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Abstract

Driven by the need for faster devices and higher transistor densities, technology trends

have pushed transistor dimensions into the deep sub-micron regime. This continued

scaling, however, has led to many challenges facing digital integrated circuits today.

One important challenge is the increased variations in the underlying process and en-

vironmental parameters, and the significant impact of this variability on circuit timing

and leakage power, making it increasingly difficult to design circuits that achieve a

required specification. Given these challenges, there is a need for computer-aided de-

sign (CAD) techniques that can predict and analyze circuit performance (timing and

leakage) accurately and efficiently in the presence of variability. This thesis presents

new techniques for variation-aware timing and leakage analysis that address different

aspects of the problem.

First, on the timing front, a pre-placement statistical static timing analysis tech-

nique is presented. This technique can be applied at an early stage of design, when
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within-die correlations are still unknown. Next, a general parameterized static tim-

ing analysis framework is proposed, which supports a general class of nonlinear delay

models and handles both random (process) parameters with arbitrary distributions and

non-random (environmental) parameters. Following this, a parameterized static timing

analysis technique is presented, which can capture circuit delay exactly at any point

in the parameter space. This is enabled by identifying all potentially critical paths in

the circuit through novel and efficient pruning algorithms that improve on the state

of art both in theoretical complexity and runtime. Also on the timing front, a novel

distance-based metric for robustness is proposed. This metric can be used to quantify

the susceptibility of parameterized timing quantities to failure, thus enabling designers

to fix the nodes with smallest robustness values in order to improve the overall design

robustness.

Finally, on the leakage front, a statistical technique for early-mode and late-mode

leakage estimation is presented. The novelty lies in the random gate concept, which

allows for efficient and accurate full-chip leakage estimation. In its simplest form, the

leakage estimation reduces to finding the area under a scaled version of the within-die

channel length auto-correlation function, which can be done in constant time.

iii



Acknowledgments

I would first like to thank Professor Farid Najm for his continuous guidance and support

throughout the years of my graduate studies. I owe a great deal of this work to his

contributions, patience, and unwavering trust. Working under his supervision has been

a great and unique experience, one that will always bring back dear memories to my

heart.

I thank Professors Jason Anderson, David Blaauw, Tony Chan Carusone, Paul

Chow, and Jianwen Zhu for their constructive comments and review of this work.

During my Ph.D, I also had the chance to work and interact with excellent mentors

who helped me bridge the “annoying” gap between theory and practice. I am grateful to

Chandramouli Kashyap, Eli Chiprout, and Noel Menezes from Intel for their guidance,

support, and direct contributions to several aspects of this work. I also want to thank

Edwin Bender from AMD for his enthusiasm and interest during the last stages of my

Ph.D. The many “2-minute” discussions we had helped me gain a better understanding

of the bigger picture.

I am grateful to Navid Azizi for his direct contributions to Chapter 7 of this work.

Thank you Navid for being a dedicated colleague and friend. I also want to thank Sari

Onaissi, my partner in the “timing group”, for his contributions to Chapter 5 of this

dissertation, and for all the good times we spent in and out of the “arena”.

I would like to thank Nahi Abdul Ghani for the many funny “moments” we shared,

and for being a great friend and colleague. Of my friends at UofT, I also want to thank

Hratch Mangassarian, Hayssam Dahrouj, Andrew Ling, Ian Kuon, Frank Plavec, Tom

Czajkowski, Mehmet Avci, Ankit Goyal, and Meric Aydonat, who made my stay in

the lab a pleasant one.

I also want to thank my mother Samar, father Reslan, sisters Karine and Reine,

iv



Acknowledgements

and brother Majed for their immense love and support at every stage of my life. And

to my wife Rasha, I say thank you for your patience and love, and above all for always

being there for me.

v



Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Process and Environmental Variations . . . . . . . . . . . . . . . . . . 8

2.2.1 Components of Variations . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Sources of Increased Variations . . . . . . . . . . . . . . . . . . 11

2.3 Circuit Performance Analysis under Variability . . . . . . . . . . . . . . 12
2.3.1 Static Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Corner Analysis and Timing Margins . . . . . . . . . . . . . . . 13
2.3.3 Monte Carlo Analysis . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Statistical Static Timing Analysis . . . . . . . . . . . . . . . . . 15
2.3.5 Dominant Leakage Mechanisms . . . . . . . . . . . . . . . . . . 20

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Pre-placement Statistical Static Timing Analysis 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Types of SSTA . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Yield Specific Margins . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Modeling Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Parameter Model . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Gate Delay model . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



Contents

3.4.3 Arrival Time model . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Effect of Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Effect on the Sum of Two RVs . . . . . . . . . . . . . . . . . . . 30
3.5.2 Effect on the Max of Two RVs . . . . . . . . . . . . . . . . . . . 32

3.6 Timing Analysis Operations . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.1 Sum Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.2 Max Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.3 Combining Sum and Max . . . . . . . . . . . . . . . . . . . . . 38
3.6.4 Block-based Propagation . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8 Incomplete correlation information . . . . . . . . . . . . . . . . . . . . 43
3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 General Framework for Parameterized Static Timing Analysis 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 General Parameterized Timing . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Mathematical Framework . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Max Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.2 Bounding the Max . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.3 Least Squares Max Approximation . . . . . . . . . . . . . . . . 54

4.5 Multi-corner STA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.1 Linear and Nonlinear Models . . . . . . . . . . . . . . . . . . . 57
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Nonlinear Non-Gaussian SSTA . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.1 Delay Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Parameterized Static Timing Analysis Covering All Potentially Critical Paths 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Modeling and Propagation . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 The Pruning Problem . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Problem Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.1 From Computational Geometry . . . . . . . . . . . . . . . . . . 78

vii



Contents

5.5.2 To Parameterized Timing . . . . . . . . . . . . . . . . . . . . . 81
5.6 Pruning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6.1 Exact Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6.2 Sufficient Condition . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Robustness Metrics in Parameterized Static Timing Analysis 94

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.1 Nominal Static Timing Analysis . . . . . . . . . . . . . . . . . . 98
6.4.2 Parameterized Static Timing Analysis . . . . . . . . . . . . . . 100

6.5 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.5.1 From Sensitivity to Robustness . . . . . . . . . . . . . . . . . . 103
6.5.2 Quantifying Robustness . . . . . . . . . . . . . . . . . . . . . . 104
6.5.3 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . 106
6.5.4 Unbiased vs Biased Analysis . . . . . . . . . . . . . . . . . . . . 112

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Statistical Leakage Estimation 119

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4 Modeling Process Variations . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4.1 Parameter Model . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4.2 Correlation Model . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.5 Modeling at the Cell Level . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.5.1 Cell Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.5.2 Leakage Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.5.3 Input Combinations . . . . . . . . . . . . . . . . . . . . . . . . 133

7.6 Full-Chip model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.6.1 Model Definition and Suitability . . . . . . . . . . . . . . . . . . 136
7.6.2 Leakage Statistics of a Random Gate . . . . . . . . . . . . . . . 137
7.6.3 Random Gate Leakage Correlation . . . . . . . . . . . . . . . . 138

7.7 Full-Chip Leakage Estimation . . . . . . . . . . . . . . . . . . . . . . . 140
7.7.1 Linear-time method . . . . . . . . . . . . . . . . . . . . . . . . . 140

viii



Contents

7.7.2 Constant-time method . . . . . . . . . . . . . . . . . . . . . . . 146
7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8 Conclusion 152

Appendices 154

A Leakage Statistics using Analytical Method 155

B Leakage Correlation using Analytical Mapping 159

References 166

ix



List of Figures

2.1 Effects of lithography limitations on drawn features [1] . . . . . . . . . 10
2.2 Uncertainty in the dopant location [2] . . . . . . . . . . . . . . . . . . . 12
2.3 Variability predictions and effects on performance [3] . . . . . . . . . . 13
2.4 Impact of variations on leakage and frequency . . . . . . . . . . . . . . 20

3.1 Types of SSTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 AND gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Upper/Lower bounds vs. MC distributions for circuit c499 . . . . . . . 39
3.4 99% yield margins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Upper bound on Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Lower bound Yl = D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Lower bound Yl = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Lower bound on Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Least squares max approximation . . . . . . . . . . . . . . . . . . . . . 56
4.6 Truncated Gaussian, uniform, and triangular distributions . . . . . . . 66
4.7 CDF comparison for c1355 . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Propagation for a single gate . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 MAX of path delay hyperplanes . . . . . . . . . . . . . . . . . . . . . . 75
5.3 (a) Extreme points of convex hull (b) Minimal polytope representation

(dual problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Comparison of PRUNE LB and PAIRWISE algorithms . . . . . . . . . 92

6.1 Timing graphs for (a) Inverter, and (b) 3-input OR gate . . . . . . . . 97
6.2 Parameterized arrival time . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Slack computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4 Sensitivity and robustness . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.5 Unit ball in different norms . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.7 Biasing the norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.8 Cumulative robustness distribution of failed slacks . . . . . . . . . . . . 114

x



List of Figures

6.9 Nominal slack vs robustness . . . . . . . . . . . . . . . . . . . . . . . . 115
6.10 Ranking nodes according to their robustness: exact PSTA vs approxi-

mate PSTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 Leakage estimation model and the high-level characteristics required . . 121
7.2 Possible correlation model considering both within-die and die-to-die

variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3 Comparison of analytical fit with results from SPICE of an AO cell . . 131
7.4 Comparison of analytical fit with results from SPICE of an double-two-

input-AND-into-two-input-NOR . . . . . . . . . . . . . . . . . . . . . . 132
7.5 Correlation in leakage vs correlation in channel length for a pair of gates 134
7.6 Effects of signal probability on chip leakage . . . . . . . . . . . . . . . . 135
7.7 Abstract organization of die . . . . . . . . . . . . . . . . . . . . . . . . 137
7.8 Number of occurrences of a certain distance vector . . . . . . . . . . . 142
7.9 Errors in the estimation of mean and standard deviation of full-chip

leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.10 % Error in leakage standard deviation for ρm,n = ρL compared to ρm,n =

fm,n(ρL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.11 % Error between numerical integration and linear time algorithm . . . 150

A.1 Histogram of the % error in the mean of the analytical method compared
to MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2 Histogram % error in the standard deviation of the analytical method
compared to MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.1 Leakage correlation of pairs of different gates . . . . . . . . . . . . . . . 164
B.2 Leakage correlation of pairs of different gates (zoom in) . . . . . . . . . 165

xi



List of Tables

2.1 Examples of variations . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Within-die correlation settings for sum and max . . . . . . . . . . . . . 36
3.2 Margin comparison as % of nominal max delay . . . . . . . . . . . . . . 42

4.1 Our methods compared to corner analysis . . . . . . . . . . . . . . . . 60
4.2 Least-squares SSTA vs Monte Carlo analysis for Gaussian, Uniform, and

Triangular distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Summary of hyperplanes at primary output and Run-times for (1) PRUNE LB
+ PRUNE and (2) PAIRWISE + FEASCHK . . . . . . . . . . . . . . 91

7.1 % Error in full-chip standard deviation for ISCAS85 circuits compared
to the Random Gate (RG) estimates . . . . . . . . . . . . . . . . . . . 144

xii



List of Algorithms

1 PAIRWISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2 FEASCHK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3 Check Redund(D,B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4 PRUNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5 Get Initial NR(P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6 PRUNE LB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7 FindRobustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xiii



1 Introduction

1.1 Motivation

With the continued scaling of integrated circuits, the control over process and envi-

ronmental variations has become increasingly difficult. As we move from one process

technology to the next, variability has steadily increased and is now a major challenge

facing digital integrated circuit design. The crux of the problem lies in that circuit

performance, including timing and leakage power, is significantly impacted by the vari-

ability in the underlying physical and electrical parameters, to such extent that it is

becoming increasingly difficult to design circuits that will achieve their target specifica-

tions with high yield. Based on predictions forecasted by the International Technology

Roadmap for Semiconductors (ITRS), circuit timing variability is expected to reach

60% and leakage power variability is expected to reach 3× in the near future. These

alarming levels call for new techniques for variation-aware performance analysis and

verification, that can quantify accurately and efficiently the impact of variations on

performance and guide circuit design and optimization to achieve more reliable and

robust designs.

Process and environmental variations are not new, and taking care of their impact on

timing is not a new problem. Traditionally, this has been taken care of in various ways.

Application Specific Integrated Circuits (ASICs) are typically designed by making sure

the chip passes the timing requirements at all process corners. This is done by setting

certain transistor parameters at ±3σ (typically, but could be higher) of their range, as

defined in the process files, and running static timing analysis (STA) on the circuit. If

these settings are too pessimistic, then designers are forced to waste time and effort

optimizing a circuit using design conditions that are too stringent. Microprocessors

1



1 Introduction

and FPGAs, on the other hand, use “frequency binning,” so that a design that does

not meet the worst-case corner specs is not necessarily failed. For microprocessors,

it is typical to check circuit timing with nominal transistor files, and to specify some

timing margin which should be left (as slack) to account for (some) process variations.

In some cases, high-speed datapaths of microprocessors may be designed with zero

timing margin, due to the difficulty of optimizing such paths any further and the fact

that one will do frequency binning anyway. This is not to say, however, that timing

variations are not relevant in microprocessor design. On the contrary, it turns out

that within-die variations greatly impact microprocessor design because they cause

unwanted mismatch (such as clock skew) which leads to timing violations. However,

the ASICs versus microprocessors contrast highlights the two traditional methods of

accounting for process variations by either using worst-case process files and running

STA with a zero timing margin, or using nominal process files and running STA using

a (possibly zero) timing margin.

However, today, and in future, this situation is changing in several ways. Firstly,

it is not clear that we will be able to control process variations in future to the same

extent that we have done in the past. This is especially true for threshold voltage

variations arising from random dopant fluctuations. Thus, variations may be worse in

future, so that we need to do a better job of choosing the timing margins for good design,

avoiding over-pessimism. Secondly, within-die variations are becoming more significant,

and they currently represent a larger component of the total parameter variation. For

within-die variations, it becomes harder to figure out what exactly the timing margin

should be and, overall, it becomes harder to predict the effect of variations on the design.

Another trend is the increase in the number of parameters that impact performance.

These include device parameters (such as channel length, threshold voltage, and oxide

thickness) and interconnect parameters (such as wire height and width for various metal

layers).

There has been considerable discussion in the literature that the traditional methods

of using process corners or using a timing margin are breaking down. For ASICs, the

number of corners is increasing, making it very expensive to explore all corners. Also,

the corner-based methodology does not provide the user with any quantitative feedback

2



1 Introduction

on the sensitivity of the design to variations; it is a pass/fail approach. Furthermore,

this traditional approach cannot handle within-die variations. On the other hand, for

microprocessors, where a timing margin needs to be left as slack, there are no easy

ways to decide what the margin should be, to account for within-die variations.

In the past few years, a large body of research has focused on tackling the variation-

aware timing problem statistically, and has led to what is known as statistical static

timing analysis (SSTA). The basic idea is to start by modeling process parameters as

random variables with known distributions. Then, by using a variational timing model

for cell and wire delay, SSTA techniques propagate delay distributions instead of deter-

ministic delay values in the timing graph. In this way, distributions for path delays and

arrival times are determined, and ultimately the maximum circuit delay distribution,

which is directly translated into a timing yield, is also determined. However, difficulties

still remain in the adoption of SSTA. First, most proposed techniques require the ex-

istence of extensive process and placement information to operate, which makes them

valid as final sign-off tools and unusable at an early stage of the design flow. Second,

there is no easy way to handle environmental variations, such as supply voltage and

temperature, in the context of SSTA frameworks; these types of variations, which de-

pends on circuit operation and not on manufacturing variations, are not random but

uncertain, and will have to be modeled differently.

On the leakage front, and as mentioned earlier, leakage power is expected to continue

to increase and due to limited power budgets, it may affect the feasibility of future

microprocessor and ASIC designs. In addition, with the drastic impact of variability

on leakage power, as predicted by ITRS, it becomes clear why variation-aware leakage

estimation techniques become increasingly important; these techniques will be needed

both at an early stage for design planning, and at a late stage for final sign-off.

1.2 Thesis Contributions

This thesis focuses on the following three overarching themes:

1. Analysis and prediction of the impact of process and environmental variations on

circuit timing.
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2. Defining metrics for circuit timing robustness in the presence of variability.

3. Analysis and prediction of full-chip leakage current under process variations.

With respect to these themes, a number of different contributions are made, as

summarized below:

Chapter 3 presents a statistical static timing analysis technique that can operate at

an early stage of the design flow. Unlike current approaches to statistical tim-

ing analysis which operate post-placement and rely on the existence of complex

within-die correlation models built from process data, the technique proposed in

Chapter 3 operates pre-placement, at a stage where within-die spatial correla-

tions are still unknown or unavailable. Starting with a simple variational delay

model that requires minimal input from the user, the distribution of the maxi-

mum circuit delay is bounded, such that the bounds are valid for any arbitrary

within-die correlation. An important contribution of this work is the use of these

bounds to introduce the concept of margin uncertainty, resulting from the cor-

relation uncertainty of the within-die variations. This margin range can be used

by designers at an early stage of design to mitigate the impact of variations on

timing. This work has been published in [4].

Chapter 4 proposes a general framework for parameterized static timing analysis, a

term used to describe any variation-aware timing analysis technique in which

delay is an explicit function of the underlying process and environmental pa-

rameters. The proposed framework is general, in the sense that it can handle

statistical (random) process parameters with arbitrary distributions as well as

non-random (uncertain) parameters such as supply voltage and temperature. In

addition, the framework presented in Chapter 4 supports a general class of non-

linear variational delay models, including linear and quadratic models. When

applied to random variations, this framework is competitive with existing statis-

tical static timing analysis techniques, in that it allows for nonlinear delay models

and arbitrary parameter distributions. When applied to uncertain non-random

variations, the framework is competitive with existing multi-corner static timing
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analysis techniques, in that it more reliably reproduces overall circuit sensitivity

to variations. Crucially, this technique can also be applied to the mixed case

where both random and uncertain variations are considered. This work has been

published in [5].

Chapter 5 presents an efficient block-based parameterized static timing analysis tech-

nique that can accurately capture circuit delay at every point in the process and

environmental parameter space, by reporting all the paths that can become criti-

cal at any parameter setting. The technique models parameters as variables speci-

fied in ranges; this is a more general model for parameters because it can represent

random process parameters with arbitrary distributions and non-random (uncer-

tain) environmental parameters (such as supply voltage and temperature) alike.

An efficient pruning algorithm is proposed, where only those potentially critical

paths are carried forward, while all other (non-critical) paths are discarded dur-

ing propagation. This allows one to examine local sensitivities to parameters in

different regions of the parameter space, not by considering differential sensitiv-

ity at a point but by knowledge of the paths that can become critical at nearby

points in parameter space. Chapter 5 also gives a formal definition of this prob-

lem and proposes a technique for solving it that improves on the state of the art,

both in terms of theoretical computational complexity and in terms of run time

on various test circuits. This work has been published in [6].

Chapter 6 proposes a novel metric that can be used to quantify the timing robust-

ness of designs to parameter variations. This type of robustness analysis can be

used as a “post-variation” analysis step, that is, after the parameterized static

timing analysis step is complete. The metric proposed in Chapter 6 works with

parameterized static timing analysis techniques where parameters are modeled

as uncertain variables specified as ranges, such as the techniques proposed in

Chapter 4 and 5. The distance to failure is used as a measure for robustness;

thus the analysis determines the minimum distance from the nominal point in

the parameter space to any timing violation, and works under the assumption

that parameters are specified as ranges rather than statistical distributions. In
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addition to helping designers diagnose if and when different nodes can fail, this

metric can guide optimization and can give insights on what to fix, by identifying

nodes with small robustness values and proceeding to fix those nodes first. The

usefulness of this distance-based robustness metric is demonstrated on circuit

blocks extracted from a commercial 45nm microprocessor from Intel. This work

has been published in [7].

Chapter 7 presents a probabilistic framework for full-chip leakage estimation in the

presence of process variations. The proposed technique enables efficient prediction

of the the mean and variance of the leakage current of a candidate design, while

considering logic-structures and both die-to-die and within-die process variations,

and taking into account the spatial correlation due to within-die variations. This

framework can be used as either an early or a late estimator of leakage, with high

accuracy. The full-chip leakage model is based on a novel random gate concept to

capture high-level characteristics of a candidate chip design, which are sufficient

to determine its leakage. These high-level characteristics include information

about the process, the standard cell library, and expected design characteristics.

Chapter 7 demonstrates empirically that, for large gate count, the set of all chip

designs that share the same high level characteristics have approximately the

same leakage, with very small error. In its simplest form, the full-chip leakage

estimation reduces to finding the area under a scaled version of the within-die

channel length auto-correlation function, which can be done in constant time.

This work has been published in [8, 9].

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 covers the background

material relevant to the research, including a description of process and environmental

variations and their impact on performance (timing and leakage), an overview of current

techniques for timing analysis under variability, and coverage of the dominant leakage

current mechanisms that are impacted by variability.
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The main research contributions, which are highlighted above, are presented in

Chapters 3 through 7. For clarity, and owing to the range of topics considered, each

chapter is self-contained; each chapter includes a description of the proposed technique,

additional specific background material where applicable, and the experimental results.

Chapter 8 presents concluding remarks and suggestions for future work.
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2 Background

2.1 Introduction

Keeping up with Moore’s Law, digital integrated circuits have continued to scale with

every new technology node, and are now facing increased manufacturing process and

environmental variations. This variability in the physical and electrical parameters

greatly impacts circuit performance (timing and power) and calls for “variation-aware”

performance verification techniques. In this chapter, a general background will be

provided, covering the material that forms the basis for the research presented in later

chapters. We first go over the different types of variations and cover some design

for manufacturability techniques to reduce them, then we move to describe various

methods for variation-aware timing verification, and finally present some background

material on leakage power and how it is impacted by variability. Chapters 3 through 7

will also contain more background material and literature review that are specific to

the topic of each chapter.

