in H(T 2;G, k). We shall refer to
{
|jn,m〉

}
as the torus

knot basis, as opposed to the unknot basis
{
|j〉
}
.

The action of Un,m on a generic torus knot complement state (2.4) is less trivial,

Un,m|Kp,q〉 =
∑

j

ψj(Kp,q)|jn,m〉

=
∑

i

(∑

j

ψj(Kp,q)
(
Un,m

)
ji

)
|i〉 , (2.14)

which is itself a different torus knot complement state, say |Kr,s〉. This can be seen using

the explicit operator description of torus knots in Chern-Simons theory in terms of which

the natural action of PSL(2,Z) becomes manifest (see [36] for details). Namely, an ar-

bitrary torus knot Wilson loop WR(Kp,q) can be obtained by acting with the torus knot

operator W
(p,q)
R on the empty solid torus (the “vacuum state”), and modular transforma-

tions U (with unitary representation U) map these operators between themselves, that is,

U−1W
(p,q)
R U = W

(r,s)
R with ( rs ) = U ( pq ). It is clear from this construction that all torus

knots can be obtained from the unknot (created by W
(1,0)
R ) by an appropriate modular

transformation, namely (2.12). In other words, Un,m maps the unknot-complement state

to the Kn,m-complement,

Un,m|K1,0〉 = |Kn,m〉 . (2.15)

Some additional details about torus knot states are summarized in appendix A.
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2.4 Modular group versus unitary representation

An important subtlety to note is that going from a PSL(2,Z) group word Un,m to its unitary

representation Un,m may reduce the word length, since generically there are additional

constraints satisfied by the unitary matrices S and T . For instance, one of the fundamental

properties of the quantum modular representation is that T is a diagonal matrix of finite

order (T p = 1 for some p) [61]. This is evident in the U(1)k representation (2.10), where

T 2k = 1 (2.16)

and in the SU(2)k representation (2.11), which has

T 4(k+2) = 1. (2.17)

Consequently, if two distinct torus knots are related by a modular transformation whose

unitary representation is trivial (for instance, U = ST 2kS in the U(1)k case yields U =

ST 2kS = 1) the corresponding knot states are actually equivalent. Moreover, as the matrix

elements of S and T are roots of unity depending on the level k, extra modular constraints

are to be expected in the unitary representation.

We can be more precise about the extra constraints in the modular representation as

follows. Let ρ : SL(2,Z) → GL(d,C) be a unitary modular representation acting on the

Hilbert space H of a Rational CFT (RCFT), where d = dimH. As first discussed in [62]

and later proved in broader generality in [63], the kernel of ρ is a congruence subgroup

of SL(2,Z), which then implies that the image of ρ is a representation of a finite group.

Therefore, the unitary modular representation can be understood as a representation of the

finite quotient group SL2(N) ≡ SL(2,Z)/Γ(N), where Γ(N) is the principal congruence

subgroup of level N , which in our case is a function of G and k [62]. Consequently, all

the torus knot states will reduce to only a finite number of inequivalent classes, whose

representatives are related to each other by elements of the quotient.

Understanding the modular coset representatives is crucial to calculate the exact S
and T word of a quantum knot state. However, as the constraints actually depend on

the group G and level k, we refrain to discuss these representations in any more detail in

this paper. In the rest of the paper, we will discuss topological knots in terms of words

in the modular group SL(2,Z). As will be argued in the next section, topological knots

can be understood as semiclassical knot states in the large level limit k → ∞ of quantum

knot states. In this sense, the semiclassical analysis will provide an upper bound on the

complexity of the quantum knot states.

3 Circuit complexity of torus knots and knot states

3.1 Minimal words and topological complexity

Let Un,m denote a torus diffeomorphism yielding Kn,m from the unknot as in (2.12). As any

PSL(2,Z) matrix, it can be decomposed in terms of the S and T (and S−1, T−1) generators

as a word of the form

Un,m = T a1ST a2S . . . T arS , (3.1)
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where ai are integer numbers and negative powers are to be understood as positive powers

of the inverse matrix. Here we have already used S2 = 1 to exclude higher powers of S.

Of course this decomposition is not unique thanks to the further group relation (ST )3 = 1

and, more importantly, to the fact that (2.12) actually defines a whole family of Un,m’s

(parametrized, e.g., by δ). As a result, the word length

||Un,m|| =
r∑

i=1

(|ai|+ 1) (3.2)

may grow indefinitely. Our goal is to find the shortest of these words.

We begin by clarifying the class of numbers {ai} that can appear in (3.1). We first

notice that each factor T aiS ≡ Mai =
(
ai −1
1 0

)
acts on the torus modular parameter τ

as the Möbius transformation Mai(τ) = ai − 1
τ . The full word Un,m then acts on τ as a

composition of these maps, i.e., Un,m(τ) = nτ+γ
mτ+δ = Ma1 ◦Ma2 ◦ · · · ◦Mar(τ). At τ = ∞

this gives

n

m
=Ma1 ◦Ma2 ◦ · · · ◦Mar(∞)

= a1 −
1

a2 − 1

. . .− 1

ar

, (3.3)

showing that the set of allowed ai forms a continued fraction (CF)8 decomposition of n
m .

Using the standard “all plus” notation for continued fractions

[b1; b2, . . . , br] ≡ b1 +
1

b2 +
1

. . .+ 1

br

, (3.4)

one can write

n

m
= [b1; b2, . . . , br] with bi = (−1)i+1ai (3.5)

(in other words, bi = ai for odd i and bi = −ai for even i).
It is crucial to note that for a fixed n

m there are infinitely many different CF decomposi-

tions (3.5), since a priori no restriction is put on the integers ai. For instance, if we declare

the ai to be strictly positive (meaning that the use of the T−1 generator is forbidden) we

can write 3
2 = [2;−2] so that U3,2 = T 2ST 2S =

(
3 −2
2 −1

)
is a word of length 6 producing

the trefoil knot; on the other hand, if negative ai’s are allowed we could write 3
2 = [1; 2]

and get the shorter word U3,2 = TST−2S = ( 3 1
2 1 ) of length 5 that also does the job. More

generally, equivalent CF expansions exist that do not even have the same number of terms

(e.g., 3
2 = [−2; 1,−1,−2,−2]). The shortest word corresponds to the particular choice(s)

of CF that minimizes (3.2), that is,

∣∣∣∣Umin
n,m

∣∣∣∣ ≡ min
r,{ai}

r∑

i=1

(
|ai|+ 1

)
= min

[b1;b2,...,br]

r∑

i=1

(
|bi|+ 1

)
. (3.6)

8For further connections between knots and continued fraction see, e.g., [64].
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Notice that there is an interplay between r (the total number of terms in the CF) and the

absolute values of the CF coefficients themselves, which makes the minimization procedure

tricky: we want a CF with not too many terms, while at the same time keeping the

coefficients sufficiently small.

In principle there could be many CFs yielding this minimal length (there is no reason

why it should be unique). For our purposes it is enough to find one of them, since we are

only interested in the value of ||Umin
n,m|| itself. A possible strategy would be to ignore the

fact that r and {bi} are related and minimize first over the number of terms r to later

worry about the bi. Continued fractions with the least number of terms (so-called geodesic

continued fractions) have been discussed in [39], where a prescription is given to construct a

particular geodesic CF using the so-called ancestral path from n
m to ∞ on the Farey graph.

