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Circuit Optimization: The State of the Art zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract-This paper reviews the current state of the art in circuit 

optimization, emphasizing techniques suitable for modern microwave CAD. 
It is directed at the solution of realistic design and modeling problems, 
addressing such concepts as physical tolerances and model uncertainties. A 
unified hierarchical treatment of circuit models forms the basis of the 
presentation. It exposes tolerance phenomena at different parameter/ 
response levels. The concepts of design centering, tolerance assignment, 
and postproduction tuning in relation to yield enhancement and cost 
reduction suitable for integrated circuits are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiscussed. Suitable techniques 
for optimization oriented worst-case and statistical design are reviewed. A 
generalized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlp centering algorithm is proposed and discussed. Multicircuit 
optimization directed at both CAD and robust device modeling is formal- 
ized. Tuning is addressed in some detail, both at the design stage and for 
production alignment. State-of-the-art gradient-based nonlinear optimiza- 
tion methods are reviewed, with emphasis given to recent, but well-tested, 
advances in minimax, I , ,  and I ,  optimization. lllustrative examples as well 
as a comprehensive bibliography are provided. 

I. INTRODUCTION 

OMPUTER-AIDED circuit optimization is certainly C one of the most active areas of interest. Its advances 
continue; hence the subject deserves regular review from 
time to time. The classic paper by Temes and Calahan in 
1967 [lo21 was one of the earliest to formally advocate the 
use of iterative optimization in circuit design. Techniques 
that were popular at the time, such as one-dimensional 
(single-parameter) search, the Fletcher-Powell procedure 
and the Remez method for Chebyshev approximation, 
were described in detail and well illustrated by circuit 
examples. Pioneering papers by Lasdon, Suchman, and 
Waren [73], [74], [lo81 demonstrated optimal design of 
linear arrays and filters using the penalty function ap- 
proach. Two papers in 1969 by Director and Rohrer [48], 
[49] originated the adjoint network approach to sensitivity 
calculations, greatly facilitating the use of powerful gradi- 
ent-based optimization methods. In the same period, the 
work by Bandler [4], [5] systematically treated the formula- 
tion of error functions, the least pth objective, nonlinear 
constraints, optimization methods, and circuit sensitivity 
analysis. 

Manuscript received May 4, 1987; revised August 20, 1987. This work 
was supported in part by the Natural Sciences and Engineering Research 
Council of Canada under Grant A7239 and in part by Optimization 
Systems Associates Inc. 

J. W. Bandler is with the Simulation Optimization Systems Research 
Laboratory and the Department of Electrical and Computer Engineering, 
McMaster University, Hamilton, Canada L8S 4L7. He is also with 
Optimization Systems Associates Inc., Dundas, Ontario, Canada L9H 6L1. 

S. H. Chen was with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt!!e Department of Electrical and Computer 
Engineering, McMaster University, Hamilton, Canada. He is now with 
Optimization Systems Associates Inc., Dundas, Ontario, Canada L9H 6L1. 

IEEE Log Number 8717974. 

Since then, advances have been made in several major 
directions. The development of large-scale network simula- 
tion and optimization techniques have been motivated by 
the requirements of the VLSI era. Approaches to realistic 
circuit design where design parameter tolerances and yield 
are taken into account have been pioneered by Elias [52] 
and Karafin [68] and furthered by many authors over the 
ensuing years. Optimization methods have evolved from 
simple, low-dimension-oriented algorithms into sophisti- 
cated and powerful ones. Highly effective and efficient 
solutions have been found for a large number of spe- 
cialized applications. The surveys by Calahan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 371, 
Charalambous [39], Bandler and Rizk [26], Hachtel and 
Sangiovanni-Vincentelli [63], and Brayton et al. [32] are 
especially relevant to circuit designers. 

In the present paper, we concentrate on aspects that are 
relevant to and necessary for the continuing move to 
optimization of increasingly more complex microwave cir- 
cuits, in particular to MMIC circuit modeling and design. 
Consequently, we emphasize optimization-oriented ap- 
proaches to deal more explicitly with process imprecision, 
manufacturing tolerances, model uncertainties, measure- 
ment errors, and so on. Such realistic considerations arise 
from design problems in which a large volume of produc- 
tion is envisaged, e.g., integrated circuits. They also arise 
from modeling problems in whch consistent and reliable 
results are expected despite measurement errors, structural 
limitations such as physically inaccessible nodes, and model 
approximations and simplifications. The effort to for- 
mulate and solve these problems represents one of the 
driving forces of theoretical study in the mathematics of 
circuit CAD. Another important impetus is provided by 
progress in computer hardware, resulting in drastic reduc- 
tion in the cost of mass computation. Finally, the continu- 
ing development of gradient-based optimization tech- 
niques has provided us with powerful tools. 

In this context, we review the following concepts: realis- 
tic representations of a circuit design and modeling prob- 
lem, nominal (single) circuit optimization, statistical circuit 
design, and multicircuit modeling, as well as recent gradi- 
ent-based optimization methods. 

Nominal design and modeling are the conventional ap- 
proaches used by microwave engineers. Here, we seek a 
single point in the space of variables selected for optimiza- 
tion which best meets a given set of performance specifica- 
tions (in design) or best matches a given set of response 
measurements (in modeling). A suitable scalar measure 
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of the deviation between responses and specifications 
which forms the objective function to be minimized 
is the ubiquitous least squares measure (see, for example, 
Morrison [83]), the more esoteric generalized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf p  objective 
(Charalambous [41]) or the minimax objective (Madsen 
et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. [80]). We observe here that the performance-driven 
(single-circuit) least squares approach that circuit design 
engineers have traditionally chosen has proved unsuccess- 
ful both in addressing design yield and in serious device 
modeling. 

Recognition that an actual realization of a nominal 
design is subject to fluctuation or deviation led, in the 
past, to the so-called sensitivity minimization approach 
(see, for example, Schoeffler [94] and Laker et al. [71]). 
Employed by filter designers, the approach involves mea- 
sures of performance sensitivity, typically first-order, that 
are included in the objective function. 

In reality, uncertainties which deteriorate performance 
may be due to physical (manufacturing, operating) toler- 
ances as well as to parasitic effects such as electromagnetic 
coupling between elements, dissipation, and dispersion 
(Bandler [6], Tromp [107]). In the design of substantially 
untunable circuits these phenomena lead to two important 
classes of problems: worst-case design and statistical de- 
sign. The main objective is the reduction of cost or the 
maximization of production yield. 

Worst-case design (Bandler et al. [23], [24]), in general, 
requires that all units meet the design specifications under 
all circumstances (i.e., a 100 percent yield), with or without 
tuning, depending on what is practical. In statistical design 

[l], [26], [30], [47], [97], [98], [loo], [ lol l  it is recognized 
that a yield of less than 100 percent is likely; therefore, 
with respect to an assumed probability distribution func- 
tion, yield is estimated and enhanced by optimization. 
Typically, we either attempt to center the design with fixed 
assumed tolerances or we attempt to optimally assign 
tolerances and/or design tunable elements to reduce pro- 
duction cost. 

What distinguishes all these problems from nominal 
designs or sensitivity minimization is the fact that a single 
design point is no longer of interest: a (tolerance) region of 
multiple possible outcomes is to be optimally located with 
respect to the acceptable (feasible, constraint) region. 

Modeling, often unjustifiably treated as if it were a 
special case of design, is particularly affected by uncertain- 
ties and errors at many levels. Unavoidable measurement 
errors, limited accessibility to measurement points, ap- 
proximate equivalent circuits, etc., result in nonunique and 
frequently inconsistent solutions. To overcome these frus- 
trations, we advocate a properly constituted multicircuit 
approach (Bandler et al. [12]). 

Our presentation is outlined as follows. 
In Section 11, in relation to a physical engineering sys- 

tem of interest, a typical hierarchy of simulation models 
and corresponding response and performance functions 
are introduced. Error functions arising from given specifi- 
cations and a vector of optimization variables are defined. 
Performance measures such as lp  objective functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( lp  

norms and generalized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, functions) are introduced and 
their properties discussed. 

We devote to Section I11 a brief review of the relatively 
well-known and successful approach of nominal circuit 
design optimization. 

In Section IV, uncertainties that exist in the physical 
system and at different levels of the model hierarchy are 
discussed and illustrated by a practical example. Different 
cases of multicircuit design, namely centering, tolerancing 
(optimal tolerance assignment), and tuning at the design 
stage, are identified. A multicircuit modeling approach and 
several possible applications are described. 