2.2 Process and Environmental Variations

Generally speaking, variations are deviations from the typical (intended) values of

the electrical and physical parameters of a transistor or a circuit element, and are

usually divided into two broad categories [10]: manufacturing process variations, or

simply process variations, are permanent variations in device or wire parameters due

to manufacturing tolerances caused by the lack of full control over the fabrication

process. Examples of process parameters affected by manufacturing variations include

transistor length and width, threshold voltage, and oxide thickness. On the other
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Table 2.1: Examples of variations

Component Form of variation

Channel length dd, wds + wdr

Threshold Voltage dd, wdr

Mean R and C dd
differences between

metal layers

Vdd and temperature wds

hand, environmental variations are operation dependent variations that can affect the

circuit while it is functioning. This type of variation depends on the circuit’s switching

activity and modes of operation, and include variations in the supply voltage and

temperature [10]. Collectively, process and environmental variations are referred to as

process, voltage, and temperature variations, or simply PVT variations.

2.2.1 Components of Variations

A detailed description of process and environmental variations is presented in [11].

Variations can be broken down into two components. First, die-to-die variations, also

known as inter-die variations, consist of differences in transistor parameters across

different dies, irrespective of whether the dies are from different lots, wafers, or belong

to the same wafer. These variations usually cause a shift in the mean value of a

parameter over all the devices on a single die. Die-to-die variations are often caused by

systematic effects across the wafer, however they can be modeled as random variations

from one die to the next [10]. For a given die, these variations are global in the sense that

they are shared by all devices; they are perfectly correlated and are often referred to as

die-to-die systematic variations. Second, within-die variations, also known as intra-die

variations, are local variations that occur spatially within a die, and that affect every
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Figure 2.1: Effects of lithography limitations on drawn features [1]

transistor or circuit element differently. These variations are further broken down into a

spatially correlated component known as within-die systematic variation, and a random

(independent) component that is totally uncorrelated and independent of all else. These

variations can be quite problematic since they can reduce the matched behaviour of

different structures on the die needed to maintain correct circuit functionality [10].

Examples of die-to-die variations include channel length variation due to length of

exposure, and variations between individual metal layers used for routing [11]. Within-

die systematic variations come about because of layout-specific variations. These varia-

tions can be the result of semiconductor process methods or environmental differences

that are seen across the design based on layout. Examples of within-die systematic

variations include optical proximity effects that cause polysilicon feature sizes such as

channel length to vary as a function of local layout. Also, they can be the cause of

spatial variation of channel length due to lens aberration across the die. Finally, within-

die random variations can be caused by any number of things including lithography,

etching, polishing, and doping effects. An example of within-die random variation is

the variation in device threshold voltage due to random dopant fluctuations in smaller

silicon structures. Table 2.1 gives examples of process variations [11], where dd stands

for die-to-die, wds for within-die systematic, and wdr for within-die random.
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2.2.2 Sources of Increased Variations

The increase in variability is due to a variety of reasons [10–12]: First, nominal transis-

tor geometries have become so small in deep sub-micron process technologies that even

minute variations in physical features or dopants become pronounced and can cause

significant impact on performance. At the same time, the wavelength of the light used

in lithography to print the layout on silicon is not scaling at the same rate; for example,

lights with 193nm and 157nm wavelengths are used to print 90nm and 45nm structures,

respectively, on silicon [13]. With such a “thick pen”, it is even harder to print fine

and precise patterns on silicon, patterns that will continue to get only smaller relative

to the wavelength of new light sources in the future [14]. This lithography limitation

affects process parameters that are printed on silicon, such as channel length or wire

width and spacing, to name a few. Fig. 2.1 shows that polysilicon corners drawn will

not have the same sharp corners when they are created on silicon, causing the effective

channel length to be different than what was intended. In addition, the non-uniformity

in the surrounding area can cause patterns to be printed differently, as shown on the

right side of Fig. 2.1. Variations in the transistor threshold voltage have also been in-

creasing due to technology scaling. One important source of threshold voltage variation

is random dopant fluctuation, which causes randomness in the location of dopants and

does not allow a constant concentration of dopants in the channel, as seen in Fig. 2.2.

There are several Design for Manufacturability (DFM) techniques that try to re-

duce or even correct the effects of systematic variations; for example, techniques for

resolution enhancement (RET) may include Optical Proximity Correction (OPC) [15]

and phase shifting masks [16]. The idea behind OPC is to alter the layout by adding

and adjusting shapes so that the printed feature on silicon looks more like the drawn

feature. Other DFM techniques work by increasing the number of design rules, such as

by increasing the spacing requirements between adjacent printed features or allowing

only certain types of patterns to be used. While these DFM techniques have helped

reduce some systematic effects that are well understood, the random effects especially

random dopants fluctuations, and the other systematic effects that are difficult to un-

derstand and model have lead to an increase in variations, and will continue to do so

in the future.
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Figure 2.2: Uncertainty in the dopant location [2]

2.3 Circuit Performance Analysis under Variability

Process and environmental variations can have a significant impact on circuit perfor-

mance metrics, particularly circuit timing and leakage power. Fig. 2.3 shows trends ob-

served and predictions forecasted by the International Technology Roadmap for Semi-

conductors (ITRS) [3]. These predictions show that variations are either expected to

remain at current levels (e.g. supply voltage and channel length variations), or to keep

on increasing (e.g. threshold voltage variations due to random dopant fluctuations).

Fig. 2.3 also shows that the impact of process and environmental variations on perfor-

mance will reach alarming levels in the future, with circuit timing variability reaching

63% and leakage variability reaching 3× of their respective nominal values. It is there-

fore of crucial importance to devise techniques that are able to analyze the impact of

variability on performance, and drive variation-aware circuit design and optimization.

In the next sections, we cover different methods used to verify circuit timing under

variability, and describe the dominant leakage current mechanisms that are impacted

by variations.
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Year of Production 2009 2010 2011 2012 2013 2014

% Vdd variability seen in 

on-chip circuits
10% 10% 10% 10% 10% 10%

% Vth variability for 

minimum size devices 

(doping only)

40% 40% 40% 58% 58% 81%

% Vth variability for 

minimum size devices (all 

sources)

42% 42% 42% 58% 58% 81%

% Vth variability for 

typical size devices (all 

sources)

20% 20% 20% 26% 26% 36%

% CD variability 12% 12% 12% 12% 12% 12%

% Circuit timing variability 49% 51% 60% 63% 63% 63%

% Circuit leakage power 

variability
186% 229% 255% 281% 287% 294%

Figure 2.3: Variability predictions and effects on performance [3]

2.3.1 Static Timing Analysis

Traditionally, Static Timing Analysis (STA), evolving from the early work of Kirk-

patrick [17], has been used to verify that circuit timing meets the target constraints.

We will not go into details about how STA works, but will mention only a few refer-

ences [17–19] that the reader can explore to learn more about STA. Suffice it to say

that the approach works by propagating signal arrival times in the circuit timing graph

by adding cell and wire delays, and computes the maximum (late mode) and minimum

(early mode) path delays. A simple comparison of these delays to the Setup and Hold

timing constraints, that bound the minimum and maximum path delay respectively,

allows one to determine if the circuit passes or fails timing.

2.3.2 Corner Analysis and Timing Margins

STA has been traditionally used to verify timing under variability. ASICs are typically

designed by making sure the chip passes the timing requirements at all process cor-

ners, including nominal, worst, and best cases of device behavior. Such approach to
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verification is known as corner analysis or worst-case files. A circuit is deemed to have

passed the timing check if it meets the performance constraints for all “worst-case”

files belonging to that process. In [20], corner-case files are generated in the following

way. First, I-V curves are extracted from extensive measurements with SPICE, then

parameters are deduced from measured data. Principal Component Analysis (PCA) is

then applied to decorrelate SPICE parameters, and produce independent random vari-

ables. This leads to corner files at the transistor level. In [21], finding process corners

is transformed into an optimization problem. Performance g(X) (delay, for example) is

assumed to be quadratic in terms of the process parameters vector X = [X1, . . . , Xn]:

g(X) = a + bX + XT BX (2.1)

where X1, . . ., Xn are either independent parameter variations, or their principal com-

ponents. To find corners, the vector X that minimizes and maximizes g(X) subject to

performance constraints is found.

Corner case analysis suffers however from a number of limitations. One limitation

is the fact that there are too many corners to verify, especially with the increase in

the number of varying parameters; if n parameters are varying, 2n verifications are

needed, as one needs to check the two extremes of every parameter. With the ever

increasing impact of within-die variations, predicted to grow from 35% to 60% of the

total variation in channel length from 0.13µm to 0.07µm technologies, it is not clear

how corner case analysis can handle the possible mismatch between devices at different

locations. One can divide the die into smaller regions and apply region-based cornering,

but this will only increase the number of corners even more! The bottom line is that

corner case analysis cannot handle within-die variations.

For microprocessors, it is typical to check circuit timing with nominal transistor files,

and to specify some timing margin (possibly zero) that should be left as slack to account

for process variations. Frequency binning is a standard practice in microprocessors,

however this is not to say that process variations are not a problem. In fact, within-

die variations affect clock skew and cause significant timing failures if they are not

accounted for.

There has been considerable discussion in the literature that the traditional methods
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of using process corners or timing margins are breaking down. For one thing, we

mentioned that the number of corners is increasing, making it very expensive to explore

all corners. Also, the corner based method can be too conservative in some cases and

does not provide the user with any quantitative feedback on the robustness of the

design [20]; it is a pass/fail approach. Furthermore, this traditional approach cannot

handle within-die statistical variations [22]. On the other hand, for microprocessors,

where nominal process files are used and a timing margin needs to be left as slack,

there is no easy way to decide what the margin should be, to account for within-die

variations that have become more important in recent years [23].

2.3.3 Monte Carlo Analysis

The impact of process variations on circuit performance can also be predicted using

Monte Carlo analysis [24,25]. This method is an iterative process where every iteration

consists of two steps, namely sampling and simulation. In the sampling step, process

parameters are sampled according to their distributions, thus generating a sampled

value for every parameter. In the simulation step, the circuit is simulated or analyzed

to obtain its performance at those particular process parameter settings obtained from

the sampling step. After repeating this step multiple times, different performance

samples are obtained, from which the distribution of circuit performance is computed.

Monte Carlo analysis is very accurate in predicting the performance distribution of

integrated circuits, however, it requires a large number of samples to converge, on

the order of 10, 000. Given that a simulation step is required for every sample, this

approach is computationally expensive, and is only practical for very small circuits.

2.3.4 Statistical Static Timing Analysis

Recently, due to the increased importance of within-die variations, there has been

an increased interest in employing statistical techniques as part of the static timing

analysis step. Statistical static timing analysis (SSTA), as it has been proposed, deals

with circuit timing uncertainty by presenting an alternative to corner analysis and

worst-case files. The basic idea is to start by modeling process parameters as random
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variables with known distributions. Then, by using a variational timing model for

cell and wire delay, these SSTA techniques propagate delay distributions instead of

deterministic delay values in the timing graph. In this way, distributions for path

delays and arrival times are determined, and ultimately the maximum circuit delay

distribution, which is directly translated into a timing yield, is also determined. Unlike

Monte Carlo analysis, which requires iteratively analyzing the circuit a large number

of times to determine its delay distribution, SSTA techniques can do so in only one

timing run and are thus applicable to large circuits.

Issues to consider in SSTA

There are many considerations that need to be addressed by almost any proposed SSTA

technique, and these are summarized below:

� Choice to model one or all components of variations, including die-to-die, within-

die systematic, and within-die random components.

� Choice of parameter distribution: SSTA models process parameters as random

variables with specified distributions. The most popular distribution used by

many techniques is the Normal or Gaussian distribution. However, some pa-

rameters are not normally distributed, or it may be difficult to determine their

distribution at an early stage in the design flow. The most general SSTA tech-

nique must be able to handle arbitrary parameter distributions.

� Choice of variational timing model: A timing model is needed to capture the

dependence of cell and wire delay variations on the underlying process and en-

vironmental parameters. The simple and most popular model is the first-order

linear model, which treats delay variation as a linear (affine) function of PVT pa-

rameters. More complex models can be used, including nonlinear and quadratic

models, which may add complexity to the SSTA techniques.

� Handling within-die spatial correlation: As mentioned earlier, within-die varia-

tions have a spatially correlated component expressing the fact that features that

are close to each other are more likely to vary in the same way than features that
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are further apart. Some SSTA techniques used correlation models, others used

bounding schemes or even ignored spatial correlation altogether.

� Handling environmental variations: While process parameters can be modeled

as random variables with distributions over the set of manufactured dies, envi-

ronmental parameters, such as supply voltage and temperature, are not random

in nature, and should be modeled as uncertain variables. In chapters 4 and 5,

we present novel techniques that can handle this type of uncertain non-random

variations.

In the past few years, a large body of literature was published on SSTA, each

covering in its own merit one or more of the above considerations. We review below

some of the earlier work that has been proposed, and later cover more recent work in

the background sections of chapters 3 through 6. Broadly speaking, SSTA techniques

fall into two groups, block-based and path-based techniques.

Block-Based Approaches

In block-based approaches, distributions of signal arrival times are propagated in the

circuit timing graph to get the block delay distribution. Individual path delay distri-

butions are only available indirectly, hence the name block-based.

Block-based techniques are linear in the size of the timing graph. Just as STA, their

runtime is O(V +E), where V and E are the number of vertices and edges in the timing

graph respectively. They are also amenable to incremental analysis, since any change in

arrival time distribution requires only propagating this change onwards. This property

makes block-based approaches suitable for the inner loop of optimization tools. On

the other hand, block-based approaches present some drawbacks, as they are not as

accurate as path-based methods and they constitute a poor platform for capturing and

propagating topological correlations.

In [26], random arrival times are captured via their Cumulative Distribution Func-

tions (cdf) and random gate delays are captured via their Probability Density Functions

(pdf). These are convolved to get the cdf of the arrival time when moving from an

edge to a node in the timing graphs. Different arrival times are then Max-ed when they
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converge to the same node to get the resulting cdf. Systematic within-die correlation is

not taken into account, however correlation due to path sharing or reconvergent fanout

is handled by propagating a dependency list that consists of all previous nodes that the

current node depend on. Results show that ignoring path sharing is a conservative ap-

proach however the error is small and is not worth the overhead of creating dependency

lists.

In [27] and [28], two similar models for timing quantities (arrival times and gate

delays) are proposed, where the variations are considered Gaussian. They both handle

within-die correlation and dependence on global sources of variations using the following

decomposition.

A = a0 +
n∑

i=1

ai∆X + an+1∆R (2.2)

where A is a random timing quantity with mean a0. The first summation can ei-

ther be interpreted as PCA decomposition of spatial correlation [27], or dependence

on global sources of variations ∆X [28], and the last part accounts for independent

random variations ∆R. Both works use analytical expressions of the Max function and

propagate correlations by forcing the expression of the Max to be in the above form.

This causes some errors to be induced, as the Max of two Gaussian random variables is

not Gaussian. Also, spatial correlation is taken care of in [27] by dividing the die into a

grid. Gates lying in the same region of the grid will have totally correlated within-die

variations. It is not clear how the size of the grid is obtained, and how coarse or fine

it should be.

In [29, 30], a conservative bound is obtained on the arrival time of all nodes if

path reconvergence is ignored. However they present a way to handle path sharing

similar to the dependency list of [26]. Arrival times are statistically “added” using

convolution, and max-ed by simple multiplication of CDFs, in an implicit assumption

of their independence. Finally, a method called quad-tree partitioning is proposed. It

is based on assuming layers of correlations. The top layer is the global (die-to-die)

and affects the whole timing quantities. As we go deeper, the partitioning increases

four-fold, and becomes finer, allowing local correlation. It is not clear what number of

layers to adopt, and how layout information would be extracted.
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Path-Based Approaches

In path-based approaches, path delay distributions are expressed as functions of the

underlying sources of variation. Gate delay distributions are added along a path to get

its distribution. Once this is done for all paths in the block, circuit delay distribution

is obtained from the joint probability of path delays by max-ing all paths. The general

flow in path-based approaches is the following:

� Enumerate all critical paths

� Estimate path delay distributions

� Use multi-dimensional integration to combine all paths

� Estimate timing yield

Path-based approaches are more accurate than their block-based counterparts.

Their analysis is more intuitive as they work on individual paths and they are in a

better position to handle correlations. However, they suffer from a number of disad-

vantages. They are slower than block-based techniques, and face the path explosion

problem since a large (exponential) number of paths needs to be considered as nomi-

nally non-critical paths may become critical under variability.

In [22], critical paths are enumerated using STA. The resulting timing report is

augmented by adding path delay sensitivities to the various sources of variation. These

sensitivities are obtained from wire and gate sensitivities by assuming a linear delay

model and running SPICE simulations. A conservative yield is estimated by simply

multiplying the yield (distribution) of every path, hence assuming independence of path

delay variations.

In [31], the slack (difference between required time and arrival time) distribution is

expressed as a function of the underlying global sources of variations. The timing yield

is depicted as a multi-dimensional integration of the joint pdf of sources of variation over

a feasible region defined by the performance constraints. Two integration algorithms

are proposed. One fits a parallelepiped in the feasible region, and the other fits an

ellipsoid. Both path sharing and dependence on global sources of variations, using

decomposition, are handled.
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Figure 2.4: Impact of variations on leakage and frequency

In [32], bounds on circuit distribution are obtained using minimum and maximum

covariance, and then these bounds are tightened using a technique based on stochastic

majorization. Arbitrary gate (node) distributions are used, however, path distributions

are assumed to be Gaussian due to the central limit theorem stating that the sum of

independent RVs converges to a Gaussian. Die-to-die and within-die variations are also

handled using decomposition.

In [33, 34], the effect of die-to-die and within-die variations on the maximum fre-

quency (FMAX) distribution is assessed. The concept of “generic critical paths” is in-

troduced, and interesting conclusions were obtained from experimental results stating

that within-die variations impact the mean of the FMAX distribution, while die-to-die

variations impact its variance.

2.3.5 Dominant Leakage Mechanisms

We now switch gears to cover the major types of leakage currents that are impacted

by process and environmental variations. As was seen in Fig. 2.3, leakage power will

continue to increase with technology scaling, as threshold voltage and oxide thickness

have been reduced to improve performance. Fig. 2.4 presents published data from

Intel, showing that the spread in leakage current can reach up to 20×, suggesting that

leakage power is highly sensitive to variations, and that this impact on leakage power

must be analyzed correctly.
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There are many transistor leakage current mechanisms, including subthreshold leak-

age, gate tunneling leakage, edge-directed-tunneling (EDT), and reverse-bias p-n junc-

tion leakage, however, the dominant mechanisms in current CMOS technologies are

due to subthreshold leakage and gate tunneling leakage [35]. Subthreshold leakage is

the current that occurs between the drain and source of a transistor when the gate

voltage is less than the transistor threshold voltage, i.e., when the transistor is suppos-

edly turned OFF. This type of leakage current is exponentially dependent on threshold

voltage and also very sensitive to temperature [36]. Gate tunneling leakage on the

other hand refers to the leakage current that is tunneled or sunk through the gate

terminal of a transistor. Traditionally, the gate was seen as an ideal capacitor with no

leakage through it, however, the reduction of gate oxide thickness due to technology

scaling has increased the tunneling of electrons through the oxide, resulting in gate

leakage. This type of leakage is sensitive to oxide thickness reduction and to increased

voltage differential across the gate, and unlike subthreshold leakage, it occurs when the

transistor is both ON and OFF [35].

Given the high impact of process and environmental variations on leakage, it is

important to be able to quantify leakage variability accurately during the analysis

step. In chapter 7, we will cover in detail the background and related work on statistical

leakage estimation.

2.4 Summary

Continuous scaling trends in digital integrated circuits have lead to an increase in the

magnitude of process and environmental variations. Variability greatly impacts circuit

performance, including timing and leakage power, and causes these performance metrics

to fail to meet their target budgets. This calls for variation-aware performance analysis

and verification techniques, not only to quantify the impact of variations, but also to

drive circuit design and optimization.
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3 Pre-placement Statistical Static Timing

Analysis

3.1 Introduction

The ever increasing variability in process parameters, giving rise to circuit delay vari-

ations, presents an important challenge to the prediction and verification of circuit

timing. As mentioned in Chapter 2, one of the considerations that needs to be ad-

dressed by SSTA proposals is the way to handle within-die spatial correlation. Some

recent approaches to statistical static timing analysis rely on the existence of within-die

correlation models; such models however are not readily and realistically available from

the process, at least not at an early stage of the design. In this chapter, we present

an early statistical timing analysis technique that can operate pre-placement, when

within-die correlations are still unknown. Starting from a simple delay model that

requires minimal input from the user, we will predict bounds on the distribution of the

maximum circuit delay. Such bounds are valid for any arbitrary within-die correlation.

We will use these bounds to introduce the concept of margin uncertainty and predict

a margin range that can help designers at an early stage of the design flow.

3.2 Background

Process variations impact circuit delay, and can consequently cause timing yield loss.

In Chapter 2, we have seen that process variations have been traditionally taken care of

in various ways. In microprocessors, it is typical to check circuit timing with nominal

transistor files, and to specify some timing margin that should be left as slack between
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Unknown netlist

Unknown correlations

Early process-specific 

SSTA based on generic 

paths

Netlist specified

Unknown placement

Unknown correlations

Early design-specific 

SSTA

Netlist specified

Placement specified

Correlations extracted

Late design-specific 

SSTA

Advantages:
- Operates at a very early stage

- Helps optimize design style

Limitations:
- Generic paths

- High level models can be

inaccurate

Features:
- Early: Pre-placement

- Simple: does not require 

Correlation information

- Accurate: Netlist already

specified

- Will probably be used the most

Advantages:
- Most accurate: operates on

specified and placed designs

Limitations:
- Late stage in the design flow

- Requires correlations to be fully 

specified

Design Flow

Figure 3.1: Types of SSTA

the nominal delays and the timing constraints, in order to account for process varia-

tions. In ASICs, the practice is to typically design circuits by making sure the chip

passes the timing requirements at all process corners, including nominal, worst, and

best cases of device behavior. If these settings are too pessimistic, then designers are

forced to waste time and effort optimizing a circuit using design conditions that are

too stringent. SSTA techniques offer a better alternative.

3.2.1 Types of SSTA

In Chapter 2, we have reviewed some related work on SSTA, focusing on the general

outline of these approaches. In this chapter however, we describe how different SSTA

techniques have handled within-die spatial correlations.