The problem here is that in general there are multiple geodesic CFs9 and it is not clear

how to carry out the minimization over coefficients bi within this set of geodesic CFs (the

exception here is when |bi| ≥ 3 for all i ≥ 2, in which case the ancestral path CF constructed

in [39] is the unique geodesic one and therefore minimizing over bi is trivial). Even though

we have compelling numerical evidence that this ancestral path CF indeed minimizes the

length (3.6), here we adopt a different (simpler) strategy and prove the following:

Proposition 1. For n > m > 0, the minimal word length (3.6) is achieved for the regular

continued fraction representation of n
m (i.e., the one for which bi > 0 for all i = 1, . . . , r)

with br > 1. This representation is unique.10

First of all, let us recall that the regular (or Euclidean) continued fraction representa-

tion [b1, . . . , br] of a rational number x is defined by the recurrence relation

bi = ⌊fi⌋,

fi =
1

fi−1 − bi−1
(i = 2, . . . , r) ,

f1 = x, (3.7)

where ⌊·⌋ is the floor function. The construction implements the Euclidean algorithm for

finding the greatest common divisor of two integers n and m. It is clear that its coefficients

are all positive (except perhaps the first one, which vanishes when 0 ≤ x < 1 or is negative

when x < 0).

9Namely, there are at most Fr (the r-th Fibonacci number) geodesic CFs with value x, where r is the

minimal number of terms needed to expand the rational x [39].
10For an arbitrary (positive or negative) rational x this does not work. Even though we shall not need it

here, we conjecture that in this case C =
∑r

i=1
(|bi|+1) is minimized by the continued fraction x = [b1, . . . , br]

obtained by modifying the Euclidean algorithm as follows:

i) If k ≤ x ≤ k + 1

2
for some integer k, then it is the standard Euclidean continued fraction of x;

ii) If k − 1

2
< x < k for some integer k, then it is given by [−b∗1, . . . ,−b∗r ], where [b∗1, . . . , b

∗

r ] is the

Euclidean continued fraction of −x.

E.g., for x = − 1

4
the Euclidean continued fraction [−1, 1, 3] gives C = 8 while the modified one yields

[0,−4] which has C = 6. The proof should parallel the one given in the text after noting that this modified

continued fraction has all coefficients of the same sign (except perhaps the first). We thank Ian Short for

help on that.
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Proof of proposition 1. Suppose that [c1, . . . , cr] is a continued fraction decomposition of n
m

that minimizes (3.6). What we need to show is that we can modify this expansion without

changing the length ||Umin
n,m|| = ∑r

i=1

(
|ci| + 1

)
in such a way that all the coefficients of

the resulting continued fraction become positive. This can be done with the help of the

following two identities

[· · · , ci, ci+1, · · · ] = [· · · , ci − 1, 1,−ci+1 − 1,−(· · · )] (3.8a)

[· · · , ci, ci+1, · · · ] = [· · · , ci + 1,−1,−ci+1 + 1,−(· · · )] , (3.8b)

where −(· · · ) means that all the coefficients that previously appeared in · · · are to appear

now with opposite sign. The fact that expressions (3.8) still give an expansion of the same
n
m can be seen using [a1, . . . , aj ] = a1 + 1

[a2,...,aj ]
after checking the simpler identities11

[a, b] = [a − 1, 1,−b − 1] and [a, b] = [a + 1,−1,−b + 1]. It is also straightforward to

check that the move (3.8a) preserves the length ||Umin
n,m|| as long as ci > 0 and ci+1 < 0,

while (3.8b) preserves the length for ci < 0 and ci+1 > 0.

There is a small subtlety in using (3.8) when either ci or ci+1 take the values ±1,

in which case the identities may generate a vanishing coefficient. Whenever this happens

we have to convention that the rearrangements [· · · , a, 0, 1, · · · ] ≡ [· · · , a + 1, · · · ] and

[· · · , 1, 0, a, · · · ] ≡ [· · · , 1 + a, · · · ] have been done (both of which are trivially checked).

Then, with that in mind, we can do the following procedure:

(i) If c1 > 0: whenever a negative coefficient (ci+1 < 0) occurs in [c1, . . . , cr] we eliminate

it by applying the move (3.8a). By repeated application from the left to the right, we

eliminate all the negative coefficients and obtain a new expression [b1, . . . , bs] having

only positive bi’s;

(ii) If c1 ≤ 0: first apply the move (3.8b) sufficiently many times on the first pair of

coefficients such that the resulting continued fraction gets a positive term in the first

position. Then repeat the procedure in (i) to make all the remaining ones positive

as well.

This procedure converts any minimal [c1, . . . , cr] into a continued fraction with positive

coefficients bi without changing ||Umin
n,m||. It remains to show that such a decomposition can

always be chosen with br > 1, and in this case it is unique.

We first notice that there is an ambiguity in the definition of the last term since br
can always be written as (br − 1) + 1

1 , namely [b1, . . . , br] = [b1, . . . , br − 1, 1]. We would

like to show that if we define all positive continued fractions (except the trivial case of 1
1)

in such a way that br > 1, then such a presentation is unique. To see that, consider two

decompositions of the same n
m ,

b1 +
1

[b2, . . . , br]
= b̃1 +

1

[b̃2, . . . , b̃s]
, (3.9)

11In the language of S and T transformations these identities are simply a manifestation of the (ST )3 = 1

group relation. E.g., the first one is equivalent to T aST−bS = T a−1(TST )T−b−1S = T a−1(ST−1S)T−b−1S.
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where bi and b̃i are strictly positive integers with br > 1 and b̃s > 1. First notice that

the latter fact means that [b2, . . . , br] > 1 and [b̃2, . . . , b̃s] > 1, which implies that 1
[b2,...,br]

and 1
[b̃2,...,b̃s]

are not integers and therefore the equality is only possible if b1 = b̃1 and

[b2, . . . , br] = [b̃2, . . . , b̃s]. By recursively applying this argument to the fractions [b2, . . . , br]

and [b̃2, . . . , b̃s], one concludes that s = r and bi = b̃i for all i. This proves proposition 1.

For future reference, let us also leave stated here the alternative proposition, for which

we have no proof at the moment (only supporting numerical evidence):

Proposition 2. The minimal word length (3.6) is also achieved for the geodesic continued

fraction constructed in [39] based on the ancestral path between n
m and ∞ in the Farey graph.

For all practical matters, a proof is not needed since all we need here is the value of

||Umin
n,m||, which can be computed using the simpler prescription of proposition 1.

We are now ready to discuss the topological complexity of torus knots. Recall from

the previous section that every torus diffeomorphism Un,m producing the Kn,m torus knot

from the unknot can be decomposed into a sequence of S and T transformations of the

form Un,m = T a1ST a2S . . . T arS. This PSL(2,Z) word is not unique, and the topological

complexity of Kn,m corresponds to the length of the shortest possible one, Cn,m = ||Umin
n,m||,

which is the minimal number of transformations required to produce the desired knot. It

is clear from proposition 1 above that Umin
n,m = T a1ST a2S . . . T arS with ai = (−1)i+1bi and

bi the Euclidean CF coefficients, so that

Cn,m =

r∑

i=1

bi + r + |f | (3.10)

where each factor T aiS contributes with |ai| + 1 = bi + 1 and the dependence on the

particular knot Kn,m is encoded in both r and {bi}. Here we have jumped a bit ahead

and added the +|f | contribution due to framing of the initial unknot (f is the self-linking

number), which we now make a brief pause to clarify.

