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Abstract

This paper presents a novel 3D fractional-ordered chaotic system. The dynamical behavior of this system is investigated. An

analog circuit diagram is designed for generating strange attractors. Results have been observed using Electronic Workbench

Multisim software, they demonstrate that the fractional-ordered nonlinear chaotic attractors exist in this new system. Moreover,

they agree very well with those obtained by numerical simulations.
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Introduction

Recently, the study of fractional calculus have become a

focus of interest [1–12]. Because the applications of frac-

tional calculus were found in many scientific fields, such

as rheology, diffusive transport, electrical networks, elec-

tromagnetic theory, quantum evolution of complex systems,

colored noise, etc. Compared with the classical well-known

models, it was found that fractional derivatives provide a bet-

ter tool for modeling memory and heredity properties of var-

ious phenomena. Various types of fractional derivatives and

their applications can be found in the literature, for instance,

the Caputo derivative [13], the recently introduced fractional

derivative without singular kernel (Caputo–Fabrizio deriva-

tive) [14] and the Atangana–Baleanu derivative which is

based upon the well-known generalized Mittag–Leffler func-

tion [15,16].

Besides, many scientists and engineers have been attracted

to the theory of chaos since the discovery of the Lorenz attrac-

tor [17]. It was found that fractional-order chaos has useful

application in many field of science like engineering, physics,

mathematical biology, psychological, and life sciences [18–

23]. On the other hand, chaotic signal is a key issue for future

applications of chaos-based information systems, and can
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be applied to secure communication and control processing,

e.g., the transmitted signals can be masked by chaotic signals

in secure communications and the image messages can be

covered by chaotic signals in image encryption. In addition,

the circuit implementation can verify the chaotic character-

istics of the chaotic systems physically, provide support for

the application of chaos, and promote their technological

application in the future. Therefore, the circuit implemen-

tation of the chaotic systems has also attracted more and

more attention for engineering applications. Especially, for

those fractional-order attractors, the circuit implementations

for them are more important [24–30].

In this work, we construct a new 3D fractional-order

chaotic system. Through studying its dynamical behavior

by numerical simulation based on the improved Adams–

Bashforth–Moulton method [31] and designs chain ship

fractional-order chaotic circuit based on frequency-domain

approximation method [28]. Besides, we realize the fractional-

order chaotic system through Multisim software 13.0 circuit

simulation platform.

Preliminaries

In what follows, Caputo derivatives are considered, taking the

advantage that this allows for traditional initial and boundary

conditions to be included in the formulation of the considered

problem.

Definition 1 A real function f (x), x > 0, is said to be in the

space Cµ, µ ∈ R if there exits a real number λ > µ, such
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that f (x) = xλg(x), where g(x) ∈ C[0,∞) and it is said to

be in the space Cm
µ if and only if f (m) ∈ Cµ for m ∈ IN .

Definition 2 The Riemann–Liouville fractional integral oper-

ator of order α of a real function f (x) ∈ Cµ, µ ≥ −1, is

defined as

Jα f (x) =
1

Γ (α)

∫ x

0

(x − t)α−1 f (t)dt,

α > 0, x > 0 and J 0 f (x) = f (x). (1)

The operators Jα has some properties, for α, β ≥ 0 and

ξ ≥ −1:

– Jα Jβ f (x) = Jα+β f (x),

– Jα Jβ f (x) = Jβ Jα f (x),

– Jαxξ =
Γ (ξ+1)

Γ (α+ξ+1)
xα+ξ .

Definition 3 The Caputo fractional derivative Dα of a func-

tion f (x) of any real number α such that m − 1 < α ≤ m,

m ∈ IN , for x > 0 and f ∈ Cm
−1 in the terms of Jα is

Dα f (x) = J m−α Dm f (x)

=
1

Γ (m − α)

∫ x

0

(x − t)m−α−1 f (m)(t)dt (2)

and has the following properties for m−1 < α ≤ m, m ∈ IN ,

µ ≥ −1 and f ∈ Cm
µ :

– Dα Jα f (x) = f (x),

– Jα Dα f (x) = f (x) −

m−1
∑

k=0

f (k)(0+)
xk

k!
, for x > 0,

Stability criterion

To investigate the dynamics and to control the chaotic behav-

ior of a fractional-order dynamic system:

Dα
t x(t) = f (x(t)), (3)

we need the following indispensable stability theorem (Fig.

