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Abstract

Recently it has been proposed that information in working memory (WM) may not always be 

stored in persistent neuronal activity, but can be maintained in “activity-silent” hidden states such 

as synaptic efficacies endowed with short-term synaptic plasticity (STSP). To test this idea 

computationally, we investigated recurrent neural network (RNN) models trained to perform 

several WM dependent tasks, in which WM representation emerges from learning and is not a 

priori assumed to depend on self-sustained persistent activity. We found that STSP can support the 

short-term maintenance of information provided that the memory delay period is sufficiently short. 

However, in tasks that require actively manipulating information, persistent activity naturally 

emerges from learning, and the amount of persistent activity scales with the degree of 

manipulation required. These results shed insight into the current debate on WM encoding, and 

suggest that persistent activity can vary markedly between short-term memory tasks with different 

cognitive demands.
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Introduction

Working memory (WM) refers to our ability to temporarily maintain and manipulate 

information, and is a cornerstone of higher intelligence1. In order to understand the 

mechanisms underlying WM, we must resolve the substrate(s) in which information in WM 

is maintained. It has been assumed that information in WM is maintained in persistent 

neuronal activity2–6, likely resulting from local recurrent connections7,8, and/or cortical to 

subcortical loops9. However, recent experiments reveal that the strength of persistent activity 

varies markedly between tasks10–16. This raises two related questions: 1) why does 

persistent activity vary between tasks, and 2) for those tasks with weak or non-existent 

persistent activity, where and how is information maintained?

A possible answer to the second question is that information is not necessarily maintained in 

persistent activity, but can be maintained through short-term synaptic plasticity (STSP). 

STSP, which is distinct from long-term depression (LTD) and potentiation (LTP), is the 

process in which pre-synaptic activity alters synaptic efficacies for hundreds or thousands of 

milliseconds17. Importantly, modelling studies suggest that STSP can allow networks to 

maintain an “activity-silent” memory trace of a stimulus, in which short-term information is 

maintained without persistent activity18. Recent work in human subjects suggests that 

information can be mnemonically encoded in a silent, or latent, state, and that information 

can be reactivated into neuronal activity by probing the circuit19,20.

While STSP might provide another mechanism for information maintenance, it does not in 

itself fully account for why the strength of persistent activity varies between tasks. To 

answer this, we highlight that WM involves not just the maintenance of information, but also 

its manipulation. Importantly, manipulating information in WM engages the frontoparietal 

network differently compared to simply maintaining information21,22. While STSP can 

support activity-silent information maintenance, it is unknown whether STSP can support 

activity-silent manipulation of information without persistent activity. If not, then it suggests 

that the strength of persistent activity reflects the degree of manipulation required by the 

task.

In this study, we examine whether STSP can support the silent manipulation of information 

in WM, and whether it could explain the variability in persistent activity between tasks. 

Unfortunately, it is currently extremely challenging to measure synaptic efficacies in awake 

behaving mice, and next to impossible in non-human primates. However, recurrent neural 

network (RNN) models have opened a new avenue to study the putative neural mechanisms 

underlying various cognitive functions. Crucially, RNNs have successfully reproduced the 

patterns of neural activity and behavioral output that are observed in vivo, generating novel 

insights into circuit function that would otherwise be unattainable through direct 

experimental measurement23–29.

Here, we train biologically inspired RNNs, consisting of excitatory and inhibitory like 

neurons30 and dynamic synapses governed by STSP18, to solve a variety of widely studied 

WM-based tasks. We show that STSP can support the activity-silent maintenance of 

information, but that it cannot support the silent manipulation of information. Furthermore, 
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we show that the strength of persistent activity covaries with the degree of manipulation, 

potentially explaining the observation that persistent activity varies markedly between tasks.

Results

The goal of this study was 1) to determine whether STSP can support activity-silent 

manipulation of information in WM, and 2) whether STSP can explain the variability in 

persistent activity observed in different tasks10–16. We trained RNNs to solve several widely 

studied WM tasks, which varied in their specific cognitive demands. Furthermore, given that 

cortical firing rates are relatively low31,32, either because of metabolic pressure33 or to 

facilitate information encoding and read-out31,32, we added a penalty on high neuronal 

activity (see Methods: Network training) to encourage networks to solve tasks using low 

levels of activity.

Network model

We defined neurons in our network as either excitatory or inhibitory30. The input layer 

consisted of 24 excitatory, direction tuned neurons projecting onto a recurrently connected 

network of 80 excitatory and 20 inhibitory neurons (Figure 1a, see Methods: Network 

models). The connection weights between all recurrently connected neurons were 

dynamically modulated by STSP (see Methods: Short-term synaptic plasticity) using a 

previously proposed model18. Connection weights from half of the neurons were depressing, 

such that pre-synaptic activity decreases synaptic efficacy (Figure 1b, left panels), and the 

other half were facilitating, such that presynaptic activity increases synaptic efficacy (right 

panels).

Given this setup, the synaptic efficacy connecting neuron j to all other neurons at time t is 

the product between the available neurotransmitter and the neurotransmitter utilization: Sj(t) 

= xj(t)uj(t). Furthermore, the total input into neuron i is ∑j Wj,iSjRj, where Wj,i is the 

connection weight from neuron j to neuron i, and Rj is the neural activity of neuron j.

Maintaining information in short-term memory

We first examined how networks endowed with STSP maintain information in WM using 

either persistent neuronal activity or STSP. We trained 20 networks to solve a delayed 

match-to-sample task (DMS, Figure 2a), in which the networks had to indicate whether 

sequentially presented (500 ms presentation; 1000 ms delay) sample and test stimuli were an 

exact match.

To measure how information was maintained, we decoded the sample direction using 1) the 

population activity of the 100 recurrent neurons, and from 2) the 100 unique synaptic 

efficacies modulated by STSP (see Methods: Short-term synaptic plasticity). If, during the 

delay, we could decode sample direction from synaptic efficacies, but not neuronal activity, 

it would indicate that STSP allows for activity-silent maintenance of information.

Sample decoding using synaptic efficacies (magenta curves, one for each network) was 

equal to 1.0 (perfect decoding) for the entire delay across all networks (Figure 2b). In 

contrast, decoding accuracy using neuronal activity (green curves) decreased to <0.7 for all 
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networks by the end of the delay, and decoding accuracies were near chance levels (0.125) 

for 6 networks (P>0.05, bootstrap, measured during the last 100ms of delay, see Methods: 

Population decoding). Thus, the sample was perfectly encoded by synaptic efficacies in all 

20 networks, and either weakly, or not encoded at all, in neuronal activity.

Although the decoding accuracies measure how much information is stored in either 

substrate, it does not address how the network uses either substrate to solve the task. We 

wanted to 1) measure how networks used information in neuronal activity and synaptic 

efficacies to solve the task, and 2) how these contributions relate to the neuronal decoding 

accuracy.

We answered these questions by disrupting network activity or synaptic efficacies during 

task performance. We simulated each trial starting at test onset using the exact same input 

activity in three different ways: 1) using the actual neuronal activity and synaptic efficacies 

taken at test onset as starting points, 2) synaptic efficacies were kept as is, but neuronal 

activity was shuffled between trials, and 3) neuronal activity was kept as is, but synaptic 

efficacies were shuffled (but not connection weights) between trials. In other words, given 

that the total input into the neuron is weight × synaptic efficacy × neuronal activity as 

defined above, then in 2), we only shuffle neuronal activity, and in 3) we only shuffle 

synaptic efficacy. We shuffled across all trials to destroy any correlation between the sample 

motion direction and neuronal activity or synaptic efficacy. In all three cases, we calculated 

whether the network output indicated the correct choice.