Some important and representative techniques in worst- 
case and statistical design are reviewed in Section V. These 
include the nonlinear programming approach to worst-case 
design (Bandler et al. [24], Polak [89]), simplicial (Director 
and Hachtel [47]) and multidimensional (Bandler and 
Abdel-Malek [7]) approximations of the acceptable region, 
the gravity method (Soin and Spence [98]), and the para- 
metric sampling method (Singhal and Pine1 [97]). A gener- 
alized l p  centering algorithm is proposed as a natural 
extension to 1, nominal design. It provides a unified 
formulation of yield enhancement for both the worst case 
and the case where yield is less than 100 percent. 

Illustrations of statistical design are given in Section VI. 
The studies in the last two decades on the theoretical 

and algorithmic aspects of optimization techniques have 
produced a great number of results. In particular, 
gradient-based optimization methods have gained increas- 
ing popularity in recent years for their effectiveness and 
efficiency. The essence of gradient-based l p  optimization 
methods is reviewed in Section VII. Emphasis is given to 
the trust region Gauss-Newton and the quasi-Newton 
algorithms (Madsen [78], Mor6 1821, Dennis and Mor6 

The subject of gradient calculation and approximation is 
[461). 

briefly discussed in Section VIII. 

11. VARIABLES AND FUNCTIONS 

In this section, we review some basic concepts of practi- 
cal circuit optimization. In particular, we identify a physi- 
cal system and its simulation models. We discuss a typical 
hierarchy of models and the associated designable parame- 
ters and response functions. We also define specifications, 
error functions, optimization variables and objective func- 
tions. 

A.  The Physical System 

The physical engineering system under consideration 
can be a network, a device, a process, and so on, which has 
both a fixed structure and given element types. We 
manipulate the system through some adjustable parame- 
ters contained in the column vector GM. The superscript M 
identifies concepts related to the physical system. Geomet- 
rical dimensions such as the width of a strip and the length 
of a waveguide section are examples of adjustable parame- 
ters. 
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In the production of integrated circuits, +”’ may include 
some fundamental variables which control, say, a doping 
or photomasking process and, consequently, determine the 
geometrical and electrical parameters of a chip. External 
controls, such as the biasing voltages applied to an active 
device, are also possible candidates for +’. 

The performance and characteristics of the system are 
described in terms of some measurable quantities. The 
usual frequency and transient responses are typical’ exam- 
ples. These measured responses, or simply measurements, 
are denoted by FM( +’). 

B. The Simulation Models 

In circuit optimization, some suitable models are used to 
simulate the physical system. Actually, models can be 
usefully defined at many levels. Tromp [106], [lo71 has 
considered an arbitrary number of levels (also see Bandler 
et al. [19]). Here, for simplicity, we consider a hierarchy of 
models consisting of four typical levels as 

F H =  F H ( F L )  

F L  = FL(  + H )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+”(+“)e (1) 

+L is a set of low-level model parameters. It is supposed 
to represent, as closely as possible, the adjustable parame- 
ters in the actual system, i.e., +’. +H defines a higher-level 
model, typically an equivalent circuit, with respect to a 
fixed topology. Usually, we use an equivalent circuit for 
the convenience of its analysis. The relationship between 
+L and +H is either derived from theory or given by a set 
of empirical formulas. 

Next on the hierarchy we define the model responses at 
two possible levels. The low-level external representation, 
denoted by PL,  can be the frequency-dependent complex 
scattering parameters, unterminated y-parameters, transfer 
function coefficients, etc. Although these quantities may or 
may not be directly measurable, they are very often used 
to represent a subsystem. The high-level responses F H  
directly correspond to the actual measured responses, 
namely FM,  which may be, for example, frequency re- 
sponses such as return loss, insertion loss, and group delay 
of a suitably terminated circuit. 

A realistic example of a one-section transformer on strip- 
line was originally considered by Bandler et al. [25]. The 
circuits and parameters, physical as well as model, are 
shown in Fig. 1. The physical parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+M (and the 
low-level model + L )  include strip widths, section lengths, 
dielectric constants, and strip and substrate thcknesses. 
The equivalent circuit has six parameters, considered as 
+H, including the effective line widths, junction parasitic 
inductances, and effective section length. The scattering 
matrix of the circuit with respect to idealized (matched) 
terminations is a candidate for a low-level external repre- 
sentation ( F L ) .  The reflection coefficient by taking into 
account the actual complex terminations could be a high- 
level response of interest ( F H ) .  

A B 

W 1  w 2  

where w is the strip width, I the length of the middle section, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, the 
dielectric constant, b the substrate thickness, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, the strip thickness. 
OM is represented in the simulation model by &. The high-level 
parameters of the equivalent circuit are 

where D is the effective linewidth, L the junction parasitic inductance, 
and I ,  the effective section length. Suitable empirical formulas that 
relate OL to OH can be found in [25]. 

For a particular case, we may choose a certain section of 
this hierarchy to form a design problem. We can choose 
either +L or +H as the designable parameters. Either F L  or 
F H  or a suitable combination of both may be selected as 
the response functions. Bearing this in mind, we simplify 
the notation by using + for the designable parameters and 
F for the response functions. 

C. Specifications and Error Functions 

The following discussion on specifications and error 
functions is based on presentations by Bandler [5], and 
Bandler and Rizk [26], where more exhaustive illustrations 
can be found. 

We express the desirable performance of the system by a 
set of specifications which are usually functions of certain 
independent variable(s) such as frequency, time, and tem- 
perature. In practice, we have to consider a discrete set of 
samples of the independent variable(s) such that satisfying 
the specifications at these points implies satisfying them 
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Fig. 2. Illustrations of (a) upper specifications, lower specifications, and 
the responses of circuits a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, (b) error functions corresponding to 
circuits a and b, (c) the acceptable region, and (d) generalized / p  

objective functions defined in (13). 

almost everywhere. Also, we may consider simultaneously 
more than one lund of response. Thus, without loss of 
generality, we denote a set of sampled specifications and 
the corresponding set of calculated response functions by, 
respectively, 

j = 1 , 2 , - .  * ,  m SJ , 
q( +), j = 1,2 ;  - , m .  (2) 

Error functions arise from the difference between the 
given specifications and the calculated responses. In order 
to formulate the error functions properly, we may wish to 
distinguish between having upper and lower specifications 
(windows) and having single specifications, as illustrated in 
Figs. 2(a) and 3(a). Sometimes the one-sidedness of upper 
and lower specifications is quite obvious, as in the case of 
designing a bandpass filter. On other occasions the distinc- 
tion is more subtle, since a single specification may as well 
be interpreted as a window having zero width. 

In the case of having single specifications, we define the 
error functions by 

. . , m (3) 

where wJ is a nonnegative weighting factor. 
We may also have an upper specification SuJ and a 

lower specification S/,. In this case we define the error 

eJ ( +) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, IF/ (+ ) - SJI, j = 

parameter space 

(empty acceptable region) 

aF 0 '  x b  

b O a  

,,L i ,  
l e  b I 1  i i  

Fig. 3. Illustrations of (a) a discretized single specification and two 
discrete single specifications (e.g., expected parameter values to be 
matched), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well as the responses of circuits a and b,  (b) error 
functions related to circuits zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and b, (c) the (empty) acceptable region 
(i.e., a perfect match is not possible) and (d) the corresponding lp 
norms. 

functions as 

. U , ( + >  = w u J ( 5 ( + ) - s U J ) 7  j E J u  

e , ( + >  = w / , ( q ( + ) - s / , ) y  J E J /  (4) 

where wuJ and wIJ are nonnegative weighting factors. The 
index sets as defined by 

J, = { j l ,  j * , *  . )  j k }  

J/ = { &+I7  j k + 2 , .  * * 9 jm 1 ( 5 )  

are not necessarily disjoint (i.e., we may have simultaneous 
specifications). In order to have a set of uniformly indexed 
error functions, we let 

. .  e,  = e , , ( + ) ,  J =  J , ,  i = 1 , 2 ; . . , k  

e , = - e , J ( + ) ,  j = j , ,  i = k + l , k + 2 , . . . , m .  ( 6 )  

The responses corresponding to the single specifications 
can be real or complex, whereas upper and lower specifica- 
tions are applicable to real responses only. Notice that, in 
either case, the error functions are real. Clearly, a positive 
(nonpositive) error function indicates a violation (satisfac- 
tion) of the corresponding specification. Figs. 2(b) and 
3(b) depict the concept of error functions. 

D. Optimization Variables and Objective Functions 

lem by the following statement: 
Mathematically, we abstract a circuit optimization prob- 

(7) minimize U( x) 

where x is a set of optimization variables and U ( x )  a 
scalar objective function. 

Optimization variables and model parameters are two 
separate concepts. As will be elaborated on later in this 
paper, x may contain a subset of + which may have been 
normalized or transformed, it may include some statistical 
variables of interest, several parameters in + may be tied 
to one variable in x, and so on. 