When discussing the optimal circuit above, we have implicitly assumed that the knot

Kn,m has trivial framing (f = 0), which is not in general the case since no natural choice of

framing exists. This ambiguity in the choice of framing affects many physical quantities,

including the complexity. Fortunately, the way in which it affects Cn,m is very simple:

a knot K with f units of framing and its version with trivial framing are mapped into

each other by the f -fold Dehn twist generated by T f . This can be immediately seen in the

U(1)k case from the transformation rule (2.8) of the wave function under a shift of framing,

where the phase factor exp(2πi f j2/k) picked up by the state is nothing but the matrix

element of T f that represents this Dehn twist in the Hilbert space, where T is shown

in (2.10). Therefore, if Umin
n,m is the minimal word building the trivially framed Kn,m, it is

clear that Umin
n,mT

f is the corresponding one for the framed knot. Since in principle nothing

prevents f from being negative, this explains the |f | extra units of complexity appearing

in (3.10). Any further change of framing by t units as in (2.8) will add or subtract t units

of complexity to Cn,m.
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n m Cn,m − |f |
1 + b1b2 b2 b1 + b2 + 2

b1 + b3(1 + b1b2) 1 + b3b2 b1 + b2 + b3 + 3

1 + b1b2 + b4(b1 + b3(1 + b1b2)) b2 + b4(1 + b3b2) b1 + b2 + b3 + b4 + 4

Table 1. The topological complexity (3.10) for the particular torus knots Kn,m for which the

regular continued fraction decomposition of n
m

has up to 4 coefficients. The construction proceeds

similarly for r > 4. Recall that, according to our convention, bi ≥ 1 for i = 1, . . . , r − 1 while br is

strictly > 1.

Figure 5. A statistical analysis of the topological complexity (3.10) for the first three thousand

torus knots (as told by their crossing number), ignoring the framing contribution. While the crossing

number of knots in the sample reaches up to 104, Cn,m increases much more slowly, reaching a

maximum of 100. In particular, the vast majority of states in the sample have moderate complexity

(roughly between 10 and 20).

In table 1 we illustrate expression (3.10) explicitly for a number of particular torus

knots Kn,m, namely the ones for which the continued fraction decomposition of n
m has up to

4 coefficients. This allows us to easily identify families of knots having the same topological

complexity. For instance, it is clear from the first line that C1+b1b2,b2 = C1+b1b2,b1 for all

b1, b2 > 1, with analogous conclusions obtained from any permutation of indices in the

second and third lines. Similarly, one can compare elements from different lines and identify

further knots that are equally complex. A detailed exploration of these symmetries reveals

that the vast majority of knots have a quite moderate topological complexity, as shown in

figure 5. It also becomes evident that the complexity increases very slowly in comparison

with the crossing number of the knot, which provides a good notion of how knotted the

given knot is.

In figure 6, we analyze the behaviour of the topological complexity Cn,m as a function

of n for different values of m. For large enough n, the topological complexity asymptotes to

Cn,m ∼ n

m
. (3.11)
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Figure 6. Topological complexity Cn,m of torus knot states as a function of n for different values

of m.

Figure 7. Large n topological complexity for m = 30. We zoom in a small interval to show its

fine structure.

However, a more careful analysis shows that this an approximate behavior, since the appar-

ent straight lines in the plot actually exhibit an internal structure with a periodic pattern

of fluctuations that becomes more noticeable as m increases. The situation is illustrated

in figure 7 for m = 30: the apparent single line is made of two discrete series of points

that sit along two parallel lines. For other values of m this pattern can be different. Even

though we have no algebraic explanation for these patterns, we checked that they have the

same asymptotic slope.

3.2 Geometric interpretation

Interestingly, the topological complexity (3.10) can be given a nice geometric interpretation

in terms of the Farey tesselation of the upper half-plane [65]. This tesselation is a result

of embedding the Farey graph F on the upper-half plane, whose vertices are the rational

– 17 –



J
H
E
P
0
7
(
2
0
1
9
)
1
6
3

numbers (plus infinity) and whose edges join each pair of Farey neighbors (and only these).

It is constructed as follows: one first draws vertical lines at each integer point n = n
1 ∈ Z,

which reflects the fact that all integers are Farey neighbors of ∞; then joins pairs of

adjacent points by a semicircle and generates a new rational point in between the two

using the mediant formula n1

m1
⊕ n2

m2
= n1+n2

m1+m2
. The procedure then follows recursively, and

the result is shown by the black curves in figure 8. The resulting tiles are ideal triangles

with vertices either at a rational number or at infinity, and edges along semicircles of

different radii or along the vertical lines.12 One can also define the dual tree graph F∗ of

F by taking the baricenter of each ideal triangle as vertices and connecting them to the

adjacent triangles, forming a trivalent tree.

The contribution from the sum of regular continued fraction coefficients
∑

i bi ≡ dn,m
in (3.10) is the “geodesic distance” between the origin (representing the unknot) and the

fraction n
m that identifies Kn,m. This geodesic distance dn,m is geometrically equivalent to

the number of edges connecting n
m to the origin along a semicircular path (a geodesic path

in the upper-half plane) that goes through the ideal triangles, where the vertices correspond

to intersections of this path with the curves in the Farey tesselation. See figure 8.

A related view of
∑

i bi can be given in terms of the Stern-Brocot tree of rational

numbers. This is an infinite binary tree in which each vertex corresponds to a single positive

rational number in its reduced form. It is constructed iteratively by starting at the zeroth

level with the two extremal points 0 = 0
1 and ∞ = 1

0 and, at each new level, introducing

a new rational number in between every pair n1

m1
and n2

m2
of rationals in the previous level

using the mediant formula mentioned above. The tree up to its fifth level is illustrated in

figure 9. The sum
∑

i bi is the level (or depth) in the Stern-Brocot tree of the node n
m ,

i.e., the number of edges connecting it to one of the root nodes on top. Let us emphasize

here that two rationals having the same
∑

i bi does not imply that the corresponding knots

have the same topological complexity, since (3.10) also contains a contribution from r. For

instance, 4
3 and 5

3 both lie at the same depth in the Stern-Brocot tree (
∑

i bi = 4), but the

corresponding torus knots K4,3 and K5,3 differ by one unit of complexity since the regular

CF representation of 4
3 = [1; 3] has two coefficients while 5

3 = [1; 1, 2] has three. Finally,

we notice that the Stern-Brocot tree is isomorphic to the dual Farey graph F∗. It has the

mediants as vertices, but each mediant is simply connected to the baricenter of each its

respective triangle. In this sense, the CF depth is equivalent to the number of triangles

cut by the geodesic path of figure 8.

The contribution from r (the number of terms in the continued fraction) in (3.10) can

also be seen geometrically in figure 8, but this time using paths along the Farey graph itself

(i.e., along the black solid curves as opposed to the dashed colored curves). The regular

continued fraction n
m = [b1, . . . , br] defines a connected path Pn/m = (∞, C1, . . . , Cr = n

m)

in the Farey graph connecting ∞ to n
m and whose vertices are the convergents Ci ≡

[b1, . . . , bi] (i = 1, . . . , r) of the continued fraction [39]. Clearly, r is the number of edges in

12It can be proven that i) two triangles are either equal or disjoint; ii) every triangle is adjacent to exactly

three other triangles; iii) modular transformations map between different triangles, or, in other words, the

Farey tesselation is invariant under PSL(2,Z).
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- 1 0 1 23

2

4

3

5

3

Figure 8. Geometric view of the sum of continued fraction coefficients contributing to (3.10) in

the Farey tesselation of the hyperbolic plane (denoted by the black solid curves).
∑

i bi ≡ dn,m is

the “geodesic distance” between the origin (the unknot) and the fraction n
m

(the knot Kn,m), i.e.,

the number of edges connecting them along a semicircular geodesic path that goes through the tiles.

