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Abstract: Extensive research has been conducted on the scaling fractal fractor using various struc-
tures. The development of high-resolution emulator circuits to achieve a variable-order scaling
fractal fractor with high resolution is a major area of interest. We present a scaling fractal-ladder
circuit for achieving high-resolution variable-order fractor based on scaling expansion theory using a
high-resolution multiplying digital-to-analog converter (HMDAC). Firstly, the circuit configuration of
variable-order scaling fractal-ladder fractor (VSFF) is designed. A theoretical demonstration proves
that VSFF exhibits the operational characteristics of variable-order fractional calculus. Secondly, a
programmable resistor–capacitor series circuit and universal electronic component emulators are
developed based on the HMDAC to adjust the resistance and capacitance in the circuit configuration.
Lastly, the model, component parameters, approximation performance, and variable-order character-
istics are analyzed, and the circuit is physically implemented. The experimental results demonstrate
that the circuit exhibits variable-order characteristics, with an operational order ranging from −0.7
to −0.3 and an operational frequency ranging from 7.72 Hz to 4.82 kHz. The peak value of the input
signal is 10 V. This study also proposes a novel method for variable-order fractional calculus based
on circuit theory. This study was the first attempt to implement feasible high-resolution continuous
variable-order fractional calculus hardware based on VSFF.

Keywords: fractional calculus; variable order; fractional-order circuits/systems; analog realization;
emulator

1. Introduction

Fractional calculus, a branch of mathematics, has been widely implemented in the
various fields of science and engineering [1–3]. Although it typically has a constant order,
its application in describing new phenomena and problems with an operational order
dependent on variables such as time and space is difficult. These problems can be better
described using variable-order fractional calculus [4–6], which was first proposed by Samko
and Ross [7] in 1993. Variable-order fractional calculus is expressed through mathematical
functions that can be used to model natural phenomena and processes. The studies
conducted on variable-order fractional calculus were primarily focused on the mathematical
description of variable-order phenomena and processes and on the theory of variable-
order fractional calculus application system design [4–6,8–12]. However, studies on the
implementation of flexible and controllable physical entities of variable-order fractional
calculus are scarce.

The solid-state fractor can be used as the physical entity of variable-order fractional cal-
culus operation. However, it faces certain limitations, such as a narrow range of operational
order variation, limited temperature control, and difficulty in operational order adjustment
[13,14]. Analog circuit implementation is an important approach that enables the flexible
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and controllable physical implementation of variable-order fractional calculus operation.
Sierociuk et al. conducted several pioneering studies [15–17]. They use analog circuits to im-
plement many kinds of variable-order fractional calculus circuits. These studies primarily
employed the switching strategy to switch between two or three-order types. Constant-
order fractor has been used in variable-order circuits and systems [15–18]. Variable-order
fractional impedance (variable-order fractor) is a basic unit circuit or element that can per-
form variable-order fractional calculus. Variable-order fractional calculus can be realized
by changing the operational order while maintaining the structure of the variable-order
fractor circuit. In [19], a fractor circuit was designed based on rational approximation, and
the order was changed by adjusting the transconductance operational amplifier control
current. The operational order was switched between 0.2, 0.5, and 0.8; however, a physical
circuit was not implemented. The studies conducted on variable-order fractor with a low
operational order variation, narrow range, and regulation difficulties remain limited, to the
best of our knowledge. Additionally, the studies conducted on circuit implementation are
scarce.

To date, the studies conducted on fractor primarily focused on constant-order frac-
tor circuits. These studies primarily involved two types of constant-order fractor [20].
The first type is constructed either directly or by modeling the phenomena of electro-
chemistry or other scientific fields, such as Liu-Kaplan [21], 2h-type fractal-tree [20],
fractal-ladder [22,23], and fractal-chuan fractor [22–24]. The second type is constructed
by designing a circuit-realizable rational function to approximate the performance of
fractional-order operators such as the Oustaloup algorithm [25,26], Dutta Roy’s fractor [27],
and Carlson’s iterating rational approximation algorithm [28,29].

In a previous study, we developed scaling expansion theory [30,31]. This theory can
be used to extend multiple fractors, thereby overcoming the limitation of only realizing
half- to arbitrary-order operations [30,32,33]. Scaling expansion theory can also be used
in mathematics to extend the algebraic iterative equation, which describes the rational
approximation of half-order operators into an irregular scaling equation describing arbitrary
fractional operators. This theory can be used to construct the scaling fractal-lattice [30,31],
scaling fractal-chuan [32], scaling fractal-chain [33], and scaling fractal-ladder fractor [34].
The scaling fractal fractor presents a high operating frequency bandwidth.

Scaling expansion theory is used to extend the semi-order fractor to a fixed scaling
structure based on the required constant order. The theory is employed to realize the
circuit of a fractional memristor of the scaling fractal-lattice [30] and scaling fractal-ladder
fractor [34]. The lumped parameter value adjustment with the port flux or charge must
be solved to achieve the scaling fractal fractional memristor [34]. It is similar to that the
operational order adjustment must be solved to achieve the variable-order fractor.

Several studies have been conducted on scaling fractal fractor by using various struc-
tures [30–34]. However, the design of high-resolution emulator circuits to achieve high-
resolution variable-order scaling fractal fractor is theoretically challenging. A variable-order
scaling fractal-ladder fractor (VSFF) circuit implementation method is proposed to over-
come this issue. The main contributions of this study are as follows:

• The proposed circuit can realize the VSFF, thereby overcoming the limitations faced by
the existing variable-order fractor, such as limited operational order variation, narrow
range, and difficult adjustment [13,14,19].

• A programmable resistor–capacitor series circuit and programmable universal elec-
tronic component emulators are designed based on the high-resolution multiply-
ing digital-to-analog converter (HMDAC). These emulators can also be applied
to other variable-order fractor circuits, memristor emulators, and memcapacitor
emulators [35–37].

• This paper also proposes a method for variable-order fractional calculus based on
circuit theory.

The remainder of this paper is organized as follows. Section 2 presents the VSFF
circuit configuration. A programmable resistor–capacitor series circuit emulator and a
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universal electronic component emulator are designed based on the requirements of the
circuit configuration. Section 3 presents the model and component parameters in the VSFF
and the calculation of the relative error of equivalent parameters of the programmable
circuit. The approximation performance and variable-order characteristics of the VSFF
are analyzed in the frequency domain. The VSFF is implemented, and the variable-order
operation characteristic of the circuit is experimentally validated. Sections 4 and 5 present
the discussions and conclusions, respectively.

2. VSFF Design

This section describes the design of the proposed VSFF. Firstly, the circuit configu-
ration is presented. Subsequently, the emulators required to realize the programmable
resistor–capacitor series circuit, universal electronic capacitor, and resistor components
are described.

2.1. VSFF Circuit Configuration

Scaling fractal-ladder fractor is a classic constant-order fractor circuit [34]. It is em-
ployed to achieve the scaling fractal fractional memristor and design the lumped parameter
value of the fractor with the port flux or charge [34]. Similarly, the constant-order fractor
circuit component parameters must be adjusted based on the required change in the opera-
tional order to design a variable-order fractor circuit for solving the problem. Therefore,
the design of the VSFF circuit configuration requires only the resistor and capacitor to be
replaced in the constant-order scaling fractal-ladder fractor with the variable resistor and
capacitor controlled by the microcontroller.