X 
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Typically, the objective function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) is closely related 

to an lp  norm or a generalized l p  function of e(+) .  We 
shall review the definitions of such lp functions and dis- 
cuss their appropriate use in different contexts. 

E. The l p  Norms 

The lp norm (Temes and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZai [103]) of e is defined as 

l / P  

I I ~ I I ~ =  C IejIp * (8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[;rl I 
It provides a scalar measure of the deviations of the 

model responses from the specifications. Least-squares ( I , )  
is perhaps the most well-known and widely used norm 
(Morrison [83]), which is 

llell2 = [ ~ l ~ e j 1 2 ] 1 ’ 2 .  (9) 

The 1 ,  objective function is differentiable and its gradi- 
ent can be easily obtained from the partial derivatives of e. 
Partly due to this property, a large variety of I, opti- 
mization techniques have been developed and popularly 
implemented. For example, the earlier versions of the 
commercial CAD packages TOUCHSTONE [ 1041 and 
SUPER-COMPACT [99] have provided designers solely 
the least-squares objective. 

The parameter p has an important implication. By 
choosing a large (small) value for p ,  we in effect place 
more emphasis on those error functions (e j ’s )  that have 
larger (smaller) values. By letting p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO we have the 
minimax norm 

llellm = maxlejl (10) 
J 

which directs all the attention to the worst case and the 
other errors are in effect ignored. Minimax optimization is 
extensively employed in circuit design where we wish to 
satisfy the specifications in an optimal equal-ripple manner 

PI, [13l, [14], 
On the other hand, the use of the I, norm, as defined by 

[4Ol, [42], [65], [67], [go], [85]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m 

IIeIIl= C IejI (11) 
;=1 

implies attaching more importance to the error functions 
that are closer to zero. This property has led to the 
application of I, to data-fitting in the presence of gross 
errors [22], [29], [66], [86] and, more recently, to fault 
location [8], [9], [27] and robust device modeling [12]. 

Notice that neither llellm nor llelll is differentiable in 
the ordinary sense. Therefore, their minimization requires 
algorithms that are much more sophisticated than those 
for the 1, optimization. 

F. The One-sided and Generalized lp  Functions 

By using an lp  norm, we try to minimize the errors 
towards a zero value. In cases where we have upper and 
lower specifications, a negative value of ej simply indicates 
that the specification is exceeded at that point which, in a 

sense, is better than having ej = 0. Ths  fact leads to the 
one-sided lp function defined by 

l / P  

~ p ’ ( e >  = C IejIp (12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ J E J  1 

where J = { j le ,  2 O}. Actually, if we define 
max { ej ,O} ,  then H,’(e) = [le+ [ I p .  

use of a generalized lp function defined by 

e,’ = 

Bandler and Charalambous [lo], [41] have proposed the 

H l  (e )  if the set J is not empty 
(13) Hp(e) = H; ( e )  otherwise i 

where 

Hp-(e)  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[;l ( - e j ) - ’  (14) 

In other words, when at least one of the ej is nonnegative 
we use H i ,  and Hp- is defined if all the error functions 
have become negative. 

Compared to (12), the generalized l p  function has an 
advantage in the fact that it is meaningfully defined for the 
case where all the e, are negative. This permits its minimi- 
zation to proceed even after all the specifications have 
been met, so that the specifications may be further ex- 
ceeded. 

A classical example is the design of Chebyshev-type 
bandpass filters, where we have to minimize the gener- 
alized minimax function 

Hm ( e ) = max { ej } . (15) 
J 

The current Version 1.5 of TOUCHSTONE [lo51 offers 
the generalized lp optimization techniques, including 
minimax. 

G. The Acceptable Region 

We use H ( e )  as a generic notation for Ilellp, H,+(e),  
and Hp(e ) .  The sign of H ( e ( + ) )  indicates whether or not 
all the specifications are satisfied by +. An acceptable 
region is defined as 

R ,  = { +IH(e(+)) 01 (16) 

Figs. 2(c), 2(d), 3(c), and 3(d) depict the l p  functions and 
the acceptable regions. 

111. NOMINAL CIRCUIT OPTIMIZATION 

In a nominal design, without considering tolerances (i.e., 
assuming that modeling and manufacturing can be done 
with absolute accuracy), we seek a single set of parameters, 
called a nominal point and denoted by +O, which satisfies 
the specifications. Furthermore, if we consider the func- 
tional relationship of + H =  +”(+“) to be precise, then it 
does not really matter at which level the design is con- 
ceived. In fact, traditionally it is often oriented to an 
equivalent circuit. A classical case is network synthesis 

’ 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+H,o is obtained through the use of an equivalent 
circuit and/or a transfer function. A low-level model +L,o 

is then calculated from +H,o, typically with the help of an 
empirical formula (e.g., the number of turns of a coil is 
calculated for a given inductance). Finally, we try to 

realize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+L,o by its physical counterpart zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+',o. 
With the tool of mathematical optimization, the nominal 

point 9' (at a chosen level) is obtained through the mini- 
mization of U( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx), where the objective function is typically 
defined as an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlp  function H ( e ) .  The vector x contains all 
the elements of or a subset of the elements of +'. It is a 
common practice to have some of the variables normal- 
ized. It is also common to have several model parameters 
tied to a single variable. This is true, e.g., for symmetrical 
circuit structures but, most importantly, it is a fact of life 
in integrated circuits. Indeed, such dependencies should be 
taken into account both in design and in modeling to 
reduce the dimensionality. The minimax optimization of 
manifold multiplexers as described by Bandler et al. [18], 
[22], [28] provides an excellent illustration of large-scale 
nominal design of microwave circuits. 

Traditionally, the approach of nominal design has been 
extended to solving modeling problems. A set of measure- 
ments made on the physical system serves as single specifi- 
cations. Error functions are created from the differences 
between the calculated responses F( +') and the measured 
responses F M .  By minimizing an l p  norm of the error 
functions, we attempt to identify a set of model parameters 
9' such that I;(+') best matches FM.  This is known as 
data fitting or parameter identification. 

Such a casual treatment of modeling as if it were a 
special case of design is often unjustifiable, due to the lack 
of consideration to the uniqueness of the solution. In 
design, one satisfactory nominal point, possibly out of 
many feasible solutions, may suffice. In modeling, how- 
ever, the uniqueness of the solution is almost always 
essential to the problem. Affected by uncertainties at many 
levels, unavoidable measurement errors and limited acces- 
sibility to measurement points, the model obtained by a 
nominal optimization is often nonunique and unreliable. 
To overcome these frustrations, a recent multicircuit ap- 
proach will be described in Section IV. 

IV. A MULTICIRCUIT APPROACH 

The approach of nominal circuit optimization, which we 
have described in Section 111, focuses attention on a cer- 
tain kind of idealized situation. In reality, unfortunately, 
there are many uncertainties to be accounted for. For the 
physical system, without going into too many details, 
consider 

F M = F M , o ( + M ) + A F M  

where AFM represents measurement errors, GM,' a nomi- 
nal value for OM, and AGM some physical (manufacturing, 
operating) tolerances. 

For simulation purposes, we may consider a realistic 
representation of the hierarchy of possible models as 

F H =  FH, ' (FL)+  AFH 

F L  = FL.'( O H )  + AFL 

+ H =  +H,'( + L )  + A+H 

+L = +L," + A+L (18) 

where GL*', +H.o, FL,', and PH,' are nominal models 
applicable at different levels. A+L, A+H, AFL, and AFH 
represent uncertainties or inaccuracies associated with the 
respective models. corresponds to the tolerances A+M. 
A+H may be due to the approximate nature of an empirical 
formula. Parasitic effects which are not adequately mod- 
eled in GH will contribute to AFL, and finally we attribute 
anything else that causes a mismatch between FH,' and 
FM.' to AFH.  

These concepts can be illustrated by the one-section 
stripline transformer example [25] which we have consid- 
ered in Section 11. Tolerances may be imposed on the 
physical parameters including the strip widths and thick- 
nesses, the dielectric 'constants, the section length and 
substrate thicknesses (see Fig. 1). Such tolerances corre- 
spond to A+M and are represented in the model by A+L. 
We may also use AGH to represent uncertainties associated 
with the empirical formulas which relate the physical 
parameters to the equivalent circuit parameters (the effec- 
tive line widths, the junction inductances, and the effective 
section length). Mismatches in the terminations at differ- 
ent frequencies may be estimated by AFH ( F H  being the 
actual reflection coefficient; see [25] for more details). 

The distinction between different levels of model uncer- 
tainties can be quite subtle. As an example, consider the 
parasitic resistance r associated with an inductor whose 
inductance is L. Both L and r are functions of the 
number of turns of a coil (which is a physical parameter). 
Depending on whether or not r is modeled by the equiv- 
alent circuit (i.e., whether or not r is included in + H ) ,  the 
uncertainty associated with r may appear in A+H or in 
AFL.  