This is illustrated for K3,2,K4,3, and K5,3 by the dashed red, blue, and green curves, respectively,

which have d3,2 = 3 and d4,3 = d5,3 = 4.

Figure 9. A view of the sum of continued fraction coefficients in the Stern-Brocot tree of positive

rational numbers. Namely,
∑

i bi = dn,m is the depth of the fraction n
m

in the tree. The red nodes

highlight the locations of some of the torus knots illustrated in figure 3, namely K3,2,K5,2,K7,2,K4,3,

and K5,3 (the remaining ones appear in deeper levels not shown in the picture).

this path.13 For instance, the three examples of figure 8 have r4,3 = 2, r3,2 = 2, and r5,3 = 3

corresponding to the paths P4/3 = (∞, 1, 43),P3/2 = (∞, 1, 32), and P5/3 = (∞, 1, 2, 53),

respectively. It is clear that the paths above are not in general the ones that minimize r

(e.g., the path (∞, 2, 53) is more efficient than P5/3), which reflects the fact that the regular

continued fraction is not in general a geodesic continued fraction.

Recently, the notion of circuit complexity, discrete groups and hyperbolic geometry has

been discussed in [38]. The main message there is that every finitely generated group G,

with generating set G, has a natural metric defined on its Cayley graph. The vertices g, h

of this graph are elements of G and we connect them by an edge if gh−1 ∈ G. The Cayley

graph of the group of modular transformations on the torus, PSL(2,Z), is built from

S, T transformations (and its inverses) and its natural metric is exactly our topological

complexity (3.10).

13Actually the same is true for any other integer continued fraction. The geodesic continued fractions

(including the ancestral path in proposition 2) give the shortest of these paths.
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Summing up, the topological complexity of torus knots has two main geometric compo-

nents (apart from the framing contribution |f |), one associated to the number of triangles,∑
i bi, and another to the number of edges of the Farey path from ∞ to n

m , which is the

CF size r. If we define dF (a, b) and dF∗(va, vb) as the geodesic metrics in the Farey graph

and its dual tree respectively, where a, b are rationals and va, vb are ideal triangles with a, b

as mediants, it is clear that

Cn,m ≡ dCayley = dFarey∗ + dFarey + |f |, (3.12)

where dCayley is the word metric in the Cayley graph of S and T , dFarey∗ ≡ dF∗

(
v1, v n

m

)
+

1 =
∑

i bi, and dFarey ≡ dF
(
∞, n

m

)
= r. Notice that we have to add one to the dual Farey

metric as we need to count the number of vertices, not just the number of edges.14

Now, let us set the framing to be zero. As we stated above, one contribution to the

topological complexity comes from the number of arcs in the Farey graph and another

from the number of triangles along the path. In our numerical tests, we observed an upper

bound on dF . log2m+2 for fixedm up to 2000, which is consistent with bounds presented

in [66] for paths in the Farey graph. This means that the linear growth (3.11) for large

n must be only due to dF∗ , i.e., the number of triangles. This result suggests a relation

to the proposal of holographic subregion complexity [67, 68], in which the complexity of

a subregion (in our case, the interval [0, n
m ]) is proportional to the volume bounded by a

bulk geodesic. The normalized area below the geodesic in figure 8 grows as n/2 in the

case m = 2. However, despite the geometric similarity, our holographic setup is more in

the spirit of [69], as our geometric representation is for the moduli space of knot states in

Chern-Simons rather than the bulk spacetime itself.

3.3 Complexity of torus knot states

So far our analysis has been limited to the classical realm, namely to the topological

complexity of the torus knots themselves as told by their topological properties encoded

in the S and T torus diffeomorphisms needed to produce the knot. Let us now move on to

discuss the circuit complexity of their corresponding quantum states in the torus Hilbert

space of Chern-Simons theory with gauge group G and level k.

In section 2 we mentioned that every torus diffeomorphism Un,m naturally defines a

quantum circuit Un,m = T a1ST a2S . . . T arS based on S and T gates (the unitary represen-

tations of the S and T diffeomorphisms) acting on H(T 2;G, k). This quantum circuit can

be used to connect two different pairs of states on this Hilbert space, namely the different

basis vectors |jn,m〉 and |j〉 (see (2.13)) or, equivalently, the different torus knot complement

states |Kn,m〉 and |K1,0〉 (see (2.15)). Our goal is to calculate the complexity of this circuit,

C
(
|jn,m〉, |j〉

)
= C

(
|Kn,m〉, |K1,0〉

)
≡ Cn,m , (3.13)

which is the minimal number of gates required to generate the desired unitary. We use the

calligraphic Cn,m to distinguish this from the topological complexity Cn,m studied above.

14For a tree graph, V = E + 1, where V is the number of vertices and E is the number of edges.
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In other words, Cn,m is the length of the shortest ST -word representation of Un,m (the

optimal circuit Uopt
n,m) in the unitary modular representation.

The naive expectation is that the optimal circuit is just the Hilbert space representation

of the minimal word Umin
n,m in the group manifold obtained in the previous section. However,

this fails in general for the reasons stressed in section 2.4, which boil down to the fact that

the unitaries S, T satisfy further matrix relations beyond the PSL(2,Z) group relations

S2 = (ST )3 = 1. As a result, it follows that, in general, Uopt
n,m 6= T a1S . . . T arS where

ai = (−1)i+1bi and bi are the regular continued fraction coefficients of n
m as in proposition 1.

For instance, consider the cases of U(1)k and SU(2)k Chern-Simons, where an immediate

constraint is T p = 1 with p = 2k and p = 4(k + 2), respectively; it is clear that, whenever

any ai appearing in a group word Un,m = T a1S . . . T aiS . . . T arS is larger in modulus

than some multiple of p, that is |ai| ≥ ℓp with ℓ ∈ N, the Hilbert space representation

of this Un,m will be equivalent to Un,m = T a1ST a2S . . . T (−1)i+1(|ai|−ℓp)S . . . T arS, which
contains ℓp less generators.15 Thus if Un,m is the minimal word Umin

n,m, its Hilbert space

representation Umin
n,m (which is not necessarily the same as the optimal circuit Uopt

n,m) in

general will be reducible, and the circuit complexity Cn,m will end up being lower than the

topological complexity Cn,m = ||Umin
n,m||. Therefore, all one can say for generic gauge group

G and level k, without considering the extra constraints of the quantum representation, is

that the circuit complexity Cn,m = ||Uopt
n,m|| has an upper bound given by the topological

complexity (3.10), i.e.,

Cn,m ≤ Cn,m . (3.14)

Fortunately, in the semiclassical limit k → ∞ of Chern-Simons theory, the above-

mentioned subtleties disappear and the torus knot states actually saturate this upper

bound. Namely, in this case the Hilbert space analysis parallels the PSL(2,Z) minimal word

problem solved by proposition 1, the optimal circuit is simply Uopt
n,m = T a1ST a2S . . . T arS

and the complexity of torus knot states Cn,m coincides with the topological complexity of

Kn,m. In particular, in semiclassical Chern-Simons theory all the plots, tables, and the

geometric interpretation of the topological complexity shown in previous section extend to

Cn,m as well. The equivalence between the quantum and classical modular group represen-

tations in the large k limit has been proved for SU(2) [70, 71] and for SU(N) [72]. Moreover,

the asymptotic limit of torus knot states has been studied in [73, 74]. The conclusion is

that torus knot states in this case are classified in the same way as the topological knots.