In earlier work [22,26,37,38], within-die variations were assumed to be totally uncor-

related. This assumption is generally not true as within-die variations have a spatially

correlated component, however it is typically hard to express the correlations between

within-die parameter variations with a model built from process data. Different at-

tempts to model correlations have been proposed: In [27], spatial correlation is taken
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3 Pre-placement Statistical Static Timing Analysis

care of by partitioning the die into a number of grids. Cells and wires lying in the

same region of the grid will have highly or totally correlated within-die variations, and

those lying in different grids will have low or zero correlation. It is not clear how the

size of the grid is obtained, and how coarse or fine it should be. In addition, principal

component analysis (PCA) is used to de-correlate variations onto a set of independent

(uncorrelated) random variables. In [29], a similar partitioning scheme, known as quad-

tree partitioning, is used to express a region-wise spatial correlation among within-die

variations. This scheme is based on assuming layers of correlations. The top layer is

the global (die-to-die) variation and affects all instances of cells and wires. As we go

to the next layer, the partitioning increases four-fold, and becomes finer, allowing for

local correlation. In [28], correlation is taken care of using a canonical model, where

each variation is expressed in terms of global sources of variation obtained using PCA.

All these techniques rely on the existence of process data to build the correlation

models, as well as placement information to determine the location of cells and wires in

the grid. This information may not be readily available, at least not at an early stage

of the design flow, therefore, these types of post-placement SSTA become final sign-off

tools and cannot be used during early circuit design. In fact, we believe that there

are three types of SSTA techniques that may be useful in practice, and these different

types are listed in Fig. 3.1:

1. early process-specific SSTA based on generic paths. This can be applied early in

the design flow, to establish timing margins for generic paths in the candidate

technology, even before circuit design has started, and to possibly optimize the

devices or the circuit style to reduce these margins. This is the type of approach

adopted by [33,34,39,40].

2. early design-specific SSTA based on a given design in a given process. This can

be applied pre-placement, during the circuit design stage. This would be perhaps

the most heavily used type of SSTA, based on present usage patterns of existing

STA tools.

3. late design-specific SSTA, used post-placement for final sign-off.
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Of course, the level of accuracy achieved and the level of physical detail that is taken

into account will vary among the different types of SSTA. For instance, wire parasitics

variations have an effect on delay (depending on the strengths of the driver, etc.), but

can only really be taken into account post-placement. In a pre-placement scenario,

they can often be ignored, or replaced by some safety factor.

Fig. 3.1 also highlights the advantages and limitations of each SSTA type in terms of

chronology (early/late, pre-/post-placement) and accuracy. So far, only early process-

specific (first type) and late post-placement design-specific (third type) SSTA tech-

niques have been tackled in the literature. On one hand, the problem with the former

type is the concept of the generic path, which might not capture a specific design

very well; on the other hand, the problem with the latter SSTA type is its reliance

on extensive correlation and placement information, which may not be available. In

this chapter, we try to combine the best of both worlds by presenting the first early

pre-placement SSTA. As defined in Fig. 3.1, our technique is early, simple, and accurate

since it operates pre-placement on a specific netlist without requiring any correlation

information. This does not mean, however, that we ignore correlations; on the con-

trary, we handle the lack of correlation information using bounds that are valid for any

arbitrary correlation or placement.

3.2.2 Yield Specific Margins

As was mentioned earlier, the goal of statistical timing analysis is to verify timing

under process variations, and not to simply predict the distribution of circuit delay.

The real question is how much margin should one leave on top of nominal maximum

delay to guarantee a desired timing yield. SSTA answers this question by predicting the

distribution of circuit delay. Assume that a target yield of 99% is desired; using SSTA,

the 99th delay percentile is predicted, from which the 99% yield margin is deduced by

simply subtracting the nominal circuit delay. The following equation shows how to

determine the timing margin for a yield of α:

τα = Dα − Dnom (3.1)
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where Dnom is the nominal maximum circuit delay, Dα is the α-percentile of delay,

and τα is the timing margin specific to yield α. Once this yield specific margin is

determined, timing is verified by simply “reducing” the nominal circuit delay by this

much margin.

3.3 Overview

In late post-placement SSTA, the design has already been placed and correlations have

been extracted; therefore, a unique margin is predicted to verify the timing of the de-

sign. However, our technique falls into early pre-placement SSTA where correlations

are still unknown; this uncertainty in the correlations is translated into a margin un-

certainty as our technique will predict a margin range to cover all possible correlation

settings. Fig. 3.4 gives a “sneak preview” of the big picture, where a min margin

(predicted from the delay distribution upper bound under best correlation setting), a

max margin (predicted from the delay distribution lower bound under worst correla-

tion setting), and a margin uncertainty (to account for correlations) are presented to

designers at an early stage of the design flow; these margins can help them take early

design decisions without having to wait until the design is placed. We also show that

the margins predicted by post-placement SSTA for a specific correlation and placement

fall within our margin range.

At this point, the reader is cautioned not to confuse the “min margin” that we

propose with the margin that is needed to cover the variation in the minimum circuit

delay (or hold check margin). In fact, both the min and max margins reported in this

chapter are used to cover variations in the maximum circuit delay; it is the within-die

correlation, being at its best or worst setting, that determines whether the margin is a

min or max margin respectively. Our analysis can be easily extended to find a similar

margin range to cover variations in the minimum circuit delay.

Starting from a simple parameter model broken down into die-to-die and within-

die components, and assuming a linear delay model based on sensitivities to process

parameters, we will construct a standard delay model and propagate it in the timing

graph similarly to what was proposed in the literature [27, 28]. To account for the
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unknown within-die correlations however, we assess the effect of correlation on the sum

and max of random variables to produce bounds on the distribution of circuit delay,

and prove that these bounds are valid for arbitrary correlations. Using these bounds,

we present the concept of margin uncertainty that can help designers verify timing at

an early stage of the design flow. We believe this approach would be a good addition

to, and not a replacement for, current post-placement SSTA techniques; our margin

range can guide designers during early optimization, while the final margin predicted

by post-placement SSTA can be used for final sign-off to achieve timing closure.

3.4 Modeling Variations

In this section, we start by modeling variations at the level of process parameters.

Then, using a first-order linear delay model, we express timing quantities such as gate

delays and arrival times as a function of the underlying process variations.

3.4.1 Parameter Model

For a given circuit element or layout feature i, let Xj(i), be a zero-mean Gaussian

random variable (RV) that denotes the variation of a certain parameter j of this element

from its nominal (mean) value. Thus, for example, Xj(i) may represent channel length

variations of transistor i. Notice, the Gaussian assumption is very common in the

literature [27, 28, 31, 39, 40]. It is also standard practice [41] to express parameter

variation by breaking it up into die-to-die and within-die components, as follows:

Xj(i) = Xdd,j + Xwd,j(i) (3.2)

The die-to-die component Xdd,j is an independent1 zero-mean Gaussian RV that is global

to the die as it takes the same value for all instances of this element on a given die,

irrespective of location. The within-die component Xwd,j(i) is a zero-mean Gaussian

that can take different values for different instances of that element on the same die.

1Throughout this thesis, whenever an individual RV is described as “independent”, this means that
it is independent of all other RVs under consideration.
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It is thus a local variation specific to every instance. Keep in mind that Xwd,j(i) has

some correlation due to systematic effects. We can rewrite (3.2) in the following way:

Xj(i) = σdd,j Zdd,j + σwd,j Zwd,j(i) (3.3)

where σdd,j and σwd,j are the parameter’s die-to-die and within-die standard deviations

respectively, which can be obtained from the process for that specific parameter j. Note

that Zdd,j and Zwd,j(i) are standard normal RVs with zero-mean and unit variance, and

that Zdd,j is global whereas Zwd,j(i) is local with some correlation for different i’s. For

the scope of this chapter, the within-die correlation will be considered unknown or

unavailable.

3.4.2 Gate Delay model

In general, there is a nonlinear relationship between gate delay and transistor param-

eters. Simple circuit simulations, however, reveal that this nonlinearity is not strong,

especially for small transistor parameter variations. Therefore, we will simply assume

that gate delay is linearly dependent on the process, and hence is Gaussian with mean

equal to its nominal value. This assumption is also very common, and is used in all

first-order path-based and block-based techniques [27,31,32,37,39].

Assume that p process parameters are varying; these can include channel length,

threshold voltage, transistor width, and so on. For each gate, we can extract sensitiv-

ities to the different varying process parameters using circuit simulation; this can be

done as part of library characterization. We can thus write the delay of gate i, D(i),

in the following way:

D(i) = µi +

p
∑

j=1

sijXj(i) (3.4)

where µi is the mean (nominal) delay, sij is the delay sensitivity of gate i to process

parameter j, and Xj(i) is the variation of process parameter j as defined in (3.3). Note

that, for all the transistors within one logic gate i, we assume that the variations of

process parameter j are captured with a single RV Xj(i) and that Xj(i)’s are assumed

to be independent for different j’s, i.e., variations of different process parameters are
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independent. Replacing Xj(i) with its value from (3.3) yields:

D(i) = µi +

p
∑

j=1

αijZdd,j +

p
∑

j=1

βijZwd,j(i) (3.5)

where αij = sij σdd,j and βij = sij σwd,j. We can further group the within-die variations

of different parameters into a single within-die delay component. This leads to the

following expression:

D(i) = µi +

p
∑

j=1

αijZdd,j + βwd,iZwd,i (3.6)

where βwd,i =
√

∑p
j=1 β2

ij since Zwd,j(i) are independent for different j. Note that Zwd,i

is a standard normal RV that represents the within-die variation of delay D(i). Also

note that for different gates i and k, the within-die components of D(i) and D(k), i.e.,

Zwd,i and Zwd,k will have some unknown correlation due to the correlation in process

that is also considered unknown.

Generally, it is more accurate to specify a timing arc delay rather than a gate delay,

since a gate can have different timing arcs, with different delays. Therefore, we will be

expressing timing arc delays later on using the same delay model in (3.6).

3.4.3 Arrival Time model

Similarly, signal arrival times at the inputs and outputs of gates are modeled as nor-

mally distributed random variables using the same model for gate delays. Let A be a

signal arrival time; then we can express A as follows:

A = ao +

p
∑

j=1

ajZdd,j + ap+1Zwd,A (3.7)

where ao is the mean of A, aj’s are the sensitivities to the (global) die-to-die components

of the various process parameters, and ap+1 is the sensitivity to the (local) within-die

component specific to A, i.e., Zwd,A. Note that similarly to gate delays, the within-
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die components of different arrival times will have some unknown correlations that

particularly depend on placement and circuit topology.

Notice that unlike gate delay D(i) in (3.6), where µi, αij, and βwd,i are inputs

determined by the user through characterization, arrival time’s parameters ao, aj’s, and

ap+1 will be determined by our algorithm through propagation in the timing graph.

From here onwards, we will refer to our delay model in (3.7) as the standard delay

model; this model has a constant part equal to the mean delay, a die-to-die part based

on a linear expansion over the global die-to-die components of process parameters, and

a within-die part that is local to the particular timing quantity in hand, which has

some unknown correlation among different timing quantities.

3.5 Effect of Correlation

As mentioned earlier, our approach does not require correlation information and is

therefore valid before circuit placement. Having said this, we will look into ways to

assess the effect of unknown correlation on the two timing operations that are used

during propagation, i.e., the sum and max operations.

3.5.1 Effect on the Sum of Two RVs

Let X and Y be two normally distributed random variables with means µX and µY

respectively, standard deviations σX and σY respectively, and correlation coefficient ρ.

Let Z = X + Y . Then Z is also normally distributed, with mean µ and variance σ2

given by:

µ = µX + µY (3.8)

σ2 = σ2
X + σ2

Y + 2σXY (3.9)

= σ2
X + σ2

Y + 2ρσXσY (3.10)

where σXY = ρσXσY is the covariance of X and Y .

This shows that the variance σ2 of the sum of two random variables is an increasing
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function of their correlation coefficient ρ. In other words, if ρ is unknown, we are sure

that the variance of the sum lies between a minimum achieved when ρ = ρmin = 0

(X and Y are uncorrelated), and a maximum achieved when ρ = ρmax = 1 (X and Y

are totally correlated). Let σ2
min and σ2

max be these minimum and maximum variances,

respectively. Then:

σ2
min = σ2

X + σ2
Y (3.11)

σ2
max = (σX + σY )2 (3.12)

Since Z is a normally distributed RV, then we can write its distribution using the

cumulative distribution function (cdf) of the standard normal, Φ(·):

P{Z ≤ x} = Φ

(

x − µ

σ

)

(3.13)

Note that Φ(·) is non-decreasing, therefore for x − µ ≥ 0, we can write the following

bounds on the CDF of Z:

Φ

(

x − µ

σmax

)

≤ Φ

(

x − µ

σ

)

≤ Φ

(

x − µ

σmin

)

(3.14)

An important result can be drawn from the above equation:

Result 1 the cdf of the sum of two normal RVs with unknown correlation ρ (ranging

from 0 to 1) can be bound by two extremes: setting ρ = 0 will lead to a minimum

variance and thus an upper bound, while setting ρ = 1 will lead to a maximum variance

and thus a lower bound on the distribution.

Note that the bounds are valid only beyond the mean of the sum, i.e., x ≥ µ, which

is translated to be above the 50% line for normal distributions; this is obviously the

more interesting yield range. This will be validated by our results.

Note that we have assumed correlation to be positive, i.e., falling in the [0, 1] range,

whereas in general, the full correlation range is [−1, 1]. Some comments are in order

with respect to this positivity assumption. The assumption of positive correlation is

practical for many sources of variability. A physical variation that slows down a tran-
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sistor, a gate, or a path, is likely to have the same effect on another that lies nearby.

If the other device/gate/path is far away, then it would probably be independent any-

way. In our work, the RVs that will be assumed to be positively correlated are timing

quantities (gate delays, arrival times, path delays). Thus, we are not assuming that

all process variables are positively correlated. By saying that two gates (or two paths)

have positively correlated delay, we mean that when process variations cause the delay

of one of them to increase, then the delay of the other does not decrease. Notice, how-

ever, that both gate and path delays are typically functions of several process variables.

Therefore, this assumption is not as strong as requiring that corresponding sensitivities

to the same process parameters be always of the same sign. To be sure, most commonly

used process parameters, such as L and Vth have similar effects on gate and path delay:

for example, an increase in channel length will almost always slow down a logic gate;

such process variables lead to positive correlation. However, the fact that gate and

path delay variations are an aggregate effect of dependence on a number of process

variables is the best justification for our assumption; even if one or two pathological

process variables, in advanced technology let’s say, are such that they cause opposite

effects, they are unlikely to dominate to such an extent so as to lead to overall negative

correlation. Finally, in the case of path-to-path correlation, the fact that many paths

share common sub-paths would also contribute to positive overall correlation between

them.contribute to positive overall correlation between them.

3.5.2 Effect on the Max of Two RVs

Similarly, let X and Y be two jointly normally distributed RVs, with unknown corre-

lation coefficient ρ. Let Z = max(X,Y ). We are interested in assessing the effect of ρ

on the distribution of Z. For this purpose, let Fρ(·) be the joint distribution of X and

Y , for a particular ρ. We can write the cdf of the max Z in the following way:

P {Z ≤ a} = P {max(X,Y ) ≤ a} (3.15)

= P {X ≤ a , Y ≤ a} (3.16)

= Fρ(a) (3.17)
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Therefore, the cdf of Z is equal to Fρ(a), and is thus correlation dependent. Using

Slepian’s theorem [42], we know that the joint distribution of two normal RVs X and

Y , and consequently the distribution of their max Z, is an increasing function of their

correlation coefficient ρ. Therefore we can draw our second important result:

Result 2 The distribution of the max of two jointly normal RVs with unknown cor-

relation ρ (ranging from 0 to 1) can be bound by two extremes; a lower bound on the

distribution is achieved by setting ρ = 0, and an upper bound on the distribution is

achieved by setting ρ = 1.

3.6 Timing Analysis Operations

In this section, we present our statistical timing analysis technique and explain how it

operates on a given circuit. To do that, we will first define its operation on a single

gate, and then show how to repeatedly apply it in a block-based fashion on the whole

timing graph.

Fig. 3.2 shows a gate with two inputs A and B and output C. The arrival times at

inputs A and B are assumed to be known from previous stages, and are given in the

standard delay form presented in Section 3.4.3. Also assume that D1 and D2 are gate

delay arcs for inputs A and B respectively, and are also given in the standard delay

form. The arrival time at C will be equal to:

C = max [(A + D1) , (B + D2)] (3.18)

Thus, in order to determine the arrival time at the output of any gate, we need to

perform two basic timing operations: a sum operation performed on a gate delay arc

and an input arrival time, and a max operation performed on the two timing quantities

resulting from the additions.

Since the correlation between the within-die variations of different timing quantities

is unknown, we will use the results from Section 3.5 to derive bounds on the distribution

of C. Applying our approach on every gate, and propagating these bounds in the timing

graph will lead to bounds on the maximum circuit delay.
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Figure 3.2: AND gate

3.6.1 Sum Operation

We will first show how to handle the sum operation given the lack of within-die corre-

lation information. Assume that we have the gate in Fig. 3.2. Let X = A + D1, and

recall that both A and D1 are expressed in the standard delay model:

A = ao +

p
∑

j=1

ajZdd,j + ap+1Zwd,A (3.19)

D1 = do +

p
∑

j=1

djZdd,j + dp+1Zwd,D1 (3.20)

We are interested in writing X using the standard model for variation to be able to

propagate it to later stages in the timing graph. Simple addition leads to,

X = (ao + do) +

p
∑

j=1

(aj + dj)Zdd,j + [ap+1Zwd,A + dp+1Zwd,D1 ] (3.21)

The above equation is not given in the standard delay form presented in Section 3.4.3

since the expression in brackets is not yet resolved as required. To do that, let W =

ap+1Zwd,A + dp+1Zwd,D1 , and recall that the correlation between Zwd,A and Zwd,D1 is

unknown. Using the result of Section 3.5.1, we want to bound the distribution of

W and consequently the distribution of X. Let Zwd,Xlb
be a standard normal RV.

Then the variance of (ap+1+dp+1)Zwd,Xlb
is (ap+1+dp+1)2 and, therefore, the distribution
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of (ap+1+dp+1)Zwd,Xlb
bounds the distribution of W from below via σ2

max as in (3.12)

and (3.14). Similarly, let Zwd,Xub
be a standard normal RV. Then the variance of

√
a2
p+1+d2

p+1Zwd,Xub
is (a2

p+1+d2
p+1) and, therefore, the distribution of

√
a2
p+1+d2

p+1Zwd,Xub

bounds the distribution of W from above via σ2
min as in (3.11) and (3.14). Now that we

have derived bounds on W , we use them to bound the distribution of X. This is done

by replacing the term in brackets, i.e., W , in (3.21) by the two bounds. This gives us

the two bounds on X:

Xlb = (ao + do) +

p
∑

j=1

(aj + dj)Zdd,j + (ap+1 + dp+1)Zwd,Xlb
(3.22)

Xub = (ao + do) +

p
∑

j=1

(aj + dj)Zdd,j +
√

a2
p+1 + d2

p+1Zwd,Xub
(3.23)

where Xlb and Xub are two RVs whose distributions bound the distribution of X from

below (lower-bound) and from above (upper-bound) respectively. Note that the within-

die component of Xlb corresponds to the case where Zwd,A and Zwd,D1 are assumed to

be totally correlated (ρ = 1), which led to a maximum standard deviation of (ap+1+dp+1)

as explained in Section 3.5.1. Similarly, the within-die component of Xub corresponds

to the case where Zwd,A and Zwd,D1 are assumed to be uncorrelated (ρ = 0), which led

to a minimum standard deviation of
√

a2
p+1+d2

p+1.

Note that the within-die components of Xub and Xlb, i.e., Zwd,Xub
and Zwd,Xlb

have

lost any dependence on Zwd,A and Zwd,D1 . This is not a problem, since our approach

does not keep track of within-die correlation, but always considers it unknown. Hence,

the correlation between Zwd,Xub
(or Zwd,Xlb

) and any other within-die component of

other arrival times will be considered unknown. This is important to account for any

possible correlation.

At this point, we have handled the sum operation of a gate delay arc and an arrival

time using bounds. For sake of clarity, we will refer to the process of generating a

lower bound on the distribution of the sum, which was described above as LB-sum.

Similarly, we will refer to the process of generating an upper bound on the distribution

of the sum as UB-sum. The next section will show how we perform a max operation

while keeping the standard delay model and handling unknown correlations.
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Table 3.1: Within-die correlation settings for sum and max
Lower Bound Upper Bound

Sum ρ = 1 ρ = 0
Max ρ = 0 ρ = 1

3.6.2 Max Operation

It is well known that the max operator is not linear, which means that the maximum

of two normally distributed RVs is not necessarily normal. Nevertheless, analytical

expressions for the mean and variance of the maximum of two normally distributed

RVs were determined by Clark in [43]. These expressions were presented and used

in [27,28], and we will review them next. Let Z = max(X,Y ), then:

µz = µxT + µy(1 − T ) + θφ

(

µx − µy

θ

)

(3.24)

σ2
z = (µ2

x + σ2
x)T + (µ2

y + σ2
y)(1 − T )

+ (µx + µy)θφ

(

µx − µy

θ

)

− µ2
z (3.25)

where φ(·) is the probability density function (pdf) of the standard normal, and θ and

T are given by:

θ =
√

σ2
x + σ2

y − 2ρσxσy (3.26)

T = Φ

(

µx − µy

θ

)

(3.27)

The main idea is that, given the means, variances, and correlation coefficient

of two normally distributed RVs X and Y , the exact mean and variance of the max Z

can be determined. Once the mean and variance are obtained, the max distribution

is “cast” into a normal distribution with the same mean and variance, thus preserving

only the first two moments of the exact max distribution and ignoring the higher

moments; this is known as Clark’s approximation, and is the standard method used

in first-order SSTA [27, 28] to resolve the max operator. Clark’s approximation works

well in practice, capturing the max distribution with small error as reported in the
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literature on SSTA. In this section, we will use a similar approach and show how we

handle the unknown within-die correlation.