When such uncertainties are present, a single nominal 
model often fails to represent satisfactorily the physical 
reality. One effective solution to the problem is to simulta- 
neously consider multiple circuits. We discuss the conse- 
quences for design and modeling separately. 

A .  Multicircuit Design 

Our primary concern is to improve production yield and 
reduce cost in the presence of tolerances A+L and model 
uncertainties A+H. First of all, we represent a realistic 
situation by multiple circuits as 

+k = +' + S k ,  k = 1,2, * . . , K (19) 

where +', +k ,  and s k  are generic notation for the nominal 
parameters, the k th set of parameters, and a deviate due to 
the uncertainties, respectively. A more elaborate definition 
is developed as we proceed. 
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high yield 

Fig. 4. Three nominal points and the related yield. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For each circuit, we define an acceptance index by 

where H(e) 0, defined in (13), indicates satisfaction of 

the specifications by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+. An estimate of the yield is given by 
the percentage of acceptable samples out of the total, as 

The merit of a design can then be judged more realistically 
according to the yield it promises, as illustrated in Fig. 4. 
Now we shall have a closer look at the definition of 
multiple circuits. 

In the Monte Carlo method the deviates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs k  are con- 
structed by generating random numbers using a physical 
process or arithmetical algorithms. Typically, we assume a 
statistical distribution for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA+L, denoted by D L( E ~ )  where 

is a vector of tolerance variables. For example, we may 
consider a multidimensional uniform distribution on 
[ - E ~ ,  E ~ ] .  Similarly, we assume a D H ( ~ H )  for A+H. The 
uniform and Gaussian (normal) distributions are il- 
lustrated in Fig. 5. 

At the low level, consider 

+ L , k = + L , o + ~ L , k ,  k = 1 , 2 , . . - ,  K L  (22)  

where s ~ , ~  are samples from DL.  At the higher level, we 
have, for each k ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 
uniform rtl 

I 1 I + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

A Gaussian 

/I\ 0 

(b) 

Fig. 5. Typical tolerance distributions: uniform and Gaussian (normal). 

where 

+ H , O  = + K O (  + L O )  

(24) S H , k , i ,  + H , O ( + L , k ) -  +H,O(+L,O)+ 8 k - i  

with tik,' being samples from D H .  
One might propose a distribution for ~ ~ 3 ~ 7 '  which pre- 

sumably encompasses the effect of distribution D L  and 
distribution D H .  But, while we may reasonably assume 
simple and independent distributions for A+L and A+H, 
the compound distribution is likely to be complicated and 
correlated. 

B. Centering, Tolerancing, and Tuning 

Again, in order to simplify the notation, we use +' for 
the nominal circuit and E for the tolerance variables. 

An important problem involves design centering with 
fixed tolerances, usually relative to corresponding nominal 
values. We call this the fixed tolerance problem (FTP). The 
optimization variables are elements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+O, the elements of 
E are constant or dependent on the variables, and the 
objective is to improve the yield. Incidentally, the nominal 
optimization problem, i.e., the traditional design problem, 
is sometimes referred to as the zero tolerance problem 
(ZTP). 

Since imposing tight tolerances on the parameters will 
increase the cost of component fabrication or process 
operation, we may attempt to maximize the allowable 
tolerances subject to an acceptable yield. In this case both 
4' and E may be considered as variables. Such a problem 
is referred to as optimal tolerancing, optimal tolerance 
assignment, or the variable tolerance problem (VTP). 

Tuning some components of GM after production, 
whether by the manufacturer or by a customer, is quite 
commonly used as a means of improving the yield. Ths  
process can also be simulated using the model by introduc- 
ing a vector of designable tuning adjustments T~ for each 
circuit, as 

Gk = +O + s k  + T ~ ,  k = 1 , 2 , *  * e ,  K .  (25) 

We have to determine, through optimization, the value of 



BANDLER AND CHEN: CIRCUIT OPTIMIZATION: STATE OF THE ART zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

parameter space 

nontunable points 

Q) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 

t 
c 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t tunable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 6. Illustrations of tuning: (a) both parameters are tunable for a 
case in which the probability that an untuned design meets the specifi- 
cations is very low and (b) only one parameter is tunable. 

T such that the specifications will be satisfied at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@k which 
may otherwise be unacceptable, as depicted in Figs. 6 and 
7. The introduction of tuning, on the other hand, also 
increases design complexity and manufacturing cost. We 
seek a suitable compromise by solving an optimization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'2  

. I  I 

toleranced 

431 

8, 

tuning range 

8, 

tuning 

1 
0 

8 
0 

I 41 
( 4  

Fig. 7. An illustration of multicircuit design considering eight circuit 
outcomes. is toleranced and +2 is tunable. (a) Without tuning the 
yield is 2/8 (25 percent). @) Tuning on & is restricted to a small 
range. The improved yield is 4/8 (50 percent). (c) A 75 percent yield is 
achieved by allowing a large tuning range. 

From nominal design, centering, optimal tolerancing, to 
optimal tuning, we have defined a range of problems 
which lead to increasingly improved yield but, on the other 
hand, correspond to increasing complexity. Some specific 
formulations are discussed in Section V. Analogously to 
ZTP, FTP, and VTP, we can define zero tuning, fixed 

problem in which T are treated as part of the variables. tuning, and variable tuning problems [20]. 
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discussed under the following categories. 
The uncertainties that affect circuit modeling can be 

4; 

1) Measurement errors will inevitably exist in practice, 
as represented by A F M  in (17): F M =  FM*'(+")+ 

2) Even without measurement errors, the calculated re- 
sponse FH,' may never be able to match FMv0 per- 
fectly, due to, for example, the use of a model of 
insufficient order or inadequate complexity. Such an 

4; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
AF". 

4: - 

I I I 
41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkk4: *41 4: 

inherent mismatch is accounted for in (18) by F H =  
FH>' + A F H .  

3) Even if neither A F M  nor A F H  exists so that FH,' = (a) ( b )  

F", we may still not be able to uniquely identify + 
from the set of measurements that has been selected. 
This happens when the system of (generally nonlin- 
ear) equations FHs0(+)  - F M  = 0, where F M  is the 
data, is underdetermined. Typically, this problem 
occurs when, for any reason, many internal nodes are 
inaccessible to direct measurement. An overcom- 
plicated equivalent circuit, including unknown para- 
sitic elements, is frequently at the heart of this phe- 
nomenon. 

4) The parasitic effects that are not adequately modeled 
by +H contribute to the uncertainty AFL.  This is 
another source of interference with the modeling 
process. 

First we consider the case in which modeling is applied 
to obtain a suitable + such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI;"(+) approximates F M .  
The nominal circuit approach may be able to cope with the 
uncertainties in 1) and 2), and comes up with a + which 
minimizes the errors A F M  and A F H  in a certain sense. 
But it will not be able to overcome the problem of unique- 
ness. In practice, we are often unable to determine unam- 
biguously the identifiability of a system, because all these 
uncertainties can be present at the same time. There will 
be, typically, a family of solutions which produce reason- 
able and similar matches between the measured and the 
calculated responses. We cannot, therefore, rely on any 
particular set of parameters. 

The approach of multicircuit modeling by Bandler et al. 
[12] can be used to overcome these difficulties. Multiple 
circuits are created by making deliberate adjustments on 
the physical parameters +M. For example, we can change 
the biasing conditions for an active device and obtain 
multiple sets of measurements. By doing so, we introduce 
perturbations to the model which cause some parameters 
in + to change by an unknown amount. For this approach 
to be successful, each physical adjustment should produce 
changes in only a few parameters in +. 

Although we do not know the changes in + quantita- 
tively, it is often possible to identify which model parame- 
ters may have been affected by the physical adjustments. 
Such a qualitative knowledge may be apparent from the 
definition of the model or it may come from practical 
experience. In the attempt to process multiple circuits 

Fig. 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn illustration of multicircuit modeling. Three circuits are 
created by making two physical adjustments. Assume that we know 
that $1 should not be affected by the physical adjustments. CO, C', 
and C2 are contours of the error functions corresponding to the three 
circuits. (a) By treating the three circuits separately, we obtain +', +', 
and 0'. $:, &, and $! turn out to have different values (which is 
inconsistent with our knowledge) because of uncertainties. (b) Con- 
sistent results can be obtained by defining as a common variable 
and processing three circuits simultaneously. 

simultaneously, we define those model parameters that are 
not supposed to change as common variables and, at the 
same time, allow the others to vary between different 
circuits. By doing so, we force the solution to exhibit the 
desired consistency and, therefore, improve the reliability 
of the result. In other words, from a family of possible 
solutions we select the one that conforms to the topologi- 
cal constraints. Bandler et al. have shown an example [12, 
Section 111-A] in which + can not be uniquely identified 
due to inaccessible nodes. The problem was effectively 
addressed using the multicircuit approach. 