4 Generalizations

4.1 Connected sums of torus knots

The results are easily generalized for multi-component links of the type

L(n1,m1),...,(nN ,mN ) ≡ Kn1,m1
+ 221 +Kn2,m2

+ 221 + · · ·+KnL,mL
, (4.1)

15To avoid any confusion, let us stress here that the resulting list of coefficients [ã1; ã2, . . . , ãr] no longer

corresponds to a CF decomposition of the original fraction n
m
.
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Figure 10. The link L(3,2),(5,2),(7,2) obtained by “Hopf-linking” K3,2 (black), K5,2 (blue), and

K7,2 (red).

where the plus sign here indicates the operation of connected sum of knots and 221 de-

notes the Hopf link (in Rolfsen’s notation), namely the simplest possible two-component

link made of two unknots linked exactly once. In words, what this means is that

L(n1,m1),...,(nN ,mN ) is the N -component link obtained by sequentially “Hopf-linking” the

torus knots Kni,mi
, as illustrated in figure 10. The simplest representative is L(1,0),...,(1,0),

which is a N -component generalization of the Hopf link (it reduces to the standard Hopf

link when N = 2) obtained by a chain of trivial knots linked with unit linking numbers.

It is important to emphasize that the class of links above is very special due to its simple

linking pattern. In particular, it does not include the torus links (n,m), which are also

composed by multiple torus knots (namely, N = gcd(n,m) copies of K n
N
,m
N
) but whose

linking structure is more intricate.

The story is then analogous to the one of knots in the previous section (we refer

the reader to [51] for details). One can construct a 3-manifold M that is the link-

complement of (4.1) in S3 and do the Chern-Simons path integral on it. This defines a

state
∣∣L(n1,m1),...,(nN ,mN )

〉
on the boundary of M, which now consists in the disjoint union

of N tori, i.e., ∂M =
∐N

i=1 T
2. The corresponding Hilbert space is H(T 2;G, k)⊗N , for

which a natural basis is given by |i1, . . . iN 〉 and |iα〉 corresponds to a circular Wilson loop

in the (integrable) representation Ri inside the α-th torus. As in (2.5), the wave function

of a link complement state in this basis is nothing but the Chern-Simons invariant (2.3) of

the corresponding link.

The S and T diffeomorphisms of the α-th torus transform the unknot inside this

particular torus into an arbitrary torus knot Knα,mα , and the link (4.1) is constructed from

the generalized Hopf link by the word U(n1,m1),...,(nN ,mN ) =
∏

α Unα,mα with Unα,mα an ST -

word as in the previous section. As before, these S and T transformations naturally define

unitary operators acting on the α-th single-torus Hilbert space. These operators are again

subject to representation constraints, contained in the kernel of the map from PSL(2,Z) to

the space of operators on H(T 2;G, k). Modulo the identification, the operators construct

the state corresponding to the link (4.1) from the one corresponding to the generalized

Hopf-link using a unitary transformation U(n1,m1),...,(nN ,mN ), i.e.,
∣∣L(n1,m1),...,(nN ,mN )

〉
= U(n1,m1),...,(nN ,mN )

∣∣L(1,0),...,(1,0)

〉
. (4.2)

This circuit clearly factorizes into a product of circuits of the type (2.15), one for each

component knot Knα,mα ,

U(n1,m1),...,(nN ,mN ) = Un1,m1
. . .UnN ,mN

, (4.3)
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and therefore has a complexity given by the sum of the complexities (3.10) for each of these

components, namely

C(n1,m1),...,(nN ,mN ) =

N∑

α=1

Cnα,mα . (4.4)

Each component Cnα,mα is again bounded from above by the topological complexity Cnα,mα

of the corresponding knot Knα,mα , that is

Cnα,mα ≤ Cnα,mα (4.5)

with

Cnα,mα =

rα∑

iα=1

biα + rα + |fα| , (4.6)

where biα and rα are the coefficients and size of the regular continued fraction decomposition

of nα

mα
and fα is the framing contribution.

4.2 Rational knots and links

The notions of complexity for torus knots and torus knot states studied above can be

extended to other interesting examples of TQFT Hilbert spaces if one uses the presentation

of knots and links as closures of braids. In this case, we can make sense of circuit complexity

as the length of the minimal word of the representations of the braid group generators,

while the topological complexity corresponds to the minimal word in the braid group itself.

For an alternative definition of the complexity of braids, see [75].

This requires going beyond the torus Hilbert spaces studied in section 2, so let us start

by reminding what are the Hilbert spaces associated with 2-spheres in Chern-Simons [33].

First, the Hilbert space H(S2;G, k) of Chern-Simons theory in a 3-manifold with a S2

boundary is one-dimensional. This is not a very interesting example, since all the vectors

in such a space differ only by a phase factor. In order to have a non-trivial Hilbert space one

has to consider spheres with removed points (punctures) which correspond to the endpoints

of Wilson lines. Hence punctures are alike non-dynamical heavy charged particles and they

carry representations of the group G admissible by the value of k.

One cannot consider a sphere with a single puncture, since there would be no place

for the Wilson line emanating from this point to end. For two punctures one can have a

Wilson line connecting them, so the two endpoints should carry conjugated representations

of G. Consequently, even in this case the Hilbert space remains one-dimensional.

In order to have a non-trivial Hilbert space, one has to consider a sphere with at least

three punctures. The representations carried by these punctures should be compatible, in

the sense that their tensor product should contain a trivial representation, R∅ ∈ R1⊗R2⊗
R3. One can think of this as the interaction of particles, in which two particles can fuse to

produce a third one. The multiplicity of the trivial representation in the tensor product is

then known as the fusion number NR3

R1R2
. These numbers also appear in the chiral algebra

of the SU(2)k WZW theory [76]. They define the dimension of the resulting Hilbert space,

dimH
(
S2\{R1, R2, R3};G, k

)
= NR3

R1R2
. (4.7)
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Below we will consider states in the Hilbert spaces of spheres with four punctures. The

representations of the four points are subject to the condition R∅ ∈ R1 ⊗ R2 ⊗ R3 ⊗ R4.

The dimension of the Hilbert space counts all the compatible ways of pairwise fusing the

representations. We can represent the basis vectors by the diagrams

|Ri〉 =

R1 R2 R3 R4

Ri

or |R̃j〉 =

R1 R2 R3 R4

Rj

. (4.8)

Here |Ri〉 and |R̃j〉 correspond to two possible choices of the basis labeled by representations

Ri, or Rj (denoted by dashed lines) that can appear in the s or t fusion channels. To fix

a reference state, let us choose R1 = R3 = R and R2 = R4 = R̄ in the left diagram. We

choose the reference state |ΨR〉 to correspond to trivial Ri = ∅, namely

|ΨR〉 =

R R R R
_ _

, (4.9)

where we understand that the line in a trivial representation is the same as no line at all.

The Hilbert space has a well-defined action of the braid group on it, which permutes the

punctures on the sphere. The action of the braid group can be illustrated by a concatenation

of a braid and the reference state:

|ΨT〉 = U |ΨR〉 = (4.10)

This illustrates the kind of target states one might be interested in. Note that, in this

particular example, the state can be directly associated to a knot by closing a braid on the

left by 〈ΨR|. The target state in the example above is represented by the trefoil (torus) knot.