This subsection presents the VSFF circuit configuration and explains the parameters
and calculation of the admittance function. Subsequently, the equivalent operation order
expression of the VSFF in the characteristic frequency range is calculated to prove that the
VSFF possesses characteristics of variable-order fractional calculus operations. Furthermore,
it presents a method to optimize the VSFF and improve the approximation performance.
Lastly, it explains the correlation between the circuit parameters and operation order.

2.1.1. Circuit Configuration and Admittance

Figure 1 depicts the VSFF circuit configuration. The n-th subcircuit comprises a
variable resistor, rn, in series with a variable capacitor, cn. k denotes the total number of
subcircuits. The serial number, n = 1, 2, . . . , k. R(C), denotes the reference resistance (capac-
itance). Resistor ro and capacitor co are used for circuit optimization. The n-th subcircuit, ro,
and co denote the programmable resistor–capacitor series circuit, programmable resistor,
and programmable capacitor emulators, respectively, which are controlled by the microcon-
troller. α(β) denotes the resistance (capacitance) progression ratio. The parameter [15,31],

σ = αβ(α ∈ R+, β ∈ R+, 0 < δ 6= 1) (1)

represents the scaling factor of the circuit, where α, β, and σ denote the scaling parameters.
The scaling parameters are positive real numbers and α 6= 1, β 6= 1. The case in which all the
scaling parameters are greater than 1 corresponds to the direct proportion extension VSFF.
However, the case in which all the scaling parameters are between 0 and 1 corresponds to
the inverse proportion extension VSFF.

The VSFF can realize any real fractional operation in the approximation frequency
range. When resistor ro and capacitor co are not considered, the admittance of the VSFF
function can be obtained as follows:

Yk(s) =
1

Z̃k(s)
=

k

∑
n=1

βn−1Cs
1 + σn−1RCs

, (2)
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s denotes the Laplace or the operational variable, where τ = RC, w = τs, and
Ȳk(w) = Yk(w/τ)R. The admittance function is normalized as follows:

Ȳk(w) =
k

∑
n=1

βn−1w
1 + σn−1w

. (3)

The iterative algorithm formula of the normalized admittance function is expressed
as follows:

Ȳk(w) =
w

1 + w
+

Ȳk−1(σw)

α
. (4)

When k→ +∞, the equation,

ȳ(w) =
w

1 + w
+

ȳ(σw)

α
(5)

corresponding to the formula of the iterative algorithm, which is the VSFF scaling equation.
Equation (5) can be used to analyze the electrical characteristics of the VSFF, including the
frequency characteristics and operational order.

Figure 1. Circuit configuration of VSFF.

2.1.2. Characteristic Frequency and Operational Order

The theoretical expression of the operational order of VSFF in the characteristic fre-
quency range can be calculated. The characteristic frequency of the n-th subcircuit can be
expressed as follows:

ωn =
1

αn−1βn−1 = σ1−n(n = 1, 2 · · · , k). (6)

Therefore, when 1 < σ < ∞ is a direct proportion extension, ωn is extended to the
lower-frequency range. In an inverse proportion extension, 0 < σ < 1, ωn is extended to
the higher-frequency range. When

1 < σ < +∞, ωk � ω1 = 1, (7)

at high frequencies (1 < |ω| → ∞), the circuit exhibits resistive characteristics. At low
frequencies (1 > |ω| → 0), the circuit exhibits capacitive characteristics, that is

0← 1− βk

1− β
· w 0←|ω|<1←− Ȳk(w)

1<|ω|→∞−→ 1− α−k

1− α−1 . (8)
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When the frequency band meets

0← ωk < |ω| � 1, (9)

the resistive and capacitive components interact, and the circuit exhibits fractional calculus
operational performance. The operational order can be expressed as follows [34]:

µ ≈ − lg α

lg σ
= − lg α

lg α + lg β
, (10)

where µ denotes the operational order. A VSFF can be constructed by adjusting the values
of α and β, as shown in (10).

2.1.3. VSFF Optimization

The parallel-connected resistor, ro, and capacitor, co, in the circuit are used to optimize
the VSFF to achieve a better variable-order fractional calculus performance. It is assumed
that an infinite number of subcircuits exist before the 1-th subcircuit and behind the k-th
subcircuit since the total number of subcircuits is limited. When α, β > 1. The resistance
and capacitance decrease progressively with decreasing number of n at each subcircuit
before the 1-th circuit. The capacitor of each subcircuit plays a significant role. The capacitor
connected in parallel before the 1-th subcircuit is expressed as follows:

co =
−1

∑
n=−∞

βnC =
C

β− 1
(β > 1). (11)

For each subcircuit behind the k-th circuit, both the resistance and capacitance increase
with increasing number of n. The resistor of each subcircuit plays a significant role. The
resistor connected in parallel behind the k-th subcircuit is expressed as follows:

ro =
1

∑∞
n=k 1/(αnR)

=
(α− 1)R

α1−k (α > 1). (12)

Similarly, when 0 < α, β < 1, the capacitor connected in parallel before the 1-th

subcircuit and the resistor connected in parallel behind the k-th subcircuit are βkC
1−β and

(1−α)R
α , respectively.

Without loss of generality, the VSFF circuit uses a direct proportion extension (α, β > 1
and σ > 1) .

2.1.4. Component Parameter Calculation

The parameter values of each component and its variation rule of the circuit config-
uration can be calculated based on the operational order, µ, and its variable-order range.
µmin and µmax denote the minimum and maximum values of the variable-order range,
respectively. The resistance progressive ratio, α = σ−µ, and capacitance progressive ratio,
β = σ

α = σµ+1, are calculated based on the variable-order range, −1 < µmin ≤ µ ≤ µmax < 0,
and scaling parameter, σ. The n-th variable resistor,

rn = Rαn−1 = Rσ(1−n)µ, (13)

and the n-th variable capacitor,

cn = Cβn−1 = Cσ(n−1)(µ+1). (14)

The resistor,

ro =
(α− 1)R

α1−k =
(

1− α−1
)

αkR = (1− σµ)σ−µkR, (15)
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and the capacitor,

co =
C

β− 1
=

C
σµ+1 − 1

. (16)

The partial derivative of the n-th variable resistor rn with respect to the operational
order µ can be obtained as follows:

∂rn

∂µ
= (1− n)Rσ(1−n)µ ln σ. (17)

If n = 1, ∂rn
∂µ = 0. If n = 2, 3, . . . , k,

∂rn

∂µ
< 0. (18)

The resistance of rn decreases with an increase in µ apart from the fixed value of r1.
The partial derivative of cn corresponding to µ can be obtained as follows:

∂cn

∂µ
= (n− 1)Cσ(n−1)(µ+1) ln σ. (19)

If n = 1, ∂c1
∂µ = 0. If n = 2, 3, . . . , k,

∂cn

∂µ
> 0. (20)

Except for the fixed value of c1, the capacitance of cn increases with an increase in µ.

2.2. Programmable Resistor–Capacitor Series Circuit Emulator

Figure 1 depicts the n-th subcircuit, which is composed of a variable resistor, rn, in
series with a variable capacitor, cn. If the variable resistor, rn, and variable capacitor,
cn, are equivalent when using separate emulators, each emulator must be controlled
separately, and the variable capacitor emulator circuit must be operated by floating. The
n-th programmable resistor–capacitor series circuit emulator (n = 2, 3, . . . , k) was designed
to avoid using more hardware circuits and separately control each emulator. rn and cn can
be controlled by a single HMDAC, and a separate floating emulator circuit is not required.

This subsection presents the circuit schematic of the programmable resistor–capacitor
series circuit emulator and explains the parameters involved. The theory proves that the
circuit schematic can achieve the aim of the emulator. The expression of the control variable,
K(n), is then theoretically deduced to fulfill the variable-order requirement. Lastly, the
expressions of the relative errors of r̃n and c̃n are derived theoretically.