Looking back at the gate in Fig. 3.2, assume that at this point we have performed

the sum operation X = A + D1 and Y = B + D2, and that we need to max the timing

quantities resulting from these two additions. For this purpose, let C = max(X,Y );

recall that X and Y are already in the standard delay form:

X = xo +

p
∑

j=1

xjZdd,j + xp+1 Zwd,X (3.28)

Y = yo +

p
∑

j=1

yjZdd,j + yp+1 Zwd,Y (3.29)

where Zwd,X and Zwd,Y are the within-die components of X and Y with unknown

correlation ρ. We will use the result of Section 3.5.2 to derive bounds on the distribution

of C = max(X,Y ). Let Cub and Clb be two RVs defined as follows:

Cub = max(X,Y ) | ρX,Y = ρmax (3.30)

Clb = max(X,Y ) | ρX,Y = ρmin (3.31)

where ρX,Y is the correlation coefficient between X and Y , and ρmax (ρmin) is the

maximum (minimum) possible correlation achieved by ρX,Y . Using the result from

Section 3.5.2, which states that the distribution of the max of two RVs is an increasing

function of their correlation coefficient, it is easy to see that the distributions of Cub

and Clb, as defined above, will bound the distribution of C from above and below,

respectively.

To determine ρmax and ρmin, we first express ρX,Y in terms of the sensitivities of X

and Y :

ρX,Y =

∑p
j=1 xjyj + ρ xp+1yp+1

√

∑p
j=1 x2

j + x2
p+1

√

∑p
j=1 y2

j + y2
p+1

(3.32)

Note that ρX,Y is also a function of the unknown within-die correlation ρ, and it can

be shown that ρX,Y is maximum when ρ = 1 and is minimum when ρ = 0. Therefore
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we can rewrite (3.30) and (3.31) in the following way:

Cub = max(X,Y ) | ρ = 1 (3.33)

Clb = max(X,Y ) | ρ = 0 (3.34)

Now that we have defined Cub and Clb, we express these timing quantities in the

standard delay model to allow further propagation in the timing graph. To do this,

we first use Clark’s expressions to determine the exact mean and variance of Cub (with

ρ = 1) and Clb (with ρ = 0). Then, we use the approach of [27, 28] to expand Cub and

Clb in the standard delay model. This is done by preserving the dependence on the

global RVs, i.e., Zdd,j, and then computing the within-die part by matching the total

variance to the exact variance determined from Clark’s expressions. This approach

has become the standard way to approximate the max operation while preserving the

correlation due to the global die-to-die variables. In the following, we will refer to

the process of generating an upper/lower bound on the distribution of the max, i.e.,

Cub/Clb as UB/LB-max.

3.6.3 Combining Sum and Max

In sections 3.6.1 and 3.6.2, we presented ways to find upper and lower bounds on the

distributions of the sum and max of two RVs that are represented in our standard delay

form. Recall that we are interested in deriving bounds on the distribution of C, the

arrival time at the output of a gate. We know that:

C = max [(A + D1), (B + D2)] (3.35)

so that C can be determined by a series of two additions, A+D1 and B +D2, and one

max involving the results of these additions. Therefore, to determine a lower bound

on the distribution of C, we need to perform the sum and the max in the lower bound

mode, i.e., using LB-sum and LB-max. Similarly, to determine an upper bound on the

distribution of C, we need to perform our analysis in the upper bound mode, i.e., using

UB-sum and UB-max successively.
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Figure 3.3: Upper/Lower bounds vs. MC distributions for circuit c499

Table 3.1 gives a summary of the different settings of the unknown within-die cor-

relation ρ that should be used for the sum and max operations to get a lower/upper

bound on the distribution of delay at the output node of a given gate.

3.6.4 Block-based Propagation

The rest of our approach is similar to deterministic STA, except: the deterministic sum

is replaced by the UB and LB sums as described in Section 3.6.1 and the deterministic

max is replaced by the UB and LB max as described in Section 3.6.2. In this way, and

only in a single pass, we produce an upper and a lower bound on the distribution

of delay at every node in the timing graph, particularly at the sink node (the circuit

primary output). We are specifically interested in the delay of the sink node since it is

equal to the maximum circuit delay.
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Recall that the bounds produced are valid for any within-die correlation and con-

sequently any circuit placement, since the analysis was performed under unknown cor-

relation. This allows designers to be at an advantage, as one is able to predict, at

an early stage of the design flow, the extent of circuit delay variations without having

access to placement information.

3.7 Results

To test our SSTA technique on realistic circuits, we have implemented it as part of

an existing static timing analyzer using C/C++. A 90nm CMOS library of gates

was characterized using HSPICE in order to determine the sensitivities of gate delay

to various process parameters. We have chosen to vary channel length (Ln and Lp),

and threshold voltage (Vtn and Vtp) of n-mos and p-mos transistors using the ranges

specified in the technology files, and have determined the sensitivities of gate delays to

these process parameters. Also, in all experiments, we have assumed equal within-die

and die-to-die process variation, i.e., the within-die and the die-to-die variance of each

process parameter is equal to 50% of the total parameter variance:

σ2
dd = σ2

wd =
1

2
σ2 (3.36)

This assumption is in line with [12], which predicts that within-die variation is

between 40% to 65% of the total variation. We ran our SSTA analyzer on all of

the ISCAS85 benchmark circuits [44], and computed bounds on the distribution of

the maximum circuit delay. To validate these bounds, we performed several Monte

Carlo (MC) tests under arbitrary within-die correlations, generated using the grid

model [27] for spatial correlation. We varied the number of grids to increase/decrease

the correlation, and also generated cases of biased correlations where we increased

correlations across some paths (to maximize variance of delay) or decreased correlations

across primary inputs (to increase the mean of delay).

The results for circuit c499 are shown in Fig. 3.3, where the solid curves represent

the upper and lower bounds on the distribution of delay, and the dotted curves represent

the distributions of delay generated through MC analysis under different arbitrary and
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biased correlations. It is clear that all MC generated distributions fall between our

bounds. Note that for higher percentiles, the bounds get tighter. Also note that, as

stated at the end of Section 3.5.1, our bounds are only valid above the 50% line. This

is not a problem, since we are mainly interested in high delay percentiles in order to

design for a high yield.

As was mentioned in Section 3.2.2, the purpose of SSTA is to predict a yield specific

timing margin, that is, the margin that should be left on top of the nominal maximum

circuit delay to meet a certain target yield. Using the bounds on the circuit delay

distribution, we can predict a min margin (from upper bound) and a max margin

(from lower bound) by subtracting the nominal circuit delay from the desired delay

percentiles predicted by the bounds as was explained in (3.1). Fig. 3.4 represents a

plot to scale of these margins at a 99% target yield for all ISCAS circuits. It also

shows the margin uncertainty caused by the unknown correlations that needed to be

accounted for. Note that to guarantee the target yield, one needs to use the max margin

since it is the one predicted from the lower bound on the distribution of delay, which

accounts for “worst” possible correlations. The min margin is also useful to check if

the design is feasible; recall that since it accounts for the “best” possible correlation, it

is the smallest possible margin for the current design. If the min margin turned out to

be unacceptable (too large) for designers, then the whole design needs to be adjusted.

One conclusion to draw here is that, in the absence of any correlation information, and

at a stage where the circuit has not yet been placed, it is a powerful asset to have an

idea about the range of margins needed to achieve a desired yield. This allows designers

to take early design decisions, and makes room for early optimization.

Table 3.2 lists, for all ISCAS circuits, the max margin as a percentage of nominal

maximum circuit delay, at a 99% target yield. The largest max margin is about 14%.

We have also listed, for sake of comparison, the margin predicted from “worst case”

analysis on every gate. What we mean by “worst case” analysis is to set the within-

die and die-to-die variations of every process parameter to their maximum (3σ) and

perform deterministic STA. It is clear that the “worst case” margin is more pessimistic,

which shows the need for statistical techniques.
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Figure 3.4: 99% yield margins

Table 3.2: Margin comparison as % of nominal max delay
ISCAS 85 Max Margin “worst case”
Circuit at 99% yield Margin

c432 14.0% 24.0%
c499 13.2% 27.0%
c880 11.7% 24.4%
c1355 13.8% 24.2%
c1908 13.6% 25.4%
c2670 13.1% 26.6%
c3540 14.4% 26.4%
c5315 12.2% 26.1%
c7552 13.0% 25.3%
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3.8 Incomplete correlation information

The analysis presented so far assumes unknown within-die correlations, and hence

tries to account for this lack of information by selecting extreme correlation values

for each timing operation as specified in Table 3.1. Under such a blind setting, i.e.,

completely unknown correlations, the extremes are clearly [0, 1]. However, it is not

unusual that designers have some raw information about within-die correlations, either

through access to floorplanning information, or through pure historical observations;

these cases will be referred to as “cases of incomplete correlation information”. We are

mainly interested in lowest (ρmin) and highest (ρmax) observed correlations, which, if

available, can be safely used in lieu of the current pair of extremes [0, 1], and the rest

of the analysis remains the same.

3.9 Summary

In this chapter, we have presented a pre-placement statistical timing analysis technique

that can operate under unknown within-die correlations. Starting from a simple delay

model based on sensitivities to process parameters, we construct a standard delay

model for arrival times, and propagate this model in the timing graph in a block-based

fashion. To account for unknown correlations, we use bounds on each timing operation

(sum and max) by taking the correlation coefficient to its extremes. We prove that

these bounds are valid for any within-die correlation and placement, which makes our

analysis valid pre-placement. We believe that this technique is useful since it can

predict the range of margins needed to achieve a target yield at a very early stage of

the design flow, prior to the access to correlation information.
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Timing Analysis

4.1 Introduction

Many recent techniques for timing analysis under variability, in which delay is an

explicit function of underlying parameters, may be described as parameterized static

timing analysis techniques. The “max” operator, used repeatedly during block-based

timing analysis, causes several complications during parameterized timing analysis. In

this chapter, we introduce bounds on, and an approximation to, the max operator

that allow us to develop a general, accurate, and efficient framework for parameterized

timing, which can handle either uncertain or random variations, and a general class

of nonlinear variational delay models. Applied to random variations, this approach is

competitive with existing statistical static timing analysis techniques, in that it allows

for nonlinear delay models and arbitrary parameter distributions. Applied to uncertain

(non-random) variations, the method is competitive with existing multi-corner STA

techniques, in that it more reliably reproduces overall circuit sensitivity to variations.

Crucially, this technique can also be applied to the mixed case where both random and

uncertain variations are considered.

4.2 Background

With the traditional approaches to timing verification becoming too expensive and un-

able to handle local variations, new alternatives have emerged in recent years, most

of which can be described under the heading of parameterized static timing analysis.

44



4 General Framework for Parameterized Static Timing Analysis

Essentially, timing quantities are “parameterized” as explicit functions of the under-

lying process and environmental parameters, allowing one to assess the effect of these

parameters on circuit delay, which can be useful in determining the robustness of the

design and its sensitivity to variations. While manufacturing process variations can

be modeled statistically as random variables (RVs), environmental variations such as

supply voltage and temperature cannot. These are non-random in nature and must

be treated as uncertain parameters. It is worth noting that both types of variations

must be taken care of in the context of a general parameterized static timing analysis

framework.

As mentioned in Chapter 2, one of the major trends in parameterized static timing

analysis is block-based statistical static timing analysis (SSTA) [27, 28, 45–50], where

parameters are modeled as RVs. In the past few years, several SSTA techniques have

been proposed. In [27,28], linear (first-order) delay models and Gaussian distributions

for process parameters were used, which allows the use of tightness probability to re-

solve the max operation efficiently. It is expected, however, that nonlinearities will

increase with technology scaling. On one hand, as the magnitude of process variations

is increasing, first-order delay models may no longer be accurate. Also, there is evi-

dence that delay is highly nonlinear in low-voltage modes. On the other hand, process

variations are not necessarily Gaussian. For example gate length has an asymmetric

non-Gaussian distribution due to variation in depth of focus (DOF).

To address these concerns, several attempts were made to generalize SSTA to han-

dle nonlinear delay models and/or random variables with non-Gaussian distributions.

In [46, 47], despite the use of quadratic models, Gaussian distributions were forced

on process parameters. In [49], non-Gaussian process parameters were addressed, but

first-order linear models were used. More recently, both non-Gaussian parameters

and nonlinear models were addressed simultaneously, with varying degrees of success.

In [48], a sampling (Monte Carlo) based regression is used to handle the max operation,

which increases the overall runtime; [45] uses expensive multi-dimensional integration

to handle the nonlinear non-Gaussian terms, which hinders the complexity of the ap-

proach; [50] proposes an efficient nonlinear non-Gaussian SSTA technique with linear

complexity. This technique uses Fourier series and moment matching to approximate
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the max operation efficiently. The drawback of this approach is that it requires subdi-

viding the region of variation of every variation source, then for every sub-region, the

Fourier transform of every possible distribution used is pre-computed. Although this

is done as a pre-processing step, it can introduce undesired complications, especially

if these distributions are unknown. In addition, by using moment matching and being

distribution dependent, all these SSTA techniques fail to handle uncertain non-random

parameters, which is a requirement in general parameterized static timing.

Another type of parameterized static timing analysis is linear-time multi-corner

static timing analysis (STA), which was introduced in [51]. The idea is to propagate

hyperplanes, i.e., affine linear functions of the process and environmental parameters,

in the timing graph. The max operation is resolved by raising the hyperplanes in a

way to always follow the maximum corner delay. In this way, the circuit maximum

corner delay is estimated accurately. Although the approach can handle both random

and uncertain parameters, it has some drawbacks: while trying to be always accu-

rate at the maximum corner delay, the approach loses accuracy at the other corners.

Consequently, the sensitivity to process variations is lost and this approach cannot be

used for optimization because the true spread of the circuit delay is not accurately

estimated. In addition, the analysis is restricted to linear delay models.

In this chapter, we propose an efficient and general parameterized static timing

analysis framework that can handle nonlinear delay models and account for delay vari-

ability due to both random process parameters with arbitrary (and possibly unknown)

distributions and uncertain non-random parameters (that typically depend on circuit

operation). Our framework is based on a novel and efficient method of resolving the

nonlinear max operator by either bounding or approximating it by a linear model, while

preserving the inherent nonlinearity of the delay model itself. We have tested our tech-

nique within two timing verification frameworks, namely multi-corner static timing

analysis and nonlinear non-Gaussian SSTA, and have shown that, at least when using

quadratic delay models, the complexity of the approach is linear in both the number

of process and environmental parameters and the circuit size. Our results show that

the spread of the maximum circuit delay is accurately captured, whereby, on average,

the maximum and minimum corner delays are predicted with less than 2% error for
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multi-corner analysis. As for nonlinear non-Gaussian SSTA, all timing characteristics

are predicted with less than 1% average error.

4.3 General Parameterized Timing

In general, the delay of gates and interconnects is a nonlinear function that can be

approximated using a delay model that depends on the underlying process and envi-

ronmental variations. As stated earlier, linear (first-order) and quadratic (second-order)

delay models have been previously used in the literature. Nevertheless, for the time

being, we will work under the assumption of an arbitrary delay model; we will show

later that our approach can be used with a general class of nonlinear delay models. We

can write the delay D of gates or interconnects as follows:

D = fD(X1, · · · , Xp) (4.1)

where fD(·) is an arbitrary delay model, and Xi’s represent process and environmental

variations. Recall that not all variations can be modeled as random variables. While

some parameters are indeed random such as channel length or threshold voltage, others

are not statistical but rather uncertain parameters, such as temperature or supply

voltage. These parameters typically depend on the operating environment. We will

show that our analysis is indifferent to whether parameters are random or uncertain

and thus the approach can be applied for both types of variations.

The benefit of parameterized timing analysis is in elevating the explicit delay de-

pendence on process and environmental variations, i.e., the delay model, from the stage

level to the circuit level, allowing one to assess the effect of these parameters on the

total circuit delay. In block-based timing analysis, this is done by propagating timing

quantities in the timing graph in topological order, using a sequence of basic opera-

tions, such as add operations on arrival times and arc delays, and max operations on

the timing quantities resulting from those additions to get the output arrival time. If

these basic operations do not distort the delay model at hand, then circuit delay can

be represented in the same delay model. Unfortunately, it is known that the max is
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nonlinear. The novelty of this work is in resolving the nonlinear max operator using a

linear model, while preserving the inherent nonlinearity of the delay model.

In the following section, we propose two methods to efficiently resolve the max :

first by using upper and lower bounds, and second by using an approximation that

minimizes the square of the error. Our methods operate irrespective of the delay model

used provided the model falls in a general class of nonlinear functions; they also handle

random parameters with arbitrary distributions, as well as uncertain parameters.

4.4 Mathematical Framework

Let F be a general class of (possibly) nonlinear functions that obey the following three

properties,

1. F is closed under linear (and/or affine) operations

2. ∀f(·) ∈ F , f(·) is bounded

3. ∀f(·) ∈ F , f(·) can be maximized and minimized efficiently

and assume that all timing quantities are represented using delay models that are in

F . For example, timing quantity A is modeled as follows:

A = fA (X1, · · · , Xp) = fA(X) ∈ F (4.2)

where X = [X1, · · · , Xp] represent process/environmental parameters.

The first property essentially states that linear operations (such as addition or

subtraction) will result in functions that belong to F ; in other words, F “survives”

linear operations, that is, if A = fA(X) ∈ F and B = fB(X) ∈ F , then C = aA+bB+c,

where [a, b, c] ∈ R, will be such that C = fC(X) ∈ F . Note that all polynomial models

satisfy this property. The second and third properties imply that the delay model, and

consequently any timing quantity expressed using the model, is bounded by a minimum

and a maximum value over the space of parameters, i.e, Amin ≤ A ≤ Amax, where:

Amin = min
X

fA(X) and Amax = max
X

fA(X) (4.3)
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Figure 4.1: Upper bound on Y

Note that the second property is trivial if we recall that all physical process and envi-

ronmental parameters are bounded, which implies that delays are also bounded. The

third property is only forced to guarantee that our approach, which requires maximizing

and minimizing the delay model to operate, is computationally efficient. For instance,

if maximizing/minimizing the delay model is linear (in the process/environmental pa-

rameters), then the overall complexity of our approach is linear in the circuit size and

process/environmental parameters. By property 1, it is clear that the add operation,

being linear, will maintain their membership in F as delay models are propagated dur-

ing timing analysis. However, the max operation, being nonlinear in general, is the

crux of the problem, and we now focus on it.

4.4.1 Max Operation

Let A and B be two timing quantities expressed using delay models in F . Let C =

max(A,B) be the maximum of A and B. Since the maximum operator is, in general,

49



4 General Framework for Parameterized Static Timing Analysis

nonlinear, then C is not necessarily expressible using a delay model in F . We are

interested however in finding (1) two bounds on C, Cl and Cu, and (2) an approximation

Ca, which can all be expressed using functions in F , and such that:

Cl ≤ C ≤ Cu (4.4)

Ca ≈ C (4.5)

where Cl = fCl
(X) ∈ F , Cu = fCu

(X) ∈ F , Ca = fCa
(X) ∈ F . Notice that:

C = max(A,B) = B + max([A − B], 0) (4.6)

= B + max(D, 0) = B + Y (4.7)

where D = A − B and Y = max(D, 0).

Recall from property 1 that F survives linear operations (including subtraction),

which means that D = fD(X) ∈ F . By properties 2 and 3, D is bounded and varies

between [Dmin, Dmax] where Dmin ≤ Dmax. Depending on the signs of these extreme

values of D, we can identify two cases in which the max operator is either linear or

nonlinear. If Dmin ≥ 0 then D ≥ 0 ∀X, and Y = D. In this case, C = A since

A completely dominates B. The converse happens when Dmax ≤ 0; in this case,

C = B, since B completely dominates A. The more interesting case is when the max

is nonlinear, which can be identified when Dmax ≥ 0 and Dmin ≤ 0. In this case, which

we will refer to by saying that A and B are co-dominant, Y = max(D, 0) cannot be

expressed using a delay model from F . We will now show how we can bound and

approximate Y using functions that belong to F .

4.4.2 Bounding the Max

Upper bound

Fig. 4.1 shows a broken solid line representing a plot of Y = max(D, 0) between Dmin

and Dmax, the extreme values of D. We are interested in finding a linear function of

D that is guaranteed to upper bound Y (recall, since D ∈ F , then any linear function
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of D is also a member of F). The dashed line represents an affine function of D which

upper bounds Y and is exact at Dmax and Dmin. Note that the bound is closer to the

exact max around Dmin and Dmax where either A or B dominates. The equation for

Yu, the upper bound on Y , can be expressed as follows:

Yu =
Dmax

Dmax − Dmin

(D − Dmin) (4.8)

By replacing Y with Yu in (4.7), we get an upper bound Cu on C:

Cu = B + Yu = B +
Dmax

Dmax − Dmin

([A − B] − Dmin)

=

(

Dmax

Dmax − Dmin

)

A −
(

Dmin

Dmax − Dmin

)

B − Dmax · Dmin

Dmax − Dmin

(4.9)

Note that Cu = fCu
(X) ∈ F since it is a linear combination of A and B (property

1). To gain a more intuitive understanding of the above relationship, let us define the

following terms:

� S = Dmax − Dmin to be the “spread” of D

� SA = Dmax to be the “strength” of A, i.e. the region where A dominates B

(D ≥ 0)

� SB = −Dmin = |Dmin| to be the “strength” of B, i.e. the region where B

dominates A (D ≤ 0)

� α = SA

S
is the fraction of space where A dominates B

� (1 − α) = 1 − SA

S
= SB

S
is the fraction of space where B dominates A

Then, using the above notations, we can rewrite Cu as follows:

Cu = αA + (1 − α)B + α(1 − α) · S (4.10)

51



4 General Framework for Parameterized Static Timing Analysis
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Figure 4.2: Lower bound Yl = D

where A and B are both weighted by their “extent of dominance”, so to speak, and

the last term accounts for the region where both A and B are dominant, hence the

product of α and (1 − α).

Lower bound

Similarly, we would like to find a lower bound on Y to find a lower bound C =

max(A,B). Looking back at Fig. 4.1, it is easy to see that any function in the form

Yl = aD, where 0 ≤ a ≤ 1, is a valid lower bound on Y = max(D, 0) and can be

expressed using a function in F (property 1). In practice, we have found that limiting

the choice of Yl to one of three functions depending on the values of Dmin and Dmax is

sufficient. Figures 4.2-4.4 depict these three cases. In addition to showing Y as a solid

line and the upper bound Yu as a dashed line, these figures show the lower bound Yl

to be one of the following:
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DmaxDmin

Max(D,0)
Upper bound
Lower bound

Y

D

Figure 4.3: Lower bound Yl = 0

DmaxDmin

Max(D,0)
Upper bound
Lower bound

Y

D

Figure 4.4: Lower bound on Y
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Yl =



















D if |Dmax| ≫ |Dmin|
0 if |Dmax| ≪ |Dmin|
(

Dmax

Dmax−Dmin

)

D otherwise

(4.11)

where the slope of Yl in the third case is equal to that of the upper bound Yu. Note

that ≫ means “much larger than”; in our simulations, we have found that setting ≫
to be at least four times larger gives tighter lower bounds.