These results are shown in Figure 2c, comparing neuronal decoding accuracy measured at 

the end of the delay (x-axis) and task accuracy (y-axis). This allows us to relate sample 

decoding accuracy (which one could measure in neurophysiological experiments) with the 

causal contribution of neuronal and synaptic WM towards solving the task (which is easy to 

measure in RNNs, but not in neurophysiological experiments).

Neuronal decoding at the end of the delay was distributed between chance and < 0.7, with 

task accuracy (calculated without shuffling data) consistently > 0.98 (blue circles). Networks 

with the strongest persistent activity suffered the greatest performance loss when neuronal 

activity was shuffled (red circles, Pearson correlation R = −10.80, P<10−4, n = 20), and 

suffered the least performance loss when synaptic efficacies were shuffled (cyan circles, R = 

0.60, P = 0.005).

For 5 of the 6 networks that solved the task using activity-silent WM, shuffling neuronal 

activity did not affect task accuracy (P>0.05, permutation test, see Methods: Shuffle 

analysis). Furthermore, setting activity for all recurrently connected neurons to zero for the 

last 50 ms of the delay had little effect on performance (Figure S1), confirming that 

information maintained in synaptic efficacies during the delay, and not neuronal activity, was 

used to solve the DMS task. Interestingly, analysis of how networks computed the match/

non-match suggests that synaptic efficacies prospectively encode the stimulus34, allowing 

the network to transform the test stimulus into the appropriate match/non-match decision 

(Figure S2). In Modelling Notes and Figures S2–S4, we discuss the effect of different delay 

times, and different regularizations of neuronal activity and the connectivity weights.
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Manipulating information

Given that STSP can allow networks to silently maintain information in WM, we examined 

whether it could also allow networks to silently manipulate information. Thus, we repeated 

the analysis from Figure 2 on 20 networks trained to solve a delayed match-to-rotated 

(DMRS) sample task, in which the target test direction was rotated 90° clockwise from the 

sample (Figure 3a). Neuronal decoding accuracy for this task (green curves, Figure 3b) was 

greater than the DMS task (DMS = 0.27, DMRS = 0.72, t(38) =9.89, P < 10−11, two-sided, 

unpaired, t-test, n = 20, measured during last 100 ms of the delay period), suggesting that 

more information was maintained in neuronal activity compared to the DMS task. Unlike the 

DMS task, all 20 networks maintained information in a hybrid manner, with elevated 

neuronal decoding accuracy at the end of the delay (P<0.05, bootstrap), and shuffling either 

neuronal activity or synaptic efficacies significantly decreased task accuracy (P<0.05, Figure 

3c).

We again found that networks with the strongest delay-period neuronal selectivity suffered 

the greatest performance loss when neuronal activity was shuffled (Pearson R = −0.72, P < 

0.001, n = 20, Figure 3c), and suffered the least performance loss when synaptic efficacies 

were shuffled (R = 0.81, P < 10−4).

Although all 20 networks solved the task using persistent activity, we wondered if STSP 

could still manipulate sample information, and thus sought to understand the networks’ 

strategies to solve this task. We examined neuronal responses averaged across the sample for 

all 20 networks from 4 groups of neurons: excitatory with facilitating synapses (EXC FAC), 

excitatory with depressing synapses (EXC DEP), inhibitory with facilitating synapses (INH 

FAC), and inhibitory with depressing synapses (INH DEP) (Figure 3d). We found a striking 

asymmetry for INH DEP neurons: neuronal responses 90° clockwise from the preferred 

sample direction were significantly greater than responses 90° counterclockwise from the 

preferred sample direction (difference between 90° clockwise and counterclockwise, EXC 

FAC = 0.001, t(19) = 0.44, P = 0.67; EXC DEP = 0.002, t(19) = 1.02, P = 0.32; INH FAC = 

0.024, t(19) = 2.05, P = 0.054; INH DEP = 0.18, t(19) = 10.90, P < 10−8, two-sided, paired t-

tests).

While this asymmetry in the neuronal response disappeared by the end of the delay (EXC 

FAC = 0.004, t(19) = 0.71, P = 0.48; EXC DEP = 0.004, t(19) = 0.52, P = 0.61; INH FAC = 

0.043, t(19) = 1.55, P = 0.14; INH DEP = −0.001, t(19) = −0.13, P = 0.90, two-sided, paired 

t-tests), it translated into asymmetric synaptic efficacies for INH DEP neurons, both during 

the sample (Figure 3e) and throughout the delay (Figure 3f) (EXC FAC (sample, delay) = 

−0.0001, 0.0008, t(19) = −0.46, 0.81, P = 0.65, 0.43; EXC DEP = −0.0005, −0.001, t(19) = 

−1.31, −0.94, P = 0.21, 0.36; INH FAC = 0.004, 0.007, t(19) = 2.12, 1.42, P = 0.047, 0.17; 

INH DEP = −0.060, −0.045, t(19) = −9.81, −9.70, P < 10−8, 10−8). Thus, synaptic efficacies 

for INH DEP neurons were greatest at the start of the test period on trials in which the 

sample was 90° counterclockwise from their preferred direction. If such a sample is 

followed by a target test stimulus (90° clockwise from the sample), the total synaptic current 

(neuronal response × synaptic efficacy) these neurons project to their targets will be at a 

maximum. In Figure S5, we further analyze how networks computed the match/non-match 

decision.
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The results so far suggest that the asymmetric synaptic efficacies generated during the 

sample allowed the network generate correct match/non-match decisions. To confirm this, 

we shuffled synaptic efficacies for all four neuron groups at sample end, and found that the 

decrease in accuracy after shuffling efficacies for INH DEP neurons (mean accuracy = 0.85) 

was greater compared to the other three neuron groups (EXC FAC = 0.99, t(19) = −8.41, P < 

10−7; EXC DEP = 0.99, t(19) = −8.74, P < 10−7; INH FAC = 0.99, t(19) = −8.36, P < 10−7, 

paired, two-sided, t-tests, Figure 3g). Furthermore, networks that maintained less 

information in neuronal activity during the delay were more adversely affected by shuffling 

synaptic efficacies (Pearson R = 0.91, P < 10−7, n = 20, Figure 3h).

We hypothesized that the asymmetric tuning of INH DEP neurons emerged via connection 

weights from the input layer. Thus, we examined tuning curves for the current (neuronal 

activity × connection weight) neurons receive from the input layer, and found that it was 

significantly asymmetric for inhibitory and excitatory neurons with depressing synapses 

(EXC FAC = 0.12, t(19) = 0.90, P = 0.38; EXC DEP = 0.29, t(19) = 4.15, P < 0.001; INH 

FAC = 0.28, t(19) = 2.06, P = 0.053; INH DEP = 2.62, t(19) = 14.51, P < 10−11, two-sided t-

tests, Figure 3i) Consistent with above, the asymmetry was greater for INH DEP neurons (P 

< 10−10 for all comparisons between INH DEP neurons and other neuron groups, two-sided 

t-tests).