To formulate this mathematically, let 

where +: contains the common variables and +: contains 
the variables which are allowed to vary between the k th 
circuit and the reference circuit 9'. We then define the 
optimization variables by 

and state the optimization problem as to 

where 

f = [er( +') eT( 4') . eT( +K)] '. 

Although any l p  norm may be used, the unique property 
of I ,  discussed in detail by Bandler et al. [12] can be 
exploited to great advantage. The concept of common and 
independent variables is depicted in Fig. 8. 

Now, suppose that we do not have a clear idea about 
which model parameters may have been affected by the 
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adjustment on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGM. In this case, we let 

and change the objective function to an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl p  norm of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[e'( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$0) e e'( +'I al(+l - $0) T .  . a" ( +" - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+o) '1 ' 

(31) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal, az,- a ,  a' are nonnegative multipliers (weights). 
Using this formulation, while minimizing the errors e, 

we penalize the objective function for any deviates be- 
tween +k and +O, since our only available knowledge is 
that only a few parameters in +k should have any signifi- 
cant changes. To be effective, an I ,  norm should be used. 
A similar principle has been successfully applied to the 
analog circuit fault location problem 191, [27]. 

A practical application to FET modeling has been de- 
scribed by Bandler et al. in [16], where multiple circuits 
were created by taking three sets of actual measurements 
under different biasing conditions. 

Another important application of multicircuit modeling 
is to create analytical formulas which link the model + to 
the actual physical parameters GM. Such formulas will 
become extremely useful in guiding an actual production 
alignment or tuning procedure. A sequence of adjustments 
on +M can be systematically made and multiple sets of 
measurements are taken. By nominal circuit optimization, 
these measurements would be processed separately to ob- 
tain a set of static models. In the presence of uncertainties, 
a single change in 4"' may seem to cause fluctuations in all 
the model parameters. Obviously, such results are of very 
little use. In contrast, multicircuit modeling is more likely 
to produce models that are consistent and reliable. Since 
the measurements are made systematically, it certainly 
makes sense to process them simultaneously. Actually, the 
variables need not be equivalent circuit model parameters. 
They can include coefficients of a proposed formula as 
well. 

An example of establishing an experimental relationship 
between the physical and model parameters for a multicav- 
ity filter using multiple sets of actual measurements has 
been described by Daijavad [44]. 

The multicircuit approach can also be applied to model 
verification. This is typically related to cases where the 
parasitic uncertainty AFL has put the validity of a model 
in doubt. Instead of defining common and independent 
variables explicitly, we use the formulation of (30) and 
(31). If consistent results are obtained, then our confidence 
in the model is strengthened. Otherwise we should prob- 
ably reject the current model and consider representing the 
parasitics more adequately. A convincing example has 
been demonstrated by Bandler et al. [12, section V, test 21. 

The commercial packages TOUCHSTONE [ 1041, [lo51 
and SUPER-COMPACT [99] allow a hierarchy of circuit 
blocks and permit the use of variable labels. Multiple 
circuits and common variables can be easily defined utiliz- 
ing these features. 

I I b 
0 100% 

yield 

Fig. 9. A typical cost-versus-yield curve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[97] 

V. TECHNIQUES FOR STATISTICAL DESIGN 

In Section IV we have generally discussed uncertainties 
at different levels, and, in particular, we have expressed 
our desire to maximize yield in the presence of uncertain- 
ties. Optimal tolerancing and tuning have also been identi- 
fied as means to further reduce cost in the actual produc- 
tion. 

We begin this section with a review of some existing 
techniques for statistical design. Some of the earliest work 
in this area came from Karafin [68], Pinel and Roberts 
[87], Butler [36], Elias [52], Bandler, Liu, and Tromp [24]. 
During the years, significant contributions have been made 
by, among others, Director and Hachtel[47] (the simplicial 
method), Soin and Spence [98] (the gravity method), Band- 
ler and Abdel-Malek [l], [2], [7] (multidimensional ap- 
proximation), Biernacki and Styblinski [30] (dynamic con- 
straint approximation), Polak and Sangiovanni-Vincentelli 
[90] (a method using outer approximation), as well as 
Singhal and Pinel [97] (the parametric sampling method). 
Following the review, we propose a generalized lp  center- 
ing algorithm. 

A commonly assumed cost versus yield curve [97] is 
shown in Fig. 9. Actually, hard data are difficult to obtain, 
and, as we shall see, rather abstract objective functions are 
often selected for the tolerance-yield design problem. Fig. 
10 shows a design with a 100 percent yield and a second 
design corresponding to the minimum cost. 

A.  Worst-case Design 

By this approach, we attempt to achieve a 100 percent 
yield. Since it means that the specifications have to be 
satisfied for all the possible outcomes, we need to consider 
only the worst cases. 

Bandler et al. [23], [24] have formulated it as a nonlinear 
programming problem 

minimize C ( x ) 
X 

subject to e( + k )  6 0, for all k (32) 

where C(x) is a suitable cost function and the points +k 



434 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 2, FEBRUARY 1988 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
parameter space 

maximum yield 

(looyo) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ 

minimum cost 
( ~ 1 0 0 %  yield) 

Fig. 10. A maximum yield design and a minimum cost design. 

are the worst cases. For instance, we may have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

C(x )=  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI+ b,t, (33) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE I ,  E l  1 E It 

where I ,  and I ,  are index sets identifying the toleranced 
and tunable parameters, respectively. E, and t ,  are the 
tolerance and the tuning range, respectively, associated 
with the ith parameter. a ,  and b, are nonnegative weights. 
A cost function can also be defined for relative tolerances 
and tuning by including +: into (33). A critical part of thts 
approach is the determination of the worst cases. Vertices 
of the tolerance region, for example, are possible candi- 
dates for the worst cases by assuming one-dimensional 
convexity. The yield function does not enter (32) ex- 
plicitly; instead, a 100 percent yield is implied by a feasible 
solution. 

Bandler and Charalambous [ l l ]  have demonstrated a 
solution to (32) by minimax optimization. Polak and 
Sangiovanni-Vincentelli [90] have proposed a different but 
equivalent formulation which involves a nondifferentiable 
optimization. 

A worst-case design is not always appropriate. While 
attempting to obtain a 100 percent yield, the worst-case 
approach may necessitate unrealistically tight tolerances, 
or demand excessive tuning. In either case, the cost may be 
too high. A perfect 100 percent yield may not even be 
realizable. 

B. Methods of Approximating the Acceptable Region 

Since yield is given by the percentage of model out- 
comes that fall into the acceptable region, we may wish to 

find an approximation to that region. The acceptable 
region has been defined in (16) as R ,  = { +IH(e(+))  < O}. 

Director and Hachtel [47] have devised a simplicial 
approximation approach. It begins by determining points 
+k on the boundary of R ,  which is given by a,= 
{ +lH(e(+))  = O}. The convex hull of these points forms a 
polyhedron. The largest hypersphere inscribed within the 
polyhedron gives an approximation to R ,  and is found by 
solving a linear programming problem. Using line searches, 
more points on the boundary are located and the poly- 
hedron is expanded. The process thus provides a monoton- 
ically increasing lower bound on the yield. The center and 
radius of the hypersphere can be used to determine the 
centered nominal point and the tolerances, respectively. 
The application of this method is, however, severely limited 
by the assumption of a convex acceptable region. 

Bandler and Abdel-Malek [l], [2], [7] have presented a 
method which approximates each ej( +) by a low-order 
multidimensional polynomial. Model simulations are per- 
formed at some +k selected around a reference point. 
From the values of e j (+k )  the coefficients of the ap- 
proximating polynomial are determined by solving a linear 
system of equations. Appropriate linear cuts are con- 
structed to approximate the boundary 3,. The yield is 
estimated through evaluation of the hypervolumes that lie 
outside R ,  but inside the tolerance region. In critical 
regions these polynomial approximations are updated dur- 
ing optimization. The one-dimensional convexity assump- 
tion for this method is much less restrictive than the 
multidimensional convexity required by the simplicial ap- 
proach. Sensitivities for the estimated yield are also avail- 
able. 

Recently, Biemaclu and Styblinski [30] have extended 
the work on multidimensional polynomial approxima- 
tion by considering a dynamic constraint approximation 
scheme. It avoids the large number of base points required 
for a full quadratic interpolation by selecting a maximally 
flat interpolation. During optimization, whenever a new 
base point is added, the approximation is updated. It 
shows improved accuracy compared with a linear model as 
well as reduced computational effort compared with a full 
quadratic model. 

