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A withstanding question in neuroscience is how neural circuits encode representations

and perceptions of the external world. A particularly well-defined visual computation

is the representation of global object motion by pattern direction-selective (PDS) cells

from convergence of motion of local components represented by component direction-

selective (CDS) cells. However, how PDS and CDS cells develop their distinct response

properties is still unresolved. The visual cortex of the mouse is an attractive model

for experimentally solving this issue due to the large molecular and genetic toolbox

available. Although mouse visual cortex lacks the highly ordered orientation columns of

primates, it is organized in functional sub-networks and contains striate- and extrastriate

areas like its primate counterparts. In this Perspective article, we provide an overview of

the experimental and theoretical literature on global motion processing based on works

in primates and mice. Lastly, we propose what types of experiments could illuminate

what circuit mechanisms are governing cortical global visual motion processing. We

propose that PDS cells in mouse visual cortex appear as the perfect arena for delineating

and solving how individual sensory features extracted by neural circuits in peripheral

brain areas are integrated to build our rich cohesive sensory experiences.
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INTRODUCTION

A withstanding cardinal question in neurophysiology is how neural circuits in the cerebral

cortex compute and construct our perceptions of the world based on dynamically changing

activity patterns of sensory neurons. One fundamental task faced by the visual system is the

computation of global motion of an object from the collection of local motion of the objects

constituents (Movshon et al., 1985; Newsome et al., 1990). Such a task is not trivial; when

seen through an aperture, as imposed by the small receptive field of a retinal ganglion cell or a

primary visual cortex (V1) neuron, only the motion component orthogonal to a contour can be

inferred, while the parallel motion component remains ambiguous (Adelson and Movshon, 1982;

Movshon et al., 1985; Carandini et al., 2005). Due to this ‘‘aperture problem’’, one-dimensional

local motion information from multiple contours needs to converge to unambiguously encode

global two-dimensional object motion. To solve this challenging computational problem, it is

generally assumed that visual circuits from retina to V1 first dissects direction of motion for

components of the object, such as oriented contours (Yonehara et al., 2011, 2013; Cruz-Martín

et al., 2014; Hillier et al., 2017) and neurons in extrastriate areas combine those component

motions to form the global object motion representation (Adelson and Bergen, 1985; DeAngelis

et al., 1993b; Albright and Stoner, 1995; Simoncelli and Heeger, 1998; Rust et al., 2006).
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Global motion computations have been studied in a variety

of animal species from flies (Saleem et al., 2012) to humans

(Adelson and Movshon, 1982). In particular, non-human

primates have been extensively used as a model (Movshon

et al., 1985; Newsome and Paré, 1988; Britten et al., 1992;

Tinsley et al., 2003; Smith et al., 2005; Majaj et al., 2007;

Hedges et al., 2011; Solomon et al., 2011; Kumbhani et al.,

2015; Chaplin et al., 2017), yielding seminal insights. Only

now, are mice being investigated (Juavinett and Callaway,

2015; Muir et al., 2015; Palagina et al., 2017). The mouse

offers several experimental advantages to primates and serves

as an attractive model for elucidating the circuitry and single

neuron computations underlying global motion processing,

by granting access to the large genetic-, viral- and imaging

toolboxes now available (Wickersham et al., 2007; Luo et al.,

2008; Chen et al., 2013; Niell, 2015; Hawrylycz et al.,

2016).

Here, we aim to provide a brief overview of the current

experimental and theoretical literature on global motion

processing based on works in primates and mice. Finally, we

propose what experiments could propel the field forward and

shed light on what circuit mechanisms are employed for this

well-defined neural computation, by exploiting the mouse visual

cortex as a model system.

