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In cavity quantum electrodynamics (QED)1–3, light-matter interaction is probed at its most fun-
damental level, where individual atoms are coupled to single photons stored in three-dimensional
cavities. This unique possibility to experimentally explore the foundations of quantum physics has
greatly evolved with the advent of circuit QED4–13, where on-chip superconducting qubits and oscil-
lators play the roles of two-level atoms and cavities, respectively. In the strong coupling limit, atom
and cavity can exchange a photon frequently before coherence is lost. This important regime has
been reached both in cavity and circuit QED, but the design flexibility and engineering potential of
the latter allowed for increasing the ratio between the atom-cavity coupling rate g and the cavity
transition frequency ωr above the percent level8,14,15. While these experiments are well described by
the renowned Jaynes-Cummings model16, novel physics is expected when g reaches a considerable
fraction of ωr. Promising steps towards this so-called ultrastrong coupling regime17,18 have recently
been taken in semiconductor structures19,20. Here, we report on the first experimental realization of
a superconducting circuit QED system in the ultrastrong coupling limit and present direct evidence
for the breakdown of the Jaynes-Cummings model. We reach remarkable normalized coupling rates
g/ωr of up to 12% by enhancing the inductive coupling of a flux qubit21 to a transmission line
resonator using the nonlinear inductance of a Josephson junction22. Our circuit extends the toolbox
of quantum optics on a chip towards exciting explorations of the ultrastrong interaction between
light and matter.

In the strong coupling regime, the atom-cavity cou-
pling rate g exceeds the dissipation rates κ and γ of both,
cavity and atom, giving rise to coherent light-matter
oscillations and superposition states. This regime was
reached in various types of systems operating at different
energy scales1–3,23–25. At microwave frequencies, strong
coupling is feasible due to the enormous engineerability
of superconducting circuit QED systems4,5. Here, small
cavity mode volumes and large dipole moments of arti-
ficial atoms26 enable coupling rates g of about15 1 % of
the cavity mode frequency ωr. Nevertheless, as in cav-
ity QED, the quantum dynamics of these systems follows
the Jaynes-Cummings model, which describes the coher-
ent exchange of a single excitation between the atom and
the cavity mode. Although the Hamiltonian of a realis-
tic atom-cavity system contains so-called counterrotating
terms allowing the simultaneous creation ior annihilation
of an excitation in both atom and cavity mode, these
terms can be safely neglected for small normalized cou-
pling rates g/ωr. However, when g becomes a significant
fraction of ωr, the counterrotating terms are expected to
manifest, giving rise to exciting effects in QED.

The ultrastrong coupling regime is difficult to reach in
traditional quantum optics, but was recently realized in a
solid-state semiconductor system19,20. There, quantita-
tive deviations from the Jaynes-Cummings model have
been observed, but a direct experimental proof of its

breakdown by means of an unambiguous feature is still
missing. In this report, we exploit the potential of flux-
biased superconducting quantum circuits to reach the
ultrastrong coupling regime18,22. For this purpose, we
increase g/ωr up to 12 % utilizing the large nonlinear in-
ductance of a Josephson junction (JJ) shared between
a flux qubit and a coplanar waveguide resonator. We
explicitly make use of the multimode structure of our
resonator, allowing the direct observation of physics be-
yond the Jaynes-Cummings model. In equilibrium, our
transmission spectra reveal anticrossings which can be
clearly attributed to the counterrotating terms in the sys-
tem Hamiltonian. These anticrossings are caused by the
simultaneous creation (annihilation) of two excitations,
one in the qubit and one in a resonator mode, while an-
nihilating (creating) only one excitation in a different res-
onator mode.