As expected, we find that our results are the mirror image of those in Figure 3 when 

networks are trained using a 90° counterclockwise rule (Figure S6). We also repeated our 

analysis on a delayed match-to-category task16, and found that the networks performed the 

manipulation (i.e. stimulus categorization) by adjusting connection weights from the input 

layer (Figure S7). Given the penalty on neuronal activity, our results suggest that networks 

will manipulate sample stimuli (at least partly) by learning specific connection weights from 

the input layer if possible.

Manipulating information during the WM delay period

To better understand whether STSP can support silent manipulation, we need to examine 

tasks in which the network cannot perform the required manipulation through modification 

of input weights. This could be accomplished by forcing the manipulation to occur after 

sample offset. We trained networks to solve a delayed cue task (Figure 4a), in which a cue 

was presented between 500 and 750 ms into the delay, instructing the network whether to 

use the DMS or DMRS task rule.

We found neuronal decoding accuracy was always greater than chance (P < 0.05, bootstrap) 

during the delay for either DMS (green curves, Figure 4b) or DMRS trials (Figure 4d). Thus, 

these networks manipulate information in WM (at least partly) using persistent activity. This 

was also true for different delay and rule cue onset/offset times (Figure S8).

Consistent with Figures 2&3, networks with the strongest delay-period neuronal selectivity 

suffered the greatest performance loss when neuronal activity was shuffled (DMS: Pearson 

R = −0.73, P< 0.001, n = 20, Figure 4c; DMRS: R = −0.60, P = 0.005, Figure 4e and 

suffered the least performance loss when synaptic efficacies were shuffled (DMS: R = 0.75, 

P < 0.001; DMRS: R = 0.64, P = 0.001). Furthermore, shuffling neuronal activity or synaptic 
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efficacies decreased task accuracy (P < 0.05, bootstrap) in all networks for both tasks. Lastly, 

shuffling synaptic efficacies before rule-cue onset was more deleterious to task accuracy, 

whereas shuffling neuronal activity after rule-cue offset was more deleterious (Figure S8). 

Thus, networks required neuronal activity to manipulate information in WM.

Controlling the representation of information

Although STSP did not silently manipulate information during the tasks considered so far, 

we wondered if it could allow for subtler manipulations in a silent manner. For example, 

neural circuits in vivo are occasionally required to represent relevant information differently 

than irrelevant information35. Thus, we trained networks on a task that required controlling 

how information is represented: the A-B-B-A task36 (Figure 5a). Networks were shown a 

sample followed by three sequentially presented test stimuli, and had to indicate whether 

each test matched the sample. Importantly, if a test was a non-match, there was a 50% 

probability that the test would be repeated immediately. This forces the network to encode 

sample and test stimuli in different ways: if the sample and test were represented in similar 

manners, then the network could not distinguish between a test that matched the sample, 

compared to a repeated non-match.

As a control, we also trained networks on an A-B-C-A version of the task, in which non-

matching test stimuli were never repeated during a single trial, so that the network was not 

forced to represent sample and test stimuli in different formats. For the A-B-C-A task, few 

networks encoded sample information in neural activity throughout the entire trial, as 

decoding decreased to chance (P>0.05, bootstrap) for 1 of the 20 networks during the last 

100 ms of the first delay, 7 of 20 networks during the second delay, and 8 of 20 networks for 

the third delay (green curves, Figure 5b). In contrast, sample decoding using synaptic 

efficacies (magenta curves) remained significantly above chance (P<0.05) throughout the 

entire trial for all networks (values ranging from ~0.6 to 1.0). Note that decoding accuracy 

appeared relatively lower for this task because of how we performed the calculation (see 

Modelling Note).

We next asked whether networks maintained test information in WM, which is only 

behaviorally relevant during test presentation. Neuronal decoding accuracy for the first test 

(green curves) was perfect (1.0) for all networks during test presentation, before dropping to 

chance (P>0.05) for all networks by the third delay (Figure 5C). Test decoding using 

synaptic efficacies (magenta curves) was near perfect (~1.0) for all networks during the later 

stage of the first test and into the second test presentation. Thus, networks encoded both the 

sample and first test stimuli during presentation of the second test. This could be 

problematic if the network had to distinguish between cases where the second test matched 

the sample vs the first test. However, this was not a problem for the A-B-C-A task, as non-

matching test stimuli were never repeated. We confirmed that the networks were under no 

pressure to represent sample and test stimuli differently using a tuning similarity index 

(TSI)10 (Figure 5d, see Methods: Tuning similarity index). As expected, the TSI was >0.7 

for the first and second test periods, indicating a similar representation of sample and test 

information by synaptic efficacies.
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We repeated these analyses for the A-B-B-A task, in which subsequent non-matching test 

stimuli were repeated 50% of the time. In contrast to the A-B-C-A task, sample decoding 

(green curves, Figure 5e) using neuronal activity in the A-B-B-A task remained above 

chance (P<0.05, bootstrap) during all three delay periods for all networks. Furthermore, 

sample decoding using synaptic efficacies (magenta curves) remained close to 1.0 

throughout the trial.

Consistent with the A-B-C-A task, decoding the first test using neuronal activity (green 

curves, Figure 5F) was perfect during test presentation before falling to chance (P>0.05) 

levels after test offset. In addition, decoding the first test stimulus using synaptic efficacies 

(magenta curves) was also near perfect for all networks during the later stages of the first 

test presentation, and into the second test.

We hypothesized that networks must encode the sample and test stimuli in different formats 

to accurately solve the task. In contrast to the A-B-C-A task (Figure 5d), in which the TSI 

was 0.78 ± 0.15 (standard deviation) during the second test, the TSI for the A-B-B-A task 

decreased to 0.11 ± 0.20 (t(38) = 11.72, P < 10−13, unpaired two-sided, t-test, Figure 5g). 

Thus, the sample and first test stimuli were encoded in synapses using different formats, 

potentially allowing networks to distinguish between cases in which subsequent test stimuli 

match the sample (match) vs earlier test stimuli (non-match).

We hypothesized that persistent activity helped encode the sample and first test stimuli in 

different formats. Thus, we suppressed neuronal activity from the four neuronal groups for 

the 200 ms period prior to the first test, and re-calculated the TSI (Figure 5h). Suppressing 

activity from INH FAC neurons increased the TSI, measured during the second test (0.74 ± 

0.17, green curve, t(19) =10.28, P < 10−8, paired, two-sided, t-test). Furthermore, 

suppressing INH FAC activity (task accuracy = 0.91) decreased task accuracy more than 

suppressing any of the other three neuronal groups (task accuracy after suppressing EXC 

FAC neurons = 0.97, t(19) = −4.97, P < 10−4; after suppressing EXC DEP neurons = 0.99, 

t(19) = −6.65, P < 10−5; after suppressing INH DEP neurons = 0.99, t(19) = −6.58, P < 10−5, 

paired, two-sided, t-tests, Figure 5i). Thus, neuronal activity from these neurons likely 

facilitated the manipulation of information in WM, increasing task performance.

Attending to specific memoranda

Silently-maintained information may be reactivated either by focusing attention towards the 

memorandum19 or by probing the neural circuits involved20. We examined how STSP 

supports maintenance of either attended or unattended information. We trained networks on 

a dualsample delayed matching task (Figure 6a) similar to Rose et al.19. Networks were 

trained to maintain two sample directions (presented simultaneously in two locations) in 

WM, followed by two successive cues and test stimuli. The cue indicated which of the 

samples was relevant for the upcoming test. In this setup, stimuli that were not cued as 

relevant for the first test stimulus could still be cued as relevant for the second test.

