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Abstract

Circuit quantum electrodynamics allows spatially separated superconducting qubits to interact

via a “quantum bus”, enabling two-qubit entanglement and the implementation of simple quantum

algorithms. We combine the circuit quantum electrodynamics architecture with spin qubits by

coupling an InAs nanowire double quantum dot to a superconducting cavity. We drive single spin

rotations using electric dipole spin resonance and demonstrate that photons trapped in the cavity

are sensitive to single spin dynamics. The hybrid quantum system allows measurements of the spin

lifetime and the observation of coherent spin rotations. Our results demonstrate that a spin-cavity

coupling strength of 1 MHz is feasible.

PACS numbers: 03.67.Lx, 42.50.Pq, 73.63.Kv, 85.35.Be
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Electron spins trapped in quantum dots have been proposed as basic building blocks

of a future quantum processor [1, 2]. With spin qubits, two qubit operations are typi-

cally based on exchange coupling between nearest neighbor spins, leading to a fast 180 ps

entangling gate [3]. However, a scalable spin-based quantum computing architecture will

almost certainly require long-range qubit interactions. Unfortunately, the weak magnetic

moment of the electron makes it difficult to couple spin qubits that are separated by a large

distance. Approaches to transferring spin information by physically shuttling electrons or

using exchange-coupled spin chains are experimentally challenging [4–6]. In comparison,

circuit quantum electrodynamics (cQED) has enabled long distance coupling of multiple su-

perconducting qubits via a microwave cavity, providing a scalable architecture for quantum

computation [7–9]. Several proposals suggest coupling spatially separated spin qubits via a

microwave cavity, but direct coupling between a single spin and the magnetic field of the

cavity results in a spin-cavity vacuum Rabi frequency gS/2π ∼ 10 Hz; far too weak to be

useful for quantum information processing [10, 11].

Here we harness spin-orbit coupling in a hybrid quantum dot/cQED architecture to couple

the electric field of a high quality factor superconducting cavity to a single “spin-orbit qubit”

fabricated from an InAs nanowire double quantum dot (DQD) [7, 12–14]. The architecture

allows us to achieve a charge-cavity vacuum Rabi frequency gC/2π ∼ 30 MHz, consistent

with coupling rates obtained in GaAs quantum dots and carbon nanotubes [15, 16]. The

strong spin-orbit interaction of InAs allows us to electrically drive spin rotations with a local

gate electrode, while the 30 MHz cavity-charge interaction provides a measurement of the

resulting spin dynamics. An alternative approach that has been recently explored consists

of coupling ensembles of spins (N ∼ 1012) to superconducting resonators [17–20].

Our hybrid spin-orbit qubit/superconducting device is shown in Fig. 1(a). We fabricate

a λ/2 superconducting Nb resonator (the cavity) with a resonance frequency f0 = ω0/2π

∼ 6.2 GHz and quality factor, Q ∼ 2000 [21]. The amplitude and phase response of the

cavity is detected using a homodyne measurement with a microwave probe frequency fR

[7]. We couple a single InAs nanowire spin-orbit qubit to the electric field generated by the

cavity [22]. The qubit consists of a DQD defined in an InAs nanowire [12, 13]. A series

of Ti/Au depletion gates create a simple double well confinement potential containing (NL,

NR) electrons, where NL (NR) is the number of electrons in the left (right) dot. We tune

the tunnel coupling, tC, of the DQD by adjusting the voltage VM on the middle barrier gate,
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labeled M in Fig. 1(c). A trapped electron in the DQD has an electric dipole moment d

∼ 1000 eao, where ao is the Bohr radius and e is the electronic charge. To maximize the

electric field at the position of the DQD, the drain contact of the nanowire is connected to

the ground plane of the resonator and the source contact is connected to an anti-node of

the resonator [see Fig. 1(b)]. Standard dc transport measurements are made possible by

applying a source-drain bias, VSD, to the DQD via a spiral inductor that is connected to the

voltage node of the resonator [23].

We focus on the cavity response near the (M , N+1) ↔ (M+1, N) interdot charge tran-

sition. Neglecting spin for the moment, the DQD forms a two-level “artificial molecule”

with an energy splitting Ω =
√

ǫ2 + 4t2C, where ǫ is the detuning [upper diagram, Fig. 1(d)].

Interdot tunnel coupling hybridizes the charge states around ǫ = 0 resulting in a tunnel split-

ting of 2tC. The detuning dependent dipole moment of the DQD has an admittance which

loads the cavity. We characterize the strength of the interaction by the ac susceptibility χ

[lower panel, Fig. 1(d)] [24].

A qualitative understanding of the quantum dot/cavity coupling can be obtained con-

sidering the relevant energy scales in the system. The single dot charging energy, EC ∼

12 meV, is much larger than the relevant photon energies, hfR ∼ 25 eV, and the cavity is

largely unaffected by the DQD in Coulomb blockade. However, near interdot charge tran-

sitions (e.g. (M , N+1) ↔ (M+1, N)), or transitions with the source and drain electrodes

(e.g. (M , N)↔(M , N+1)), the energy scales associated with the DQD are close to the

cavity energy, and the cavity is damped, resulting in a negative phase shift in microwave

transmission at the bare cavity frequency. The DQD charge stability diagram is measured

in Fig. 1(e) by probing the phase response of the microwave cavity as a function of the gate

voltages VR and VL [15, 16].