LOCAL AND GLOBAL MOTION IS
ENCODED BY TWO GROUPS OF
CORTICAL NEURONS

For studying neural encoding of global motion, the stimulus

commonly employed is the additive plaid pattern (Adelson and

Movshon, 1982; Movshon et al., 1985; Tinsley et al., 2003; Smith

et al., 2005; Rust et al., 2006; Solomon et al., 2011; Juavinett

and Callaway, 2015; Figure 1A). This stimulus is composed

of two oriented drifting gratings, offset by an angle, whose

directions of motion are symmetric relative to the coherent

pattern motion (Adelson and Movshon, 1982; Muir et al., 2015;

Figure 1A). By harnessing the local and global constituents of the

plaid, foundational experiments have demonstrated the existence

of two groups of cortical neurons, based on their response

properties to plaids (Movshon et al., 1985; Smith et al., 2005;

Solomon et al., 2011).

Neurons encoding local motion are called component

direction-selective (CDS) cells (Movshon et al., 1985; DeAngelis

et al., 1993a; Smith et al., 2005; Solomon et al., 2011). These are

sensitive to the direction of motion for the individual gratings of

the plaid, and respond when any one of the gratings is moving

in its preferred direction (Figure 1B). These cells are observed

both in V1 and extrastriate areas. On the other hand, neurons

encoding global motion are called pattern direction-selective

(PDS) cells (Movshon et al., 1985; Smith et al., 2005; Solomon

et al., 2011). These cells are observed in the extrastriate middle

temporal (MT) area (but see also Tinsley et al., 2003) and show

sensitivity to the direction of motion of the plaid, and respond

when the coherent motion of the plaid is moving in the preferred

direction (Figure 1B).

FIGURE 1 | Component and pattern direction-selective (PDS) cells. (A) For

the study of component direction-selective (CDS) and PDS cells the common

visual stimulus employed is plaids consisting of two drifting gratings

superimposed additively and offset by an angle. (B) Both CDS and PDS cells

are tuned for the direction of motion of a single drifting grating. When a plaid

stimulus is presented the predicted behavior of a PDS cell is that the neuron

integrates the motion signals and responds to the plaid as it does to the

individual grating but with broader tuning. The CDS cells responds to the

individual grating components of the plaid as if they were presented alone.

Polar plots in (B) are based on Smith et al. (2005).

Based on electrophysiology experiments and computational

approaches, the current theory in primates for object motion

representation is described with a two-stage model (Simoncelli

and Heeger, 1998; Rust et al., 2006). The first stage involves

a summation field, in which presynaptic neurons of a

PDS cell encode local motion of oriented elements. These

presynaptic neurons are hypothesized as CDS cells in V1,

supported by evidence that V1 neurons projecting into MT

are CDS (Movshon and Newsome, 1996) and PDS cells do

not reach their fully selective state until 75 ms after the

responses of CDS cells have stabilized (Smith et al., 2005).

The PDS cells should receive excitatory inputs from CDS

cells with a wide range of preferred directions to account

for a wide tuning profile of PDS cells. The second stage

involves a normalization stage, which helps to encode direction

of global motion in PDS cells independently of local visual

features (Zeki, 1974; Movshon et al., 1985; Movshon and

Newsome, 1996; Carandini and Heeger, 2011). Normalization

could explain various observed suppressions, such as cross-

orientation suppression, within and across the receptive field

of PDS cells (Britten and Heuer, 1999). It remains to be

determined whether normalization operates exclusively on

V1 neurons or also on MT neurons. Whilst substantial evidence

supports this model, causal and mechanistic data on the

computation performed by PDS cells still remains lacking.

STUDYING LOCAL AND GLOBAL MOTION
IN MOUSE VISUAL CORTEX

At this time, three groups have probed the existence of CDS and

PDS cells in mouse visual cortex (Juavinett and Callaway, 2015;
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FIGURE 2 | Mouse visual cortex organization. (A) The first step of visual

processing occurs in the retina. The retina conveys visual information to the

dorsal lateral geniculate nucleus (dLGN). From dLGN, information is transfered

to primary visual cortex (V1), and from V1 information diverges, and is directed

to extrastriate areas. In mice, another prominent pathway is from the retina to

the superior colliculus (SC), and from SC further to the lateral posterior

nucleus (LP), and LP finally projects into V1 and extrastriate areas.

(B) Extrastriate areas receiving V1 projections include: anteromedial (AM),

posteromedial (PM), rostrolateral (RL), anterolateral (AL) and lateromedial (LM).