Sample decoding using neuronal activity was greater when the sample was attended (blue 

curve) than unattended (red curve), during the last 100 ms of the first and second delays 

(first delay: Figure 6b, left panel, attended = 0.314 ± 0.174 (SD), unattended = 0.261 ± 
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0.134, t(39) = 4.46, P < 10−4; second delay: right panel, attended = 0.237 ± 0.131, 

unattended = 0.185 ± 0.085, t(39) = 5.19, P < 10−5, paired, two-sided, t-tests). Sample 

decoding using synaptic efficacies was near perfect (~1.0) for both attended (black curves) 

and unattended (yellow curves) conditions. Thus, the attended memoranda were more 

strongly represented in neural activity than unattended memoranda.

The study by Rose et al. found that silently maintained unattended information could be 

reinstated into neuronal activity after it was attended19 (although see37). Similarly, we found 

that neuronal decoding for stimuli that were unattended after the first cue were near chance 

(P > 0.05, bootstrap, measured in the 100 ms before second cue onset) in 19 out of 40 cases 

(20 networks × 2 stimuli). However, decoding accuracy increased if the stimulus became the 

focus of attention (blue circles, Figure 6c, decoding pre-cue = 0.212, post-cue = 0.233, t(39) 

= 3.11, P = 0.003, paired, two-sided, t-tests), whereas decoding accuracy decreased if the 

stimulus remained unattended (red circles, decoding post-cue = 0.175, t(39) = −4.16, P < 

0.001).

Although neuronal sample decoding was near chance for many networks, the rule cue 

indicating the relevant stimulus was maintained in neuronal activity across all networks (P 

<0.05, bootstrap, decoding accuracy for rule cues 1 and 2 are indicated by the dashed green, 

and solid green curves, respectively, Figure 6d). Thus, while sample information can be 

silently maintained, allocating attention to either memoranda requires neuronal activity.

Manipulating information and persistent neuronal activity

In this study, persistent activity during the delay was observed in all tasks involving 

manipulating information. We wondered if the level of manipulation required by the task 

was correlated with the level of persistent activity. This could be of special interest as 

varying levels of persistent activity have been observed between different tasks10–16.

We measured task manipulations based on the similarity between the neuronal response 

during the early sample period and the synaptic efficacies during the late delay period (see 

Methods: Task manipulation). To boost statistical power, we included three additional tasks: 

two were delayed match-to-rotated sample tasks in which the target test direction was 45° 

(DMRS45) or 180° (DMRS180) clockwise from the sample. The third task was a cross-

location DMS task, in which the sample was presented in one location and the test was 

randomly presented in one of two different locations38. Analysis of this task is shown in 

Figure S9.

We found that the level of manipulation correlated with the level of persistent activity at the 

end of the delay (Spearman correlation R = 0.93, P < 0.001, n = 9, Figure 7a). This suggests 

that tasks requiring greater manipulation require greater persistent activity. However, since 

the penalty on high neuronal activity could impact how information was encoded, we 

retrained 20 networks for all tasks with no penalty term, and found the correlation remained 

(R = 0.92, P < 0.001, Figure 7b). We next wondered whether different task contingencies 

(e.g. the presence of rule cues, stimulus timing, etc.) affected the correlation. Thus, we ran 

simulations of all our trained networks performing a standard DMS task, with a 500 ms 

sample stimulus and 1000 ms delay. The correlation between persistent activity and 
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manipulation remained for networks trained with the penalty on neuronal activity (R = 0.88, 

P = 0.002, Figure 7c) and for networks trained without (R = 0.82, P = 0.007, Figure 7d). In 

Modelling Notes and Figures S10–13, we discuss the results when networks are trained 

using different configurations of STSP. In summary, these results suggest that network 

models exhibit more persistent neuronal activity when trained on tasks that require more 

manipulation.

Discussion

We examined whether STSP can support the activity-silent manipulation of information, and 

whether it could help explain previous observations that different tasks evoke different levels 

of persistent activity. We found that while STSP can silently support the short-term 

maintenance of information, it cannot support manipulation of information without 

persistent neuronal activity. Furthermore, we found that tasks that required more 

manipulation also required more persistent activity, giving insight into why the strength of 

persistent neuronal activity varies markedly between different tasks.

Variation in persistent neuronal activity in vivo

Over the last several decades, electrophysiology experiments2–6, and human imaging 

studies39, have supported the idea that information in WM is maintained in stimulus-

selective persistent neuronal activity during memory-delay periods of behavioral tasks. 

However, this viewpoint has evolved, as various studies now suggest that persistent neuronal 

activity might not always reflect information maintenance, but can reflect control processes 

required to manipulate remembered information into appropriate behavioral responses14.

It is often unclear whether persistent neural activity reflects the maintenance or the 

manipulation of the stimulus. For example, neural activity in the frontal and parietal cortices 

mnemonically encodes stimulus location in a memory delayed saccade task2,4. However, 

recent studies that have dissociated the stimulus location from the upcoming saccade 

location have shown that activity in frontal cortex initially encodes the location of the recent 

stimulus (retrospective code), before its representation shifts towards encoding the planned 

saccade target (prospective code) later in the delay40.

A recent study showed robust persistent activity in the medial superior temporal (MST) area 

during a motion DMS task38. This initially appears at odds with the results of our current 

study, and our past work showing little or no persistent activity in the lateral intraparietal 

area (LIP), an area considered to be downstream of MST, also during a motion DMS 

task10,16. However, in this study38, the sample and test stimuli were shown at different 

retinotopic locations. This forces MST to represent the sample and test stimuli using two 

different pools of neurons, eliminating the possibility that synaptic efficacy changes through 

STSP driven by the sample could be directly compared to the test stimulus activity. This also 

forces the monkey to translate information from the sample location to the location of the 

test stimulus. Moreover, while we only observed weak delay-period direction encoding in 

area LIP during the DMS task10,16, we found that after the monkeys underwent extensive 

categorization training using the same stimuli, delay-period categorical encoding become 
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highly robust16. Similarly, we also observed robust persistent neuronal activity in networks 

models trained on a similar task to the one found in Mendoza Halliday et al. (Figure S9).

In another example, prefrontal cortex (PFC) was shown to mnemonically encode color in a 

change-detection task when six distinguishable, colors are used41, but color-selective 

persistent activity was not evident in PFC when the subject had to detect a change amongst a 

continuum of 20 colors12. This suggests that PFC can encode a categorical representation of 

the stimulus, but not a precise representation of stimulus features.

These studies suggest that tasks that require greater manipulation of the memoranda evoke 

greater levels of persistent neuronal activity, consistent with the correlation we observe 

between the level of manipulation and the level of persistent neuronal activity in our network 

models (Figure 7). These studies are also consistent with a recent human MEG study which 

also suggests that manipulating information in WM requires the reinstatement of persistent 

activity42.

However, other factors surely play a role in determining the level of persistent activity. For 

example, task-related factors such as the whether the delay period duration was fixed or 

random, or whether the network was trained on previous tasks, can affect the nature of 

persistent activity43. Furthermore, circuit-level properties, such as the connection strength 

within local circuits43,44, or the whether nearby neurons are similarly tuned (i.e. functional 

clustering)10, can also affect persistent activity.

Going forward, there are several other mechanisms in the brain that potentially support WM, 

such as oscillatory activity45,46, or loops between cortical and sub-cortical structures47. 