2.2.1. Circuit Schematic

Figure 2 depicts the circuit schematic of the n-th programmable resistor–capacitor
series circuit emulator (n = 2, 3, . . . , k), where U(n)

1 represents the HMDAC. The electrical
characteristics between ports, a(n) and b(n), are considered as the equivalent electrical char-
acteristics of the n-th subcircuit, as shown in Figure 1. R(n)

1 = R(n)
2 = R(n)

3 = R(n)
4 ,

R(n)
x = R(n)

y , the operational amplifier, (A(n)
3 , A(n)

4 , A(n)
5 , and A(n)

6 ), and the resistor,

(R(n)
1 , R(n)

2 , R(n)
3 , R(n)

4 , R(n)
x , and R(n)

y ) form the current follower. The current flowing

through the capacitor current, C(n)
x , is equal to the current flowing through the resistor,

R(n)
x . If the voltage across the capacitor, C(n)

x , is 0 V in t = 0, the voltage is obtained as
u(n)

c (t) = 1
C(n)

x

∫ t
0 i(n)in (t)dt.
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Figure 2. Circuit schematic of the n-th programmable resistor–capacitor series circuit emulator
(n = 2, 3, . . . , k).

Most digital-to-analog converters (DACs) operate at a fixed reference voltage, where
the output voltage or current corresponds to the product of the reference voltage and the
value of a set control variable. The reference voltage of a multiplicative DAC typically
varies within the range of ±10 V. U(n)

1 for the output current, A(n)
2 , and the integrated

feedback resistor inside the U(n)
1 constitute a precision current-voltage conversion amplifier.

The output voltage of A(n)
2 is −K(n)u(n)

in (t) and the control variables,

K(n) =
DATA(n)

2m

(
0 ≤ K(n) ≤ 1

)
(21)

are controlled by the microcontrollers. K(n) corresponds to the digital quantity,
DATA(n)(0 ≤ DATA(n) ≤ 2m), provided by the microcontroller. m is expressed as the
number of bits of the HMDAC. R(n)

5 = R(n)
6 = R(n)

7 = R(n)
8 , A(n)

8 , R(n)
5 , R(n)

6 , R(n)
7 , and R(n)

8

constitute a differential amplifier circuit. The output voltage of A(n)
8 is

u(n)
o (t) = u(n)

c (t) + K(n)u(n)
in (t) = u(n)

in (t)− i(n)in (t) · R(n)
x . (22)

Therefore,
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u(n)
in (t) = i(n)in (t) · R(n)

x

1− K(n)
+

1(
1− K(n)

)
C(n)

x

∫ t

0
i(n)in (t)dt = i(n)in (t) · r̃n +

1
c̃n

∫ t

0
i(n)in (t)dt. (23)

According to (23), the circuit illustrated in Figure 2 is equivalent to the series connec-
tion of the programmable resistance,

r̃n =
R(n)

x

1− K(n)
. (24)

Furthermore, the programmable capacitance,

c̃n =
(

1− K(n)
)

C(n)
x . (25)

According to (24) and (25), both r̃n and c̃n correspond to the control variables, K(n)

and r̃n, and c̃n are controlled by the microcontroller.

2.2.2. Calculating the Control Variable of K(n)

The equivalent r̃n and c̃n of Figure 2 can be achieved by adjusting the value of the
control variable, K(n), using the microcontroller based on the VSFF, which decreases the
number of DACs and presents considerable advantages. According to

∂r̃n

∂K(n)
=

R(n)
x K(n)(

1− K(n)
)2 > 0,

∂c̃n

∂K(n)
= −C(n)

x < 0, (26)

r̃n gradually increases and c̃n gradually decreases with an increase in K(n). When K(n) = 0,
the minimum programmable resistance, r̃n is R(n)

x . According to (13) and (18), when r̃n is
the minimum value within the change range, µ must be the maximum value, i.e.,

r̃|K(n)=0 = R(n)
x = Rσ(1−n)µmax = rn|µ=µmax

. (27)

When K(n) = 0, the maximum value of c̃n is C(n)
x . According to (14) and (20), when

c̃n is the maximum value within the change range, the operational order, µ, must be the
maximum value, that is

c̃n|K(n)=0 = C(n)
x = Cσ(n−1)(µmax+1) = cn|µ=µmax

. (28)

Equation (27) is substituted into (24) to obtain

r̃n =
R

1− K(n)
σ(1−n)µmax . (29)

Equation (28) is substituted into (25) to obtain

c̃n =
(

1− K(n)
)

Cσ(n−1)(µmax+1). (30)

When r̃n = rn,

Rσ(1−n)µ =
R

1− K(n)
σ(1−n)µmax (31)

can be obtained from (13) and (29). When c̃n = cn,

Cσ(n−1)(µ+1) =
(

1− K(n)
)

Cσ(n−1)(µmax+1) (32)
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can be obtained from (14) and (30). Remarkably, (31) and (32) produce the same result:

K(n) = 1− σ(n−1)(µ−µmax). (33)

Only one control variable, K(n), is required to satisfy the change in the resistance, rn,
and capacitance, cn, of the n-th subcircuit in the VSFF, as shown in (33). When compared
to the programmable resistance and capacitance circuits, which require HMDAC control,
the number of HMDAC is halved, the circuit is simpler, and the I/O port resources of the
microcontroller are reduced.

2.2.3. Calculating the Relative Errors of r̃n and c̃n

Figure 2 depicts the relative errors of r̃n and c̃n of the circuit, which correspond to
µmin, µmax, n, and m. According to (24), the correlation between the relative error, δ(r̃n), of
r̃n and the resolution, ∆K(n) = 1

2m , of the HMDAC is expressed as:

δ(rn) =
∆r̃n

r̃n
=

∂r̃n∆K(n)

r̃n∂K(n)
=

1
2m
(
1− K(n)

) . (34)

According to (25), the correlation between the relative error, δ(c̃n), of c̃n and ∆K(n) = 1
2m

is expressed as:

δ(c̃n) =
∆c̃n

c̃n
=

∂c̃n∆K(n)

c̃n∂K(n)
=

−1
2m
(
1− K(n)

) . (35)

According to (33)–(35), when µ = µmax, K(n) = 0, r̃n, and c̃n are the minimum relative
errors within the change range:

δ
(r̃n)
min

∣∣∣
µ=µmax

=| δ
(c̃n)
min‖µ=µmax =

1
2m . (36)

When µ = µmin, K(n) is the maximum value within the change range, and r̃n and c̃n
can be used to obtain the maximum relative error within the change range:

δ
(r̃n)
max

∣∣∣
µ=µmin

=| δ
(c̃n)
max‖µ=µmin =

σ(n−1)(µmax−µmin)

2m . (37)

The maximum relative error of the programmable resistor–capacitor series circuit
emulator corresponds to the ranges of µ, n, and m. The larger the range of µ, the larger
the maximum relative error of the equivalent programmable parameter. The larger the
serial number, n, the larger the maximum relative error of the equivalent programmable
parameter. The larger the number of bits, m, the smaller the resolution, ∆K(n), and the
maximum relative error of the equivalent programmable parameters.

2.3. Programmable Universal Electronic Component Emulator–Programmable Resistor and
Capacitor for Circuit Optimization

Figure 1 illustrates the programmable resistor, ro, and programmable capacitor, co.
Fewer schematics are used to simplify the overall circuit schematic. A programmable
universal electronic component emulator was also designed.