Images of our quantum circuit and a schematic of the
measurement setup are shown in Figure 1. At a cur-
rent antinode for the λ-mode of a niobium supercon-
ducting resonator (Fig. 1a-c), a part of the center con-
ductor is replaced with a narrow aluminum strip inter-
rupted by a large-area JJ. This junction mediates most
of the inductive coupling between a superconducting flux
qubit21 galvanically connected to the strip. The qubit
consists of three nanometer-scaled JJs interrupting a su-
perconducting loop, which is threaded by an external
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FIG. 1: Quantum circuit and experimental setup. a, Optical image of the superconducting λ/2 coplanar waveguide
resonator (light blue box). Black rectangles: area shown in b. Red rectangle: area shown in d. b, SEM image of one of the
coupling capacitors. c, Sketch of the current distribution of the first three resonator modes. Their resonance frequencies are
ω1/2π = 2.782GHz (λ/2, red), ω2/2π = 5.357GHz (λ, blue), and ω3/2π = 7.777GHz (3λ/2, green). d, SEM image of the
galvanically coupled flux qubit. The fabrication technology for qubit and resonator is described elsewhere26. The width of
the center conductor is 20 µm, that of the constriction 1 µm. The area of the qubit loop is 180 µm2. Orange rectangle: area
shown in e. Green rectangle: area shown in f. e, SEM image of the large JJ with a Josephson inductance LJ, whose large
inductance is responsible for approximately 85 % of the qubit-resonator coupling. f, One JJ of the qubit loop. The area of this
junction is 14 % of the one shown in e. g, Schematic sketch of the measurement setup. The transmission through the cavity
at ωrf is measured using a VNA. A second microwave signal at ωs is used for two-tone qubit spectroscopy. The input signal is
attenuated at various temperature stages and coupled into the resonator (light blue) via the capacitors Cκ. The crossed boxes
represent Josephson junctions. A circulator isolates the sample from the amplifier noise.

flux bias Φx. Scanning electron microscope (SEM) im-
ages of the qubit loop and the JJs are shown in Fig-
ure 1d-f. For suitable junction sizes, the qubit poten-
tial landscape can be reduced to a double-well potential,
where the two minima correspond to states with clock-
wise and counter-clockwise persistent currents |±Ip〉. At
δΦx = Φx − Φ0/2 = 0, these two states are degenerate
and separated by an energy gap ∆. In the qubit eigenba-
sis, the qubit Hamiltonian reads Ĥq = ~ωqσ̂z/2. Here,

ωq =
√

∆2 + (2Ip · δΦx)2/~ is the qubit transition fre-
quency which can be adjusted by an external flux bias.
We note, that for our flux qubit the two-level approx-
imation is well justified due to its large anharmonicity.
The resonator modes are described as harmonic oscilla-
tors, Ĥn = ~ωn(â†nân + 1/2), where ωn is the resonance
frequency and n is the resonator mode index. The op-
erator â†n (ân) creates (annihilates) a photon in the nth
resonator mode. Due to the inhomogeneous transmis-
sion line geometry22 (see Fig. 1d), the higher mode fre-
quencies of our resonator are not integer multiples of the
fundamental resonance frequency ω1 . Throughout this
work, we refer to the nth mode as the nλ/2-mode. Then,

the Hamiltonian of our our quantum circuit can be writ-
ten as

Ĥ = Ĥq +
∑

n

[

Ĥn + ~gn
(

â†n + ân

)

(cos θ σ̂z − sin θ σ̂x)
]

.

(1)
Here, σ̂x,z denote Pauli operators, gn is the coupling rate
of the qubit to the nth cavity mode, and the flux depen-
dence is encoded in sin θ = ∆/~ωq and cos θ. The op-
erator σ̂x is conveniently expressed as sum of the qubit
raising (σ̂+) and lowering (σ̂−) operator. Thus, in con-
trast to the Jaynes-Cummings model, the Hamiltonian in
Eq. (1) explicitly contains counterrotating terms of the
form â†nσ̂+ and ânσ̂−.

Figure 1g shows a schematic of our measurement setup.
The quantum circuit is located at the base temperature
of 15 mK in a dilution refrigerator. We measure the
amplified resonator transmission using a vector network
analyzer (VNA). For qubit spectroscopy measurements,
the system is excited with a second microwave tone ωs

with power Ps, while using the 3λ/2-mode at ω3/2π =
7.777 GHz for dispersive readout12,27.