Currently, PDS cells have been located in V1, RL and LM (colored in red).

Visual cortical map is based on Andermann et al. (2011).

Muir et al., 2015; Palagina et al., 2017). In the work by

Juavinett and Callaway (2015), the proportion of PDS and

CDS cells in layer 2/3 differed depending on the visual area.

Mouse V1 is surrounded by extrastriate areas that receive

V1 input (Wang and Burkhalter, 2007; Andermann et al.,

2011; Marshel et al., 2011; Wang et al., 2012; Glickfeld et al.,

2013a; Zhuang et al., 2017; Figure 2). The only areas that

contained PDS cells were lateromedial (LM) and rostrolateral

(RL; Figure 2). The fraction of PDS cells contained in LM

and RL are 6% and 8%, respectively (Juavinett and Callaway,

2015). Both LM and RL are significantly interconnected with

other visual areas (Wang et al., 2012), allowing them to

combine inputs from many sources. It remains to be determined

which mouse visual area is a homologous structure of MT,

and it is possible this area lies outside the more commonly

studied mouse extrastriate areas (Rosa, 1999). The other areas,

including V1, contained no PDS cells, but only CDS cells

(Juavinett and Callaway, 2015). However, others have suggested

the existence of PDS cells in V1 (Muir et al., 2015; Palagina

et al., 2017; Figure 2). The source of this discrepancy is

unclear, but may partly originate from differences in plaid

stimuli parameters. The work by Juavinett and Callaway (2015)

presented additive plaids made from sinusoidal gratings, whereas

the other works employed square-wave gratings for constructing

the plaid (Muir et al., 2015; Palagina et al., 2017), yielding

differences in spatial frequency content of the plaids. This could

have potentially introduced differences in neuronal response

properties. In congruence with this, human experiments have

shown that the probability of a plaid percept is higher for

square-wave gratings than for sinusoidal gratings (Burke et al.,

1999). Another parameter is the temporal frequency of the

plaid. PDS cells prefer drift rates of 2–16 Hz in non-human

primates (Wang and Movshon, 2016). Juavinett and Callaway

(2015) employed varying drift rates of 1, 1.5 or 2 Hz

whereas Palagina et al. (2017) only used 2 Hz. The usage

of low drift rates could have resulted in the underestimation

of PDS responses in the work by Juavinett and Callaway

(2015). In all instances, more experiments investigating the

existence of PDS cells in V1 are needed by exploring the

plaid parameter space. This current discrepancy also casts an

important question to settle, as the existence of PDS cells

at the stage of V1 may suggest that the two-stage model

proposed in primates operates within V1 in mice, rather than

exclusively across visual areas. Alternatively, PDS activity in

V1 may be brought by recurrent projection of PDS cells

in LM or RL, given significant interconnections between

extrastriate areas and V1 (Wang et al., 2012; D’Souza et al.,

2016). More detailed characterization of inter-areal functional

connectivity would be crucial for answering this question,

and could be achieved by recently developed wide-field two

photon imaging methods (Stirman et al., 2016a) combined

with high-speed recording of neuronal spikes with voltage

sensors for understanding connection hierarchies (Gong et al.,

2015).

Overall, evidence exist that mouse visual cortex represents

and computes local and global motion, and therefore, is a valid

model system for studying biophysical and circuit mechanisms

of global motion computations in great detail. However, it

may be plausible, and not all that surprising, if details in

the strategy employed by mouse visual cortex for computing

global motion deviates from that employed by humans and

non-human primates. We speculate that primates and mice

may have fundamental differences in the computational strategy

and behavioral requirements of pattern motion computations.

First of all, mice lack fovea in their retina unlike primates.

Primate MT has a marked emphasis on the fovea; the central

15◦ of the visual field occupies over half of MT’s surface area

(Van Essen et al., 1981), and signals from MT is important for

the initiation of smooth pursuit, which is an eye movement

for fixing a moving object on the fovea (Lisberger et al.,

1987). Hence, pattern motion computation in mice would be

less relevant for the smooth pursuit. Second, one of the most

intriguing functional aspects of MT in primates is sensitivity

to binocular disparity and depth perception. Since binocular

areas are much smaller in mice compared to primates, pattern

motion computations of mice may be specialized more for

analyzing monocular motion, such as optic flow while running

forward.