This subsection presents a circuit schematic of the programmable universal electronic
component emulator and explains the parameters involved. The theory proves that the
circuit schematic can achieve the aim of the emulator. Subsequently, the expressions of the
control variables, K(ro) and K(co), are deduced theoretically to fulfill the variable-order re-
quirement. Lastly, the expressions of the relative errors of r̃o and c̃o are derived theoretically.
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2.3.1. Circuit Schematic

Figure 3 depicts the circuit schematic of the programmable universal electronic compo-
nent emulator. U(xo)

1 represents the HMDAC. If xo = ro and X(xo) represent the resistance,

R(ro)
x , the electrical characteristics between ports a(ro) and b(ro) are considered to be equiva-

lent to the electrical characteristics of the resistor, ro, as shown in Figure 1. If xo = co and
X(xo) represent the capacitance, C(co)

x , the electrical characteristics between the ports, a(co)

and b(co), are used as the equivalent electrical characteristics of capacitor, co, as shown in
Figure 1. The operational amplifier, A(xo)

1 , constitutes the voltage follower. The operational

amplifiers, A(xo)
3 , and resistors, (R(xo)

1 and R(xo)
2 ), constitute the inverse proportional am-

plifiers. When R(xo)
1 = R(xo)

2 and A(xo)
3 , the output voltage is K(xo)u(xo)

in . For port, a(xo), the
input current is expressed as

I(xo)
in (s) =

U(xo)
in (s)− K(xo)U(xo)

in (s)
X(xo)(s)

, (38)

that is
U(xo)

in (s)

I(xo)
in (s)

=
X(xo)(s)
1− K(xo)

, (39)

where s denotes the complex frequency variable. According to (39), the equivalent com-
ponent parameter value of the circuit shown in Figure 3 can be adjusted by adjusting
the control variables, K(xo), using the microcontroller. If xo = ro and X(xo) = R(ro)

x , the
equivalent programmable optimized resistance is expressed as

r̃o =
R(ro)

x

1− K(ro)
, (40)

where r̃o corresponds to the control variable, K(ro), and is controlled by the microcontroller.
If xo = co and X(xo) = C(co)

x , the equivalent programmable optimized capacitance is
expressed as:

c̃o =
(

1− K(co)
)
· C(co)

x , (41)

where c̃o corresponds to the control variable, K(co), and is controlled by the microcontroller.
If X(xo) represents circuit parameters other than the resistance and capacitance, such as the
inductance, fractance, and transtance [38], the circuit shown in Figure 3 can also be used to
realize a programmable circuit with more component parameter values, thereby improving
its applicability.

Figure 3. Circuit schematic of the programmable universal electronic component emulator.
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2.3.2. Calculating the Control Variables of K(ro) and K(co)

The equivalent programmable optimized resistance, r̃o, or the programmable opti-
mized capacitance, c̃o, shown in Figure 3 can be realized through a microcontroller by
adjusting K(ro) or K(co). The partial derivative of r̃o corresponding to K(ro) can be obtained

as ∂r̃o
∂K(ro) = −R(ro)

x

(1−K(ro))
2 < 0. This indicates that, with an increase in K(ro), r̃o decreases pro-

gressively. The partial derivative of ro, shown in (15), to µ can be obtained as ∂ro
∂µ > 0. This

indicates that ro increases with an increase in µ. When K(ro) = 0 is used, the maximum r̃o
obtained is ro when µ = µmax. That is,

r̃o|K(ro)=0 = R(ro)
x = (1− σµmax)σ−µmaxkR = ro|µ=µmax

. (42)

Assuming r̃o = ro can be obtained from (15), (40) and (42),

K(ro) = 1− (1− σµmax)σ(µ−µmax)k

1− σµ . (43)

The partial derivative of c̃o corresponding to K(co) is obtained as follows:

∂c̃o

∂K(co)
= −C(co)

x < 0. (44)

c̃o decreases with the increase in K(co). The partial derivative of co of (16) corresponding to
µ can be obtained as

∂co

∂µ
=
−Cσµ+1 lg σ(

σµ+1 − 1
)2 < 0, (45)

where co decreases with an increase in µ. When K(co) = 0 is set, the maximum c̃o is co in
µ = µmin. That is,

c̃o|K(co)=0 = C(co)
x =

C
σµmin+1 − 1

= co|µ=µmin
. (46)

c̃o = co can be obtained from (16), (41) and (46) as follows:

K(co) = 1− σµmin+1 − 1
σµ+1 − 1

. (47)

2.3.3. Calculating the Relative Errors of r̃o and c̃o

When realizing the VSFF, the relative error of the equivalent element parameter values
in Figure 3 corresponds to µmin, µmax, n, and m. The correlation between the relative error,
δro , of r̃o and ∆K(ro) = 1

2m is expressed as follows:

δ(r̃o) =
∆r̃o

r̃o
=

1
r̃o

∂r̃o

∂K(ro)
∆K(ro) =

1
2m
(
1− K(ro)

) . (48)

According to (43), K(ro) = 0 can be obtained when µ = µmax and the minimum relative
error of r̃o within the change range is expressed as follows:

δ
(r̃o)
min

∣∣∣
µ=µmax

=
1

2m , (49)

when µ = µmin, K(ro) is the maximum value within the change range, and the maximum
relative error can be obtained from (43) and (48) as follows:

δ
(r̃o)
max

∣∣∣
µ=µmin

=
1− σµmin

2m(1− σµmax)σ(µmin−µmax)k
. (50)
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The correlation between the relative error of c̃o and ∆K(co) = 1
2m can be given as

δ(c̃o) =
∆c̃o

c̃o
=

∆K(co)∂c̃o

c̃o∂K(co)
=

1
2m
(
K(co) − 1

) . (51)

According to (47), when the operation, µ = µmin, the control variable K(co) = 0, and c̃o
is the minimum relative error within the change range,

δ
(c̃o)
min

∣∣∣
µ=µmin

= − 1
2m . (52)

When µ = µmax, K(co) is the maximum value within the change range and the
maximum relative error of c̃o is obtained. That is,

δ
(c̃o)
max

∣∣∣
µ=µmax

=
1− σµmax+1

2m
(
σµmin+1 − 1

) . (53)

3. Experimental Results

This section presents the results of the experiments and the verification of the VSFF
circuit. Firstly, the model and component parameters in the VSFF are provided, and the
relative error of the programmable circuit is calculated. Subsequently, the approximation
performance and variable-order characteristics of the VSFF are analyzed in the frequency
domain. Furthermore, two equivalent methods to calculate the variable-order electrical
characteristics are presented. One of these characteristics is derived from circuit theory and
is presented herein. Lastly, the VSFF is implemented and the variable-order characteristic
of the circuit is experimentally validated.

3.1. Circuit Implementation

This subsection presents the parameters, models, and instruments used for circuit im-
plementation. Firstly, the values of the component parameters are presented and the model
selection of the microcontroller and the HMDAC are introduced. Subsequently, a list of
circuit parameters is presented, which includes the control variables of the microcontroller,
equivalent parameters of the emulators, and equivalent parameter relative errors of the
emulators. The influence of the different parameters is also demonstrated. Lastly, some
details that were considered in the implementation of the circuit are presented.