Future studies will focus on developing RNNs with even greater biological realism, such as 

networks with spiking neuron models, that can better explore how diverse mechanisms work 

together in support of maintaining and manipulating information in WM.

Comparison to other artificial neural network architectures

To solve tasks that involve very long temporal delays, long short-term memory (LSTM)48 

based architectures are typically used. These architectures work by giving networks control 

over how to maintain and update information. We noticed that RNNs without STSP either 

failed to solve the task, or required longer training, even with no penalty on neuronal activity 

(Figure S14). This difficulty was partly because neurons in our networks never connected 

onto themselves, which can facilitate the information maintenance. STSP facilitated training 

on our set of WM based tasks with its relatively long time constants. Thus, adding network 

substrates with long time constants, without necessarily making these time constants 

flexible, can potentially facilitate learning on tasks with long-term time dependencies. More 

generally, it highlights how incorporating neurobiologically-inspired features into RNNs is a 

promising strategy for advancing their capabilities.

Understanding strategies employed by artificial neural networks

A key differentiating feature of RNNs compared to biological networks is that all connection 

weights and activity is known, facilitating attempts to understand how the network solves 

various tasks. This has allowed researchers to describe how delayed association in RNNs can 
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be performed by transient dynamics25, how simple dynamical systems consisting of line 

attractors and a selection vector can underlie flexible decision-making23, how RNNs can 

encode temporally-invariant signals26,27, and how clustering develops when RNNs learn 20 

cognitive tasks, in which groups of neurons become functionally specialized for different 

cognitive processes49. Whereas our analyses focused on understanding how RNNs solve 

single tasks, it will be of interest to examine whether the network strategies persist when the 

same RNNs are trained on multiple tasks.

In this study, we have taken advantage of this full network knowledge to determine the 

substrates in which information is maintained in WM (Figures 2–7), how synaptic efficacies 

can prospectively encode stimuli (Figures 3), how neuronal activity can control how 

information is represented (Figure 5), and how match/non-match decisions are formed 

(Figures S2&S5). To provide greater insight into how networks solved each of the tasks, we 

also show a range of network properties for each task (Figures S15 – S24). Each figure 

shows an example network that solved one specific task, and provides details of the 

population activity, the sample, test and match selectivity of all four neuron groups, and the 

sample encoding stability across time for the entire population and each neuronal subgroup. 

We observed that information maintained in WM is mostly stable across time (panels i and 

j). This mostly stable mnemonic encoding might be the result of our network architecture or 

hyperparameters, and future studies will be required to understand which network factors 

affect encoding stability.

While modelling studies cannot replace experimental work, they can be advantageous when 

obtaining the necessary experimental data is not feasible. Thus, modelling can serve as a 

complement to experimental work, allowing researchers to rapidly generate novel hypothesis 

regarding neural function that can later be tested when technology better allows for 

experimental verification. Lastly, the discovery of novel mechanisms found in silico can be 

fed back into the design of network models, potentially accelerating the development of 

machine learning algorithms and architectures. We believe that this synergy between 

experimental neuroscience and neural network modelling will only strengthen in the future.

Methods

Network models

Neural networks were trained and simulated using the Python machine learning framework 

TensorFlow50. Parameters used to define the network architecture and training are given in 

Table 1. In all tasks, the stimuli were represented as coherent motion patterns moving in one 

of eight possible directions. However, the results of this study are not meant to be specific to 

motion, or even visual, inputs, and the use of motion patterns as stimuli was simply used to 

make our example tasks more concrete.

All networks consisted of motion-direction selective input neurons (whose firing rates are 

represented as u(t)) that projected onto 100 recurrently connected neurons (whose firing 

rates are represented as r(t)), which in turn projected onto 3 output neurons (whose firing 

rates are represented as z(t)) (Figure 2A). Recurrently connected neurons never sent 

projections back onto themselves.
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The activity of the recurrent neurons was modelled to follow the dynamical system30,49:

τ
dr

dt
= − r + f W

rec
r + W

in
u + b

rec + 2τσrecζ

where τ is the neuron’s time constant, f(·) is the activation function, Wrec and Win are the 

synaptic weights between recurrent neurons, and between input and recurrent neurons, 

respectively, brec is a bias term, ζ is independent Gaussian white noise with zero mean and 

unit variance applied to all recurrent neurons, and σrec is the strength of the noise. To ensure 

that neuron’s firing rates were non-negative and non-saturating, we chose the rectified linear 

function as our activation function:f(x) = max(0, x).

The recurrent neurons project linearly to the output neurons. The activity of the output 

neurons, z, was normalized by a softmax function such that their total activity at any given 

time point was one:

z = g W
out

r + b
out

where Wout are the synaptic weights between the recurrent and output neurons, and g is the 

softmax function:

g xi =
exp xi

∑jexp xj

To simulate the network, we used a first-order Euler approximation with time step Δt:

rt = (1 − α)rt − 1 + αf W
rec

rt − 1 + W
in

ut + b
rec +

2
α

σrecN(0, 1)

where α =
Δt

τ
 and N(0,1) indicates the standard normal distribution.

To maintain separate populations of 80 excitatory and 20 inhibitory neurons, we 

decomposed the recurrent weight matrix, Wrec as the product between a matrix for which all 

entries are nonnegative, Wrec,+ whose values were trained, and a fixed diagonal matrix, D, 

composed of 1s and −1s, corresponding to excitatory and inhibitory neurons, respectively30:

W
rec = W

rec, +
D

D =

1

⋱

−1

Initial connection weights from the input layer, projecting to the output layer, and between 

excitatory neurons were randomly sampled from a Gamma distribution with shape 

parameter of 0.1 and scale parameter of 1.0. Initial connections weights projecting to or 

from inhibitory neurons were sampled from a Gamma distribution with shape parameter of 
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0.2 and scale parameter of 1.0. We note that training networks to accurately solve the tasks 

appeared somewhat faster when initializing connection weights from a gamma distribution 

compared to a uniform distribution (data not shown). Initial bias values were set to 0.

Networks consisted of 24 motion direction tuned input neurons per receptive field. All tasks 

had one receptive field except for the dual DMS task (2 receptive fields) and the cross-

location DMS task (3 receptive fields). For the rule switching tasks (i.e. delayed rule and 

dual DMS tasks), an additional 6 rule tuned neurons were included. The tuning of the 

motion direction selective neurons followed a Von Mises’ distribution, such that the activity 

of the input neuron i at time t was

ut
i = Aexp κ cos θ − θpref

i +
2
α

σinN(0, 1)

where θ is the direction of the stimulus, θpref
i  is the preferred direction of input neuron i, k 

was set to 2, and A was set to 
4

exp(κ)
 when a stimulus was present (i.e. during the sample and 

test periods), and was set to zero when no stimulus was present (i.e. during the fixation and 

delay periods

The 6 rule tuned neurons for the delayed rule and dual DMS tasks had binary tuning, in 

which their activity was set to 4 (plus the Gaussian noise term) for their preferred rule cue, 

and 0 (plus the Gaussian noise term) for all other times. The number of rule tuned neurons 

was arbitrarily chosen, and had little impact on network training.

Network training

RNNs were trained based on techniques previously described30,49. Specifically, the goal of 

training was to minimize 1) the cross-entropy between the output activity and the target 

output, and 2) the mean L2-norm of the recurrent neurons’ activity level. The target output 

was a length 3 one-hot vector, in which the first element was equal to one for all times 

except the test period, the second element was one when the test stimulus matched the 

sample, and the third element was one when the test stimulus did not match the sample. 