The functional organization of mouse and primate visual

cortex differs on several levels (Huberman and Niell, 2011;

Laramée and Boire, 2014). In rodent visual cortex, unlike

primates, functionally selective cells are organized in a ‘‘salt-

and-pepper’’ manner (Ohki et al., 2005; Bonin et al., 2011)

and neurons with similar tuning are connected with each

other (Ko et al., 2011; Li et al., 2012; Lee et al., 2016)

in a layer-specific manner (Wertz et al., 2015) to form

recurrent sub-networks. Differences upstream to visual cortex

also exist. Given the high prevalence of direction-selective retinal

ganglion cells (Vaney et al., 2012; Yonehara et al., 2013, 2016)

and the finding of direction-selective dorsal lateral geniculate

nucleus (dLGN) neurons and their feed-forward input to V1

(Cruz-Martín et al., 2014; Hillier et al., 2017), one might

entertain the hypothesis that in mouse visual cortex, complex

visual representations such as pattern motion develops at the

stage of V1.
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FUTURE DIRECTIONS FOR STUDYING
LOCAL AND GLOBAL MOTION
PROCESSING IN THE MOUSE

We propose five key questions to be addressed where mouse

visual cortex would serve as an excellent model. Note however,

recent advances have introduced the marmoset monkey as an

attractive primate model due to its rapidly evolving molecular

and genetic toolbox available (Sadakane et al., 2015a,b; Ding

et al., 2017) and the organizational similarities to the visual

system in humans. Furthermore, it might be advantageous to

complement these experiments with studies in a rodent species

in which homologs to MT have already been identified, such as

the squirrel (Paolini and Sereno, 1998).

First question is: what is the tuning of individual excitatory

synaptic inputs onto PDS cells when single gratings or plaids

are shown? Models derived from non-human primate research

(Simoncelli and Heeger, 1998; Rust et al., 2006) predict that

PDS cells receive direct feed-forward excitatory barrages from

CDS cells, and robust responses to plaids likely arises from

convergence of CDS inputs tuned for different directions (Rust

et al., 2006; Figure 1B). This question can be addressed by

advancedmethodologies such as dendritic spine calcium imaging

(Jia et al., 2010; Chen et al., 2013; Wilson et al., 2016; Iacaruso

et al., 2017). Dendritic spine calcium signals can serve as a proxy

for the activity of individual excitatory synaptic inputs, and hence

allows tuning characterization of incoming barrages.

Second question is: at which synaptic stages does

normalization operate? Normalization is a fundamental

neuronal computation that operates throughout the visual

system and in many other sensory modalities (Carandini and

Heeger, 2011). Normalization is an essential aspect of PDS

cell behavior (Simoncelli and Heeger, 1998). This question

could be addressed again by dendritic spine calcium imaging;

one could test whether cross-orientation stimuli suppresses

the activity of individual synaptic inputs to PDS cells or

PDS somatic activity without suppressing synaptic inputs.

In relation to these questions, it remains to be determined

which brain areas provide synaptic inputs to PDS cells. In

primates, MT receives inputs mainly from V1 and inferior

pulvinar nucleus (Lyon et al., 2010), as well as short latency

retinal inputs via the LGN (Warner et al., 2010). For this

question, single-cell-initiated, activity sensor-functionalized

monosynaptic tracing combined with network calcium imaging

(Yonehara et al., 2013; Wertz et al., 2015) would be a powerful

approach.

Third question is: what kind of dendritic mechanisms in

PDS cells are involved in the integration of synaptic inputs?

The response properties of PDS cells seem to be predicted from

supra-linear summation of excitatory inputs (Muir et al., 2015).