This circuit realizes the VSFF by replacing the n-th subcircuit shown in Figure 1 with
the emulator shown in Figure 2 (n = 2, 3, · · · k), and by replacing the resistance, ro, (xo = ro,
X(xo) = R(ro)

x ) and capacitance, co, (xo = co, X(xo) = C(co)
x ) of the emulator shown in

Figure 3. It was assumed that k = 5, n = 2, 3, 4, 5, R = 330 Ω, C = 0.1 µF, σ = 5, and
µmin = −0.7 ≤ µ ≤ −0.3 = µmax. The operational amplifiers, A(2)

2 , A(3)
2 , A(4)

2 , A(5)
2 , A(co)

2 ,

and A(ro)
2 , used OP97 and all the other operational amplifiers used OP07.

The HMDAC used AD5544 [39], m = 16 bits, and a resolution of ∆K = 1
2m = 1

65,536 .
Each AD5544 comprised four current output DACs, with each DAC containing an indepen-
dent multiplying reference input. A load strobe enabled 4-channel, simultaneous updates
for hardware-synchronized output voltage changes. Two AD5544 units were used for the
implementation of the circuit.

STC8A8K64S4A12 was selected as the microcontroller, as shown in Figure 1. This mi-
crocontroller did not require an external crystal oscillator and external reset circuit for an
internal clock source frequency of up to 24 MHz. According to (33), (43), (47), and the
variable order µ, the control variables, K(n), K(ro), and K(co) of AD5544 were set by the
STC8A8K64S4A12 to realize the change in the operational order of the VSFF.

Table 1 lists the parameters of the circuit. R(n)
x , C(n)

x , r̃n, c̃n, K(n), δ
(x̃n)
min (x̃n = c̃n, r̃n),

and δ
(r̃n)
max(x̃n = c̃n, r̃n) were calculated from (27)–(29), (30), (33), (36) and (37), respectively.
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Following the circuit implementation, R(n)
x and C(n)

x took fixed values. K(n) was controlled
by the microcontroller, and by varying this value, the microcontroller adjusted r̃n and c̃n,
thereby achieving variable order. δ

(x̃n)
min and δ

(r̃n)
max were the minimum and maximum relative

errors of r̃n and c̃n within the range of variation. r̃o, R(ro)
x , K(ro), δ

(r̃o)
min, and δ

(r̃o)
max were calcu-

lated from (40), (42), (43), (49) and (50), respectively. Following the circuit implementation,
R(ro)

x took fixed values. K(ro) was controlled by a microcontroller, and by varying this value,
the microcontroller changed r̃o, thereby achieving variable order. δ

(r̃o)
min and δ

(r̃o)
max were the

minimum and maximum relative errors of r̃o within the range of variation. c̃o, C(co)
x , K(co),

δ
(c̃o)
min, and δ

(c̃o)
max were calculated from (41), (46), (47), (52) and (53), respectively. Following the

circuit implementation, C(co)
x took fixed values. K(co) was controlled by a microcontroller

and by varying this value, the microcontroller changed c̃o, thereby achieving variable order.
δ
(c̃o)
min and δ

(c̃o)
max were the minimum and maximum relative errors of c̃o within the range

of variation. For the capacitance, C(2)
1 = C(3)

1 = C(4)
1 = C(5)

1 = C(ro)
1 = C(co)

1 = 1.8 pF, the
resistances not marked in Table 1 were assumed to be 16 k Ω.

Table 1. Circuit parameter list.

−0.7 ≤ µ ≤ −0.3, k = 5, σ = 5

ro, co

62.3 kΩ ≥ r̃o ≥ 1.41 kΩ,
6.732× 10−4 ≥ δ(r̃o) ≥ 1

65,536

161 nF ≥ c̃o ≥ 48.0 nF,
1

65,536 ≤ δ(c̃o) ≤ 5.126× 10−5

R(ro)
x = 1.41 kΩ C(co)

x = 161 nF

0.9773 ≥ K(ro) ≥ 0 0 ≤ K(co) ≤ 0.7023

1-st subcircuit R = 330 Ω C = 0.1 µF

2-nd subcircuit

1.02 kΩ ≥ r̃2 ≥ 535 Ω,
2.905× 10−5 ≥ δ(r̃2) ≥ 1

65,536

162 nF ≤ c̃2 ≤ 309 nF,
2.905× 10−5 ≥ δ(c̃2) ≥ 1

65,536

R(2)
x = 535 Ω, C(2)

x = 309 nF

0.4747 ≥ K(2) ≥ 0

3-rd subcircuit

3.14 kΩ ≥ r̃3 ≥ 867 Ω,
5.530× 10−5 ≥ δ(r̃3) ≥ 1

65,536

263 nF ≤ c̃3 ≤ 952 nF,
5.530× 10−5 ≥ δ(c̃3) ≥ 1

65,536

R(3)
x = 867 Ω, C(3)

x = 952 nF

0.7241 ≥ K(3) ≥ 0

4-th subcircuit

9.69 kΩ ≥ r̃4 ≥ 1.40 kΩ,
1.053× 10−4 ≥ δ(r̃4) ≥ 1

65,536

426 nF ≤ c̃4 ≤ 2.94 µF,
1.053× 10−4 ≥ δ(c̃4) ≥ 1

65,536

R(4)
x = 1.40 kΩ, C(4)

x = 2.94 µF

0.8550 ≥ K(4) ≥ 0

5-th subcircuit

29.9 kΩ ≥ r̃5 ≥ 2.28 kΩ,
2.004× 10−4 ≥ δ(r̃5) ≥ 1

65,536

690 nF ≤ c̃5 ≤ 9.06 µF,
2.004× 10−4 ≥ δ(c̃5) ≥ 1

65,536

R(5)
x = 2.28 kΩ, C(5)

x = 9.06 µF

0.9239 ≥ K(5) ≥ 0

As shown in Table 1, K(n), K(ro), and K(co) were within the range of achievable changes
(0∼1). The equivalent minimum relative error δ

(x̂n)
min = 1

65,536 (x̂n = c̃n, r̃n, co, ro) and maxi-

mum relative error δ
(x̂n)
max = 6.732× 10−4 of the emulator met the requirements of Figure 1. If

R(n)
x and R(ro)

x were not nominal values, they were obtained in series by using the nominal
resistors. If C(n)

x and C(co)
x were not nominal values, they were obtained in parallel by

using the nominal capacitance. Figures 2 and 3 illustrate the resistors and capacitors of the
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circuit, which were packaged with 0805. The rated power of the resistance was 0.125 W
and the rated voltage of the capacitor was 50 V. During production, it was assumed that
the power rating of the resistor did not exceed the rated power value, the capacitor voltage
was less than the voltage withstand value, and that the power supply voltage, input and
output voltages, and input and output currents of all the chips in the circuit were within
the standard range.

3.2. Frequency Characteristic Analysis

This subsection presents the frequency domain analysis of the approximation per-
formance and variable-order characteristics of the VSFF. The amplitude-frequency char-
acteristic, phase-frequency characteristic, order-frequency characteristic, and F-frequency
characteristic function are introduced, and the theoretical and experimental frequency
domain characteristic analysis curve of the VSFF is obtained. Subsequently, the frequency
domain characteristic curve is analyzed, and the range of the approximation frequency
is obtained when the VSFF changes to a different operation order. Lastly, the correlation
between the lumped parameter value and the operation order was solved.