1).

Theorem 1 (See [32,33]) For a given commensurate fracti-

onal-order system (3), the equilibria can be obtained by

calculating f (x) = 0. These equilibrium points are locally

asymptotically stable if all the eigenvalues λ of the Jacobian

matrix J =
∂ f

∂x
at the equilibrium points satisfy

|arg(λ)| >
π

2
α. (4)

Fig. 1 Stability region of the fractional-order system (3)

Circuit implementation and numerical
simulations

Adams–Bashforth (PECE) algorithm

We recall here the improved version of Adams–Bashforth–

Moulton algorithm [31,34] for the fractional-order systems.

Consider the fractional-order initial value problem:

⎧

⎨

⎩

Dα
t x = f (x(t)) 0 ≤ t ≤ T ,

x (k)(0) = x
(k)
0 , k = 0, 1, . . . , m − 1.

(5)

It is equivalent to the Volterra integral equation:

x(t) =

[α]−1
∑

k=0

x
(k)
0

tk

k!
+

1

Γ (α)

∫ t

0

(t − s)α−1 f (s, x(s))ds. (6)

Diethelm et al. have given a predictor–corrector scheme (see

[34]), based on the Adams–Bashforth–Moulton algorithm to

integrate Eq. (6). By applying this scheme to the fractional-

order system (5), and setting

h =
T

N
, tn = nh, n = 0, 1, . . . , N .

Equation (6) can be discretized as follows:

xh(tn+1) =

[α]−1
∑

k=0

x
(k)
0

tk

k!
+

hα

Γ (α + 2)
f (tn+1, x

p
h (tn+1))

+
hα

Γ (α + 2)

n
∑

j=0

a j,n+1 f (t j , xh(t j )), (7)

where
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Fig. 2 Chain ship unit of: a
1

s0.98
and b

1

s0.9

Table 1 Equilibrium points and corresponding eigenvalues

Equilibrium

points

Eigenvalues

E0(0, 0, 0) λ1 = 3, λ2 = −7, λ3 =

−2

E1(−0.923250, 1.35886,−0.889584) λ1 = −5.478102,

λ2,3 = 0.418480 ± 5.245549I

a j,n+1 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

nα+1 − (n − α)(n + 1)α, j = 0,

(n− j +2)α+1+(n− j)α+1−2(n − j + 1)α+1, 1 ≤ j ≤ n

1, j = n + 1,

(8)

and the predictor is given by

x
p

h (tn+1) =

[α]−1
∑

k=0

x
(k)
0

tk

k!
+

1

Γ (α)

n
∑

j=0

b j,n+1 f (t j , xh(t j )),

(9)

where b j,n+1 =
hα

α
((n + 1) − j)α − (n − j)α.

The error estimate of the above scheme is

max j=0,1,...,N

{

|x(t j ) − xh(t j )|
}

= O(h p),

in which p = min(2, 1 + α).

The fractional frequency-domain approximation

The standard definition of fractional differintegral does not

allow the direct implementation of the fractional operators in

Fig. 3 Chaotic attractors of the fractional-order system (16) obtained

by numerical simulations: a x − y, b y − z, c x − z, for α = 0.98

time-domain simulations. To study such systems, it is nec-

essary to develop approximations to the fractional operators

using the standard integer order operators. According to cir-

cuit theory, the approximation formulation of α, from 0.1 to

0.9, in reference [30], bode plot approximation chart, can be

realized by the complex-frequency domain of the chain ship

equivalent circuit. When α = 0.98, it can be worked out that

the approximation formula of
1

s0.98
is

1

s0.98
=

1.2974(s + 1125)

(s + 1423)(s + 0.01125)
. (10)
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Fig. 4 Asymptotically stable orbits of the fractional-order system (16)

by numerical simulations: a x − y, b x − z, c y − z, for α = 0.9

In formula (10), s = jω, its complex frequency and the

chain ship circuit unit is described in Fig. 2a. The transfer

function between A and B can be obtained as follows:

H0.98(s) =
R1

s R1C1 + 1
+

R2

s R2C2 + 1

=
1

C0

(

C0
C1

+
C0
C2

)

[

s +

1
R1

+ 1
R2

C1+C2

]

(

s + 1
R1C1

) (

s + 1
R2C2

) . (11)