Recording of neuronal membrane potentials as well as excitatory

and inhibitory synaptic currents by in vivo whole-cell patch-

clamp recordings (Haider et al., 2016; Adesnik, 2017; Petersen,

2017) may provide hints for the answer.

Fourth question is: what is the role of brain state on PDS cell

tuning? Recordings from CDS and PDS cells are often performed

in anesthetized animals (Movshon et al., 1985; Tinsley et al., 2003;

Smith et al., 2005; Solomon et al., 2011; Juavinett and Callaway,

2015; Palagina et al., 2017). However, it is now established that

sensory experiences are shaped by the level of arousal, alertness

and context (Albright and Stoner, 2002; Harris and Thiele, 2011;

Keller et al., 2012; Lee and Dan, 2012; Lee et al., 2014; McGinley

et al., 2015; Vinck et al., 2015). Motivating this question is

recordings from MT (Pack et al., 2001), where the fraction

of PDS cells were reduced in anesthetized animals compared

to awake animals. These findings may suggest existence of

top-down modulation of PDS cell tuning (Dent et al., 2010;

Zhang et al., 2014). However, it should be noted that these

findings have later been questioned in the field (Movshon et al.,

2003). Here it was proposed that use of non-additive plaids

could have affected the findings by Pack et al. (2001), leading

to the discrepancy with previous work (Rodman and Albright,

1989; Stoner and Albright, 1992). Currently, there is no evidence

that wakefulness changes the proportion of PDS cells in RL in

mice (Juavinett and Callaway, 2015). Future experiments could

address this question by performing population two photon

calcium imaging in awake mice, for example, in a closed loop

virtual reality, in which plaids motion coupled to locomotion

are presented (Harvey et al., 2009; Keller et al., 2012; Roth et al.,

2015).

Last question is: what is the role of PDS cells in perception and

behavior? Previous work has implicated MT in psychophysical

performance on object motion discrimination tasks (Newsome

et al., 1990) and eye movement control (Newsome et al., 1985).

However, whether PDS cells are the underlying biophysical

substrate for the ability to discriminate object motion is

unsettled (Tailby et al., 2010). Mice are capable of learning

to discriminate between orientations or random-dot motion

(Glickfeld et al., 2013b; Stirman et al., 2016b), allowing

the possibility to track neural discriminability and tuning

selectivity during learning of a visual task. We propose

experiments where mice are trained to learn to discriminate

plaid motion directions or global dot motion in more-or-

less noisy conditions (Newsome and Paré, 1988), while two

photon calcium imaging from PDS cells is simultaneously

obtained, to directly compare neurometric and psychometric

functions. Such experiments would provide correlational insights

to the involvement of PDS cells in successful object motion

discrimination and development of pattern motion selectivity

over the learning period. Causality could be tested by

single cell manipulation techniques such as two photon

holographic optogenetics while performing the task (Packer

et al., 2015; Carrillo-Reid et al., 2016; Dal Maschio et al.,

2017).

Chemical lesion of MT caused deficits in smooth pursuit eye

movements, important for following moving objects (Newsome

et al., 1985). In concert with this, MT is known to project

to several eye movement-related areas such as medial superior

temporal cortex and pretectal nucleus of the optic tract (Mustari

et al., 2009). In humans, perception of motion direction is

well matched with the direction of fixation eye movements

(Laubrock et al., 2008; Baker and Graf, 2010). Head or eye

movements of mice could be used as a proxy for the output

of cortical motion processing. Lastly, in a natural environment,
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global motion would be encountered frequently as an optic flow

when a mouse is coursing through the environment. It may be

important to bear the ethological point of view in mind when

investigating particular aspects of visual function in the particular

animalmodel employed (Huberman andNiell, 2011; Hillier et al.,

2017).

CONCLUSION

How PDS cells develop their distinct response properties to

single gratings and patterned plaids is still an open question.

Due to the rapidly evolving ability to interrogate neural

circuits and single neuron computations using genetic and

molecular techniques, PDS cells in mouse visual cortex are

the perfect arena for delineating and solving how individual

sensory features extracted by neuronal circuits in earlier brain

regions are integrated to build our rich cohesive sensory

experiences.
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