Replacing each case of the above in (4.7) gives us Cl, the lower bound on C:

Cl =



















A if |Dmax| ≫ |Dmin|
B if |Dmax| ≪ |Dmin|
αA + (1 − α)B otherwise

(4.12)

where α is as defined in (4.10). Therefore, Cl = fCl
(X) ∈ F since it is a linear

combination of A and B (property 1).

4.4.3 Least Squares Max Approximation

In the previous sections, we have shown how we can determine upper and lower bounds

on C = max(A,B) using a carefully chosen linear combination of A and B. We are

now interested in finding an expression Ca that approximates C = max(A,B) and can

be expressed using a function that belongs to F . To do that, it suffices to approximate

Y = max(D, 0) in (4.7) by a linear approximation Ya in the form Ya = aD + b. We will

choose a and b in such a way to minimize the sum of the squares of the error inside the

interval [Dmin, Dmax]; we call this approximation the least squares max approximation.

It is understood that this approximation is applied only when the max is nonlinear,

i.e., in the case of co-dominance.

Let E be the total error incurred by the above approximation. Then we can express

E as follows:

E =

∫ Dmax

Dmin

(aD + b − max(0, D))2 dD (4.13)
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We now determine the parameters a and b that minimize E. To do that, we first

determine the partial derivatives of E, ∂E
∂a

and ∂E
∂b

, with respect to a and b, then we set

the derivatives to zero and solve for a in b. This gives us the following two equations

in a and b:

2
(

D3
max − D3

min

)

a + 3
(

D2
max − D2

min

)

b = 2D3
max (4.14)

(

D2
max − D2

min

)

a + 2 (Dmax − Dmin) b = D2
max (4.15)

Finally, a and b can be easily obtained by solving the system of equations (4.14)

and (4.15), which results in:

a =
D2

max(Dmax − 3Dmin)

(Dmax − Dmin)3
and b =

2D2
maxD

2
min

(Dmax − Dmin)3
(4.16)

Ca can be easily obtained by replacing Y with Ya = aD + b in (4.7). It is easy to see

that Ca = fCa
(X) ∈ F since it is a linear combination of A and B which are in F

(property 1). Fig. 4.5 shows the true max, Y = max(D, 0) in solid line, and the least

squares max approximation, Ya = aD + b, in dashed line.

To summarize, we have presented a mathematical framework that resolves the non-

linear max operator in two ways; either by using bounds, or by using an approximation

that minimizes the error with the true max. This framework is simple and general, in

the sense that it can be applied to a general class of nonlinear delay models, and it

uses simple linear operations, allowing to keep and propagate the same delay model

to later stages. In addition, the analysis is indifferent (1) to whether the variation

sources are modeled as random variables or uncertain variables, or (2) to the types of

distributions used, when the variations are random. In spite of its apparent simplicity,

we will now demonstrate that this approach is extremely effective and competitive in

dealing with two difficult application areas: multi-corner timing analysis as well as

nonlinear non-Gaussian SSTA. Crucially, this approach can also deal with the “mixed”

case, which is typical of practical situations, where some variables are random while

others are simply uncertain.
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Dmin Dmax

Max(D,0)
Max Approx.

Y

D

Figure 4.5: Least squares max approximation

4.5 Multi-corner STA

In corner case analysis, circuit timing must be checked at various process/environmental

corners, which are typically extreme values of process/environmental parameters. This

approach to timing verification is exponential in the number of varying parameters as

multiple runs of STA are needed to cover all possible corners to determine the maximum

and minimum corner delays. Instead, in practice, using parameterized timing, where

timing quantities are expressed using a variational delay model that depends on process

and environmental parameters, one hopes to do this task with only one traversal of the

timing graph; this is what we call linear-time multi-corner STA.

In this section, we demonstrate how our simple framework can handle this otherwise

complex analysis in a simple and elegant fashion. To our knowledge, and unlike [51],

where the approach is restricted to linear delay models, we are the first to handle, in

linear-time, multi-corner STA with linear and nonlinear delay models alike. For our

framework to hold, all we need to show is that the three properties of Section 4.4 are
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satisfied. For illustration, we will demonstrate our approach for linear and quadratic

models.

4.5.1 Linear and Nonlinear Models

Let F1 and F2 be the sets of linear and quadratic delay models respectively. Let A be

a timing quantity such that:

A =







ao +
∑p

i=1 aiXi if A ∈ F1

ao +
∑p

i=1(aiXi + âiX
2
i ) if A ∈ F2

(4.17)

where ao is the nominal delay of A, and ai and âi are first-order and second-order

sensitivities to Xi. Note that Xi’s are arbitrary variation sources (random/uncertain

variables) that are bounded, and without loss of generality, assume that −1 ≤ Xi ≤ 1.

It can be easily shown that property 1 holds, i.e., both F1 and F2 survive linear

operations. In fact, if [A,B] ∈ F1, then C = aA+bB+c is also ∈ F1. The same applies

for F2. Property 2 also holds, since the Xi’s are bounded. As for property 3, both the

linear and the quadratic model can be easily maximized and minimized in O(p) time,

where p is the number of process/environmental parameters; if A ∈ F1, then:

Amin = ao −
p
∑

i=1

|ai| and Amax = ao +

p
∑

i=1

|ai| (4.18)

whereas, if A ∈ F2, then maximizing and minimizing A over the space of variations

requires maximizing and minimizing the individual quadratic terms, g(Xi) = aiXi +

âiX
2
i . Below, we show how this can be done analytically depending on whether g(Xi)

is monotone in [−1, 1] or not.

The quadratic function is of the form, g(x) = ax + bx2, where −1 ≤ x ≤ 1, and

[a, b] ∈ R. Recall that the minimum or maximum of a parabola occurs at the vertex

xv = −a/(2b). If xv falls outside [−1, 1] then g(x) is monotone in [−1, 1], so that its

maximum and minimum occur at the domain boundaries:
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max
x

g(x) = max(g(−1), g(1)) = |a| + b

min
x

g(x) = min(g(−1), g(1)) = −|a| + b

On the other hand, if xv falls in [−1, 1], then g(x) is not monotone in [−1, 1], i.e.,

the maximum and minimum can be either at the vertex or at the boundaries of the

domain:

max
x

g(x) = max(g(−1), g(1), g(xv)) = max(|a| + b , −a2/4b)

min
x

g(x) = min(g(−1), g(1), g(xv)) = min(−|a| + b , −a2/4b)

All these operations above can be done in constant time, therefore maximizing and

minimization the timing quantity A is linear in the number of parameters, since there

are p quadratic terms.

At this point, the reader is reminded that our approach is not restricted to the

sets of linear and quadratic delay models, F1 and F2, but can also be used with more

general nonlinear models. These models must (at the very least) meet properties 1 and

2 listed at the start of Section 4.4. However, property 3, stating that the model should

be maximized and minimized “efficiently”, is not a requirement and is only used to

achieve good overall runtime. In the case of linear and quadratic models, property 3

can be achieved in linear complexity as shown previously. For higher-order models, it

may be required to formulate a possibly complex optimization problem to maximize

and minimize the model.

Given that all the required properties listed in Section 4.4 are satisfied by F1 and F2,

the methods described in Sections 4.4.2 and 4.4.3 for resolving the max operation can

be applied to demonstrate multi-corner STA with linear and nonlinear delay models.

The timing graph is traversed topologically, and our bounding/approximation scheme

is applied to handle the max operation at every stage. This results in expressing the

arrival time at the sink node, i.e., the maximum circuit delay, using the delay model at
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hand. Once this expression is obtained, it can be easily maximized and minimized as

shown in this section to bound/approximate the maximum and minimum corner delays

of the maximum circuit delay.

4.5.2 Results

We have tested our approach by first characterizing a 90nm CMOS library using

HSPICE to determine the sensitivities of gate delay to various process parameters.

We have chosen to vary channel length (Ln and Lp), and threshold voltage (Vtn and

Vtp) of NMOS and PMOS transistors, and have determined the sensitivities of gate

delays to these process parameters. The variation information was specified in the

technology files. Our technique was then implemented using C/C++ and was tested

on the ISCAS85 benchmark circuits. For each circuit, the maximum circuit delay is

determined at various corners using exhaustive corner case analysis, and the true max-

imum and minimum corner delays are recorded. Our framework is then applied, using

(1) the lower bound technique, (2) the upper bound technique, and (3) the least squares

approximation, to predict the maximum and minimum corner delay for every circuit;

the bounds and the approximation are propagated together in the circuit timing graph

in one timing run. The results are summarized in Table 4.1, where the values shown are

normalized to the true minimum and maximum corner delays respectively, determined

by corner case analysis. For example, the second column gives a lower bound on the

minimum (over all corners) circuit delay, and the last column gives an approximation

of the maximum (over all corners) circuit delay. The closer the values are to 1 the

more accurate they are. Note that, unlike [51] where the method is only accurate in

predicting the circuit delay at the maximum corner, we can accurately estimate the

maximum circuit delay at both the minimum and the maximum corners, so that the

spread of the maximum circuit delay is well-captured. In addition, our approach is not

restricted to linear models. The last row of the table shows the average percent error

for every approach; the maximum and minimum corner delays can be approximated

within 0.7% and 1.8% respectively.
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Table 4.1: Our methods compared to corner analysis
Circuit Lower bound Upper bound LS Approx

Min Max Min Max Min Max
c432 0.941 0.959 1.067 1.032 1.006 0.999
c499 0.930 0.966 1.026 1.022 0.982 0.996
c880 0.935 0.961 1.103 1.059 1.018 1.012
c1355 0.928 0.946 1.153 1.097 1.041 1.030
c1908 0.945 0.960 1.122 1.077 1.031 1.016
c2670 0.929 0.951 1.037 1.013 0.983 0.982
c3540 0.932 0.951 1.070 1.037 1.001 0.993
c5315 0.936 0.949 1.115 1.057 1.022 0.999
c6288 0.912 0.932 1.183 1.120 1.051 1.031
c7552 0.942 0.953 1.153 1.082 1.042 1.012

Avg Error -6.7% -4.7% 10.3% 5.9% 1.8% 0.7%

4.6 Nonlinear Non-Gaussian SSTA

We now demonstrate nonlinear non-Gaussian SSTA, using a general quadratic delay

model that depends on process variables modeled as RVs with arbitrary distributions,

as well as uncertain non-random parameters. As has become typical in the SSTA

literature [27], we assume that one can deal with within-die correlations using some

simple scheme by which correlation is resolved based on the physical location of a cell

on the layout surface. As a result, when it comes to those variations that are random

variables (as opposed to the uncertain non-random parameters), we assume that we are

only dealing with global variations and purely random variations. Before proceeding

with the details, we first show how the three properties of the delay model are satisfied

for our framework to hold.

4.6.1 Delay Model

Assume that gate delay D is expressed using a quadratic model, F , as follows:

D = do +

p
∑

i=1

(diXi + d̂iX
2
i ) + drXDr

(4.19)
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where do is the nominal delay, di and d̂i are first-order and second-order sensitivities to

Xi, and dr is the sensitivity to the purely independent random variation XDr
specific

to D.

Because our framework is indifferent to whether parameters are random or uncer-

tain, there is no restriction on Xi’s, which can be either RVs or uncertain non-random

parameters alike. If it is random, Xi is modeled as an independent zero mean RV

with an arbitrary distribution, such that −1 ≤ Xi ≤ 1. This can be any distribu-

tion, including common cases such as a truncated Gaussian (normal) distribution, a

uniform distribution, etc. If it is uncertain, Xi is simply assumed to vary in [−1, 1].

Note that, in both case, Xi’s are global variation sources that are shared by all gate

delays and timing quantities. As for the purely independent random variation XDr
, we

will assume that it can be modeled as a standard normal distribution with zero mean

and unit variance. This is because XDr
are typically the result of various independent

random effects that add up and converge to a normal distribution by the central limit

theorem.

Add Operation

The add operation and generally any linear operation can be easily performed without

destroying the above quadratic model. Assume that [A,B] ∈ F :

A = ao +

p
∑

i=1

(aiXi + âiX
2
i ) + arXAr

(4.20)

B = bo +

p
∑

i=1

(biXi + b̂iX
2
i ) + brXBr

(4.21)

then C = aA + bB + c can be expressed using the quadratic model as follows:

C = (aao + bbo + c) +

p
∑

i=1

[

(aai + bbi)Xi + (aâi + bb̂i)X
2
i

]

+ (aarXAr
+ bbrXBr

)

= co +

p
∑

i=1

(ciXi + ĉiX
2
i ) + crXCr
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where cr =
√

(aar)2 + (bbr)2, since XAr
and XBr

are independent standard normal

RVs, and XCr
is an independent standard normal RV specific to C. Therefore, F

satisfies property 1.

Max Operation

As explained in Section 4.4, the max operation C = max(A,B) is resolved by first

subtracting A and B, i.e., D = A − B and then bounding/approximating C using

linear combinations of A and B; recall that the coefficients of the linear combinations

are functions of the minimum and maximum values of the difference D, i.e., Dmin and

Dmax.

We have already shown how to perform linear operations using the quadratic model.

Hence, to apply the results of Section 4.4, it remains to show how the quadratic model

is bounded and can be efficiently maximized and minimized over the space of variations

(Properties 2 and 3). Assume that we have already performed the subtraction D =

A − B, and D is given by:

D = do +

p
∑

i=1

(diXi + d̂iX
2
i ) + drXDr

(4.22)

Since Xi’s and XDr
are all independent, then the maximum Dmax and minimum Dmin of

D are achieved when all variations are maximized and minimized separately. In other

words, we need to maximize and minimize the quadratic terms and the independent

random term.

The quadratic terms g(Xi) = diXi + d̂iX
2
i can be analytically maximized and min-

imized as was described previously in Section 4.5.1. As for the purely independent

random variation XDr
, recall that it is modeled as an RV with standard normal distri-

bution, which suggests that XDr
can take values in −∞ to +∞. This, however, is not

realistic, and it is usually the case that standard normal distributions are truncated be-

tween [−k, k], where k represents multiple standard deviations. As an example, setting

k = 3 will cover 99.73% of the standard normal distribution. As a result, the maximum

and minimum values contributed by the independent random component are kdr and

−kdr respectively. Hence, by combining the above two contributions, Dmin and Dmax
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can be easily determined. Having shown that the three properties of Section 4.4 are

satisfied by F , we use the approaches in Sections 4.4.2 and 4.4.3 to resolve the max

operation.

4.6.2 Complexity Analysis

We have shown that both add and max operations are resolved using simple linear oper-

ations involving the delay model; in addition, the coefficients of the linear combination

needed for the max operation involve a subtraction and a maximization/minimization

performed on the model. If p is the total number of variation sources, then performing

an addition or a subtraction is O(p); also, performing a maximization/minimization of

the model is O(p). This means that both add and max operations are linear in the

number of variation sources. Therefore, the overall complexity of a block-based SSTA

technique using the above operations is O(pn), where n is the circuit size.

4.6.3 Results

We have implemented using C/C++ our nonlinear non-Gaussian block-based SSTA

technique that propagates upper and lower bounds on, and an approximation to the

maximum circuit delay, and have tested it on the ISCAS85 benchmark suite. Similar

to [50], and as a proof of concept, we have generated the variation information ran-

domly. We have chosen the coefficients of the quadratic delay model in such a way

that every variation source causes 10% to 20% deviation in the nominal delay. In ad-

dition to the purely random variation that follows a truncated Gaussian distribution,

four global variation sources Xi’s were used, each following either a truncated Gaus-

sian, a uniform, or a triangular distribution as shown in Fig. 4.6. The accuracy of our

technique is compared to Monte Carlo analysis with 10, 000 runs. All delays reported

are normalized to the nominal circuit delay. Fig. 4.7 shows a plot of the cumulative

distribution functions (CDF) of the maximum circuit delay for benchmark c1355 for

the case of variations with a uniform distribution, generated using our SSTA technique

(upper/lower bounds and approximation) and compared to Monte Carlo simulation.

Note that the bounds are valid and accurate, and the least squares (LS) approxima-
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Table 4.2: Least-squares SSTA vs Monte Carlo analysis for Gaussian, Uniform, and Triangular distributions
Gaussian Distributions Uniform Distributions Triangular Distributions

LS-SSTA Monte Carlo LS-SSTA Monte Carlo LS-SSTA Monte Carlo
Circuit 95% 99% σ/µ 95% 99% σ/µ 95% 99% σ/µ 95% 99% σ/µ 95% 99% σ/µ 95% 99% σ/µ

-tile -tile % -tile -tile % -tile -tile % -tile -tile % -tile -tile % -tile -tile %
c432 1.20 1.30 10.7 1.20 1.30 10.6 1.37 1.45 18.4 1.37 1.45 18.4 1.26 1.36 13.2 1.26 1.36 13.3
c499 1.22 1.31 9.35 1.19 1.28 9.18 1.38 1.48 15.6 1.36 1.46 15.9 1.27 1.37 11.4 1.25 1.34 11.4
c880 1.20 1.28 8.98 1.19 1.27 9.07 1.35 1.46 15.1 1.34 1.44 15.1 1.25 1.34 11.0 1.23 1.32 11.0
c1355 1.17 1.24 7.86 1.16 1.23 7.76 1.30 1.39 13.4 1.30 1.38 13.6 1.21 1.29 9.67 1.21 1.28 9.78
c1908 1.19 1.28 9.95 1.19 1.27 9.75 1.35 1.46 16.8 1.35 1.46 16.7 1.24 1.34 12.2 1.25 1.34 12.1
c2670 1.22 1.32 11.7 1.21 1.32 11.5 1.39 1.49 19.8 1.40 1.48 19.8 1.28 1.39 14.3 1.28 1.39 14.2
c3540 1.22 1.32 9.52 1.20 1.29 9.64 1.37 1.45 16.2 1.36 1.43 16.4 1.28 1.37 11.7 1.25 1.35 11.7
c5315 1.22 1.33 11.6 1.22 1.32 11.6 1.39 1.48 19.8 1.40 1.48 19.9 1.28 1.39 14.3 1.27 1.38 14.1
c6288 1.21 1.30 9.56 1.19 1.28 9.50 1.37 1.46 16.3 1.36 1.45 16.5 1.26 1.35 11.8 1.25 1.35 12.0
c7552 1.22 1.33 11.7 1.22 1.33 11.7 1.40 1.48 19.8 1.39 1.48 19.7 1.28 1.38 14.3 1.27 1.38 14.2

AvgErr% -0.80 -0.80 -0.51 - - - -0.37 -0.54 0.55 - - - -0.68 -0.59 0.04 - - -
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tion is very close to the true distribution. Table 4.2 compares the following timing

metrics: the 95 and the 99 delay percentiles, and the ratio of standard deviation to

the mean σ/µ, generated using the least squares approximation (LS-SSTA) to Monte

Carlo analysis, for Gaussian, uniform, and triangular distributions. The results show

that our approach is consistently accurate for all metrics and different distributions,

with an average error less than 1%.

In the mixed case, where one is dealing with both random variables and uncertain

variables, the overall (random) circuit delay and the interesting statistical metrics (like

mean, variance, percentiles) are effectively functions of the uncertain variables. If

this functional dependence is complex, then the desirable worst-case values (of the

interesting statistical metrics) must be found by a process of search or optimization,

which is beyond the scope of this thesis. For now, the above results were obtained at

a specific setting (the nominal) of the uncertain variables. This does not diminish the

value of the results, because one strength of our existing approach is that it provides

an explicit dependence of the total circuit delay on the uncertain parameters, so that

one does not simply have to repeat the overall SSTA for different settings.

4.7 Summary

In this chapter, we proposed a general parameterized static timing analysis technique

that can handle nonlinear delay models and account for delay variability due to both

random process parameters with arbitrary distributions and uncertain non-random pa-

rameters such as supply voltage and temperature which depend on circuit operation.

Central to this technique is a novel and efficient method to resolve the max operator

by bounding it and approximating it using linear models, while preserving the inher-

ent nonlinearity of the delay model itself. Two applications of this framework were

proposed, namely multi-corner timing analysis and nonlinear non-Gaussian SSTA, and

have shown that the complexity of the approach is linear in both the number of process

and environmental parameters and the size of the circuit. Our results show that, on

average, circuit delay is predicted with less than 2% error for multi-corner analysis,

and less than 1% error for SSTA.

65



4 General Framework for Parameterized Static Timing Analysis

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

50
100
150
200
250
300

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

50

100

150

200

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

50
100
150
200
250
300

Figure 4.6: Truncated Gaussian, uniform, and triangular distributions
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Figure 4.7: CDF comparison for c1355
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5 Parameterized Static Timing Analysis

Covering All Potentially Critical Paths

5.1 Introduction

A limitation of many recent variability-aware timing analysis techniques is that, while

they report delay distributions, or verify multiple corners, they do not provide the

required guidance for re-design. In this chapter, we propose an efficient block-based

parameterized static timing analysis technique that can accurately capture circuit delay

at every point in the parameter space, by reporting all the paths that can become

critical. Using an efficient pruning algorithm, only those potentially critical paths are

carried forward, while all other paths are discarded during propagation. This allows

one to examine local robustness to parameters in different regions of the parameter

space, not by considering differential sensitivity at a point (which would be useless

in this context) but by knowledge of the paths that can become critical at nearby

points in parameter space. We give a formal definition of this problem and propose a

technique for solving it that improves on the state of the art, both in terms of theoretical

computational complexity and in terms of run time on various test circuits.