The approximation performance and variable-order characteristics of the VSFF were
analyzed by using the frequency characteristics. The impedance function of the VSFF was
Z̃k(s) when the operational order changed to µ and the impedance Ĩ(µ)(s) = F(µ)sµ was
then approximated. The complex frequency variable, s, was replaced by the exponential
frequency variable, v [31]. That is:

s = j2π f = j2π10v. (54)

The amplitude-frequency characteristic functions are:

Λk(v) = lg
∣∣Z̃k
(
j2π10v

)∣∣↔ Λ(µ)(v) = lg
∣∣∣ Ĩ(µ)(j2π10v

)∣∣∣. (55)

The phase-frequency characteristic function is:

θk(v) = arg
{

Z̃k
(

j2π10v
)}
↔ θ(µ)(v) =

π

2
µ. (56)

The order-frequency characteristic function [20] is:

Ok(v) =
dΛk(v)

dv
↔ O(µ)(v) =

dΛ(µ)(v)

dv
= µ. (57)

The F-frequency characteristic function [40] is:

Γk(v) = Λk(v)−Ok(v)[v + lg(2π)]↔ Γ(µ)(v) = lg F(µ). (58)

These functions were used for comparative analysis. Λk(v), θk(v), Ok(v), and Γk(v)
represent the frequency characteristic functions of Z̃k(s). Λ(µ)(v), θ(µ)(v), O(µ)(v), and
Γ(µ) represent the frequency characteristic functions of Ĩ(µ)(s). For the circuit configura-
tion shown in Figure 1 and in the case of the parameter values shown in Table 1, when
µ = −0.7,−0.6, . . . ,−0.3, respectively. rn(n = 2, 3, 4, 5), cn, ro, and co were calculated
from (13), (14)–(16), respectively. These parameters are substituted into (2). Based on (55)–(58),
the theoretical characteristic function curve in the frequency domain was determined, as
shown in Figure 4. Figure 4 also shows the simulation experiment results obtained by
Multisim 14.
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Figure 4. Frequency characteristic curves of VSFF: k = 5, σ = 5, R =330 Ω, and C = 0.1 µF:
(a) amplitude-frequency characteristic; (b) phase-frequency characteristic; (c) order-frequency charac-
teristic; (d) F-frequency characteristic.

The amplitude-frequency and phase-frequency characteristic function curves, shown
in Figure 4a,b, describe the gain and phase characteristics between the voltage and current
of the VSFF in the frequency domain, respectively. It can be observed from the amplitude–
frequency function curve that the amplitude–frequency characteristic values decreased
with increasing frequency. The smaller the operational order, the higher the rate of re-
duction in the amplitude–frequency characteristic values with increasing frequency. In
the low-frequency range, the amplitude—frequency characteristic values decreased with
increasing operational order. The phase-frequency and order-frequency characteristic
curves, shown in Figure 4b,c, respectively, constitute the mathematical basis to analyze the
operational performance (such as the operational order, constant phase, and approximation
performance) of the VSFF.

In the case of a fixed operational order, the phase was a fixed value in the approxi-
mation frequency range (10v1∼10v5). When the frequency was less than 10v1 , the phase
increased with decreasing frequency. When the frequency was greater than 10v5 , the phase
decreased with increasing frequency. In the case of a fixed frequency, the phase decreased
with decreasing operational order. The order-frequency characteristic function represents
the operational order of the VSFF from the frequency domain. It can be observed from
the order–frequency function curve that the operational order was a fairly constant value
in the approximation frequency range (10v1∼10v5). When the frequency was less than
10v1 , the operational order increased with decreasing frequency. When the frequency was
greater than 10v5 , the operational order decreased with increasing frequency. In the case
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of a fixed frequency, the operational order decreased with decreasing operational order.
The F-frequency characteristic function curve, shown in Figure 4d, represents the lumped
parameter value of the VSFF in the frequency domain.

It can be observed from F-frequency function curve that the lumped parameter value
was a fairly constant value in the approximation frequency range (10v1∼10v5). When the
frequency was less than 10v1 , the lumped parameter value decreased with the decrease in
the frequency. When the frequency was greater than 10v5 , the lumped parameter value
increased with the increase in frequency. In the case of a fixed frequency, the lumped
parameter value increased with the decrease in the operational order. The order-frequency
and F-frequency characteristic functions visually represent the degree of operational order
and the lumped parameter value of the VSFF approximation of the ideal fractor element. It
can be observed from the order-frequency and F-frequency characteristic curves, that the
VSFF realized the fractional and variable operation orders within a certain frequency range.
The highest frequency index value [31],

v1 = lg[1/(2πRC)], (59)

and the lowest frequency index value [31],

vk = v1 − (k− 1) lg σ, k = 5, (60)

were used to realize fractional-order operation.
Therefore, the operating frequency range of the VSFF of the parameters shown in

Table 1 was obtained as (10v1∼10v5), i.e., (7.72 Hz∼4.82 kHz). The lumped parameter
value, F(µ), was solved within the operating frequency range, as observed from the F-
frequency characteristic curve. The correlation between the lumped parameter value,
F(µ), and µ was solved by using the least square method to fit the data and to obtain the
following equation:

Γ(µ)(µ) = lg F(µ)(µ) = −2.2444µ2 − 6.7431µ + 1.6545. (61)

The relative error of Γ(µ)(µ) calculated by (61) within the variation range of µ, was
less than 0.05%.

3.3. Two Equivalent Methods for Calculating Variable-Order Electrical Characteristics

This subsection presents two equivalent methods to calculate the variable-order elec-
trical characteristics to obtain the time-domain theoretical electrical characteristics of the
VSFF. One of these methods is derived from circuit theory and is presented in this study.
The other variable-order electrical characteristic calculation method is obtained through
the Grünwald-Letnikov variable-order fractional calculus.

3.3.1. Variable-Order Electrical Characteristics Obtained through Circuit Theory

For the input voltage signal, u(t), to the VSFF, the current flowing through the VSFF
according to Kirchhoff’s current and voltage laws can be represented as follows:

i(t) =
C

β− 1
du(t)

dt
+

α1−ku(t)
(α− 1)R

+
k

∑
n=1

u(t)− un(t)
αn−1R

, (62)

where un(t) denotes the voltage across the capacitor, cn(n = 1, 2, . . . , k), and is described by

βn−1C
dun(t)

dt
=

u(t)− un(t)
αn−1R

, (n = 1, 2, · · · , k). (63)

The correlation between α and β in Equations (62) and (63) and the operation order
can be obtained from Equation (10). Therefore, the variable-order electrical characteristics
of the VSFF can be obtained based on (10), (62) and (63).
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3.3.2. Variable-Order Electrical Characteristics Obtained through the
Grünwald–Letnikov Definition

The input voltage signal, u(t), to the VSFF and the main spectral range of u(t) was
within the approximate frequency range of the VSFF. The input current obtained is ex-
pressed as follows [13]:

i(t) ≈ 1
F(µ(t))

toD−µ(t)
t u(t), (64)

where t0 is the initial time.
Grünwald-Letnikov variable-order fractional calculus was used to define the computa-

tion completion (64). It has at least three widely used definitions [15–17]. These definitions
are based on replacing the constant operational order, µ, with variable operational or-
der, µ(t). The coefficients are then obtained based on different sampling methods. If the
coefficient is sampled from the order value at the corresponding time of the coefficient,
then [15–17]:

i(t) =
1

F(µ(t))
lim
h→0

(t−t0)/h

∑
j=0

(−1)j

h−µ(t−jh)

( −µ(t− jh)
j

)
u(t− jh), (65)

where t < t0, uin(t) ≡ 0, and
( −µ(t− jh)

j

)
are binomial coefficients. To complete the

numerical calculation of (65), the step size, h, must be sufficiently small; therefore:

i(t) ≈ 1
F(µ(t))

(t−t0)/h

∑
j=0

ψ
(−µ(t−jh))
j

h−µ(t−jh)
u(t− jh), (66)

where ψ
(−µ(t−jh))
j = (−1)j

( −µ(t− jh)
j

)
represents the polynomial coefficient of the

function, (1 − z)−µ(t−jh), which can be directly calculated by using the following
recursive formula:

ψ
(−µ(t))
0 = 1, ψ

(−µ(t−jh))
j =

(
1− 1− µ(t− jh)

j

)
ψ
(−µ(t−jh))
j−1 , j = 1, 2, . . . (67)

If µ(t) is constant, the calculated result of (66) must be consistent with that defined by
the Grünwald-Letnikov fractional calculus of the constant operational order.