The Hilbert space associated with four-punctured spheres is particularly suitable to

the discussion of rational (or 2-bridge) knots and links [37, 77],16 for which many problems

in knot theory can be completely solved. They are encoded by Artin’s braid group of three

elements, B3. The crucial property for our purposes is the fact that PSL(2,Z) furnishes

unitary representations of B3, which allows us to take advantage of the results of the

previous section. Indeed, one can easily check that

σ1 = T , σ2 = STS (4.11)

satisfy the braid group relation

σ1σ2σ1 = σ2σ1σ2 . (4.12)

16The case of generic knots and their minimal braid words will be addressed in a forthcoming work [78].
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Figure 11. Braid word presentation of the 2-bridge knot Ln,m. On the right end, we always close

by neighboring pairs (as in (4.9)). On the left end, the closure prescription depends on what is the

leftmost braiding operation in the word: if it is given by σ2, which acts on the second and third

strands, we must close as in (a) since it is the only non-trivial option; if it is given by σ1, which

acts on the first pair, the only option is to close as in (b).

Together with the representation structure, this construction inherits the constraints, which

potentially identify sets of states created by the braid group operators for the same reasons

as discussed in section 2.4. Hence, in the quantum case, the complexity provides an upper

bound, as in equation (3.14), which is saturated by the topological complexity in the

semiclassical limit k → ∞.

Rational knots and links can be defined as closures of B3 braids that are trivially

embedded in B4 (that is, the σ3 generator of B4 is never used in the braid word). There

are two possible ways to close either end of a B4 braid by connecting the strands pairwise:

by the state |ΨR〉 in equation (4.9), or by an analogous state corresponding to trivial Rj

in the right diagram of equation (4.8). Consequently, there are two “bridges” connecting

the strands and the obtained knots and links are also called 2-bridge.

This class of knots Ln,m is again labelled by two coprime integers (n,m) satisfying

n > 0 and
∣∣ n
m

∣∣ ≤ 1 and can also be associated with continued fractions [37, 77]. For

a fraction n
m = [a1, . . . , ar] with arbitrary integer coefficients as in (3.4), one constructs

the braid word Un,m = σa12 σ
a2
1 σ

a3
2 · · · . On the right end of the braid one always closes the

strands by reference state (4.9), see figure 11. Notice that in the case of even r the braiding

starts with σar1 which (within the convention above) is just a framing contribution. The

choice of closure on the left end is uniquely fixed depending on the value of a1: if a1 = 0,

meaning that the leftmost braiding operation is given by σ1, then one must close the braid

as in 11(b); otherwise, the leftmost operation is given by σ2 and one must close the braid

as in 11(a). This associates a unique knot diagram to every braid word. To be precise, a

nice additional feature of the rational family is that apart from knots it also contains links:

given n
m , the corresponding diagram is a knot if m is odd, or a link when m is even.

In terms of PSL(2,Z) generators, the B3 word defining the link Ln,m is

Un,m = σa12 σ
a2
1 σ

a3
2 · · · = ST a1ST a2ST a3S · · · , (4.13)

which has nearly the same presentation as before (cf. (3.1)). More precisely, they coincide

when a1 = 0. Note that so far nothing has been said about the particular continued
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fraction that defines the ai (hence Lm,n). An interesting theorem of Schubert [37, 79]

proves that the isotopy class of unoriented 2-bridge links actually does not depend on the

particular choice of continued fraction — they all give the same link. Therefore, it follows

naturally from proposition 1 in the previous section that (for m > 0) the shortest braid

word presentation of a given Ln,m is obtained for the regular continued fraction, since it

minimizes the ST -word in (4.13). In other words, the topological complexity Cn,m (i.e.,

the minimal number of B3 generators needed to represent the link) associated with the

unitary operation of (4.10) for an arbitrary 2-bridge link Ln,m with m > 0 is simply

Cn,m = min
{ai}

r∑

i=1

|ai| =
r∑

i=1

bi (4.14)

where bi are the Euclidean CF coefficients of n
m .

It is worth mentioning here that torus knots of the type (2, 2p+1) (p > 0) are included

in the rational family. Since 2
2p+1 = [0; p, 2], the minimal braid word obtained from the

prescription above is simply U2,2p+1 = σp2σ
2
1 = ST pST 2. The corresponding complexity is

C2,p = p+2 (in terms of B3 generators), which is equivalent to p+4 generators of PSL(2,Z).

Notice that this is compatible with expression (3.10) for the complexity of torus knot states

studied before, the only subtlety being the 2 units of framing (f = 2) that appear naturally

here in the language of 2-bridge knots.

5 Relation with path integral optimization

The goal of this section is to connect the knot complexity derived in this paper with the

framework of path integral optimization [29–32].

In [30], the authors consider a 2d lattice regularization of a path integral generating

a certain target quantum state. The size of the sites may be varied to maximally simplify

the numerical computation, and this procedure is shown to be equivalent to minimizing

a certain complexity functional associated to the target quantum state. Equivalently, we

can keep the lattice coordinate size fixed and act on the metric that, in 2d, can always be

brought locally to the form g −−→
Diff

e2φĝ, for some reference metric ĝ. This implies that com-

plexity minimization is equivalent to choosing an appropriate Weyl rescaling. We want to

show here that large gauge transformations that act on the torus complex structure τ should

also be included in the optimization procedure whenever the space topology is non-trivial.

In this way, we provide a more general framework for discussing path integral complexity

and establish a clear connection with the specific discussion in the previous sections.

We begin by considering a generic 2d CFT covariantly coupled to a background metric

g. This metric has the role of defining the lattice size and is not a dynamical field. The

path integral we are interested in is the Euclidean time evolution on the plane from −∞
up to a certain time t0, and we impose some boundary conditions for the metric at t0 fixing

the lattice size to be ǫ:

ds2 = e2φ(x,t)(dt2 + dx2), e2φ(x,t0) =
1

ǫ2
. (5.1)
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The key point here is that the integration measure on a generic field ϕ is not invariant

under conformal transformations g → e2φg, while it is invariant under diffeomorphisms.

This happens because of the requirement to have Gaussian integral normalization:

∫
Dgδϕ Exp

∫

Σ
d2z

√
gδϕ · δϕ = 1. (5.2)

The integration measure is then sensitive to a Weyl rescaling such that

De2φgδϕ = eSL(φ)Dgδϕ (5.3)

with SL the Liouville action [80]

SL(φ) =
c

24π

∫

M
d2σ(

√
gĝab∂aφ∂bφ+ µe2φ) . (5.4)

Because of this anomaly, the state Ψ prepared by path integration transforms with an

overall normalization depending on the choice of φ, and this additional factor is defined as

the (exponential of the) complexity of Ψ:

Ψe2φg = eSL(φ)−SL(0)Ψg . (5.5)

In the context of AdS/CFT, the metric is interpreted as being induced on the plane by

embedding it into AdS3, with the state Ψ defined at the conformal boundary of AdS space.