Specifically, the loss function at time t during trial i is

ℒi, t = − ∑
n = 1

Nout

mi(t)zn
target, i(t) log zn

i (t) +
β

Nrec
∑

n = 1

Nrec

rn
2(t)

Where β controls how much to penalize neuronal activity of the recurrent neurons, and mi(t) 

is a mask function. In Figure S3b, we penalized connection weights instead of neuronal 

activity. The penalty term in this case involved squaring all connections weights between the 

100 recurrently connected neurons, taking the mean, and multiplying by β = 2.

To give the network adequate time to form a match or non-match decision, networks had a 

50 ms grace period starting at test onset, in which we set the mask function to zero. The 

mask value was set to 1.0 during the fixation, sample and delay periods, and to 2.0 during 
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the test period(s), in order to encourage networks to learn the correct match/non-match 

decision. The total loss function is then

ℒ =
1

NtrialsNtime
∑
i

Ntrials

∑
t

Ntime

ℒi, t

During training, we adjusted all parameters, (Win, Wrec,+, Wout, Wrec, Wout, hinit), where 

hinit refers to the initial neuronal activity at time step 0, using the Adam51 version of 

stochastic gradient descent. The decay rate of the 1st and 2nd moments were set to their 

default values (0.9 and 0.999, respectively).

We measured task accuracy as the percentage of time points during the test period(s) 

(excluding the 50 ms grace period described above) in which the activity of the match output 

neuron was greater than the activity of the other two output neurons during match trials, and 

in which the activity of the non-match output neuron was greater than the activity of the 

other two output neurons during non-match trials. Before test onset, all networks correctly 

maintained fixation with an accuracy ~100%, and thus was not used in our measure of task 

accuracy. Task accuracy for all networks in this study was >90%.

Short-term synaptic plasticity

The synaptic efficacy between all recurrently connected neurons was dynamically modulated 

through short-term synaptic plasticity (STSP). For half of the recurrent neurons (40 

excitatory and 10 inhibitory), all projecting synapses were facilitating, and for the other half 

of recurrent neurons, all projecting synapses were depressing. Following the conventions of 

Mongillo et al.18, we modelled STSP as the interaction between two values: x, representing 

the fraction of available neurotransmitter, and u, representing the neurotransmitter 

utilization. Presynaptic activity acts to increase the calcium concentration inside the 

presynaptic terminal, increasing the utilization and the synaptic efficacy. However, 

presynaptic activity decreases the fraction of neurotransmitter available, leading to 

decreasing efficacy. These two values evolve according to:

dx(t)
dt

=
1 − x(t)

τx
− u(t)x(t)r(t)Δt,

du(t)
dt

=
U − u(t)

τu
+ U(1 − u(t))r(t)Δt

where r(t) is the presynaptic activity at time t, τx is the neurotransmitter recovery time 

constant, τu is the calcium concentration time constant, and Δt is the time step (0.01 seconds 

for our networks). The amount of input the postsynaptic neuron receives through this one 

synapses at time t is then

I(t) = W x(t)u(t)r(t)
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where W is the synaptic efficacy before STSP is applied. For depressing synapses, the 

neurotransmitter recovery time constant was much longer compared to the calcium 

concentration time constant, whereas the opposite was true for facilitating synapses.

For computational efficiency, these values will be identical for all synapses sharing the same 

presynaptic neuron. Connections weights from the input layer, and onto the output layer, 

were not governed by STSP.

Population decoding

Similar to our previous studies10,16, we quantified the strength of stimulus encoding by 

measuring how accurately we could decode the motion direction using linear multiclass 

support vector machines (SVMs). We chose to measure stimulus encoding through linear 

classifiers since the output neurons of our network are essentially performing linear 

classification of the population activity in the recurrent layer. In this approach, we trained 

linear, multiclass SVMs to classify the motion direction using the neuronal activity of the 

100 recurrent neurons, or the synaptic efficacies from the same 100 recurrent neurons, at 

each time point (separated by 10 ms). Training and test data for the classifiers always came 

from the same time points. The synaptic efficacy values were the product x(t)u(t), where x(t) 

and u(t) are the time varying values representing the amount of neurotransmitter available, 

and the neurotransmitter utilization, respectively, as described above.

We measured the classification accuracy using cross-validation, in which we randomly 

selected 75% of trials for training the decoder and the remaining 25% for testing the 

decoder. For each of the eight motion directions, we randomly sampled, with replacement, 

25 trials to train the decoder (from the 75% of trials set aside for training), and 25 trials to 

test the decoder (from the 25% of trials set aside for testing). From the 200 trials in the test 

set (25 time 8 directions), the accuracy was the fraction of trials in which the predicted 

motion direction matched the actual motion direction.

We used a bootstrap approach to determine statistical significance. We did so by repeated 

this sampling procedure 100 times to create a decoder accuracy distribution for each time 

point. The difference was deemed significantly greater than chance if 98 values were greater 

than chance (equivalent to P < 0.05 for a two-sided test).

For each network, we calculated decoding accuracies using a batch of 1024 trials in which 

the test motion directions were randomly sampled independently of the sample motion 

direction. This was in contrast to how we trained the network and measured task accuracy, in 

which there was always a 50% chance that a test stimulus would match the sample. We note 

that the pattern of neural and synaptic activity generated by a sample stimulus will be similar 

to the pattern generated by a matching test stimulus. Thus, if matching test stimuli occur 

more frequently than chance, our sample decoding accuracy during and after the test stimuli 

would be artificially elevated.

Shuffle analysis

To measure how network models used information maintained in neuronal activity and in 

dynamic synaptic efficacies to solve the task, we used a shuffling procedure as follows. At 
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the time point right before test onset (or right before the third test onset for the A-B-C-A/A-

B-B-A tasks), we either 1) did not shuffle any activity, 2) shuffled the neuronal activity 

between trials, or 3) shuffled the synaptic efficacies between trials. We shuffled between 

trials as opposed to between neurons because neurons can have different baseline activity 

levels, and shuffling this activity can significantly perturb the network and degrade 

performance, even if no information is maintained in their activity. We then simulated the 

network activity for the remainder of the trial using the saved input activity, and measured 

the performance accuracy by comparing the activity of the three output neurons to the target 

output activity during the test period. We performed this random shuffling 100 times, and 

measured the mean performance accuracy for all three conditions. The rationale behind this 

analysis is that if the network was exclusively using information maintained in neuronal 

activity to solve the task, then shuffling neuronal activity between trials should devastate 

performance, while shuffling synaptic efficacies should have little effect. Similarly, if the 

network was exclusively using information maintained in synaptic efficacies to solve the 

task, then shuffling synaptic efficacies between trials should devastate performance, while 

shuffling neuronal activity should have little effect. If the network was using information 

maintained in both neuronal activity and synaptic efficacies, then shuffling either should 

lead to significant decreases in performance.

We determined if shuffling either substrate significantly decreased task accuracy for a single 

network using a permutation test. Specifically, if the task accuracy without shuffling was 

greater than 98 of the 100 shuffled values, the decrease was deemed significant (equivalent 

to P < 0.05 for a two-sided test).