We first present measurements allowing the extraction
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FIG. 2: Qubit microwave spectroscopy and low power transmission spectra. a, Microwave spectroscopy of the coupled
qubit-cavity system. The measured transmission magnitude (color coded, blue: low; white: high) is plotted as a function of
the relative flux bias δΦx and the spectroscopy frequency ωs/2π. The red broken line indicates the dressed qubit transition
frequency ω̃q

12,27. Inset: center frequency of the qubit spectroscopy signal at δΦx = 0 as a function of the probe power Prf . The
FWHM of the qubit signal is approximately 80 MHz in the low power limit Prf Ps → 0. Red line: fit to the linear region28. The
green dot indicates the power level at which the spectra in b, c and Fig. 3 are recorded. b, Cavity transmission (3λ/2-mode,
linear scale, arb. units) as a function of δΦx and probe frequency ωrf/2π. c, Same spectrum as in b. Black lines: numerical fit
of the spectrum of the Hamiltonian (1) to the data. d, Cavity transmission (λ-mode, linear scale, arb. units) as a function of
δΦx and probe frequency ωrf/2π. The spectrum is recorded at Prf corresponding to n̄2 ≈ 0.9 due to a higher insertion loss of
this cavity mode. Black lines: numerically evaluated energy level spectrum with parameters from c.

of the coupling constants of the qubit to the first three
resonator modes. The spectroscopy data in Fig. 2a shows
the dressed qubit transition frequency4,27 with the ex-
pected hyperbolic flux-dependence and a minimum at
δΦx = 0. Furthermore, flux-independent features cor-
responding to the two lowest resonator modes (ω1 and
ω2) are visible. In principle, a fit to the Hamiltonian
in Eq. (1) would yield all system parameters. However,
our measurement resolution does not allow us to reliably
determine the coupling constants gn in this situation. In-
stead, we extract gn from a cavity transmission spectrum
with negligible photon population. For that purpose, we
first measure the power-dependent ac-Zeeman shift of the
qubit transition frequency at δΦx = 0. The data is
shown in the inset of Fig. 2a. The average photon number
n̄3 can be estimated using the relation Prf = n̄3~ω3κ3

9,11,
where κ3/2π ≈ 3.7 MHz is the full width at half maxi-

mum (FWHM) of the cavity resonance and Prf the probe
power referred to the input of the resonator. Figure 2b
shows a color coded transmission spectrum for the 3λ/2-
mode as a function of δΦx. The data is recorded at an in-
put power Prf ≈ −140 dBm (green data point in Fig. 2a,
inset) corresponding to n̄3 = 0.18.

We observe a spectrum with a large number of anti-
crossings resulting from the multimode structure of our
cavity system. To extract the individual coupling con-
stants gn, we compute the lowest nine transition frequen-
cies of the Hamiltonian given in Eq. (1) incorporating the
first three resonator modes. Fitting the results to the
spectrum of the 3λ/2-mode shows excellent agreement
with the measured data as shown in Fig. 2c. We note
that the spectrum for the λ-mode shown in Fig. 2d can
be well described without additional fitting using the pa-
rameters extracted from the 3λ/2-mode. For the qubit,
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FIG. 3: Breakdown of the Jaynes-Cummings model. a, Cavity transmission (3λ/2-mode, linear scale, arb. units)
as a function of δΦx and probe frequency ωrf/2π. Black broken lines in all plots: energy level spectrum obtained from
the Hamiltonian (1). Colored lines in all plots: energy level spectrum obtained from the Jaynes-Cummings model (dark
blue: |g, 0, 0, 1〉, except for anticrossing region shown in b; green: |e, 1, 0, 0〉; light blue: |e, 0, 1, 0〉 and |e, 2, 0, 0〉, which are
indistinguishable within the resolution of this plot. Grey broken boxes: areas magnified in b-d. b, Single excitation anticrossing.
The quantitative deviations of the Jaynes-Cummings model from Eq. (1) are attributed to a small admixture of the state
|g, 1, 1, 0〉. The uncoupled states are indicated by grey broken lines. c, Avoided crossing due to a coupling between the
degenerate states |g, 0, 0, 1〉 and |e, 1, 0, 0〉. This is caused by counterrotating terms in the Hamiltonian (1). A detailed analysis
yields a minor admixture of |g, 1, 1, 0〉 (superposition states: ≈ |g, 0, 0, 1〉/