A generalization of this discussion was introduced in [32], leading to the following

formula ∫
Dϕ(x) e−SMΣ

[ϕ]δ
(
ϕ(x, t0)− ϕΣ(x)

)
= eCMΨΣ . (5.6)

Here the constant time surface Σ = ∂MΣ, on which the state Ψ is defined by path inte-

gration over MΣ, does not need to belong to the conformal boundary, but following the

surface-state correspondence of [81] can be any convex codimension two surface in (here

Euclidean) AdS. The state ΨΣ is argued to be independent of the actual shape of MΣ ex-

cept for the overall normalization. The complexity CM is then holographically computed

as the value of the on-shell gravitational action restricted to the bulk region NΣ, IG(NΣ),

where NΣ is bounded by MΣ and the t0-slice containing Σ. It is then shown in [32] that

IG(NΣ) = SL(φ), for φ being the local cutoff (or, quite equivalently, the Weyl rescaling,

see [32] for details) that brings the metric on MΣ to the form (5.1), showing that the two

definitions of complexity agree.

A further generalization can be obtained by adding a surface Σi providing initial con-

ditions for the state at Σ. The path integration along M̃ΣiΣ produces the time evolution

U(Σ,Σi) from Σi to Σ that can be used to glue the MΣi
and MΣ surfaces. The total

associated complexity can be written as:

〈ΨΣ|U(Σ,Σi)|ΨΣi
〉 = eC(ΨΣi

)+C(ΨΣ)+C(MΣiΣ
) . (5.7)

Let us now move a step forward and consider the case where M does not have a trivial

topology, as it was considered for the disk topology so far. For example, we could pick M̃ΣiΣ
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to be a cylinder and directly join the two boundaries Σ = Σi. By translational invariance

along Σ and Σi, we can even twist one of the boundaries before gluing and obtain a generic

torus T 2. When the spacetime topology of M is not trivial, g −−→
Diff

e2φĝ is no longer valid

globally : the orbit Cg generated by the diffeomorphism transformation does not cover the

whole metric space, which should then be seen as a fiber bundle with fiber Cg and base the

moduli space M. The real dimension of this moduli space is determined by the Riemann-

Roch theorem to be, for negative Euler number, dim (M) = 6g − 6 + 3b + 2o, with g the

genus, b the number of boundaries and o the number of operator insertions (punctures) on

the surface M . For zero Euler number, such as a torus or a cylinder, we have two and one

moduli respectively (and an equal number of conformal killing vectors).17 In general then

ĝ depends on the coordinates τ of M, so that

g −−→
Diff

e2φĝ(τ). (5.8)

For instance, if we were to integrate over g the integration measure would then split as

Dg = Jac dτDφDξDξ̄ , (5.9)

where ξ, ξ̄ are local 1-forms parametrizing the diffeomorphism transformation δgzz = ∇zξz
and its complex conjugate. The complexity now should be minimized both along the fiber

Cg and the moduli space base M, so that we should choose the local Weyl transformation

and the point in moduli space τ . Following the same steps leading to (5.4), the functional

becomes [82]

SL(φ, τ) =
c

24π

∫

M
d2σ

(√
g(τ)g(τ)ab∂aφ∂bφ+ 2R(τ)φ+ µe2φ

)
+

c

24π

∫

Σ
dσ
√
h(τ)K(τ)φ ,

(5.10)

where we have denoted by R the Ricci scalar while K and h are respectively the trace of the

extrinsic curvature and the induced metric on Σ. Equivalently we can invoke holography

and obtain the same expression as the gravity on-shell partition function restricted to N ,

which in the case of M = T 2 is just the torus interior.

The final piece of information we need is the effect of inserting some primary operator

O(x0) with scaling dimension h on the surface M . Considering that after a Weyl transfor-

mation on O(x0) this scales with weight h, this simply implies that the total complexity

should be modified as SL − 2hφ(x0).

To finally make connection with the knot complexity, we should ask the following: what

is the effect of a path integral optimization on the Wilson loop that wraps the knot? Note

that we have in mind here the realization of 3d gravity as the difference of two SL(2,R)

Chern-Simons Lagrangians. The situation here is slightly different from the operator inser-

tion since the Wilson loop is, in our framework, inserted inside the bulk region N and not

on its boundary M . However, the philosophy is the same: we should vary over the Weyl

17There is a small caveat involved in counting the total moduli that comes from the boundary condi-

tion (5.1): this fixes the size of the boundary circle Σ so that a modulus less should be included. For

instance if we had considered a cylinder, with boundaries Σi and Σ as before, the counting would give zero

moduli even if a real modulus would have to be included if we had not imposed (5.1).

– 28 –



J
H
E
P
0
7
(
2
0
1
9
)
1
6
3

field φ and the complex structure τ in order to optimize the path integration on M and

compute the effect on the complexity. As the complexity computed by holography is the

saddle point of the gravitational action −IG(N) restricted to the bulk region N , including

a bulk Wilson loop just amounts to compute the saddle point for the gravity partition

function with the Wilson loop insertion; formally, after considering backreaction,

eCM ∼
∫

Pe
∮
Ae−IG(N)|saddle. (5.11)

The minimization of this quantity is achieved by acting onM by Weyl rescaling, which does

not affect the Wilson loop due to the topological nature of the theory, as well as large gauge

transformations, that indeed act changing τ . This connects the path integral optimization

proposal to our discussion of the complexity of TQFT states. From this argument, it is not

clear a priori whether we should obtain the same complexity functional for knots that we

have derived in this paper. It is an interesting open problem to work out in detail (5.11)

and see what kind of complexity functional it leads to. We leave this for a future work.

6 Conclusions

Our main motivation in this paper was to use topological theories to bridge the notions

of complexity that have recently been proposed in the quantum gravity and quantum field

theory context with more familiar notions in computer science. This is due in part to

the finite-dimensional nature of the Hilbert space of such theories in the case of compact

gauge groups, which makes the problem tractable, as well as to the topological nature of

gravity in 3d. As a first step, we have focused on 3d Chern-Simons theory with compact

gauge group and defined the complexity for states associated with torus knots and some

connected examples. The key player in our game was the group PSL(2,Z) and its unitary

representations, which naturally generate the quantum evolution of Chern-Simons states

in terms of elementary quantum gates S and T .

Since the unitary representations of PSL(2,Z) are not in general faithful, we distin-

guished the circuit complexity of quantum knot states C (defined in terms of S and T )

and the topological complexity C (in terms of S and T ), which is a characterization of the

knots themselves. Topological complexity sets an upper bound for quantum complexity.

This bound is saturated in the semiclassical limit of the Chern-Simons theory, in which the

correspondence between the knots and the states becomes exact. We have found that in

this limit the standard textbook notion of circuit complexity as the minimum number of

gates necessary to produce a desired target state from a given reference has a number of

interesting properties.

The topological complexity of a state corresponding to a (n,m) torus knot (relative to

the unknot) is the length of the shortest word of S and T generators yielding the desired

torus diffeomorphism. It can be computed exactly in terms of the particular continued

fraction decomposition [b1, . . . , br] of the rational number n
m that has only positive coeffi-

cients — the so-called regular or Euclidean continued fraction. Such presentation is unique

up to a trivial ambiguity in the last term and corresponds to the Euclidean algorithm of
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computing the greatest common divisor of n and m. This is the main result proven in

proposition 1. The result for the topological complexity Cn,m is given by equation (3.10).

Interestingly, the topological complexity computed for the first few thousand torus

knots grows at a much slower rate when compared with their crossing number. This is

consistent with the idea that torus knots are intrinsically simpler than other knots with

the same number of crossings. Also, for all our checked examples, (3.10) calculated using the

Euclidean continued fraction gives the same result as the one computed with the ancestral

path continued fraction, introduced in [39] as an explicit example of continued fraction

having the minimal possible number of coefficients. The latter defines a geodesic path on

the Farey graph connecting ∞ = 1
0 and n

m , but a priori has no reason to minimize the

ST -word. Hence, the complexity (3.10) might play a deeper role from the point of view

of number theory and the modular group as an index characterizing geodesic continued

fraction presentations. The conjectured relation was formulated as proposition 2. Finally,

we numerically observed that the complexity grows roughly as Cn,m ∼ n
m for large n.