Quantitative analysis of the cavity response requires a fully quantum mechanical model

that accounts for photon exchange between the microwave field and the DQD [22, 23]. In

cavity QED, one considers interactions between an atom with transition frequency ωa = Ω/~

and the photon field of the cavity, characterized by the resonance frequency ω0. The atom

and cavity energy levels hybridize when the atom-cavity detuning ∆ = ωa - ω0 < gC, leading

to the Jaynes-Cummings ladder of quantum states [25]. When the atom and cavity are

detuned in the dispersive limit (∆ > gC), the cavity field exhibits a phase shift in microwave

transmission at the bare cavity frequency that is given by φ = arctan[(2g2C)/(κ∆)], where κ
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FIG. 1: (Color online) (a) Circuit schematic and micrograph of a device similar to the one mea-

sured. Transmission through the λ/2 superconducting Nb resonator is measured using homodyne

detection. Nanowire source-drain bias, VSD, is applied at the central voltage node of the cavity

through a ∼ 4 nH inductor. (b) Expanded image of the region containing the DQD. One end of

the nanowire is connected to the resonator ground plane and the other end is connected to the

anti-node of the resonator. (c) Scanning electron micrograph image of the nanowire DQD. Seven

gate electrodes are used to create a confinement potential along the length of the nanowire. (d)

DQD energy levels (upper plot) and ac susceptibility, χ, (lower plot) as a function of detuning, ǫ.

(e) The phase response of the resonator provides a direct measurement of the DQD charge stability

diagram.
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is the cavity decay rate. The phase will therefore change sign as the atom-cavity detuning

∆ is tuned from positive to negative values [7].

We extract gC by measuring the amplitude and phase response of the cavity for several

values of the interdot tunnel coupling [Figs. 2(e), (f)]. For example, with VM = -2.26 V, the

qubit transition frequency is always greater than the cavity frequency (Ω/~ > ω0), leading

to a negative phase shift for all values of ǫ. In contrast, for VM = -2.32 V, the minimum

qubit transition frequency 2tC/~ < ω0 and ∆ changes sign with ǫ, resulting in a phase shift

that takes on both positive and negative values. We fit the data to a master equation

model using a best fit value of gC/2π = 30 MHz and a VM dependent tunnel coupling that

ranges from 2tC/h= 1.8 to 7.0 GHz [21]. We assume a qubit lifetime of 15 ns and account

for inhomogeneous broadening due to charge noise by convolving the phase and magnitude

response with a Gaussian of width σE = 21 µeV [26]. The vacuum Rabi frequency extracted

here compares favorably to values obtained using Cooper pair box qubits, gC/2π ∼ 6 MHz

[7], transmon qubits, gC/2π ∼ 100 MHz [27], and many-electron GaAs quantum dots, gC/2π

∼ 50 MHz [15].

We access the spin-degree of freedom by operating the device as a spin-orbit qubit (Fig.

3). For simplicity, we label the charge states (1,1) and (0,2) [3]. The ground state with

two-electrons in the right quantum dot is the singlet S(0,2). At negative detuning, the four

relevant spin-orbital states are |⇑⇑>, |⇓⇓>, |⇑⇓>, and |⇓⇑> [13]. The level diagram is

similar to a GaAs singlet-triplet spin qubit, with a key difference being that the g-factors

for the two spins can vary significantly [3]. Interdot tunnel coupling hybridizes the states

with singlet character near ǫ = 0, and an external field results in Zeeman splitting EZ =

g̃µBB of the spin states, where g̃ is the electronic g-factor, µB is the Bohr magneton, B is

the magnetic field.

Spin selection rules result in Pauli blockade at the two-electron transition, a key ingredient

for spin preparation and measurement [see inset, Fig. 3(b)] [3, 13, 28]. For example, the

|⇑⇑> state cannot tunnel to S(0,2) due to Pauli exclusion. Modulation of the confinement

potential with a gate voltage results in spin-orbit-driven EDSR transitions that lift the Pauli

blockade [13, 29]. In Fig. 3(b) we plot the current, I, through the DQD with VSD = 2.5 meV

and the gates tuned in Pauli blockade [blue dot, inset Fig. 3(b)]. Hyperfine fields rapidly

mix spin states when EZ = g̃µBB < BN, where BN ∼ 2 mT is the hyperfine field [12].