C. The Gravity Method 

Soin and Spence [98] proposed a statistical exploration 
approach. Based on a Monte Carlo analysis, the centers of 
gravity of the failed and passed samples are determined as, 
respectively, 

Gf  = [ k € J  c + k ] / K , ,  

+ p  = [ ; J + k ] / K , ,  (34) 

where J is the index set identifying the failed samples. 
K,,, and Kpas are the numbers of failed and passed 
samples, respectively. The nominal point 9' is then ad- 
justed along the direction s = + P  - +f  using a line search. 
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This algorithm is simple but also heuristic. It is not clear as 
to how the gravity centers are related to the yield in a 
general multidimensional problem. sampling method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. The Parametric Sampling Method 

The parametric sampling approach by Singha1 and Pinel 
[97] has provided another promising direction. A continu- 
ous estimate of yield (as opposed to the Monte Carlo 
estimate, using discrete samples) is given by the following 

integral: 

through optimization. Variable tuning ranges (in order to 
minimize cost) cannot be accommodated by the parametric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E. Generalized lp  Centering 

Here, we propose a generaked lp  centering algorithm 
which encompasses, in a unified formulation, problems of 
100 percent yield (worst-case design) and less than 100 
percent yield. 

First, we consider the centering problem where we have 
fixed tolerances and no tuning. Only the nominal point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+O 

is to be optimized. Define (35) 

f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [eT(  +') . . . eT( + K ) ]  (38) where I,(+) is the acceptance index defined in (20) and 
r( +, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) the parameter distribution density function whch 
depends on the design variables x (e.g., the nominal point 
specifies the mean value and the tolerances control the 

as the set of multicircuit error functions. We can achieve a 
worst-case minimax design by 

standard deviations). Normally, in order to estimate the 
yield, we generate samples zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+k, k = 1,2; . ., K ,  from the 
component density r, perform K circuit analyses, and 
then take the average of For each new set of 
variables x we would have a new density function, and 
therefore, the sampling and circuit analyses have to be 
repeated. 

The parametric sampling method is based on the con- 
cept of importance sampling as 

where h ( + )  is called the sampling density function. The 
samples +k are generated from h ( + )  instead of r(+, x). 
An estimate of the yield is made as 

1 K  

=-  c I , ( + k ) > W ( + k , X ) .  (37) 
k = l  

The weights W(+k, x) compensate for the use of a sam- 
pling density different from the component density. 

This approach has two clear advantages. First, once the 
indices Za( O k )  are calculated, no more model simulations 
are required when x is changed. Furthermore, if r is a 
differentiable density function, then gradients of the esti- 
mated yield are readily available. Hence, powerful optimi- 
zation techniques may be employed. In practice, the al- 
gorithm starts with a large number of base points sampled 
from h ( + )  to construct the initial databank. To maintain a 
sufficient accuracy, the databank needs to be updated by 
adding new samples during optimization. 

This approach, however, cannot be applied to nondif- 
ferentiable density functions such as uniform, discrete, and 
truncated distributions. It can be extended to include some 
tunable parameters if the tuning ranges are fixed or prac- 
tically unlimited. In this case the acceptance index 
is defined as 1 if +k is acceptable after tuning. If +k is 
unacceptable before tuning, then whether it can be tuned 
and, if so, by how much, may have to be determined 

minimize ~ ( x )  = H,( f ) = m y  m v  [ e , (  + k ) )  (39) 

where the multiple circuits cpk are related to according 
to (19). 

If a 100 percent yield is not attainable, we would natu- 
rally look for a solution where the specifications are met 
by as many points (out of K circuits) as possible. For this 
purpose minimax is not a proper choice, since unless and 
until the worst case is dealt with nothng else seems to 
matter. We may attempt to use a generalized I, or I, 
function (i.e., H2( f )  or HI(  f)) instead of H,( f )  in (39), 
hoping to reduce the emphasis given to the worst case. 

In order to gain more insight into the problem, we 
define, for each +k,  a scalar function which will indicate 
directly whether +k satisfies or violates the specifications 
and by how much. For this purpose, we choose a set of 
generalized lp functions as 

X J 

U k ( X ) = H p ( e ( + k ) ) ,  k = 1 7 2 , . * * ,  K .  (40) 

The sign of uk indicates the acceptability of +k while the 
magnitude of u k  measures, so to speak, the distance be- 
tween +k and the boundary of the acceptable region. For 
example, with p = m  the distance is measured in the 
worst-case sense whereas for p = 2 it will be closer to a 
Euclidean norm. 

We can define a generalized lp  centering as 

minimize X U( x )  = H ~ (  U( x)) (41) 

where 

and al, a,; . ., aK are a set of positive multipliers. With 
different p and q it leads to a variety of algorithms for 
yield enhancement. We discuss separately the case where a 
nonpositive U( x) exists and the case where we always have 

In the first case, the existence of a U ( x )  d 0 indicates 
that a 100 percent yield is attainable. We should point out 

U ( X )  > 0. 
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that for a given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx the sign of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ( x )  does not depend on p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAak. However, the optimal solution x at which U ( x )  
attains its minimum is dependent on p ,  q, and a. This 
means that using any values of p ,  q, and a we will be able 
to achieve a U ( x )  G 0 (i.e., to achieve a 100 percent yield). 
Furthermore, by using different p ,  q, and a, we influence 
the centering of 4'. Interestingly, the worst-case centering 
(39) becomes a special case by letting both p ,  q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 and 
using unit multipliers. 

Now consider the case where the optimal yield is less 
than 100 percent. In this case we propose the use of p =1 
and q = 1 in (41). Also, given a starting point no, we define 
the set of multipliers by 

( Y k = l / I u k ( x o ) I ,  k=1,2 ;* . ,K.  (43) 

Our proposition is based on the following reasoning (a 
more complete theoretical justification is reserved for a 
future paper). 

Consider the l p  sum given by 

[ u k < x > l p  (44) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k € J  

where J = { klu, > O}. As p -+ 0 (44) approaches the total 
number of unacceptable circuits which we wish to mini- 
mize. The smallest p that gives a convex approximation is 
1. This leads to the generalized I, objective function given 

by 

= c = O L L U k ( I ) -  (45) 
k € J  k € J  

With the multipliers defined by (43), the value of the 
objective function at the starting point, namely U ( x , ) ,  is 
precisely the count of unacceptable circuits. Also, notice 
that the magnitude of uk measures the closeness of # to 
the acceptable region. A small lukl indicates that Ok is 
close to satisfying or violating the specifications. There- 
fore, we assign a large multiplier to it so that more 
emphasis will be given to #' during optimization. On the 
other hand, we de-emphasize those points that are far 
away from the boundary of the acceptable region because 
their contributions to the yield are less likely to change. 

One important feature of this approach is its capability 
of accommodating arbitrary tolerance distributions, since 
they only influence the generation of +k. The numerical 
results we have obtained are very promising. The gener- 
alized l p  centering algorithm can also be extended to 
include variable tolerances and tuning. 

VI. EXAMPLES OF STATISTICAL DESIGN 

Example 1 
The classical two-section 10 : 1 transmission line trans- 

former, originally proposed by Bandler et al. [23] to test 
minimax optimizers, is a good example for illustrating 
graphically the basic ideas of centering and tolerancing. 
An upper specification on the reflection coefficient as 
IpI < 0.55 and 11 frequencies {0.5,0.6; . .,1.5 GHz} are 
considered. The lengths of the transmission lines are fixed 
at the quarter-wavelength while the characteristic imped- 
ances 2, and 2, are to be toleranced and optimized. Fig. 

6 

5 

z 2  

4 

3 
1 2 3 

Z1 

Fig. 11. Contours of max Ip I with respect to Z ,  and Z,  for the 
two-section transformer indiiating the minimax nominal solution a ,  
the centered design with relative tolerances b, and the centered design 
with absolute tolerances c. The values in brackets are the optimized 
tolerances (as percentages of the nominal values). The specification is 
IpI < 0.55. 

11 shows the minimax contours, the minimax nominal 
solution, and the worst-case solutions [23] for 

PO: minimize C,  = z , O / E ,  + z , O / E ,  
subject to Y = 100 percent 

P1: minimize C2 = 1 /~ ,  + 1 /~ ,  subject to Y = 100 percent 

where E , ,  E ,  denote tolerances on 2, and 2, (assuming 
independent uniform distributions), and Y is the yield. 
The cost functions C, and C, correspond to, respectively, 
relative and absolute tolerancing problems. Two problems 
of less than 100 percent yield have also been considered by 
Bandler and Abdel-Malek [7] as 

P2: minimize C, subject to Y > 90 percent 

P 3  : minimize C 2 / Y  

The optimal tolerance regions and nominal values for 
P 2  and P3  are shown in Fig. 12. For more details see the 
original paper [7]. 