We also discussed interesting geometric interpretations of the topological complexity

formula in the Farey tesselation of the hyperbolic plane, which could be relevant for un-

derstanding the connection of the present discussion with quantum gravity and its tensor

network models. The sum of Euclidean continued fraction coefficients bi is itself also a

“geodesic distance” in the upper-half plane between the origin and the fraction n
m in the

sense of [65]. Equivalently, it corresponds to the depth of n
m on the Stern-Brocot tree of

positive rationals or to the number of ideal triangles traversed in the dual Farey graph. The

number r of terms in the continued fraction corresponds to the distance to ∞ travelling

along a special path of Farey neighbors, which is by itself composed of a series of geodesic

arcs. Due to the fact that r is bounded from above for fixed m, the main contribution

to the complexity for large n is due to the number of triangles. This seems to be well-

approximated by the area below the geodesic curves in figure 8, suggesting a connection of

our results with the holographic subregion complexity [67, 68]. We notice, however, that

our discussion is more in the spirit of “holography in the moduli space” [69] rather than

the usual spacetime holography.

In section 5, we embedded our discussion in the wider framework of path integral

optimization, recently introduced in [29], by showing how the original argument should be

modified for non-trivial topological spaces: it is necessary to also optimize the moduli space

of the spacetime. We formally derived the complexity functional in this language and an

interesting future problem would be to work out its explicit form and better understand

the relationship with our results for the complexity of knot states.

Finally, we also discussed circuit complexity in terms of braid group generators (i.e.,

using the presentation of knots as closures of braid words) in the case of 2-bridge knots

in the Hilbert space of Chern-Simons on the sphere with four punctures. These are also

characterized by two coprime numbers and have close connections with continued fractions,

which again allows to easily obtain the topological complexity as a shortest word on B3

generators via proposition 1. As in case of torus knots, the topological complexity is

exact but only coincides with the quantum state complexity in the semiclassical limit of

Chern-Simons, otherwise setting an upper bound on it.
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It is interesting to know whether a general formula for quantum complexity exists

beyond the semiclassical limit, but a case by case study is needed here since we are not

aware of any general statement about modular representations with arbitrary gauge group

G and level k. This is related to understanding the structure of unitary representations

of mapping class groups, see for example, a recent work [83]. Possible generalizations of

quantum complexity formulas, as well as the case of more general classes of knots shall be

addressed in a forthcoming work [78].
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A Torus knot states

In this section we review some facts about the torus knot states and explain the difference

between the type states considered, for example, in [84] and the complement states of

reference [51].

As mentioned in section 2, TQFT assigns a torus some Hilbert space H(T 2). In the

case of CS TQFT we parameterize it additionally with the group and level: H(T 2;G, k).

States in this Hilbert space are three-dimensional spaces M attached to T 2, such that

torus is their boundary ∂M = T 2. Canonical choice of basis on H(T 2;G, k) corresponds

to considering solid tori with Wilson lines parallel to the longitude of the torus (unknots)

and coloring them with integrable representations of G. Hence, any state in the Hilbert

space can be expanded over the basis of vectors |i〉, with i = 1, . . . , N labeling integrable

representations,

|Ψ〉 =

N∑

i=1

ψi |i〉 . (A.1)

We note that the basis |i〉 is orthonormal, which follows from the scalar product

〈i|j〉 = Z(S2 × S1; ī, j) = δij , (A.2)

which is nothing but the topological invariant (Chern-Simons partition function) of two

unlinked circles in S2×S1 parallel to S1 and colored by representations j and the conjugate

of representation i. Such an invariant is unity if i = j, and zero otherwise.

One set of states in H(T 2) to consider are those represented by solid tori containing

torus knots inside |jm,n〉. Expanding over the basis means gluing such a torus with a solid

torus with an unknot Wilson line inside. The second torus must be inverted, to represent

the dual space H∗(T 2), and the representation of the unknot should be conjugated. The

expansion coefficients are then

ψi(jm,n) = 〈i|jm,n〉 = Z(S2 × S1; ī1,0, jm,n) , (A.3)
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which are the S2×S1 invariants of a torus knot in representation j and an unknot colored

with ī, both parallel to S1 and unlinked. In particular, the coefficient with trivial i = ∅
gives an invariant of the torus knot in S2 × S1.

Recall that if one wants to compute the invariants of torus knots in S3, one should

take the solid torus with a knot (m,n) and glue it with a complement of this solid in S3,

which is some vector 〈Ω| ∈ H∗(T 2). The complement is also an inverted torus, but with

an opposite identification of the contractible and non-contractible cycles. Hence,

〈Ω| =
∑

i

〈i|S0i , (A.4)

where Sij is a representation of the modular matrix S on H(T 2). Therefore,

Z(S3; jm,n) = 〈Ω|jm,n〉 =
∑

i

S0iZ(S
2 × S1; ī1,0, jm,n) . (A.5)

Equation (2.13) in section 2.3 tells that a torus knot (m,n) inside a solid torus can be

obtained from an unknot by a modular transformation. In terms of the fundamental cycles

α and β on the torus, the unknot corresponds to ω = β, while an arbitrary torus knot is

ω = nα +mβ. These two linear combinations of fundamental cycles can be connected by

the modular group element

Um,n =

(
m p

n q

)
(A.6)

Note that this can also be viewed as a Möbius transformation

z → mz + p

nz + q
, (A.7)

of the “rational number” 1/0 = ∞ into the numberm/n. If one has a unitary representation

of SL(2,Z) acting on H(T 2), then any torus knot state can be obtained from the unknot

by an appropriate SL(2,Z) transformation:

|jm,n〉 = Um,n|j1,0〉 =
∑

k

Um,n
kj |k〉 . (A.8)

Since the representation is unitary, states |jm,n〉 also form a basis. Torus knot invariants

can be expressed as matrix elements of SL(2,Z) elements,

Z(S3; jm,n) = 〈Ω| Um,n|j1,0〉 =
∑

i

〈i|S0i

∑

k

Um,n
kj |k〉 =

∑

k

S0kUm,n
kj (A.9)

One might also be interested in states which have coefficients (A.9) as the amplitudes

defining a knot state, that is

|Km,n〉 =
∑

j

Z(S3; jm,n)|j〉 . (A.10)

To represent such a state in terms of spaces, it appears more convenient to think of their

conjugate versions

〈Km,n| =
∑

i

ψi〈i| . (A.11)
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Note that 〈Ω| in equation (A.4) is an example of such a dual state. Its coefficients are

invariants ψi = Z(S3, Ri) of an unknot in S3. Now consider a similar state of the form

∑

i

〈Km,n(i)| S0i =
∑

i,k

〈k| S0i(Um,n)†ik , (A.12)

where we expand over a different basis in the dual space, but with the same coefficients as

in (A.4). Sandwiching these dual states with basis elements |j〉 gives the same invariants

in S3, albeit complex conjugated.

What is the space interpretation of states 〈Km,n|? They correspond to spaces with a

torus boundary, which produce S3 with a torus knot inside, when glued with a solid torus

with a Wilson line j1,0. Hence such 〈Km,n| are complements of a tubular neighborhood of

torus knot (m,n) in S3.
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