√
2±(|e, 1, 0, 0〉/

√
3+ |g, 1, 1, 0〉/

√
6)). This admixture

has no effect on the reasoning presented in the main text. The energy level spectrum obtained from the Jaynes-Cummings
model is omitted for clarity. d, Same as c, but for the Jaynes-Cummings model. Within numerical accuracy, no anticrossing
is predicted, clearly contradicting the data.

we obtain ∆/h = 2.25 GHz and 2Ip = 630 nA. Most
importantly, we find coupling rates of g1/2π = 314 MHz,
g2/2π = 636 MHz, and g3/2π = 568 MHz. The values
for gn correspond to normalized coupling rates gn/ωn of
remarkable 11.2%, 11.8%, and 7.3%, respectively. From
these numbers, we expect significant deviations of our
system from a three-mode Jaynes-Cummings model, ul-
timately proving that we have successfully reached the
ultrastrong coupling regime.

In the following, we analyze the features in our data
which constitute unambiguous evidence for the break-
down of the rotating-wave approximation inherent to
the Jaynes-Cummings model. In Figure 3, we compare
the energy level spectrum of the Hamiltonian in Eq. (1)
to that of a three-mode Jaynes-Cummings model. We
note that, depending on δΦx, there are regions where
our data can be well described by the Jaynes-Cummings
model, and regions where there are significant devia-
tions (see Fig. 3a). For our analysis we use the nota-
tion |q,N1, N2, N3〉 = |q〉 ⊗ |N1〉 ⊗ |N2〉 ⊗ |N3〉, where
q = {g, e} denote the qubit ground or excited state, re-
spectively, and |Nn〉 = {|0〉, |1〉, |2〉, . . . } represents the
Fock-state with photon occupation N in the nth res-
onator mode. At the outermost anticrossings (Fig. 3b),
where ω3 ≈ ωq, the eigenstates |ψ±〉 of the coupled sys-
tem are in good approximation symmetric and antisym-
metric superpositions of |e, 0, 0, 0〉 and |g, 0, 0, 1〉. This
exchange of a single excitation between qubit and res-

onator is a characteristic of the Jaynes-Cummings model.
On the contrary, the origin of the anticrossing shown in
Fig. 3c is of different nature: the dominant contribu-
tions to the eigenstates |ψ±〉 are approximate symmet-
ric and antisymmetric superpositions of the degenerate
states ϕ1 = |e, 1, 0, 0〉 and ϕ2 = |g, 0, 0, 1〉. The transi-
tion from ϕ1 to ϕ2 can be understood as the annihilation
of two excitations, one in the λ/2-mode and one in the
qubit, while, simultaneously, creating only one excitation
in the 3λ/2-mode. Such a process can only result from
counterrotating terms as they are present in the Hamilto-
nian (1), but not within the Jaynes-Cummings approx-
imation. Here, only eigenstates with an equal number
of excitations can be coupled. Although counterrotating
terms in principle exist in any real circuit QED system,
their effects become prominent only in the ultrastrong
coupling limit with large normalized couplings gn/ωn as
realized in our system. Hence, the observed anticrossing
shown in Fig. 3c is a direct experimental manifestation of
physics beyond the rotating-wave approximation in the
Jaynes-Cummings model. As shown in Fig. 3d, the lat-
ter would imply a crossing of the involved energy levels,
which is not observed. A similar argument applies to
the innermost anticrossings (see Fig. 3a), although the
involved eigenstates have a more complicated character.

In conclusion, we present measurements on a flux-
based superconducting circuit QED system in the ul-
trastrong coupling regime. The results are in excellent
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agreement with theoretical predictions and show clear ev-
idence for physics beyond the Jaynes-Cummings model.
Our system can act as an on-chip prototype for unveil-
ing the physics of ultrastrong light-matter interaction.
Future explorations may include squeezing, switchable
ultrastrong coupling29, causality effects in quantum field
theory30, and the generation of bound states of qubits
and photons.
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