5.2 Background

We have seen in Chapter 2 that signal and clock path delays in integrated circuits

are subject to variations arising from many sources, including (manufacturing) process

variations, (supply/ground) voltage variations, and temperature variations. These are

collectively referred to as PVT variations. During design, one accounts for the delay
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variability by either “padding” the path delays with a timing margin, so that the chip

would yield well at all process corners in spite of the variations, or by “binning” the

resulting chips at different frequencies. As mentioned in earlier chapters, the scale of

the problem has increased recently, because i) an increasing number of circuit param-

eters have significant variability, causing an increase in the number of corners, and ii)

within-die variations are becoming more significant, and they cannot be handled by

the traditional corner-based approach. In Chapter 4, we have classified the variables

or parameters under study into two types: many transistor and metal line parameters

are directly related to underlying statistical process variables, so they may be modeled

as random variables, with certain distributions; on the other hand, the supply/ground

voltage and temperature are not random, and must be modeled as simply unknown or

uncertain variables, within known bounds.

Given the two types of variables under study, two types of solution techniques

have emerged: statistical static timing analysis (SSTA) and multi-corner static timing

analysis (MCSTA). SSTA models parameters as random variables, assuming that their

distributions and correlations are known a priori [27,28,37], and provides the distribu-

tion of circuit delay, from which the timing yield can be estimated. On the other hand,

MCSTA models the PVT parameters as uncertain variables, within given bounds, and

attempts to verify the timing at all corners in a single timing run [51]. All these tech-

niques consider the circuit delay to be dependent on a number of PVT parameters,

be they random or uncertain. Therefore, one can describe the required overall solu-

tion to this problem as parameterized static timing analysis (PSTA). In Chapter 4, we

proposed a general PSTA framework where the max operator is bounded and approx-

imated (essentially linearized), allowing us to maintain the same delay model during

propagation. In this chapter however, we approach the problem in a different way.

5.3 Overview

The motivation for the work in this chapter is the simple notion that, for the results

of timing analysis to be useful, they must provide guidance on how the circuit may

be improved so as to fix any reported timing problems. To understand the need for
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PSTA in general, consider the simple case where delay is linear in the variational (PVT)

parameters. In a circuit, the delay of any input-output path becomes a linear expression

in terms of the parameters, or what we refer to as a hyperplane. At the nominal PVT

point, the hyperplane corresponding to the path with the largest delay (under nominal

conditions) is dominant (over all others). As we move around in PVT space, some

other path may become critical, and, correspondingly, another hyperplane may become

dominant. Overall, across the whole PVT space, the total circuit delay follows some

piece-wise planar (PWP) surface. This surface is defined by all the hyperplanes which

can become dominant at some point in PVT space. We refer to these hyperplanes as

potentially dominant and to their corresponding paths as potentially critical.

Suppose we are at some operating point in PVT space, and we are interested in the

robustness of the circuit at that point. In other words, we are interested in the impact

of variations on overall circuit delay around that point. What information would be

useful to the designer in this case? One could consider providing the sensitivity of

delay, at that point, to the various PVT parameters, such as by means of the partial

derivatives of delay to each of the parameters. However, because of the PWP nature of

the delay surface, such point metrics are actually useless. One may find the derivatives

to have low values at that point, yet one may be very close to a “break point” in

the surface where another hyperplane with much larger sensitivities suddenly becomes

dominant. Instead, one must be able to quickly discover what paths (i.e., hyperplanes)

become dominant in a certain neighborhood around the point of interest. Given a

list of problematic paths in the neighborhood, when working on fixing some path, one

avoids being “blind-sighted” to the criticality of other paths. Thus, for the results

of timing analysis to be useful, we believe that the whole PWP surface is required.

It is not enough to give the user the worst-case corner; that does not provide a full

picture of what needs to be fixed. Also, simply providing the timing yield, as is done in

SSTA, or simply providing a list of a large number of paths, with a failure probability

for each, does not give sufficient insight for what paths need to be fixed around the

operating point. Instead, a PWP surface (for the total circuit delay) allows one to

examine the local neighborhood to see which parameters and paths may be problematic

(so that one can focus on them as part of redesign). It should be mentioned that the
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“broken” nature of the delay surface is not due to the linearity assumption. Instead, it is

actually due to the max function which is implicit in the problem of timing verification

of setup constraints (a similarly broken delay surface results from the min function,

in the similar problem of verifying hold constraints). If one assumes a non-linear,

say polynomial, delay dependence, one simply ends up with a piece-wise polynomial

surface, which presents the same sort of problems.

To faithfully represent the PWP surface for the total circuit delay, we must include

(during propagation in the timing graph) all the hyperplanes that can become dominant

somewhere in PVT space. Simply carrying along all paths can be problematic due to

possible path count explosion; hence, an efficient pruning strategy is needed, whereby

redundant paths that cannot become dominant anywhere in PVT space are identified

and pruned during the propagation. This problem was studied in [52], where an exact

pruning algorithm and a sufficient condition for pruning were proposed, and where

it was found that indeed the number of potentially dominant paths is manageable

and does not explode. In that work, the exact algorithm (as we will see) has time

complexity O(p2n2), where p is the number of PVT parameters and n is the number

of hyperplanes to be pruned, and the sufficient condition is O(pn2). In this chapter,

we propose: (1) a more efficient exact solution to the pruning problem that takes

O(p2mn) time, where m is the number of potentially dominant hyperplanes at the

circuit outputs, and (2) a sufficient condition for pruning that is O(pn). We will see

that the resulting improvements in run-time can be significant for hard circuits.

5.4 Preliminaries

In this section, we first review some basic terminology covering timing modeling and

propagation. Then, we describe the problem formulated by the authors of [52] and

briefly review their approach.
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5.4.1 Modeling and Propagation

In block-based timing analysis, timing quantities are propagated in the timing graph

in topological order, through a sequence of basic operations, such as add operations

on input arrival times and arc delays, and max operations on the timing quantities

resulting from those additions. In this way, the output arrival time is determined and

is then propagated to subsequent stages. This is shown in Fig 5.1, where the arrival

time C at the output of the AND gate is computed as the max of the sums of arrival

times and arc delays at the inputs of the gate. In other words:

C = max (A + D1, B + D2) (5.1)

where A and B are input arrival times, and D1 and D2 are timing arc delays. This can

be easily generalized to gates with more than two inputs.

Since variability in the process and environmental (PVT) parameters affects tran-

sistor performance, gate delays should be represented in such a way to highlight their

dependence on these underlying parameters. First-order linear delay models have been

extensively used in the literature, and they generally capture well this dependence. In

this chapter, we assume that gate delay is a linear function of process and environmen-

tal parameters, such as channel length L, threshold voltage Vt, supply voltage Vdd, and

temperature T . These parameters are assumed to vary in specified ranges, however,

without loss of generality, we can easily normalize these ranges to [−1, 1], similarly to

what was done in [51]. Hence, gate delay D, can be expressed as follows:

D = do +

p
∑

i=1

diXi, −1 ≤ Xi ≤ 1 ∀i (5.2)

where do is the nominal delay, Xi’s are the normalized PVT parameters, and di’s are

the delay sensitivities to these parameters. Since D is a linear function of p parameters,

then it is referred to as a delay hyperplane.

The delay of a path is simply the sum of arc delays of all gates on that path. Since

arc delays are expressed as hyperplanes, so will be the path delay; in the rest of the

chapter, when we refer to the delay of a path, it is understood that we mean path delay
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Figure 5.1: Propagation for a single gate

hyperplane. Although this is true for a path, the arrival time at a node, which is the

max of all path delay hyperplanes in the fan-in cone of that node, is not necessarily a

hyperplane. This is shown in Fig. 5.2, where four paths, P1 − P4, converge at a node.

The arrival time, A, at that node is given by:

A = max(P1, P2, P3, P4) (5.3)

Shown as the broken dashed line, A is a piece-wise planar (PWP) surface because either

P1, P2, or P3 can become the maximum (or dominant) hyperplane, depending on which

region of the parameter space is under consideration. Note that P4 is always covered

by another hyperplane, and therefore does not show up in the PWP surface. Paths,

such as P1 − P3, which can become dominant are referred to as potentially critical

or non-redundant paths, whereas paths, such as P4, which cannot become critical,

are referred to as redundant or prunable paths. We will formally define these terms

in the next section. Ideally, during analysis, only those potentially critical paths (or

non-redundant hyperplanes) must be propagated to subsequent stages, while all other

hyperplanes must be discarded or pruned.
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5.4.2 The Pruning Problem

Let Dj be the delay hyperplane of path j in a set of n paths converging on a node, so

that Dj is given by:

Dj = aoj +

p
∑

i=1

aijXi, j = 1, . . . , n (5.4)

The hyperplane Dj is said to be redundant or prunable if and only if:

max(D1, . . . , Dn) = max(D1, . . . , Dj−1, Dj+1, . . . , Dn), ∀Xi (5.5)

In this case, no matter where we are in the parameter space, Dj will never show up

as the maximum hyperplane, as other hyperplanes will be dominating it. An example

of this is path P4 in Fig 5.2; such a redundant hyperplane can be pruned from the set

without affecting the shape of the piece-wise planar surface representing the max. On

the other hand, if (5.5) is not satisfied, then Dj is a non-redundant hyperplane and

must be kept in the set. An example of this are paths P1 − P3, which show up in the

PWP surface.

Formally, the pruning problem can be stated as follows. Given a set P of n hyper-

planes Dj, find the set Q ⊆ P, such that Q is an irreducible set of m non-redundant

hyperplanes D̃j, where m ≤ n, and such that:

max(D1, . . . , Dn) = max(D̃1, . . . , D̃m), ∀Xi (5.6)

Only those m non-redundant hyperplanes are needed to describe the shape of the PWP

surface defined by the max. This pruning problem was studied by the authors of [52]

who proposed two techniques for pruning. We now review these techniques and describe

some of their limitations.

Pairwise Pruning

The first technique is based on pairwise comparisons between hyperplanes, to check

if any hyperplane can prune another hyperplane, as follows. Let D1 and D2 be two
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Xi

P1

P3

P2

P4

Figure 5.2: MAX of path delay hyperplanes

hyperplanes:

D1 = ao1 +

p
∑

i=1

ai1Xi (5.7)

D2 = ao2 +

p
∑

i=1

ai2Xi (5.8)

If D1 − D2 ≤ 0 for all values of Xi, then D1 is pruned by D2, denoted by D1 ≺ D2.

Since −1 ≤ Xi ≤ 1, then D1 ≺ D2 if and only if:

ao1 − ao2 +

p
∑

i=1

|ai1 − ai2| ≤ 0 (5.9)

which can be easily checked.

The pairwise pruning procedure [52] is shown in Algorithm 1, where we have pre-

served the same flow as in [52] for clarity. It has two nested loops that cover all pairs

of hyperplanes, checking if Dj ≺ Di. Note that this algorithm is only a sufficient con-
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dition for pruning and is not an exact solution for the pruning problem. In fact, the

resulting set Q is not necessarily an irreducible set. Going back to Fig. 5.2, PAIRWISE

will fail to identify P4 as a redundant hyperplane since P1, · · · , P4 are pairwise non-

prunable. In addition, the complexity of PAIRWISE is O(pn2), where p is the number

of PVT parameters and n is the number of hyperplanes. This quadratic complexity

can be problematic, particularly if a large number of redundant hyperplanes, which

are identified as non-redundant by PAIRWISE, are propagated to subsequent stages,

potentially causing a blow-up in the number of hyperplanes, as reported by [52] on one

of the test circuits.

Algorithm 1 PAIRWISE

Input: P = {D1, . . . , Dn};
Output: Q ⊇ {D̃1, . . . , D̃m};
1: Mark all hyperplanes in P as non-redundant;
2: for i = 1 : n do
3: if (Di is marked redundant) then
4: continue;
5: end if
6: for j = 1 : n do
7: if (Dj is marked redundant) then
8: continue;
9: end if

10: if (Dj ≺ Di) then
11: Mark Dj as redundant;
12: end if
13: end for
14: end for
15: Add all non-redundant hyperplanes to Q;

Feasibility Check

The second pruning technique is a necessary and sufficient condition for pruning. It is

therefore an exact solution for the pruning problem, which guarantees that the resulting

set Q is an irreducible set of non-redundant hyperplanes. The idea is to perform a

feasibility check for every hyperplane Dj by searching for a point in the space of Xi’s
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where Dj is dominant over all other hyperplanes. If this is feasible, then Dj is non-

redundant, otherwise, Dj is redundant and can be pruned from the set. Thus, Dj is

non-redundant if and only if the following system of inequalities has a feasible solution:

Dj ≥ Dk, k = 1, . . . , n, k 6= j (5.10)

−1 ≤ Xi ≤ 1, i = 1, . . . , p

Algorithm 2 describes FEASCHK, where a feasibility check is formulated for every

hyperplane in the starting set P (line 6). If there is a feasible solution, then the

hyperplane is non-redundant and is added to Q. Otherwise, it is marked as redundant

and is pruned from the set.

Algorithm 2 FEASCHK

Input: P = {D1, . . . , Dn};
Output: Q = {D̃1, . . . , D̃m};
1: Mark all hyperplanes in P as non-redundant;
2: for j = 1 : n do
3: if (Dj is marked redundant) then
4: continue;
5: end if
6: Formulate (5.10) for Dj excluding redundant hyperplanes;
7: if (feasible) then
8: Add Dj to Q;
9: else

10: Mark Dj as redundant;
11: end if
12: end for

Note that the feasibility check in (5.10) consists of solving a Linear Program (LP)

with p variables and (n+ p) constraints, which has a complexity of O (p2(n + p)), if an

interior-point based LP solver is used [53]. Therefore, the complexity of FEASCHK,

which requires n feasibility checks to determine the irreducible set of non-redundant

hyperplanes is O (p2(n + p)n), which is O(p2n2) if p ≤ n, which is usually the case.

Given that this pruning algorithm would potentially be applied at every node in the

timing graph, its O(n2) behavior in the number of hyperplanes can be expensive.
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In the following sections, we present a more efficient method for solving the pruning

problem. By transforming this problem into a standard problem in computational

geometry, we present an exact pruning algorithm which is O(p2mn), where n is the

number of hyperplanes in the initial set P , and m is the number of non-redundant

hyperplanes in the final irreducible set Q. We also propose a sufficient condition for

pruning that can be used as a pre-processing step, and which is O(pn).

5.5 Problem Transformation

In this section, we show how we map our parameterized timing pruning problem into

a standard problem in computational geometry.

5.5.1 From Computational Geometry

The field of computational geometry deals with the study of algorithms to solve prob-

lems stated in terms of geometry. Typical problems include Convex Hull, Vertex/Facet

enumeration, and Voronoi diagrams, to name a few [54]. We have identified two stan-

dard problems that can be related to the pruning problem: Enumeration of Extreme

Points of a Convex Hull and its equivalent (dual) problem of Minimal Representation

of a Polytope. We first review these problems and show how the pruning problem can

be transformed into a standard problem.

Extreme Points Enumeration

To understand this problem, let us start by defining the following terms:

Definition 1 (Convex Hull) The convex hull of a set P of n points, denoted as

conv(P ), is the smallest convex set that contains these points.

Definition 2 (Extreme Points) Given a set P of n points in d dimensions, the min-

imal subset E of P for which conv(P ) = conv(E) is called the set of extreme points.

In other words, if point e ∈ E, then conv(P \ {e}) 6= conv(P ).
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The Extreme Points Enumeration problem can be stated as follows. Given a set P

of n points, determine the minimal subset E of m extreme points, where m ≤ n. This

is shown graphically in Fig. 5.3a where the shaded region is the convex hull, and points

1 through 4 are the set of extreme points. Note that points 5 and 6 do not contribute

to the convex hull and can thus be removed.

Minimal Polytope Representation

We begin by defining some terms that will help us introduce this standard problem:

Definition 3 (Hyperplane) It is the set {x | aT x = b}, where a ∈ R
d, a 6= 0 and

b ∈ R. It is the solution set of a nontrivial linear equation among the components of

x. A hyperplane divides R
d into two half-spaces.

Definition 4 (Half-space) It is the set {x | aT x ≤ b}, where a ∈ R
d, a 6= 0 and

b ∈ R. It is the solution set of one nontrivial linear inequality.

Definition 5 (Polyhedron/Polytope) A polyhedron is the set P ⊆ R
d, such that:

P = {x | aT
j x ≤ bj, j = 1, . . . , n} (5.11)

It is therefore the intersection of a finite number of half-spaces. A bounded polyhedron

is called a polytope. A polyhedron/polytope can be written in matrix form as follows:

P = {x | Ax ≤ b} (5.12)

where A is an n × d matrix, and b ∈ R
n. Note that A is not necessarily the minimal

representation of P .

Definition 6 (Supporting Hyperplane) If one of the two closed half-spaces of a

hyperplane h contains a polytope P , then h is called a supporting hyperplane of P .

Note that every row in the matrix representation of the polytope P corresponds to a

supporting hyperplane.
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For example, the shaded region in Fig. 5.3b is a polytope defined as the intersection

of six half-spaces, each bounded by a hyperplane, and all six hyperplanes are supporting

hyperplanes.

Definition 7 (Bounding Hyperplane) A hyperplane that is spanned by its inter-

section with a polytope P is called a bounding hyperplane of P . Those rows in the

matrix representation of P , which can be satisfied with equality for some values of x,

correspond to bounding hyperplanes of P .

For example, in Fig. 5.3b, only hyperplanes 1 through 4 are bounding hyperplanes ;

they appear at the boundary of the polytope.

With the above definitions, the problem of Minimal Polytope Representation can

be stated as follows. Given a polytope P with n supporting hyperplanes, find all m

bounding hyperplanes of the polytope, where m ≤ n. This will correspond to the

minimal representation of P . In other words, if P is defined as Ax ≤ b, where A is an

n × d matrix, and b ∈ R
n, find a reduced Ã and b̃ such that:

P = {x | Ax ≤ b} = {x | Ãx ≤ b̃} (5.13)

where Ã and b̃ are the rows of A and b that correspond to the m bounding hyperplanes

of P . Referring again to the example in Fig. 5.3b, if hyperplanes 5 and 6 were removed,

it would not affect the shape of the polytope.

The above two problems have obvious similarities; in fact, these two problems are

equivalent, as one is the dual of the other. This can be explained by the point-hyperplane

duality in computational geometry [54]. Point-hyperplane duality is a common trans-

formation whereby a point p at distance r from the origin O is associated with the

hyperplane normal to Op at distance 1/r from the origin. Under this transformation,

extreme points enumeration and minimal polytope representation are two equivalent

problems. This is shown in Fig 5.3, where the extreme points 1 to 4 of the convex hull

are transformed to the bounding hyperplanes 1 to 4 of the polytope; also, the points

5 and 6 on the interior of the convex hull are transformed to hyperplanes 5 and 6,

which do not appear in the minimal polytope representation. Therefore, an algorithm

that can solve one problem efficiently can also be used to solve the other problem,
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Figure 5.3: (a) Extreme points of convex hull (b) Minimal polytope representation (dual
problem)

and vice-versa. We have identified an efficient algorithm in [55], which solves extreme

points enumeration. The same algorithm can be used to solve the dual problem of

minimal polytope representation. In the next section, we show how the pruning prob-

lem, defined in Section 5.4.2, can be transformed to minimal polytope representation

problem. Once this is established, we can adapt the algorithm in [55] to solve the

pruning problem efficiently.

5.5.2 To Parameterized Timing

Recall the pruning problem, where given a set of n delay hyperplanes Dj, we want

to determine every hyperplane that can become the maximum hyperplane, for some

setting of the PVT parameters. These hyperplanes are referred to as non-redundant,

whereas other hyperplanes that cannot become dominant are referred to as redundant

hyperplanes, and should be pruned. Let Dmax be the piece-wise planar maximum of all

n hyperplanes, i.e., Dmax = max(D1, · · · , Dn),∀Xi, such as the broken line in Fig. 5.2.
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As a result, the following condition holds:

Dmax ≥ Dj = aoj +

p
∑

i=1

aijXi, −1 ≤ Xi ≤ 1, ∀i, ∀j (5.14)

Note that if Dj is a non-redundant hyperplane, then the above inequality will be

satisfied with equality, i.e., Dmax = Dj, when Dj becomes the maximum hyperplane

for some setting of Xi’s. Otherwise, if Dj is redundant, then Dmax > Dj for all Xi’s.

By rearranging (5.14) so as to include Dmax in the parameters, we get the following:

p
∑

i=1

aijXi − Dmax ≤ −aoj, j = 1, . . . , n (5.15)

Let x = [X1 X2 · · · Xp Dmax]
T , hj = [a1j a2j · · · apj − 1]T , and bj = −aoj. Then, we

can write the above inequality as:

hT
j x ≤ bj, j = 1, . . . , n (5.16)

Finally, if b = [b1 b2 · · · bn]T and H = [h1 h2 · · · hn]T . Then, we can write the above

inequalities in matrix form:

Hx ≤ b, −1 ≤ Xi ≤ 1 (5.17)

This defines a polytope H in p + 1 dimensions, where p is the number of the PVT

parameters. Now if we were to find the minimal representation of H, this would result

in determining all the rows that correspond to bounding hyperplanes, that is, the rows

that can be satisfied with equality, as explained in Definition 7. If row j is a bounding

hyperplane, then hT
j x = bj is satisfied for some parameter setting. By rearranging this

equality in terms of Dmax, we get Dmax = Dj, which is the condition for which a delay

hyperplane is non-redundant in the pruning problem, as observed above. Therefore,

determining the minimal representation of H would actually solve the pruning problem

and determine the set of non-redundant delay hyperplanes.

82



5 Parameterized Static Timing Analysis Covering All Potentially Critical Paths

5.6 Pruning Algorithm

In this section, we present two pruning algorithms: (1) an exact solution to the pruning

problem, which is a modified version of the algorithm in [55], and (2) a sufficient

condition for pruning that is linear in the number of hyperplanes, and which can be

used to speed up the pruning algorithm by reducing the number of calls of the exact

algorithm during propagation in the timing graph.

5.6.1 Exact Algorithm

Description

In the minimal polytope representation problem, one needs to identify which rows of

the defining polytope matrix correspond to bounding hyperplanes. Let H be a polytope

defined by the system of inequalities Hx ≤ b, and let hT
j x ≤ bj be a row in that system.

To test whether hT
j x ≤ bj corresponds to a bounding hyperplane, we need to check if

hT
j x = bj is satisfied for some value of x; this can be tested using the following LP:

maximize : v = hT
j x (5.18)

such that : Hx ≤ b

If the solution is v∗ < bj, then the hyperplane hT
j x = bj is not a bounding hyperplane

and can be removed (pruned) from the system; this means that other inequalities are

acting in such a way that hT
j x ≤ bj is never “pushed to its boundary.” Otherwise, if

the solution is v∗ = bj, then hT
j x = bj is a bounding hyperplane of the polytope and

should be kept in the system.