Taking C0 = 1νF. Since H(s)C0 =
1

s0.98
, we can reach

Fig. 5 Time series of the fractional-order system (16) by numerical

simulations: a x , b y, c z for α = 0.9

R1 = 91.1873 MΩ, R2 = 190.933 ω,

C1 = 975.32 nF, and C2 = 3.6806 µF. (12)

Similarly, for α = 0.9, we can reach that the approxima-

tion formula of
1

s0.9
is

1

s0.9
=

2.2675(s + 1.292)(s + 215.4)

(s + 0.01292)(s + 2.154)(s + 359.4)
. (13)
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Fig. 6 Circuit diagram for the realization of the fractional-order chaotic system (16) for α = 0.98
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Fig. 7 Circuit diagram for the realization of the fractional-order chaotic system (16) for α = 0.9
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Fig. 8 Chaotic attractors of the fractional-order system (16) observed

by the oscilloscope 1V/Div: a x − y, b y − z, c x − z with α = 0.98

The chain ship circuit unit for this case is shown in Fig.

2b. The transfer function between A and B is

H0.9(s) =

1
C1

s + 1
R1C1

+

1
C2

s + 1
R2C2

+

1
C3

s + 1
R3C3

, (14)

we can reach

R1 = 62.84 MΩ, R2 = 250 kΩ, R3 = 2.5 kΩ,

C1 = 1.23 µF, C2 = 1.83 µF, and C3 = 1.1 µF. (15)

Fig. 9 Circuit simulation asymptotically stable orbits of the fractional-

order system (16) observed by the oscilloscope 1V/Div: a x − y, b x −z,

c y − z, for α = 0.9

A new 3D fractional-order chaotic system

We introduce the following system:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Dαx = −2x − y2,

Dα y = −4xz + 3y − z2,

Dαz = 4xy − 7z + yz,

(16)

where the fractional-order α ∈ (0, 1].
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Fig. 10 Time series of the

fractional-order system (16)

observed by the oscilloscope

1V/Div: a x , b y, c z, for

α = 0.9
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Dynamical analysis

To reveal dynamical properties of the nonlinear system (16),

the equilibria should be considered at first

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−2x − y2 = 0,

−4xz + 3y − z2 = 0,

4xy − 7z + yz = 0.

(17)

The obtained equilibrium points from (17) and the corre-

sponding eigenvalues are given in Table 1.

Hence, E0 is unstable, and E1 is a saddle point of index

2. With the aid of Theorem 1, a necessary condition for the

fractional-order systems (16) to remain chaotic is keeping at

least one eigenvalue λi in the unstable region, i.e., |arg(λi )| >
απ

2
, It means that when α > 0.949318 system (16) exhibits

a chaotic behavior.

Circuit designs and numerical simulations

Applying the improved version of Adams–Bashforth–Moulton

numerical algorithm described above with a step size h =

0.01, system (16) can be discretized. It is found that chaos

exists in the fractional-order system (16) when α > 0.94

with the initial condition (x0, y0, z0) = (0.7, 0.1, 0). Fig-

ure 3a–c demonstrate that the systems has chaotic behavior

for α = 0.98. On the other hand, when we take some val-

ues of α ≤ 0.94, the fractional system (16) can display

the periodic attractors, and asymptotically stable orbits (see

Figs. 4, 5). Moreover, using Multisim software 13 to con-

duct simulations on the 3D fractional-order system (16),

analog circuits are designed to realize the behavior of (16).

Three state variables x , y and z are implemented by three

channels, respectively. The implementations use resistors,

capacitors, analog multipliers, and analog operational ampli-

fiers, as shown in Figs. 6 and 7. A comparison of Figs. 3, 4, 5,

6, 7, and 8 (resp. 4–9 and 5–10) proves that analog circuit for

system (16) is well coincident with numerical simulations.

A conclusion can be made that the chaotic and non-chaotic

behaviors exist in the fractional-order system (16), which

verifies its existence and validity (Figs. 9, 10).

Conclusion

In this paper, we introduce a new three-dimensional fractional-

order chaotic system and its existence and stability. By

adopting a chain ship circuit form , the circuit experimen-

tal simulation of this fractional-order system is presented.

The derived results between numerical simulation and circuit

experimental simulation are in agreement with each other.
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