3.4. Experimental Verification

In this subsection, the variable-order characteristics of VSFF are experimentally ver-
ified. The experimental fields include steady-state, dynamic, and continuous variable
order. The steady-state variable-order experiments can be used to prove that a single VSFF
can be used as a constant-order fractor of different orders. The dynamic variable-order
experiments can prove that the VSFF contains a variable-order process, which can be used
in the cases where the operational order requires a jump. For example, in the design of
programmable variable-order fractional chaos [18]. The continuous variable-order experi-
ments can be used to demonstrate the capability of VSFF for programmable high-resolution
continuous variable-order.

GPS-4303C, TBS1052B, EE16330, TCP312A, and TCPA300, were employed as the power
supply, oscilloscope, signal generator, current probe, and current amplifier, respectively. The
current probe and amplifier were used to convert the current waveform to a linear voltage
signal and to amplify the voltage signal for the oscilloscope test, respectively. The TBS1052B
is connected to a PC through a USB interface, which has the Tektronix OpenChoice PC
Communications software installed on it to obtain the data that it measured by TBS1052B.
Figure 5 depicts the experimental test images.
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Figure 5. VSFF Experiment.

3.4.1. Steady-State Variable-Order Experiment

If the signal generator outputs a sinusoidal voltage signal,

u(S)(t) = A(S) sin
(

2π f (S)t
)

(68)

to the VSFF, A(S) = 10 V, and f (S) = 1000 Hz. Then, µ(t) is −0.30, −0.46, and −0.63,
respectively. The Grünwald-Letnikov definition method is used to calculate the current
waveform obtained from (61), (66) and (67), and Figure 6a,c,e presents the corresponding
experimental current waveform. If the triangular wave voltage signal, u(T)(t), is input
into the VSFF, the peak voltage, A(T) = 6 V, frequency, f (T) = 50 Hz, and µ(t) change to
−0.32,−0.48, and−0.65, respectively. The Grünwald-Letnikov definition method is used to
calculate the current waveform, and Figure 6b,d,f depicts the corresponding experimental
current waveform. Furthermore, Figure 6 depicts the current error waveform between the
experimental current waveform and the Grünwald-Letnikov definition method is used to
calculate the current waveform.

According to the experimental current waveform shown in Figure 6, when the input
voltage signals are sinusoidal and triangular, the VSFF can perform steady-state variable-
order experiments of different orders. The average values of the current error waveforms
shown in Figure 6a–f are 0.4524 mA, 0.1927 mA, 0.2151 mA, 0.0913 mA, 0.1131 mA, and
0.1191 mA, respectively. The standard deviations of the current error waveforms shown in
Figure 6a–f are 1.1325 mA, 2.0992 mA, 1.9526 mA, 0.6218 mA, 0.4256 mA, and 0.6348 mA,
respectively. When the input amplitude of the voltage waveform is constant, the smaller
the operational order, µ(t), the smaller the amplitude of the current waveform. This is
consistent with the amplitude-frequency characteristic function curve depicted in Figure 4a.
Figure 6a,c,e demonstrates that when µ(t) is −0.30, −0.46, and −0.63, the corresponding
theoretical phase difference is −27◦, −41.4◦ and −56.7◦, respectively. Figure 6a,c,e also
demonstrates that when µ(t) is −0.30, −0.46, and −0.63, the corresponding experimental
phase difference is −26.6◦, −40.5◦ and −53.1◦, respectively. The phase error between the
experimental and the theoretical phase is shown in Figure 6a,c,e are 0.4◦, 0.9◦, and 3.6◦,
respectively. The phase difference decreases with a decrease in the operational order, µ(t),
which is consistent with the phase-frequency characteristic curve presented in Figure 4b.
The experimental results concur well with their theoretical counterparts when the input
waveform, amplitude, frequency, and operational order change. The peak value of the
input signal was 10 V.
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Figure 6. Experimental results of VSFF of steady-state variable-order: (a) sine wave, µ = −0.30;
(b) triangular wave, µ = −0.32; (c) sine wave, µ = −0.46; (d) triangular wave, µ = −0.48; (e) sine
wave, µ = −0.63; (f) triangular wave, µ = −0.65.

3.4.2. Dynamic Variable-Order Experiment

If the voltage signal, u(S)(t), shown in (68) is input to the VSFF and the peak voltage,
A(S) = 6 V,

f (S) = 50 Hz, µ(t) =

{ −0.33 ñ
f (S)
≤ t < (ñ + 1) 1

f (S)

−0.66 (ñ + 1) 1
f (S)
≤ t < (ñ + 2) 1

f (S)
, ñ = 0, 1, 2, . . . (69)
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Figure 7a presents the circuit theoretical method used to calculate the current wave-
form obtained from (10), (62) and (63) and the Grünwald-Letnikov definition method used
to calculate the current waveform obtained from (61), (66) and (67). Figure 7a presents the
corresponding experimental current waveforms. When the triangle wave voltage signal,
u(T)(t), is input into the VSFF, the peak voltage, A(T) = 6 V, frequency, f (T) = 50 Hz, and
µ(t) vary between −0.33 and −0.66. Figure 7b illustrates the circuit theoretical method
used to calculate the current waveform obtained from (10), (62) and (63) and the Grünwald-
Letnikov definition method used to calculate the current waveform obtained from (61), (66)
and (67). Figure 7b illustrates the corresponding experimental current waveform. Addi-
tionally, Figure 7a,b presents the current error waveform between the experimental current
waveform and the circuit theoretical method calculated current waveform.

According to the experimental current waveform shown in Figure 7, when the input
voltage signals are sinusoidal and triangular, the VSFF can complete dynamic variable-order
experiments of different orders. The circuit theoretical method and the Grünwald-Letnikov
definition method used to calculate the current waveform overlap perfectly. The accuracy
of the variable-order electrical characteristics obtained through circuit theory is verified.
The average values of the current error waveforms shown in Figure 7a,b are 0.0517 mA
and 0.0723 mA, respectively. The standard deviations of the current error waveforms
shown in Figure 7a,b are 0.9938 mA and 0.7473 mA, respectively. At the moment when
the operation order jumps, the circuit theoretical method calculated current waveform
and the Grünwald-Letnikov definition method calculated current waveform also jump.
However, the corresponding experimental waveform jump is not obvious. This is due
to parasitic resistance and capacitance parameters in VSFF, test cables, and experimental
apparatus, which filter out the high-frequency spectrum during the current waveform jump.
According to the experimental current waveform shown in Figure 7, the VSFF completed
the change of order within the approximation frequency and operational order ranges.