The LP in (5.18) is formulated in Procedure 3, Check Redund(), below. This

procedure takes as inputs a set of delay hyperplanes B, and a hyperplane D ∈ B
that we’re trying to prune. The delay hyperplanes are first transformed from the

parameterized timing domain to the computational geometry domain, where a polytope

Hx ≤ b is created. Then, hT
j x ≤ bj is checked to see if it corresponds to a bounding

hyperplane of the polytope by formulating the LP in (5.18). If so, then pruned=FALSE,

and D is non-redundant, otherwise, pruned=TRUE and D is redundant. The procedure
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also returns x∗, which is a solution witness generated by the LP solver, i.e., it is the

value of x at which the LP maximum v∗ is found. Recall that the complexity of an LP is

linear in the number of constraints [53]. Therefore, the complexity of Check Redund()

is linear in the size of B; specifically, it is O(p2|B|).

Procedure 3 Check Redund(D,B)

Inputs: Hyperplane D, and a set of hyperplanes B including D;
Outputs: pruned={TRUE, FALSE}, x∗ solution witness;
1: D ⇒ hT

j x ≤ bj and B ⇒ Hx ≤ b; {transform inputs from delay domain to polytope
domain as described in Section 5.5.2}

2: Formulate the LP in (5.18) and get x∗ as solution witness;
3: if (hT

j x∗ = bj) then
4: pruned = FALSE;
5: else
6: pruned = TRUE;
7: end if
8: return (pruned, x∗)

Algorithm 4 describes the exact pruning algorithm PRUNE, which uses Check Redund().

PRUNE takes a set of delay hyperplanes P and determines the set Q ⊆ P of non-

redundant hyperplanes. The algorithm starts by determining a small subset of non-

redundant hyperplanes by calling a procedure Get Initial NR(), shown in Procedure 5.

Get Initial NR() probes the delay hyperplanes at a predefined set of points in the pa-

rameter space Xi, to determine which delay hyperplane is maximum at every point.

Those hyperplanes that show up as maximum hyperplanes are non-redundant, and are

therefore added to the initial set. In addition to the nominal probing point, Xi = 0

∀i, 2p probes are chosen such that Xj = ±1, Xi = 0 ∀i 6= j, j = 1, . . . , p, which

makes Get Initial NR() linear in the number of hyperplanes and the number of probes;

specifically, it is O(pn).

Once this initial set of non-redundant hyperplanes is determined, PRUNE creates

the set of remaining hyperplanes P ′ (line 2), and starts a loop until P ′ is empty (line

20). In every run of the loop, a hyperplane D is removed from P ′, and is first checked

for redundancy against the set Q of non-redundant hyperplanes that were discovered

so far, by calling Check Redund() (line 6). If Q prunes D, then D is definitely pruned
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Algorithm 4 PRUNE

Input: Set of hyperplanes P = {D1, . . . , Dn} of size n;
Output: Set of all non-redundant hyperplanes Q of size m ≤ n;
1: Q = Get Initial NR(P);
2: P ′ = P \ Q;
3: repeat
4: Let D be the next hyperplane in P ′;
5: Remove D, P ′ = P ′ \ {D};
6: [pruned, x∗] = Check Redund(D,Q∪ {D}); {run a small LP}
7: if (pruned = TRUE) then
8: D is redundant and is not added to Q;
9: else

10: [pruned, x∗] = Check Redund(D,Q∪ P ′ ∪ {D}); {run a large LP}
11: if (pruned = FALSE) then
12: D is non-redundant;
13: Add it to set, Q = Q∪ {D};
14: else
15: D is redundant and is not added to Q;
16: Use witness x∗ to get a set W of non-redundant hyperplanes containing x∗;
17: Add W to set, Q = Q∪W;
18: end if
19: end if
20: until P ′ = {}
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by the bigger set P , and is therefore discarded as a redundant hyperplane. Otherwise,

if D is found to be non-redundant against Q, then we cannot claim that it is non-

redundant in P . Hence, Check Redund() is called again (line 10) where D is checked

against the bigger set D ∪ P ′. If D could not be pruned (line 11), then D is a non-

redundant hyperplane and is added to Q. Otherwise, D is pruned and discarded as a

redundant hyperplane. Recall that Check Redund() formulates the LP in (5.18) and

returns a solution witness x∗. Although D is identified as redundant (line 15), the

solution witness x∗ can be used to check which constraints of the LP were satisfied

with equality at x∗; those satisfied would correspond to bounding hyperplanes of the

polytope. Hence a set W of non-redundant delay hyperplanes can be identified (line

16), which are added to Q. The authors of [55] prove that at least 1 new non-redundant

hyperplane is discovered in this step. The reader is referred to [55] for more details

about the proof of correctness of this algorithm.

Procedure 5 Get Initial NR(P)

Input: Set of hyperplanes P = {D1, . . . , Dn};
Output: Subset Q of non-redundant hyperplanes;
1: Q = {};
2: Find Dj with maximum nominal delay aoj;
3: Q = Q∪ {Dj};
4: Set Xi to 0, ∀i;
5: for i=1:p do
6: Set Xi to 1;
7: Find Dj with maximum value at Xi;
8: Q = Q∪ {Dj};
9: Set Xi to −1;

10: Find Dj with maximum value at Xi;
11: Q = Q∪ {Dj};
12: Reset Xi to 0;
13: end for

Complexity

The execution time of PRUNE is dominated by the time to solve the LPs formulated

in Check Redund() at lines 6 and 10. Line 6 is called for all hyperplanes in P ′, which
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is O(n) times. The LP in line 6 has at most p variables and O(m) constraints, because

m is the largest possible size of Q. So in total, this would take O(np2m). As for

the second LP formulated by Check Redund() in line 10, notice that every time it

is called, a new non-redundant hyperplane is discovered, either explicitly (as in lines

11-12), or through the use of the solution witness x∗ (line 16). Therefore, this LP,

which has at most p variables and n constraints, is solved at most m times, which is

the total number of non-redundant hyperplanes, so that its complexity O(mp2n). And

since Get Initial NR() is O(pn), then the overall complexity of PRUNE is O(p2mn),

which is an improvement over the O(p2n2) approach of [52], particularly when many

hyperplanes are redundant, i.e. when m ≪ n.

5.6.2 Sufficient Condition

Applying the exact algorithm at every node in the timing graph can be expensive. Be-

cause we are only interested in the non-redundant hyperplanes at the primary outputs,

it makes sense to use a faster sufficient condition for pruning at the internal nodes,

provided that the number of hyperplanes remains under control. Once the primary

outputs are reached, the exact algorithm is applied to determine the non-redundant

hyperplanes, which correspond to the potentially critical paths in the circuit. We pro-

pose a sufficient condition for pruning based on the following idea. Recall that when

a set of hyperplanes {D1, . . . , Dk} prunes a hyperplane D, the following condition,

from (5.5), is satisfied:

max(D1, . . . , Dk, D) = max(D1, . . . , Dk), ∀Xi (5.19)

which can be written as,

max(D1, . . . , Dk) ≥ D, ∀Xi (5.20)

and which can be checked using an LP.

Now assume one can find efficiently a hyperplane Dlb, which acts as a lower bound

on max(D1, . . . , Dk). Then a sufficient condition for pruning D would be to check if
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Dlb prunes D. If so, then max(D1, . . . , Dk) would also prune D, because:

max(D1, . . . , Dk) ≥ Dlb ≥ D, ∀Xi (5.21)

In Chapter 4, we showed how we can determine a lower bound on the maximum of

two timing quantities while maintaining the same timing model. We can use the same

technique here to find a hyperplane that acts as a lower bound on the maximum of a

set of hyperplanes. Let A and B be two delay hyperplanes; let C = max(A,B) be the

maximum of A and B, and assume that either hyperplane can become dominant. We

are interested in finding a hyperplane, Clb, that acts as a lower bound on C. Based on

Section 4.4.2, Clb will have the following form:

Clb =



















A if |Dmax| ≫ |Dmin|
B if |Dmax| ≪ |Dmin|
αA + (1 − α)B otherwise

(5.22)

where Dmin and Dmax are the extremes of the difference hyperplane D = A−B, and α is

defined as Dmax

Dmax−Dmin
. For more detailed information, the reader can refer to Chapter 4

Section 4.4.2. Note that Clb is a hyperplane since it is a linear combination of A and

B in either of the three cases.

Although the above analysis is restricted to finding a lower bound on the maximum

of two hyperplanes, it can be recursively applied to find a lower bound on the maximum

of n ≥ 2 hyperplanes. It is easy to show that the complexity of doing this for n

hyperplanes is O(pn).

Algorithm description

Algorithm 6 describes our lower bound based sufficient condition for pruning, PRUNE LB.

It takes as input a set P of n hyperplanes and returns a reduced set Q ⊆ P. Similarly

to PRUNE, PRUNE LB starts by determining an initial set of non-redundant hyper-

planes by calling Get Initial NR(), which takes O(pn) time. Next, a lower bound Dlb
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on the maximum of all hyperplanes in this set is determined as shown in the previous

section. This takes O(p2) time since the size of the initial set is O(p). Then, for every

hyperplane D in the remaining set P ′, the lower bound is used to test whether D is

prunable or not. If so, then D is redundant in P , otherwise, D is added to Q; the

cost of this loop is O(np). Thus, the runtime of PRUNE LB is O(p(p + n)), which in

practice is really O(pn) because one expects that it’s always the case that p < n. This

represents an improvement over the O(pn2) sufficient condition of [52].

Algorithm 6 PRUNE LB

Input: Set of hyperplanes P = {D1, . . . , Dn} of size n;
Output: Reduced set Q ⊆ P;
1: Q = Get Initial NR(P);
2: Find a lower bound Dlb on the maximum of all hyperplanes in Q;
3: P ′ = P \ Q;
4: repeat
5: Choose an arbitrary D ∈ P ′ and remove it from P ′;
6: Check if Dlb prunes D, i.e. D ≺ Dlb;
7: if (D ≺ Dlb) then
8: D is redundant in P {sufficient condition is able to prune};
9: else

10: Add D to Q {sufficient condition fails, and D is not pruned};
11: end if
12: until P ′ = {}

5.7 Results

To verify the accuracy and speed of our pruning techniques, we have tested this ap-

proach on a number of circuits from the ISCAS-85 benchmark suite, mapped to a

commercial 90nm library. The timing engine was implemented in C++, with an inter-

face to the commercial optimization package MOSEK [56], which was used to solve the

LPs in the PRUNE and FEASCHK algorithms. In our tests, the cell library was not

characterized for sensitivities to any specific process parameters. Instead, and to allow

us to test the approach under some extreme conditions, we have assumed that cell de-
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lay depends on a set of 10 arbitrary parameters that are normalized to vary in [−1, 1].

In addition, the delay sensitivities to these parameters were generated randomly such

that every cell exhibits a total of ±20% deviation in its nominal delay as a result of

parameter variability. As to the signs of these sensitivities, they were set at random,

again to better test the limits of our approach (as the sensitivity signs are made less

correlated, one would expect to see more non-redundant hyperplanes).

Two of the ISCAS-85 circuits were excluded from the analysis for the following

reasons. Given our extreme settings of the sensitivities, we have encountered unreal-

istically large dominant hyperplane counts in c1355 and c6288, and we exclude these

circuits from the results. Given more realistic (less extreme) settings of the sensitiv-

ities, even these circuits would be manageable. Indeed, for c1355, if the sensitivity

signs are all set to be the same, then the analysis completes easily with 174 dominant

hyperplanes at the circuit primary outputs. For c6288, if the range of variations is

reduced to 5% and the sensitivities are made equal, then again the analysis completes

quickly, with only 68 non-redundant planes at the output. In any case, we now present

the results, under the extreme settings for sensitivity, on all the other circuits.

We test our approach using the following flow: run PRUNE LB on every node in

the timing graph and then apply PRUNE at the primary output to determine the exact

number of non-redundant hyperplanes. For comparison, we also test the equivalent flow

from [52]: run PAIRWISE on all nodes and then apply FEASCHK at the primary out-

put. Table 5.1 shows the results, where we report the number of hyperplanes reported

at the primary output by the sufficient condition (PRUNE LB and PAIRWISE), the

number of non-redundant hyperplanes found at the primary outputs after exact prun-

ing (PRUNE and FEASCHK), and the total run-times. For example, for circuit c432,

the number of hyperplanes propagated by PRUNE LB to the primary output is 1481,

from which only 639 hyperplanes are found to be non-redundant by PRUNE. These

639 hyperplanes make up the piece-wise planar surface of the maximum circuit delay

and correspond to the set of all potentially critical paths in the circuit. The overall

runtime is found to be 129sec, compared to 338sec for PAIRWISE+FEASCHK, i.e.,

about 3× speed up.

We can draw several conclusions from Table 5.1. First, it is clear that the proposed
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Table 5.1: Summary of hyperplanes at primary output and Run-times for (1)
PRUNE LB + PRUNE and (2) PAIRWISE + FEASCHK

Circuits PRUNE LB PRUNE Runtime PAIRWISE FEASCHK Runtime
Result Result (sec) Result Result (sec)

c432 1481 639 129 1114 639 338

c499 1918 520 156 1539 520 230

c880 16 12 0.62 16 12 0.57

c1908 63 37 2.09 46 37 2.24

c2670 556 126 18.3 270 126 18.9

c3540 60 30 2.80 56 30 3.55

c5315 18 12 2.22 12 12 2.12

c7552 14 9 3.67 11 9 4.57

approach is practical and offers the hope that the timing of the circuit across the whole

PVT space can be provided for use by downstream tools. Secondly, note that what

determines whether a circuit is harder or easier to analyze is not the number of gates in

the design, but the number of hyperplanes that are non-redundant, i.e., the number of

potentially critical paths; this depends on circuit topology. While c7552 is much larger

than c432, we find that the latter takes more time to analyze as the resulting number

of non-redundant hyperplanes is much larger. Notice that even under the extreme

sensitivity settings, described above, most circuits have a reasonably small number

of non-redundant hyperplanes at their outputs, which is in-line with the observations

in [52] where the number of potentially critical paths was shown to be manageable for

most circuits. For easy circuits, the performance of our method is comparable to [52],

while for harder circuits, such as c432 and c499, our approach becomes faster.

Another metric to look at is the quality of pruning by the sufficient condition

PRUNE LB, and a comparison of that to PAIRWISE of [52]. As explained earlier,

both algorithms are applied on every node in the test circuits until the primary out-

puts are reached. Table 5.1 shows a comparison of the two pruning techniques in terms

of how many hyperplanes they report at the primary outputs, as shown in the second

and fifth column. For example, PRUNE LB and PAIRWISE report 1481 and 1114

non-redundant hyperplanes at the primary output of circuit c432, respectively, while

the exact number of non-redundant hyperplanes is 639. Notice that the PAIRWISE
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Figure 5.4: Comparison of PRUNE LB and PAIRWISE algorithms

algorithm typically yields results that are closer to the exact solution. However this ad-

vantage of PAIRWISE comes at a runtime disadvantage when compared to PRUNE LB,

as can be seen in Fig. 5.4. This is particularly true for c432, c499, and c2670, which

are harder circuits compared to the rest of the test circuits. For example, although

the number of hyperplanes reported by PRUNE LB for circuit c432 is slightly larger

than that reported by PAIRWISE, the actual speed up is about 44×, which can be

calculated from Fig. 5.4. Also notice that the performance of the two methods, in

terms of both runtime and quality of pruning, is comparable for all other easy cases

where the number of hyperplanes seen at the output is smaller.

Finally, we draw the reader’s attention to circuit c2670 in Table 5.1, where the

total run-time for both flows is comparable. This is due to the fact that PRUNE LB

predicted 556 hyperplanes to be reduced by PRUNE, whereas PAIRWISE predicted
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only 270 hyperplanes to be reduced by FEASCHK. In a sense, the speed up achieved

by our sufficient condition, shown in Fig 5.4, is lost since our exact algorithm had to

reduce a larger set of hyperplanes. In this case, an alternative approach may be to

apply PRUNE LB on every node, then to apply PAIRWISE for additional pruning

at the primary output before calling PRUNE to determine the exact number of non-

redundant hyperplanes.

5.8 Summary

In this chapter, we have proposed an efficient block-based parameterized static timing

analysis technique that can accurately capture circuit delay at every point in the pa-

rameter space, by reporting all paths that can become critical. Using efficient pruning

algorithms, only those potentially critical paths are carried forward, while all other

paths are pruned during propagation. After giving a formal definition of this problem,

we have proposed (1) an exact algorithm for pruning, and (2) a fast sufficient condition

for pruning, that improve on the state of the art, both in terms of theoretical compu-

tational complexity and in terms of run time on various test circuits. The work in this

chapter has also established a link between the pruning problem in the parameterized

timing domain, and two standard problems in computational geometry.
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Timing Analysis

6.1 Introduction

In this chapter, we propose a new post-variational analysis metric that can be used

to quantify the (timing) robustness of designs to parameter variations. In addition

to helping designers diagnose if and when different nodes can fail, this metric can

guide optimization and can give insights on what to fix, by identifying nodes with small

robustness values and proceeding to fix those nodes first. Inspired by the rich literature

on design centering, tolerancing, and tuning (DCTT), we use distance as a measure for

robustness. Our analysis thus determines the minimum distance from the nominal point

in the parameter space to any timing violation, and works under the assumption that

parameters are specified as ranges rather than statistical distributions. We demonstrate

the usefulness of this distance-based robustness metric on circuit blocks extracted from

a commercial 45nm microprocessor from Intel.

6.2 Background

Many variation-aware timing analysis techniques have focused on assessing the impact

of parameter variations on timing by using variational models where delay is assumed to

depend on a number of PVT parameters. These techniques can be collectively described

under the heading of parameterized static timing analysis (PSTA). Statistical static

timing analysis (SSTA) is one example of PSTA, in which parameters are modeled as

random variables with known distributions and correlations [27, 28], and timing yield
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is estimated from the corresponding distribution of circuit delay. In practice, however,

the statistical distributions and correlations of some PVT parameters may be unknown

or unavailable. Also, some parameters, such as supply voltage or temperature, are not

truly random and are better modeled as simply unknown or uncertain variables. Thus,

some alternative PSTA techniques have also been proposed, such as multi-corner static

timing analysis (MCSTA). MCSTA models parameters as uncertain variables within

given or known bounds, and attempts to verify circuit timing at all corners in a single

timing run [5, 51]. Although the circuit delay is captured accurately at the worst case

corner, the same cannot be said about other points in the parameter space. Note that

the PSTA framework proposed in Chapter 4 is applicable to both SSTA and MCSTA.

Recently, some PSTA techniques [6,52] have addressed this limitation by proposing

to capture, in a single timing run, circuit delay exactly at all points in the PVT space.

This can be done by propagating in the timing graph all the paths that can become

dominant (critical) at any setting of the PVT parameters, and pruning all other re-

dundant paths. The technique proposed in Chapter 5 falls under this latter PSTA

class. In any case, the end result of all PSTA techniques is to provide designers with

parameterized timing quantities (arrival times and/or slacks) which are expressed as

functions of PVT parameters.

6.3 Overview

While a large body of research has focused on the analysis step, very few proposals

have presented clear answers for how to interpret and utilize the results of PSTA in

design. The crux of the matter, and this is what motivated PSTA in the first place,

is that the goal is to produce a safe design, in the sense that it must be robust to

variations. To do that, an essential requirement is to be able to measure the safety or

robustness of a given design, i.e., its susceptibility to timing failure due to variations.

But how does one formally define robustness? How does one quantify the suscepti-

bility to failure and determine how far a nominally safe design is from the “edge of

the cliff”? Finally, what does one need to do to improve the robustness of a given

design? One way to quantify robustness, which is used in SSTA, is to use the notion of
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yield to assess the safety of timing quantities. Indeed, timing yield is one measure of

robustness - it provides designers with the probability of meeting/violating the timing

constraints. However, yield analysis via SSTA requires that all parameters be modeled

as random variables with known distributions and correlations. As we noted earlier, the

distributions and correlations of PVT parameters may not always be available or fully

specified. Hence, for those PSTA techniques where parameters are either i) modeled

as uncertain (non-random) variables in specified ranges, or ii) where distributions are

unknown or unavailable, we need to define some other metric that can be used to assess

the robustness of timing quantities resulting from these methods. One possible way of

doing that is to use the volume of the feasible region as a measure of robustness. As

part of their work on yield prediction, the authors of [31] have proposed two techniques

for approximating the volume of the feasible region, the parallelepiped method and the

ellipsoid method. However, it was found that, while both techniques are accurate, they

may not scale well with the number of PVT parameters or the number of paths. Thus,

this approach can be costly on large designs.

In this chapter, we hope to answer some of the above open questions as we present

a new metric that can be used to quantify the (timing) robustness of a design to

variations in the case where parameters are given as ranges rather than fully specified

distributions. Our method processes the parameterized timing quantities resulting from

PSTA so as to extract useful information about the susceptibility to timing failures.

We will define robustness as the minimum distance, from the nominal point in the PVT

parameter space, to any other point where a timing violation occurs. Such distance-

based metrics have been used in a different context in the realm of design centering,

tolerancing, and tuning (DCTT) [57, 58]. In DCTT, optimal nominal values for some

designable parameters are selected so that the distance from the nominal point (center

point of the design) to the boundary of the acceptability region is maximized in the

hope of maximizing the process yield. Traditional DCTT operates in the space of

design parameters, whereas our distance metric is measured in the PVT parameter

space. It is also important to note that design centering has only been traditionally

applied to small, typically analog, circuits, not to large digital integrated circuits; this

is because it relies on expensive statistical simulations to determine the acceptability
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Figure 6.1: Timing graphs for (a) Inverter, and (b) 3-input OR gate

region of the design parameters, not to mention that the number of those parameters

increases with circuit size. We will see that, in our use of a distance metric in PVT

space, these complications do not arise and the resulting approach is computationally

efficient.