Example 2 
The statistical design of a Chebyshev low-pass filter 

(Singhal and Pine1 [97])  is used as the second example. 
Fifty-one frequencies { 0.02,0.04,. . a ,  1.0,1.3 Hz} are con- 
sidered. An upper specification of 0.32 dB on the insertion 
loss is defined for frequencies from 0.02 to 1.0 Hz. A lower 
specification of 52 dB on the insertion loss is defined at 
1.3 Hz. 
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Fig. 12. The optimized tolerance regions and nominal values for the 
worst case design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP1, 90 percent yield design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 2 ,  and minimum cost 
design P3 of the two-section transformer. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Singhal and Pine1 [97] have applied the parametric sam- 

pling method to the same circuit, assuming normal distri- 
butions for the toleranced elements. But, as we have pointed 
out earlier in this paper, the parametric sampling method 
cannot be applied to nondifferentiable (such as uniform) 
distributions. Here, we consider a uniformly distributed 
1.5 percent relative tolerance for each component. The 
generalized l p  centering algorithm described in Section V 
is used with p =l. The nominal solution by standard 
synthesis as given in [97] was used as starting point, which 
has a 49 percent yield (w.r.t. the tolerances specified). An 
84 percent yield is achieved at the solution which involves 
a sequence of three design cycles with a total CPU time of 
66 seconds on the VAX 8600. Some details are provided in 
Table I. 

-' 

VII. GRADIENT-BASED OPTIMIZATION METHODS 

So far we have concentrated on translating our practical 
concerns into mathematical expressions. Now we turn our 
attention to the solution methods for optimization prob- 
lems. 

The studies in the last two decades on the theoretical 
and algorithmic aspects of optimization techniques have 
produced a great number of results. Modern state-of-the-art 
methods have largely replaced the primitive trial-and- 
error-approach. In particular, gradient-based optimization 
methods have gained increasing popularity in recent years 
for their effectiveness and efficiency. 

The majority of gradient-based methods belong to the 
Gauss-Newton, quasi-Newton, and conjugate gradient 
families. All these are iteralive algorithms which, from a 

TABLE I 

GENERALIZED I ,  CENTERING TECHNIQUE 
STATISTICAL DESIGN OF A LOW-PASS FILTER USING 

Component Nominal Design Case 1 Case 2 Case 3 
+I +IQ 0 +lo 1 k Q . 2  3 

X I  0 2251 0 21954 0 21705 0 21530 

X2 0 2494 0 25157 0 24677 0 23838 

x3 0 2523 0 25529 0 24784 0 24120 

4 0 2494 0 24807 0 24019 0 23687 

Y 0 2251 0 22042 0 21753 0 21335 

xg 0 2149 0 22627 0 23565 0 23093 

XT 0 3636 0 36739 0 37212 0 38225 

X8 0 3761 0 36929 0 38012 0 39023 

x9 0 3761 0 31341 0 38371 0 39378 

X I 0  0 3636 0 36732 0 37716 0 38248 

XI1 0 2149 0 22575 0 22127 0 23129 

Yield 49% 71.67% 79.67% 83.67% 

Number of samples 50 100 100 

Starting point 00.0 v.1 002 

used for design 

Number of itorations 16 18 13 

CPU time WAX 8800) 10 W. 30 9ee. 26 gpe 

Independent uniform distributions are assumed for each component with fixed tolerances 

ci = 1.5% &D. The yield is estimated based on 300 samples. 

given starting point xo, generate a sequence of points 
{ xk } .  The success of an algorithm depends on whether 
{ xk} will converge to a point x *  and, if so, whether x *  
will be a stationary point. An iterative algorithm is de- 
scribed largely by one of its iterations as how to obtain 
x k + l  from xk .  

We use the notation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU( x) for the objective function and 
V U  for the gradient vector of U. When U(x) is defined by 
an lp function, we use f to denote the set of individual 
error functions so that U =  H( f ). We also use 4' for the 
first-order derivatives of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjj and G for the Jacobian matrix 
of f .  

A.  l p  Optimization and Mathematical Programming 

Of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, family, I,, I,, and I, are the most distinctive 
and by far the most useful members. Apart from their 
unique theoretical properties, it is very important from the 
algorithmic point of view that linear I,, I,, and lo3 prob- 
lems can be solved exactly using linear or quadratic pro- 
gramming techniques. Besides, all the other members of 
the lp family have a continuously differentiable function 
and, therefore, can be treated similarly to the I ,  case. 

An I,, I,, or I ,  optimization problem can be converted 
into a mathematical program. The concepts of local lin- 
earization and optimality conditions are often clarified by 
the equivalent formulation. 

is equivalent to For instance, the minimization of 1 )  
m 

minimize y, 
X , Y  j - 1  
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I,, I,, AND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  OPTIMIZATION 

hhTHEMATICAL PROGRAMMING EQUIVALENT FORMULATIONS FOR 

The original problem: minimize H(n 
I 

The equivalent problem. minimize V(s.y) subject to the constraints asdefined below 
X.Y 

H ( n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWx, y) constraints (forj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.2, , m) 

I f l ,  

Note- A generalized Cp function Hp(O is defined through H,+(D and H;IO. 

continuously differentiable function far all p < m 

Hp- is a 

subject to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y j > . f , ( x ) ,  y j >  -.f,(x), j =1 ,2 ; . . ,m .  

Other equivalent formulations are summarized in Table 
11. For the convenience of presentation, we denote these 
mathematical programming problems by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf). One 
important feature of P ( x ,  f )  is that it has a linear or 
quadratic objective function. If f is a set of linear func- 
tions, then P( x, f ) becomes a linear or quadratic program 
which can be solved using standard techniques. Equally 
importantly, linear constraints can be easily incorporated 
into the problem. Let P ( x ,  f, D) be the problem of 

P ( x ,  f )  subject to a set of linear constraints of the form 

where a ,  and b, are constants. If P ( x ,  f )  is a linear or 
quadratic program, so is P ( x ,  f, 0). In other words, un- 
constrained and linearly constrained linear I,, I,, and I, 
problems can be solved using standard linear or quadratic 
programming techniques. 

B. Gauss - Newton Methods Using Trust Regions 

For a general problem, we may, at each iteration, sub- 
stitute f with a linearized model f so that P ( x ,  j )  can be 
solved. 

For a Gauss-Newton type method, at a given point xk ,  

a linearization of f is made as 

f ( h )  = f ( . k > +  G ( x k ) h  (48) 

where G is the Jacobian matrix. We then solve the linear 

or quadratic program P ( h ,  j ,  D), where 

These additional constraints define a trust region in whch 
the linearized model is believed to be a good approxi- 
mation to f. 

Another way to look at it is that we have applied a 
semilinearization (Madsen [78]) to U ( x )  = H( f ) resulting 
in 

U ( h )  = H (  j ( h ) ) .  

It is important to point out that (50) is quite different from 
a normal linearization as U( h )  = U( x k )  + [ v U( xk)] Th 
which corresponds to a steepest descent method. In fact 
v U may not even exist. 

reduces the original objective function, we take it as the 
next iterate; i.e., if u ( x k  + h k )  < u ( x k )  then x k + l =  

xk  + h,. Otherwise we let x k + ,  = x,. In the latter case, the 
trust region is apparently too large and, consequently, 
should be reduced. At each iteration, the local bound A, 
in (49) is adjusted according to the goodness of the lin- 
earized model. 

The above describes the essence of a class of algorithms 
due to Madsen, who has called it method 1. Madsen [78] 
has shown that the algorithm provides global convergence 
in which the proper use of trust regions constitutes a 
critical part. Such a method has been implemented as an 
important element in the minimax and 1, algorithms of 
Hald and Madsen [65], [66]. In some other earlier work by 
Osborne and Watson [85], [86] the problem P ( h ,  j )  was 
solved without incorporating a trust region and the solu- 
tion h ,  was used as the direction for a line search. For 
their methods no convergence can be guaranteed and { xk} 
may even converge to a nonstationary point. 

Normally for the least-squares objective we have to solve 
a quadratic program at each iteration, which can be a 
time-consuming process. A remarkable alternative is the 
Levenberg-Marquardt [76], [81] method. Given xk ,  it 
solves 

minimize h '( G TG + 0,l) h + 2 f TGh + f Tf (51) 

where G = G(x,), f = ! ( i rk) ,  and 1 is an identity matrix. 
The minimizer h ,  is obtained simply by solving the linear 
system 

Denote the SOlUtiOn Of P ( h ,  io) by h,. If x k +  h ,  

h 

( GTG + 0,l)h, = - GTf 

using, for example, LU factorization. The Levenberg- 
Marquardt parameter 0, is very critical for this method. 
First of all, it is made to guarantee the positive definiteness 
of (52). Furthermore, it plays, roughly speaking, an in- 
versed role of A, to control the size of a trust region. 
When 8, -, 00, h ,  gives an infinitesimal steepest descent 
step. When 8,=0, hk becomes the solution to ~ ( h ,  j )  
without bounds, which is equivalent to having 

The concept of trust region has been discussed in a 
broader context by Mor6 in a recent survey [82]. 