3.4.3. Continuous Variable-Order Experiment

A continuous variable-order experiment was conducted to fully demonstrate the
variable-order capability of the VSFF and to reflect its advantages. If the voltage signal,
u(S)(t), shown in (68) is input to the VSFF and the peak voltage, A(S) = 6 V, the frequency,
f (S) = 50 Hz, and µ(t) change from −0.3 to −0.7. The variable-order range included the
maximum and minimum values of the designed operational order. Figure 8 depicts the cir-
cuit theoretical method used to calculate current waveform obtained from (10), (62) and (63)
and the Grünwald-Letnikov definition method used to calculate the current waveform
obtained from (61), (66) and (67). Figure 8 depicts the corresponding experimental cur-
rent waveform. Additionally, Figure 8 depicts the current error waveform between the
experimental current waveform and the circuit theoretical method used to calculate the
current waveform.
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Figure 7. Experimental results of VSFF of dynamic variable-order: (a) sine wave; (b) triangular wave.
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The VSFF can perform continuous variable-order experiments based on the exper-
imental current waveform depicted in Figure 8. The circuit theoretical method and the
Grünwald-Letnikov definition method used to calculate the current waveform overlap
perfectly. The accuracy of the variable-order electrical characteristics obtained through
circuit theory is confirmed once again. The larger current error waveforms are partly due
to small phase errors. In essence, the current error is not large. The average value and
standard deviations of the current error waveforms shown in Figure 8 are 0.1167 mA and
0.7094 mA, respectively. Errors may be caused by many factors such as circuit components,
experimental instruments, and frequency domain approximation errors. Errors in circuit
components include resistors, capacitors, operational amplifiers, and AD5544. The relative
errors of various equivalent parameters of AD5544 caused by resolution have been given
in Table 1. Integral non-linearity is also an important factor causing error of AD5544.
There is a non-linear relationship between integral non-linearity and digital quantity of
AD5544 [39]. The frequency characteristic curves shown in Figure 4 also indicate that
there are frequency domain errors that fluctuate with frequency within the approximate
frequency range. When the input amplitude of the voltage waveform is constant, µ(t)
changes from −0.3 to −0.7, the smaller the amplitude of the current waveform. This is
consistent with the amplitude-frequency characteristic function curve shown in Figure 4a.
It can also be observed from Figure 8 that when the operation order reduces, the smaller the
operation order, the larger the relative error between the experimental current waveform
and the theoretical waveform. This is similar to the equivalent relative error variation
rule shown in Table 1. It is observed that the equivalent relative error changes from mini-
mum to maximum as the operation order changes from maximum to minimum. It can be
observed from Figure 8 that the variable-order scaling fractal-ladder fractor can perform
high-resolution continuous variable-order experiments within the range of the operation
order. This is because the HRMDAC and other devices can support the requirement of
device indicators for continuous operational order varying.

It can also be observed from Figure 8 that when the operation order is large, the
amplitude of the experimental current waveform is smaller than that of the theoretical
current waveform. When the operation order is small, the amplitude of the experimental
current waveform is larger than that of theoretical current waveform. A similar situation
is observed in the steady-state variable-order and dynamic variable-order experiments.
The error between the experimental waveform and the theoretical waveform, and the
operation order exhibit a stable regularity; this type of error is called a systematic error.
System errors must be calibrated often in circuit and system design. Therefore, when the
results of Figures 6 and 7 are presented, the same systematic error calibration parameters
are implemented for the circuit theoretical method, which is used to obtain the current
waveform from (10), (62) and (63) and the Grünwald-Letnikov definition method used to
obtain the current waveform from (61), (66) and (67). The calibration results used while
constructing an application system using VSFF must be more accurate.

4. Discussion

This study implemented the VSFF superior to existing related studies in multiple in-
dicator dimensions. In [13], when the temperature of the solid-state fractor changed
within the range of 25∼60 ◦C, and the operational order changed within a range of
only 0.909∼0.949. In [14], when the temperature of the solid-state fractor changed within
the range 100∼150 ◦C, the operational order changed within a range of only 0.77∼0.86. The
VSFF implemented in this study used a microcontroller, which is more convenient and effi-
cient than the temperature control method [13,14]. In [19], the operational order switched
between 0.2, 0.5, and 0.8. However, the studies conducted on circuit implementation are
limited. The variable-order range of the circuit realized in this study was from −0.7 to −0.3.
This significantly exceeds the operational order range of the variable-order fractor [13,14,19]
and exhibits high-resolution characteristics. The HMDAC is crucial in the implementation
of the VSFF.
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In this study, the scaling fractal fractor used in the VSFF exhibited a classic structure.
The voltage-controlled resistance and capacitance circuits used the AD633 multiplier as
the core in the memristor and memcapacitor emulators [35–37]. The resolution and pre-
cision requirements of the VSFF for variable circuit parameter adjustment could not be
easily satisfied since the accuracy of the AD633 was approximately 2%. The HMDACs
are typically used in the DAC conversion and in multiplier circuits. The HMDAC uses
the AD5544, m = 16 bits, and a resolution of ∆K = 1

2m = 1
65,536 . For the emulator, the

equivalent minimum relative error δ
(x̂n)
min = 1

65,536 (x̂n = c̃n, r̃n, co, ro) and maximum relative

error δ
(x̂n)
max = 6.732× 10−4. The programmable resistor–capacitor series circuit and pro-

grammable universal electronic component emulators designed using the HMDAC as the
core can better meet the requirements of the VSFF parameter adjustment.

In this study, the selection of component parameters is merely an example of the circuit
implementation of the VSFF. The technical specifications of VSFF can be adjusted based
on the requirement of the actual system. The frequency range of the operations can be
increased by increasing the total number of subcircuits. The accuracy can be improved by
decreasing the value of the scaling parameter, σ. The VSFF accuracy can also be improved
by selecting components with higher precision and resolution. Furthermore, the speed of
the variable order can be increased by using faster microcontrollers.

Despite the various advantages presented by the implemented VSFF, it faces certain
limitations that must be addressed. Firstly, VSFF is larger and thus requires more space,
although it is more flexible and has a wider range of steps when compared to the existing
solid-state fractor. Secondly, the VSFF variable-order speed is limited by the control speed of
the microcontroller. Lastly, it can be observed from the F-frequency characteristic function
curve presented in Figure 4d, that when the operational order of VSFF changes, the lumped
parameter value also changes.

5. Conclusions

Variable-order fractor is an important unit or component for realizing variable-order
fractional calculus operations. Based on previous studies on scaling fractal fractor with
various structures [30–34], the theoretical problem of developing high-resolution emulator
circuits to achieve VSFF is a major challenge. This study proposed a VSFF circuit configu-
ration based on the scaling expansion theory [30,31]. A programmable resistor–capacitor
series circuit and programmable universal electronic component emulators with HMDAC
were designed based on the requirements of the circuit configuration. The experimental
content includes steady-state, dynamic and continuous variable-order. The operational
order ranged from −0.7 to −0.3. The operation frequency of the VSFF ranged from 7.72 Hz
to 4.82 kHz and the peak value of the input signal was 10 V.

The programmable resistor–capacitor series circuit and the programmable universal
electronic component emulators were designed based on the HMDAC. Furthermore, these
emulators can be applied to other variable-order fractor circuits, memristor emulators,
and memcapacitor emulators. The proposed implementation method can also be used to
design the existing scaling fractal-chain [33], fractal-chuan [32], and fractal-lattice [30,31]
circuits with variable-order fractor. The VSFF can be used to model natural phenomena and
processes of the variable order. The proposed variable-order fractional calculus method that
is based on circuit theory can be used as a new time-domain approximation method. More
circuit theoretical calculation formulas of variable-order fractional calculus operation can
be obtained based on the proposed circuit theoretical calculation method of variable-order
fractional calculus operation. The variable-order fractional calculus using circuit theory
requires further analysis since it is a novel calculation method.
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