We note that note that a priori, there should be no qualitative difference between shuffling 

neuronal activity and synaptic efficacies. Both substrates are capable of maintaining 

information, as they both operate as leaky integrators (although the time constant of 

neuronal activity, 100 ms, is much smaller than the effective time constant of synaptic 

efficacy, which is 1500 ms). Thus, shuffling either substrate can potentially affect network 

performance if information needed to solved the task was maintained within that substrate.

Tuning similarity index

We measured the similarity between sample and test stimuli encoding in the A-B-C-A and 

A-B-B-A tasks (Figure 5), between neuronal and synaptic sample encoding (Figures 7, S11 

– S13), and between neuronal sample encoding at different time points (Figures S15 – S24), 

using a tuning similarity index (TSI) we previously employed to study the relation between 

functional clustering and mnemonic encoding10. To calculate this index, we first modelled 

the neuronal activity or synaptic efficacy for each neuron, zi(t), as a linear function of the 

sample or test motion direction, represented by the unit vector d:

zi(t) = dHi(t) + ϵi(t)

where ϵi(t) is a Gaussian noise term and the vector Hi(t) relates the stimulus direction to the 

neuronal activity or synaptic efficacy at time t.
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The angle of Hi(t) is the preferred direction of the neuron at time t, and its magnitude 

indicates the change in neuronal activity or synaptic efficacy from baseline when the 

stimulus matches the preferred direction of the synapse. Thus, the preferred direction of a 

neuron, represented as a unit vector, is

PDi t =
Hi t

Hi t

We can calculate how well this linear model fit the data for each neuron i and time point t, 

indicated by wi(t), by comparing the variance in the residuals with the variance in the 

synaptic efficacy:

wi(t) = 1 −
var zi(t) − zi(t)

var zi(t)

where the fitted neuronal activity or synaptic efficacy is determined by the linear model:

zi(t) = baseline + dHi(t)

For the analysis in Figure 5, we calculated the preferred directions and linear model fits for 

both the sample and the first test motion direction, and then calculated the tuning similarity 

of each individual neuron as the dot-product between their preferred sample and test motion 

directions of each neuron, weighted by the geometric mean of their normalized linear model 

fits:

si(t) = wi, sample(t)wi, test(t)PDi, sample(t)PDi, test
T (t)

Finally, we calculated the tuning similarity index as the sum of the similarity scores for all 

neurons, divided by the sum of the geometric means of their respective linear model fits:

TSI(t) =
∑i si(t)

∑i wi, sample(t)wi, test(t)

A value of +1 indicates that neuronal activities or synaptic efficacies are identically tuned to 

sample and test stimuli, and 0 indicates no correlation between the two.

Task manipulation

We were interested if the level of manipulation required by a task was correlated with the 

level of persistent activity. In order to measure the level of manipulation required by a task, 

we reasoned that when tasks do not require manipulation, the network should encode the 

sample stimulus in fundamentally the same manner during all trial epochs (e.g. early sample 

vs late delay). In other words, the neural code used to represent the sample stimulus should 

remain constant across time. One caveat is that for most networks, the sample stimulus was 

not fully encoded in neuronal activity at the end of the delay (shown by neuronal decoding 
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neuronal accuracies significantly less than 1.0 at the end of the delay in Figures 2–6). 

However, the sample stimulus was fully encoded in the synaptic efficacies (shown by the 

synaptic decoding accuracies approximately equal to 1.0 at the end of the delay in Figures 

2–6)

Thus, if no manipulation occurs, then the neuronal tuning curve measured during the early 

sample should look similar to the synaptic tuning curve measured late in the delay 

(assuming the synapse was facilitating, the synaptic tuning curve would be reflected 

horizontally for a depressing synapse). We computed the similarity between the neuronal 

tuning curves measured during the early sample and the synaptic tuning curves measured 

late in the delay using the same method as described above (see Methods: Tuning similarity 

index). Specifically, we calculated model fits and preferred directions for neuronal activity 

measured during the early sample period (50 to 150 ms after sample onset) and for synaptic 

efficacies measured from 1400 to 1500 ms after sample onset (corresponding to the second 

delay period for the ABCA and ABBA tasks, and the end of the delay period for all other 

tasks), and calculated the similarity between these values for each neuron:

si = Z W i, early sampleW i, late delayPDi, early samplePDi, late delay
T

where Z = 1 for facilitating synapses, and Z = −1 for depressing synapses. This extra term 

was necessary since increases in neuronal activity will depress the efficacies of depressing 

synapses. We then calculated the TSI by averaging across all neurons, divided by the sum of 

the geometric means of their respective linear model fits:

TSI =
∑i si

∑i W i, early sampleW i, late delay

We then calculated task manipulation as 1 − TSI

Encoding stability

For the analysis in Figures S15–S24, panel j, we calculated the stability in neuronal 

encoding as the similarity (TSI) between neuronal sample tuning between different time 

points:

si t1, t2 = wi, sample t1 wi, sample t2 PDi, sample t1 PDi, sample
T

t2

We then calculated the mean similarity score for each of the four neuronal subgroups by 

averaging across all neurons within that subgroup, divided by the sum of the geometric 

means of their respective linear model fits:

TSI t1, t2 =
∑i si t1, t2

∑i wi, sample t1 wi, sample t2
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Category tuning index

The category tuning index (CTI), used in Figure S7, measured the difference in synaptic 

efficacy (averaged across all trials for each direction) for each neuron between pairs of 

directions in different categories (a between category difference or BCD) and the difference 

in activity between pairs of directions in the same category (a within category difference or 

WCD)52. The CTI was defined as the difference between BCD and WCD divided by their 

sum. Values of the index could vary from +1 (which indicates strong binary-like differences 

in activity to directions in the two categories) to −1 (which indicates large activity 

differences between directions in the same category, no difference between categories). A 

CTI value of 0 indicates the same difference in firing rate between and within categories.

Statistics

We trained 20 networks for each task in order to assess the variability between different 

network solutions. All networks were initialized with different sets of random weights. No 

statistical methods were used to pre-determine sample sizes but our sample sizes are similar 

to those reported in a previous publication49. We report mean ± standard deviation 

throughout the paper unless otherwise noted. Error bars in the figures indicate standard error 

of measurement. We measured correlation using the Pearson correlation coefficient, except 

for Figures 7 and S11–13, where we used the Spearman correlation coefficient because of 

the small sample size (n = 9). We used a bootstrap procedure (described in Methods: 

Population decoding) to determine if decoding accuracy for a single network was 

significantly greater than chance. We used two-sided t-tests to determine if groups of values 

across our population of 20 networks were significantly different. The data distribution was 

assumed to be normal, but this was not formally tested. No data points were excluded from 

the analyses, since all networks were able to solve the task with satisfactory (> 90%) 

accuracy. Data collection and analysis were not performed blind to the conditions of the 

experiments, as this did not apply to our simulations. Data collection and assignment to 

experimental groups also did not apply, since all networks were equivalent before training.

Reporting Summary

Further information on research design is available in the Nature Research Life Sciences 

Reporting Summary linked to this article.

Data availability

Data from all trained networks that were analyzed for this study is available from the 

corresponding author upon reasonable request.