-, 00. 
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C. Quasi-Newton Method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Quasi-Newton methods (also known as variable metric 
methods) are originated in and steadily upgraded from the 
work of Davidon [45] and Broyden [33], [34], as well as 
Fletcher and Powell [55]. 

For a differentiable U ( x ) ,  a quasi-Newton step is given 

by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - B i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU( x k )  (53) 

where B, is an approximation to the Hessian of U ( x )  and 
the step size controlling parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAak is to be determined 
through a line search. However, on some occasions such as 
in the I ,  or minimax case, the gradient V U  may not exist, 
much less the Hessian. 

We can gain more insight to the general case by examin- 
ing the optimality conditions. Applying the Kuhn-Tucker 
conditions for nonlinear programming [70] to the equiv- 
alent problem P ( x ,  f), we shall find a set of optimality 
equations 

R ( x )  =o. (54) 

Since a local optimum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx *  must satisfy these equations, 
we are naturally motivated to solve (54), as a means of 
finding the minimizer of U ( x ) .  A quasi-Newton step for 
solving nonlinear equations (54) is given by 

h,  = - akJF'R(Xk) ( 5 5 )  

where Jk is an approximate Jacobian of R ( x ) .  Only when 
U( x) is differentiable will we have the optimality equa- 
tions as R( x) = v U( x) = 0 and (55) reverts to (53). 

Hald and Madsen [65], [66] and Bandler et al. [21], [22] 
have described the implementation of a quasi-Newton 
method for the minimax and I, optimization in which the 
objective functions are not differentiable. Clarke [43] has 
introduced the concept of generalized gradient, with which 
optimality conditions can be derived for a broad range of 
problems. 

Quasi-Newton methods, whether in (53) or ( 5 9 ,  all 
require updates of certain approximate Hessians. Many 
formulas have been proposed over the years. The best 
known are the Powell symmetric Broyden (PSB) update 
[91], the Davidon-Fletcher-Powell (DFP) update [45], 
[55], and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
update [35], [53], [60], [95]. The merits of these formulas 
and a great many other variations are often compared in 
terms of their preservation of positive definiteness, conver- 
gence to the true Hessian, and numerical performance (see, 
for instance, Fletcher [54] and Gill and Murray [59]). 

Another important point to be considered is the line 
search. Ideally, (Yk is chosen as the minimizer of U in the 
direction of line search so that h ; v U ( x ,  + h k )  = 0. If 
exact line searches are executed, Dixon [50] has shown that 
theoretically all members of the Broyden family [34], [53] 
would have the same performance. In practice, however, 
exact line search is deemed too expensive and is therefore 
replaced by other methods. An inexact line search usually 
limits the evaluation of U and V U  to only a few points. 

Interpolation and extrapolation techniques (such as a 
quadratic or cubic fit) are then incorporated. 

D. Combined Methoh 

The distinguishing advantage of a quasi-Newton method 
is that it enjoys a fast rate of convergence near a solution. 
However, like the Newton method for nonlinear equations, 
the quasi-Newton method is not always reliable from a 
bad starting point. 

Hald and Madsen [65], [66], [78] have suggested a class 
of two-stage algorithms. A first-order method of the 
Gauss-Newton type is employed in stage 1 to provide 
global convergence to a neighborhood of a solution. When 
the solution is singular, method 1 suffers from a very slow 
rate of convergence and a switch is made to a quasi-New- 
ton method (stage 2). Several switches between the two 
methods may take place and the switching criteria ensure 
the global convergence of the combined algorithm. 
Numerical examples of circuit applications have demon- 
strated a very strong performance of the approach [21], 
[221, [791, WI. 

Powell [92] has extended the Levenberg-Marquardt 
method and suggested a trust-region strategy which inter- 
polates between a steepest descent step and a Newton step. 
When far away from the solution, the step is biased toward 
the steepest descent direction to make sure that it is 
downhill. Once close to the solution, taking a full Newton 
step will provide rapid final convergence. 

E. Conjugate Gradient Method 

Some extremely large-scale engineering applications in- 
volve hundreds of variables and functions. Although the 
rapid advances in computer technology have enabled us to 
solve increasingly larger problems, there may be cases in 
which even the storage of a Hessian matrix and the solu- 
tion of an n by n linear system become unmanageable. 

Conjugate gradient methods [56], [75], [88] provide an 
alternative for such problems. A distinct advantage of 
conjugate gradient methods is the minimal requirement of 
storage. Typically three to six vectors of length n are 
needed, which is substantially less than the requirement by 
the Gauss-Newton or quasi-Newton methods. However, 
proper scaling or preconditioning, near-perfect line searches 
and appropriate restart criteria are usually necessary to 
ensure convergence. In general, we have to pay the price 
for the reduced storage by enduring a longer computation 
time. 

VIII. GRADIENT CALCULATION AND APPROXIMATION 

The application of gradient-based lp optimization meth- 
ods requires the first-order derivatives of the error func- 
tions with respect to the variables. 

In circuit optimization, these derivatives are usually 
obtained from a sensitivity analysis of the network under 
consideration. For linearized circuits in the frequency do- 
main, it is often possible to calculate the exact sensitivities 
by the adjoint network approach [5], [31], [48]. 



440 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 2, FEBRUARY 1988 

However, we ought to recognize that an explicit and 
elegant sensitivity expression is not always available. For 
time-domain responses and nonlinear circuits, an exact 
formula may not exist. Even for linear circuits in the 
frequency domain, large-scale networks present new prob- 
lems which need to be addressed. 

Often, a large-scale network can be described through 
compounded and interconnected subnetworks. Many com- 
mercial CAD packages such as SUPER-COMPACT [99] 
and TOUCHSTONE [104], [lo51 have facilitated such a 
block structure. In this case, one possible approach would 
be to assemble the overall nodal matrix and solve the 
system of equations using sparse techniques (see, e.g., Duff 
[51], Gustavson [61], Hachtel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. [62]). Another possibil- 
ity is to rearrange the overall nodal matrix into a bor- 
dered block structure which is then solved using the Sher- 
man-Morrison-Woodbury formula [63], [96]. Sometimes 
it is also possible to develop efficient formulas for a special 
structure, such as the approach of Bandler et al. [17] for 
branched cascaded networks. 

In practice, perhaps the most perplexing and time-con- 
suming part of the task is to devise an index scheme 
through which pieces of lower level information can be 
brought into the overall sensitivity expression. It may also 
require a large amount of memory storage for the various 
intermediate results. Partly due to these difficulties, meth- 
ods of exact sensitivity calculations have yet to find their 
way into general-purpose CAD software packages, al- 
though the concept of adjoint network has been in ex- 
istence for nearly two decades and has had success in 
many specialized applications. 

In cases where either exact sensitivities do not exist or 
are too difficult to calculate, we can utilize gradient ap- 
proximations [15], [16], [77], [109]. A recent approach to 
circuit optimization with integrated gradient approxima- 
tions has been described by Bandler et al. [16]. It has been 
shown to be very effective and efficient in practical appli- 
cations including FET modeling and multiplexer optimiza- 
tion. 

IX. CONCLUSIONS 

In this review, we have formulated realistic circuit de- 
sign and modeling problems and described their solution 
methods. Models, variables, and functions at different 
levels, as well as the associated tolerances and uncertain- 
ties, have been identified. The concepts of design center- 
ing, tolerancing, and tuning have been discussed. Recent 
advances in statistical design, yield enhancement, and 
robust modeling techniques suitable for microwave CAD 
have been discussed in detail. State-of-the-art optimization 
techniques have been addressed from both the theoretical 
and algorithmic points of view. 

We have concentrated on aspects that are felt to be 
immediately relevant to and necessary for modern micro- 
wave CAD. There are, of course, other related subjects 
that have not been treated or not adequately treated in this 
paper. Notable among these are special techniques for very 
large systems (Geoffrion [57], [58], Haimes [64], Lasdon 

[72]), third-generation simulation techniques (Hachtel and 
Sangiovanni-Vincentelli [63]), fault diagnosis (Bandler and 
Salama [27]), supercomputer-aided CAD (kzzoli zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 
[93]), the simulated annealing and combinatorial optimiza- 
tion methods and their application to integrated circuit 
layout problems [38], [69], [84], and the new automated 
decomposition approach to large scale optimization 
(Bandler and Zhang [28]). 

The paper is particularly timely in that software based 
on techniques which we have described is being integrated 
by Optimization Systems Associates Inc. into SUPER- 
COMPACT by arrangement with Compact Software Inc. 
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