At finite fields, the leakage current is non-zero when the ac driving frequency on the gate,
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FIG. 2: (Color online) (a) – (b) Phase and amplitude response of the cavity near the (M+1, N)

↔ (M , N+1) charge transition measured using a fixed drive frequency, fR = 6194.8 MHz. (c)

– (d) Phase and normalized amplitude of the microwave field plotted as a function of fR at the

interdot charge transition (green curve) and in Coulomb blockade (blue curve). (e) – (f) Phase and

amplitude response measured as a function of DQD detuning, ǫ, for a range of tunnel couplings, as

set by VM. Dashed lines are fits to the data, allowing the extraction of the cavity coupling strength,

gC ∼ 30 MHz (see main text). Inset: Cavity frequency relative to the qubit transition frequency,

Ω/h. 6
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FIG. 3: (Color online) (a) EDSR transitions lift Pauli blockade, resulting in current flow through

the device. (b) Leakage current measured in Pauli blockade at point ǫ′ (inset) as a function of

magnetic field, B, and microwave driving frequency, fG. Pauli blockade is lifted by EDSR driving

when EZ = g̃µBB = hfG. Inset: Finite-bias triangles measured with VSD = 2.5 mV indicate a

suppression of current due to Pauli blockade. (c) Energy levels of the spin-orbit qubit plotted as a

function of ǫ. The data in (b) are acquired with ǫ = ǫ′.

fG, satisfies the electron spin resonance condition EZ = hfG. We observe two resonance

conditions corresponding to single spin rotations in the left and right quantum dot, with

g-factors of 8.2 and 10.6 [13].

Around ǫ = 0, the DQD has a spin state dependent dipole moment that allows spin state

readout via the superconducting cavity [30]. We combine quantum control of the spins using

EDSR and cavity detection of single spin dynamics using the pulse sequence shown in Figs.

4 (a),(b). Starting with the spin qubit in state |⇑⇑>, we pulse to negative detuning and

apply a microwave burst of length τB to drive EDSR transitions. For example, an EDSR

π-pulse will drive a spin transition from |⇑⇑> to |⇑⇓>. The resulting spin state is probed

by pulsing back to ǫ = 0 for a time TM. The cavity is most sensitive to charge dynamics

near ǫ = 0 due to the different ac susceptibility of the |⇑⇓> and |⇑⇑> spin states [21]. In

Fig. 4(c) we plot the cavity phase shift as a function of fG and B. We again observe two

features that follow the standard spin resonance condition, consistent with the dc transport

data in Fig. 4(b). Varying the measurement time TM, we fit the measured phase response

to an exponential decay and estimate a spin lifetime T1 ∼ 1 µs [Fig. 4(d)].
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We demonstrate time-resolved Rabi oscillations in the spin-orbit qubit and readout via

the cavity by varying the EDSR microwave burst length τB. Figure 4(e) shows the measured

phase as a function of τB and gate drive power, PG. We observe Rabi oscillations with a

minimum period of 17 ns, as shown in Fig. 4(f), consistent with an EDSR driving mechanism

[13]. These results demonstrate that the microwave field of the cavity is sensitive to the spin

state of a single electron.

In cQED, a large number of qubits can be connected via the electric field of the su-

perconducting cavity. Trif et al. have proposed using the cQED approach to couple two

spin-orbit qubits via a cavity mediated interaction [22]. Based on our results, we can esti-

mate the effective spin-cavity coupling strength using theory developed for single quantum

dots, gS ≈ gC
EZ

∆E0

R

λSO

[22]. Taking gC/2π = 100 MHz (which can be obtained by increasing

the cavity frequency), EZ = 70 µeV, an orbital level spacing EO = 1.7 meV, dot radius R

= 25 nm, and spin-orbit length λSO = 100–200 nm, we find a spin coupling rate gS/2π ∼ 1

MHz, which is five orders of magnitude larger than the coupling rate that would be obtained

by coupling a single spin to the magnetic field of a microwave cavity.

In order to implement coherent state transfer between the qubit and the cavity the

device must be in the strong coupling regime, where the spin-cavity coupling rate gS is

larger than the cavity decay rate κ and the qubit decoherence rate γ. Optimization of the

resonator design will reduce the cavity decay rate to well below 1 MHz [21]. There are several

options for decreasing the qubit decoherence rate. First, dynamical decoupling can be used

to reduce the qubit decay rate to ∼ 1 MHz in the InAs system [13]. InAs could also be

replaced by Ge/Si core/shell nanowires where hole spin-orbit coupling is predicted to be large

[31]. Resonators can also be coupled to nuclear-spin-free Si/SiGe quantum dots by using

micromagnets to create artificial spin-orbit fields [32]. Based on our results we anticipate

that the strong coupling regime for single spins can be reached, eventually allowing spin

qubits to be interconnected in a quantum bus architecture.
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the level diagram. Lower: The ac susceptibility, χ, is dependent on the spin state of the DQD and

allows for sensitive spin readout. (b) Pulse sequence used to drive EDSR transitions. (c) Phase

response of the cavity measured as a function of EDSR drive frequency, fG, and external field,

B, with τB = 100 ns and TM = 850 ns. EDSR transitions are observed in the phase response, in

agreement with the dc transport data. (d) Measured phase shift as a function of TM with τB =

100 ns, B = 90 mT and fG = 13.1 GHz. The exponential decay yields a spin relaxation time of

T1 = 1 µs. (e) Phase response of the cavity as a function of EDSR burst length, τB, and driving

power for fixed B = 86 mT, fG = 9.5 GHz, and TM = 1.75 µs. (f) Rabi oscillations at different

powers, indicated by the dashed lines (e). The solid curves are fits to a power law decay [21].
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