Code availability

The code used to train, simulate and analyze network activity is available at https://

github.com/nmasse/Short-term-plasticity-RNN.
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Figure 1. RNN design.
(a) The core rate-based model consisted of 24 motion direction tuned neurons projecting 

onto 80 excitatory, and 20 inhibitory, recurrently connected neurons. The 80 excitatory 

neurons projected onto three decisions neurons. (b) For synapses that exhibited short-term 

synaptic depression (left panels), presynaptic activity (top panel) weakly increases 

neurotransmitter utilization (red trace, middle panel) and strongly decreases available 

neurotransmitter (blue trace), decreasing synaptic efficacy (bottom panel). For synapses that 

exhibited short-term synaptic facilitation (right panels), presynaptic activity strongly 

increases neurotransmitter utilization and weakly decreases available neurotransmitter, 

increasing synaptic efficacy.
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Figure 2. Delayed match-to-sample (DMS) task.
(a) A 500 ms fixation period was followed by a 500 ms sample motion direction stimulus, 

followed by a 1000 ms delay period and finally a 500 ms test stimulus. (b) Sample decoding 

accuracy, calculated using neuronal activity (green curves) and synaptic efficacy (magenta 

curves) for n = 20 networks. The dashed vertical lines, from left to right, indicate the sample 

onset, offset, and end of the delay period. (c) Scatter plot showing the neuronal decoding 

accuracy measured at the end of the delay (x-axis) versus the task accuracy (y-axis) for all 

20 networks (blue circles), the task accuracy for the same 20 networks after neuronal activity 

was shuffled right before test onset (red circles) or synaptic efficacies were shuffled right 

before test onset (cyan circles). The dashed vertical line indicates chance level decoding.
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Figure 3. Delayed match-to-rotated sample (DMRS) task.
(a) The DMRS task is similar to the DMS task (Figure 2A), except that the target test motion 

direction was rotated 90° clockwise from the sample direction. (b) Similar to Figure 2b. (c) 
Similar to Figure 2c. (d) Neuronal sample tuning curves of the four neuronal groups (EXC 

FAC, blue; EXC DEP, red; INH FAC, green; INH DEP, orange). Neuronal activity was 

averaged across the entire sample period, and the tuning curves were centered around the 

sample direction that generated the maximum response (i.e. the preferred direction). The 

sample tuning curves in panels (e,f,i) are also centered around the same preferred directions. 

(e) Same as (d), except that synaptic efficacies were used to calculate the tuning curves. (f) 
Same as (d), except that synaptic efficacies calculated at the end of the delay period were 

used to calculate the tuning curves. (g) Task accuracy after shuffling synaptic efficacies at 
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the end of the sample period for each of the four neuronal groups. Each dot represents the 

accuracy from one network. (h) Scatter plot showing the neuronal decoding accuracy 

measured at the end of the delay (x-axis) against the task accuracy after shuffling the 

synaptic efficacies of inhibitory neurons with depressing synapses at the end of the sample 

(y-axis). (i) Tuning curves showing the mean amount of input (input activity × input to 

recurrent connection weights) each group of neurons receives from the input layer for each 

direction. (d,e,f,i) Tuning curves are mean values across n = 20 networks. Shaded error bars 

(which are small and difficult to see) indicate one SEM.
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Figure 4. Delayed cue task.
(a) This task was similar to the DMS and DMRS tasks, except that a rule cue from 500 to 

750 ms into the delay indicated to the network whether to perform the DMS or the DMRS 

task. (b) Similar to Figure 2b, calculated using only DMS trials. The dashed vertical lines, 

from left to right, indicate the sample onset and offset, the rule cue onset and offset, and end 

of the delay period. (c) Similar to Figure 2c, calculated using only DMS trials. (d-e) Similar 

to (b-c), except for DMRS trials.
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Figure 5. A-B-B-A and A-B-C-A tasks.
(a) The network was presented with a 400 ms sample stimulus, followed by three 400 ms 

test stimuli, all separated by 400 ms delays. (b) Similar to Figure 2b, and calculated for the 

A-B-B-C task. The dashed lines indicate, from left to right, the sample onset, the sample 

offset, and the test onset and offset for the three sequential test stimuli. (c) Similar to (b), 

except showing the decoding accuracy of the first test stimulus. (d) The time course of the 

tuning similarity index (TSI), mean value across n = 20 networks. (e-g) Similar to (b-d), 

except for the A-B-B-A task. (h) The TSI for the A-B-B-A task after suppressing neuronal 

activity for 200 ms before the first test onset, from four different neuronal groups (EXC 

FAC, blue curve EXC DEP, red curve; INH FAC, green curve; INH DEP, orange curve), and 

with no suppression (black curve). (i) Task accuracy after suppressing activity from the four 
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groups described in (h), and with no suppression (black dots). (d,g,h) TSI curves are mean 

values across n = 20 networks. Shaded error bars indicate one SEM.
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Figure 6. Dual delayed match-to-sample task.
(a) Two sample stimuli were simultaneously presented for 500 ms. This was followed by a 

1000 ms delay in which a cue appeared halfway through, and then two simultaneous test 

stimuli for 500 ms. The cue indicated which of the two sample/test pairs were task-relevant. 

Another 1000 ms delay and 500 ms test period was then repeated, in which a second cue 

again indicated which of the two sample/test pairs was task-relevant. (b) Neuronal decoding 

accuracy for the attended (blue curve) and unattended (red) stimuli, and the synaptic 

decoding accuracy for the attended (black) and unattended (yellow) stimuli, are shown from 

trial start through the first test period (left panel), and the second delay and test periods 

(right panel). Decoding accuracy curves are mean values across n = 20 networks. Shaded 

error bars indicate one SEM. (c) Scatter plot showing the neuronal decoding accuracy, 
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measured from 100 to 0 ms before the second cue (x-axis) against neuronal decoding 

accuracy, measured from 400 to 500 ms after second cue (y-axis). Blue dots represent 

stimuli that were unattended after the first cue, and attended after the second cue, and red 

dots represent stimuli that were not attended to after the first and second cues. (d) The 

neuronal (green) and synaptic (magenta) rule decoding accuracy. The dashed lines indicate 

the decoding accuracy of the first cue, and the solid lines indicate the decoding accuracy of 

the second cue.
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Figure 7. The relationship between manipulation and stimulus-selective persistent activity.
(a) Scatter plot shows the level of persistent neuronal activity, measured as the neuronal 

decoding accuracy during the last 100 ms of the delay (x-axis), versus the level of 

manipulation (y-axis). (b) Same as (a), except that networks were trained without the 

penalty on high neuronal activity. (c) Same as (a), except that persistent activity and task 

manipulation were measured by presenting all networks with a standard 500 ms motion 

stimulus followed by a 1000 ms delay. (d) Same as (c), except for networks trained without 

the penalty on high neuronal activity. (a-d) Center of each dot represents the mean value 

across n = 20 networks trained on one specific task. Error bars represent one SEM.
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Table 1

Hyperparameters used for network architecture and training.

Hyperparameter Symbol Value

Learning rate n/a 0.02

Neuron time constant τ 100 ms

Time step (training and testing) Δt 10 ms

Standard deviation of input noise σin 0.1

Standard deviation of recurrent noise σrec 0.5

L2 penalty term on firing rates β 0.02

STSP neurotransmitter time constant τx 200 ms / 1500 ms (facilitating / depressing)

STSP neurotransmitter utilization τu 1500 ms / 200 ms (facilitating / depressing)

STSP neurotransmitter increment U 0.15 / 0.45 (facilitating / depressing)

Number of neurons (input layer, recurrent layer, output layer) Nin, Nrec, Nout 24, 100, 3

Gradient batch size Ntrials 1024

Number of batches used to train network n/a 2000
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