Thus, the novelty of the work in this chapter is in its proposed application, where

we extend the use of such distance metrics to the timing verification of large logic

circuits, which, to our knowledge, was never done before. Using this new distance-based

robustness metric, designers can not only diagnose if and when different nodes can fail

timing, but also get insight on what to fix. In fact, our robustness metric can be used to

evaluate design quality and to guide optimization by ranking different nodes according

to their robustness, thus identifying the least robust nodes and proceeding to fix those

nodes first. We also show that our robustness analysis can handle parameterized timing

quantities resulting from either exact [6,52] (Chapter 5) or bounded/approximate PSTA

techniques [5, 51] (Chapter 4). Also, our metric is computed efficiently and scales well

(linear complexity) with the number of PVT parameters and the number of paths.
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6.4 Preliminaries

We will review the static timing analysis (STA) terminology and describe how STA

is extended to handle PVT variations as part of parameterized static timing analysis

(PSTA).

6.4.1 Nominal Static Timing Analysis

In static timing analysis, the circuit under study is represented as a timing graph by

creating a graph node for every electrical net in the circuit (primary input, output, or

internal node) and a graph edge for every timing arc (logic gate input/output pair).

The weight of every edge corresponds to the delay value from that input pin to the

output pin. The arrival time at the output of a gate is computed first by adding the

input arrival times to their corresponding timing arc delays (edge weights), and then

taking the max over the result of those additions. This procedure is repeated while

topologically traversing the timing graph and computing the arrival times at every

node.

Fig. 6.1 shows the timing graphs for two simple logic gates, an inverter and a 3-

input OR gate. The edge weight, dio, corresponds to the arc delay from input i to the

output. Since the inverter has one input, the arrival time (AT ) at its output is simply:

ATo = AT1 + d1o (6.1)

For the OR gate, its output arrival time is the maximum of the sum of its three input

arrival times and their corresponding arc delays:

ATo =
3

max
i=1

(ATi + dio) (6.2)

While arrival times are computed during forward propagation in the timing graph,

required times (RT ), which are defined as the latest acceptable arrival times that would

not violate the timing constraints, must be computed based on the information down-

stream, and thus require a backward propagation from the primary outputs. For a

node to pass timing, its arrival time must not exceed its required time. The concept of
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slack, which is the difference between the required time and the arrival time at a node,

is generally used as a measure of how close a node is to violating its timing constraint.

In general, we require the slack S to be positive:

S = RT − AT ≥ 0 (6.3)

In nominal static timing analysis, all the above timing quantities (AT , RT , S)

are computed under the assumption that process and environmental parameters - and

consequently timing arc delays, which depend on these parameters - are fixed, typically

at either their nominal or corner values. However, due to the increasing significance

of variability, parameterized static timing analysis (PSTA) techniques have emerged,

with the goal of handling parameter variations as part of the timing analysis step.
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6.4.2 Parameterized Static Timing Analysis

A key component of any PSTA technique is the delay model that captures the de-

pendence of gate/interconnect delays on the underlying process and environmental

parameters. First-order linear delay models are often used in the literature, and they

generally capture well this dependence. Under such a linear model, the delay D of a

timing arc is expressed as:

D = do +

p
∑

i=1

diXi (6.4)

where do is the nominal delay value and di is the (first-order measure of) sensitivity

to parameter Xi. Note that Xi can represent the variation of any parameter, such

as channel length, supply voltage, or temperature. Also note that do and the di’s are

determined during library characterization.

Another component of PSTA is the model for the PVT parameters. As noted

above, while SSTA techniques [27, 28] use random variables with known probability

distributions (e.g. Gaussian) to model the parameters, other PSTA techniques, such

as [51, 52] and the techniques that were presented in Chapters 4 and 5 model them as

uncertain variables that are specified in given ranges. We will adopt this more general

model, based on uncertain parameters, because the distributions and correlations of

some PVT parameters may be unknown or unavailable in practice. For simplicity, and

without loss of generality, we will assume that the variation range of every uncertain

parameter Xi is normalized to [−1, 1]. Following standard terminology, the linear model

in (6.4) will be referred to as a delay hyperplane.

Because path delay is the sum of gate and interconnect delay hyperplanes on that

path, it is also modeled as a hyperplane. However, arrival times are not simply hyper-

planes because, when different paths converge at a node, a (nonlinear) max operation

must be performed to determine the arrival time at that node. For example, consider

Fig. 6.2, where A1, A2, and A3 represent path delay hyperplanes. For purpose of illus-

tration, a single parameter Xi is considered, so that the hyperplanes are simply straight

line segments. The dashed piecewise linear function (in general piecewise planar) re-

sulting from the max operation corresponds to the exact representation of the arrival
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time as:

AT = max(A1, A2, A3) (6.5)

where the Aj’s have the form in (6.4).

A similar piecewise planar function representing the min operation arises when one

is dealing with parameterized slacks. For example, consider the circuit in Fig. 6.3 having

two primary outputs at registers R1 and R2. The arrival time AT1 at the data input

of register R1 is represented by a piecewise planar surface, say AT1 = max(A1, A2, A3).

Note however, that the required time RT1 at the data input of R1 is not a max surface

but a (single) hyperplane. This is because we are assuming that the arrival time at the

clock input, r1, is the delay hyperplane corresponding to a clock tree path. Hence, the

parameterized slack S1, at the input of register R1 will be given as a minimum of a set

of hyperplanes, as follows:

S1 = RT1 − AT1 (6.6)

= RT1 − max(A1, A2, A3)

= RT1 + min(−A1,−A2,−A3)

= min
(

(RT1 − A1), (RT1 − A2), (RT1 − A3)
)

where we have used the fact that max(a, b) = −min(−a,−b). A similar reasoning

follows for the parameterized slack S2 at the input of register R2. As a result, the

minimum slack S for this circuit, being the minimum of all parameterized slacks at

registers inputs will also be represented as a piecewise planar surface defined by the

min operation above.

While some PSTA techniques [6, 52] capture exactly the piecewise planar surfaces

representing the nonlinear max and min operations, other techniques [5, 51] approxi-

mate and/or bound those operations using a single hyperplane. In general, both exact

and approximate PSTA techniques result in timing quantities (arrival times/slacks)

101



6 Robustness Metrics in Parameterized Static Timing Analysis

AT1

AT2

Ra

Rb

Rc

r1

r2

ra

rb

rc

R1

R2

Figure 6.3: Slack computation

being parameterized as functions of the PVT parameters, as follows:

AT (X) =







ao +
∑p

i=1 aiXi, approx. PSTA

maxn
j=1(aoj +

∑p
i=1 aijXi), exact PSTA

(6.7)

S(X) =







so +
∑p

i=1 siXi, approx. PSTA

minn
j=1(soj +

∑p
i=1 sijXi), exact PSTA

(6.8)

where n is the number of hyperplanes that define the piecewise planar surfaces of the

max and min operations, and −1 ≤ Xi ≤ 1 for all i.
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6.5 Robustness Analysis

Although parameterized expressions of timing quantities resulting from PSTA are very

useful, they do not directly provide a metric of robustness of these timing quantities to

variations. Some further processing of these expressions is required, to extract this in-

formation. We are interested in transforming complex expressions of PVT parameters,

such as (6.7) and (6.8), into a measurable or quantifiable robustness metric. In this

section, we first define such a metric as a measure of how close a node is to violating its

timing constraint. We also compare robustness and sensitivity and highlight the subtle

difference between the two notions. Finally, we present our mathematical formulation

for robustness analysis and describe our algorithm.

6.5.1 From Sensitivity to Robustness

Suppose that one is comparing two design realizations of the same circuit, for which

PSTA has provided the two different parameterized slacks at some node, S1(X) and

S2(X). Alternatively, suppose that S1(X) and S2(X) are the parameterized slacks

at two nodes of the same design. Either way, we are interested in comparing the

robustness of S1(X) and S2(X). If, at the nominal point X = 0, it turns out that

S1(0) ≥ S2(0) ≥ 0, then one might be inclined to assume that S1 is more robust

than S2 because it is larger, and thus variations would seem to affect it less adversely.

However, this is not always true, as it may turn out that S1 is more sensitive to

variations than S2, and consequently more prone to failure. Hence, sensitivity is an

important measure that is closely tied to robustness.

As an example, Fig. 6.4 shows a comparison of two parameterized slacks, S1(X) and

S2(X), where we have assumed a single parameter X, varying in [0, Xmax]. Fig. 6.4a

shows a case where the slack with the larger nominal value turns out to be less robust.

In fact, although S1(0) ≥ S2(0), S1(X) fails “before” S2(X), because the value of X

for which S1(X) becomes zero, d1, is smaller than d2, the value of X for which S2(X)

becomes zero. In this case, the more sensitive slack turns out to be the one that is

less robust. On the other hand, Fig. 6.4b shows a case where the opposite happens:

even though S1(X) is more sensitive than S2(X), it is actually more robust. This is
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Figure 6.4: Sensitivity and robustness

because S1(X) does not fail in [0, Xmax], while S2(X) fails for X = d2. Therefore, while

robustness is related to the susceptibility of a node to violating timing, sensitivity is

related to the magnitude of timing deviation, per unit parameter variation, irrespective

of whether or not timing is actually violated. Thus, a node having the larger sensitivity

yet not failing anywhere in the parameter space is “more robust” than a node having

smaller sensitivity, yet failing somewhere in the parameter space.

To fully capture the notion of design robustness, we need to somehow make use of

both the nominal values and the sensitivities, in relation to the threshold where timing

failure occurs.

6.5.2 Quantifying Robustness

For the simplified scenario shown in Fig 6.4, one can define robustness as simply the

value of X for which timing is violated. This would be a good metric to use because

it is quantitative; it would allow one to conclude, for example, that S2 is more robust

than S1 whenever d2 > d1. However, in the general case where several parameters are
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varying, and where parameterized timing quantities are piecewise planar surfaces, each

with a different set of sensitivities, things can get more complicated. For one thing,

finding a setting for the parameter vector X where timing is violated is not as simple as

finding the x-intercept in Fig. 6.4, and requires a search in a higher-dimensional space.

Furthermore, there could be be many such settings, making it hard to judge which one

to use as a measure of robustness.

Distance-based Metric

We propose that a distance-based metric is a good choice for robustness analysis.

Specifically, we define the robustness metric as the minimum distance from the nom-

inal point in the PVT parameter space to any point where a timing violation occurs.

Distance can easily abstract the large dimensionality of the problem by presenting a

simple quantifiable measure that can be computed with little effort. By measuring

distance from the nominal point, we are implicitly assuming that the nominal design

is feasible, i.e., it meets the timing constraints. Thus, the minimum distance to any

timing violation reflects the smallest (magnitude) deviation from the nominal point

that would “break” the design.

In fact, such distance-based metrics have been used in the past as part of design

centering for yield maximization [57–59]. The goal of design centering is to determine

the optimal nominal settings of the design parameters, which are constrained to satisfy

performance specifications in the presence of tolerances. These nominal values (which

define the center point of the design) are optimized such that the distance from the

design center to the boundary of the acceptability region is maximized, in the hope of

maximizing yield. Distance is therefore used in design centering as a measure of safety,

since the more “distant” the center is from the boundary, the higher is the expected

yield. In our case, where we work with PVT parameters, rather than design parameters,

we do not try to recenter our design so that distance is maximized. Instead, we only

use distance as a measure of how robust a timing quantity (or a design) is in the face

of PVT variations. In fact, in our problem, the nominal PVT point is fixed, as well as

the ranges of variation, whereas in design centering, the space under study is that of

the design parameters, whose nominal values, as well as tolerances (ranges) are to be
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determined.

6.5.3 Mathematical Formulation

In this section, we present the mathematical formulation of our robustness analysis by

means of normed distances to the boundary of the region where timing is met.

The Feasible Space

In general, given a parameterized timing quantity T (X), we define its robustness, r, as

the minimum distance (using some vector norm) from the nominal PVT point, X = 0,

to any point in the PVT space where T (X) violates timing. Recall that we have

assumed in Section 6.4.2 that PSTA has already been used to analyze the design, and

that parameterized slacks S(X) and/or arrival times AT (X) are available. Each timing

quantity is either a hyperplane or a collection of n hyperplanes defining a piecewise

planar surface, as shown in (6.7) and (6.8). In the analysis that follows, we assume

that one is dealing with parameterized slacks S(X), however, the same analysis can be

easily applied to the case of parameterized arrival times. Recall that S(X) is defined

in (6.8) as the minimum of n hyperplanes:

S(X) = min (S1(X), . . . , Sn(X)) (6.9)

where n ≥ 1 (for approximate PSTA, n = 1), and where:

Sj(X) = soj +

p
∑

i=1

sijXi, j = 1, . . . , n (6.10)

We also assume that this set of n hyperplanes has already been reduced using pruning

techniques, such as the ones proposed in [52] or in Chapter 5, so that every hyperplane

Sj(X) can become the minimum, i.e., S(X) = Sj(X), for some X.

With the above expressions for slack, the space where timing is satisfied, C, is

defined by S(X) ≥ 0, which can be expressed as a convex polytope (intersection of

linear constraints) by replacing S(X) by its expression in (6.9), as the minimum of n
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hyperplanes:

C =

{

X
∣

∣

∣
Sj(X) = soj +

p
∑

i=1

sijXi ≥ 0, j = 1, . . . , n

}

(6.11)

Also, we assume that the ranges of Xi’s are normalized to [−1, 1], so that the parameter

space, D, is defined as the following p-cube:

D =
{

X
∣

∣

∣
−1 ≤ Xi ≤ 1, i = 1, . . . , p

}

(6.12)

Therefore, the intersection of C with D corresponds to all X in D for which timing is

met, i.e., S(X) ≥ 0. We refer to this C∩D as the feasible region. As mentioned earlier,

we assume that the nominal design is feasible (meets timing), so that the nominal

point X = 0 is inside the feasible region. If one starts at the nominal point and

moves outward, then two cases may arise. Either the boundary of C is encountered

and crossed first at which point timing is violated (i.e., Sj(X) < 0 for one or more

j), or the boundary of D is encountered and crossed first, at which point the range is

exceeded (i.e., |Xj| > 1 for one or more j). For robustness analysis, we are interested

in the minimum distance from the nominal point to any point within the range D at

which timing is violated. Therefore, we are interested in the minimum distance to the

boundary of C, obviously provided that S(X) fails somewhere inside D.

Normed distance to a hyperplane

We want the minimum distance to the boundary of the convex polytope C defined by

the set of n linear constraints in (6.11), Sj(X) ≥ 0, ∀j. The boundary corresponds to

n hyperplanes, hj, j = 1, . . . , n, where:

hj : Sj(X) = 0 (6.13)

:

p
∑

i=1

sijXi = −soj (6.14)

: aT
j X = bj (6.15)
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Figure 6.5: Unit ball in different norms

where aj is the vector aT
j , [s1j s2j · · · spj] and bj , −soj.

Let dn(Xo, hj) be the distance, in an arbitrary vector norm ‖X‖, from a point Xo

to the hyperplane hj. This so-called normed distance can be expressed in terms of the

norm’s unit ball, Bn = {X | ‖X‖ ≤ 1}, as follows [60]:

dn(Xo, hj) = min{|λ|
∣

∣ (Xo + λBn) ∩ hj 6= ∅} (6.16)

Therefore, to determine the normed distance from Xo to hj, one needs to dilate the

unit ball by λ around Xo until it touches the hyperplane. Fig. 6.5 shows different unit

balls B2, B∞, and B1 (in 2-D) for the L2-, L∞-, and L1-norms, respectively, where:

L2-norm = ‖X‖2 =

√

√

√

√

p
∑

i=1

X2
i (6.17)

L∞-norm = ‖X‖∞ =
p

max
i=1

|Xi| (6.18)

L1-norm = ‖X‖1 =

p
∑

i=1

|Xi| (6.19)

The normed distance in (6.16) can also be expressed in terms of the dual norm
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‖X‖⋆, as follows [59,60]:

dn(Xo, hj) =
|aT

j Xo − bj|
‖aj‖⋆ (6.20)

where the dual norm is ‖u‖⋆ = sup{uT v
∣

∣ ‖v‖ ≤ 1}. For the Lp-norm ‖X‖p (including

L1, L2, and L∞ norms), defined by:

‖X‖p =

(

∑

i

|Xi|p
)

1
p

, (6.21)

it is easy to determine its corresponding dual norm, defined as the Lq-norm ‖X‖q,

where q and p are related in the following way:

1

p
+

1

q
= 1 (6.22)

From the above equation, note that the dual norm of the L2-norm is itself (p = q = 2),

and that the L1 and L∞ norms are duals of one another (p = 1 and q = ∞).

Using the very simple expression for normed distance in (6.20), we can easily deter-

mine the robustness metric by finding the distance (in any Lp-norm) from the nominal

PVT point X = 0 to every hyperplane hj that defines the boundary of the region

where timing is met, and record the smallest distance as the robustness, r, of the

parameterized slack, S(X). This will be shown next.

Algorithm and Illustration

A description of the algorithm, FindRobustness, is shown in Algorithm 7. It takes as

input a parameterized slack, S(X), and returns its robustness, r, as defined above. The

algorithm starts by checking two corner cases. First, the nominal slack is checked, at

the nominal point X = 0 (line 1). If S(0) ≤ 0, then the nominal slack violates timing.

In that case, X = 0 is not feasible, and we simply set r = 0. Nodes with r = 0 are the

least robust because they violate timing even before considering parameter variations.

The second corner case to check is whether the minimum value (over X) of S(X) is

positive (line 3). Since S(X) is the minimum of Sj(X)’s and −1 ≤ Xi ≤ 1, this can be
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Figure 6.6: Robustness analysis

easily checked as follows:

min
X

{S(X)} =
n

min
j=1

{

soj −
p
∑

i=1

|sij|
}

(6.23)

If the above expression is positive, it simply means that S(X) does not fail anywhere

in the parameter space and, in that case, we set r = ∞. Nodes with r = ∞ are the

most robust since they are not prone to timing violations anywhere in D.

If both these corner conditions are not met, then S(X) will fail somewhere in the

parameter space D. In that case (line 5), we first set r = ∞ (or some upper bound

value). Then, we compute the normed distance, rj, from the nominal point X = 0 to

the (boundary) hyperplane hj defined by Sj(X) = 0. To do that, we use the formula

in (6.20) for some choice of Lp-norm and its corresponding dual Lq-norm. Typically,

L2-normed distances are mostly prevalent in the literature on design centering, with

some use of the L∞-norm (and its corresponding L1 dual norm). This is done for all

boundary hyperplanes hj’s, and the smallest value of rj is recorded as the robustness

of S(X) (lines 10-11).
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Algorithm 7 FindRobustness

Input: S(X) = min(S1(X), . . . , Sn(X))
where Sj(X) = soj +

∑p
i=1 sijXi

Output: r ∈ R

1: if (S(0) ≤ 0) then
2: return r = 0
3: else if (min

X
{S(X)} > 0) then

4: return r = ∞
5: else
6: r = ∞
7: for (j = 1, . . . , n) do
8: Sj(X) = 0 → hj : sT

j X = −soj

9: rj = dn(0, hj) =
|soj |

‖sj‖
⋆

10: if (rj < r) then
11: r = rj

12: end if
13: end for
14: return r
15: end if
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Fig. 6.6 is a simple 2-D example depicting graphically how robustness analysis

works, when both the L2 and L∞ norms are used. Note that the parameter space is

defined by the square region where the two parameters are restricted to vary in −1 ≤
X1, X2 ≤ 1, and the feasible space where timing is met is defined by the grey triangle-

like region that contains the nominal PVT point X = 0. The striped region outside the

boundary of the feasible space is the region where timing is violated. Fig. 6.6a shows

the robustness, r2, computed in L2-norm. This is equivalent to inflating an L2-normed

unit ball (disk) around X = 0 as shown, until it touches one of the hyperplanes at

the boundary. Similarly, a L∞-normed unit ball (square) is inflated around X = 0 in

Fig. 6.6b to obtain the robustness, r∞, in L∞-norm.

6.5.4 Unbiased vs Biased Analysis

The robustness analysis presented so far has assumed that the PVT parameters are

uncertain variables given in ranges and having equal spreads (assumed to be [-1,1]). As

a result, the analysis implicitly gives equal weights to all possible directions in the space.

This option would be the most appropriate if absolutely no additional information is

known about parameter variations and their interactions. We will refer to this type of

analysis as unbiased analysis. On the other hand, if additional or partial information is

available, whether it is from historical data or from process experience, then one could

make use of this information so as to bias the robustness metric computation. For

example, if parameters have different spreads, then one can use a scaling (diagonal)

matrix to scale the norm itself and compute the distance-based metric in the new

scaled norm. Also, if it is observed that certain parameters exhibit some covariance,

that is, if certain parameters are likely to vary in the same (or opposite) direction,

then one can rotate the norm by a nondiagonal scaling matrix. It is shown in [59]

that, given any (diagonal or nondiagonal) scaling matrix W , the scaled norm is given

by ‖X‖W = ‖W−1X‖, and its scaled dual norm is given by ‖X‖⋆
W =

∥

∥W T X
∥

∥. Both

unbiased and biased analyses are depicted in Fig. 6.7, where in (b) we have scaled the

unbiased L2-norm by reducing the range of X2, and in (c) have rotated the norm by

45◦, emphasizing the fact that X1 and X2 are likely to vary in the same direction.
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Figure 6.7: Biasing the norm

6.6 Results

In this section, we present the simulation results that were obtained on a 45nm com-

mercial microprocessor design. Two parameterized static timing analysis flows were

implemented in C++ on top of an STA timing engine. The first is an exact PSTA flow

that parameterizes timing quantities in the form of piecewise planar surfaces (collec-

tion of hyperplanes) defined by the max or min operations described in (6.7) and (6.8).

The exact PSTA implementation is based on the pruning techniques of [6, 52]. The

second flow is an implementation of the approximate PSTA technique of [5], which

parameterizes every timing quantity as a single hyperplane. For both flows, we have

considered global variations in four different parameter types, namely supply voltage

(Vdd), Miller Coupling Factor (MCF ), and channel length for both NMOS and PMOS

devices (Ln and Lp). In addition, Ln and Lp are each divided into two types, based

on whether the device is nominal or low power, and further into three types based on

layout dependent information. Parameter variations are assumed to be independent,

so a total of 14 different PVT parameters were considered in the analysis (12 for L,

MCF , and Vdd). In our robustness analysis, the L2-norm was used to compute all

normed distances from the nominal point to the boundary hyperplanes, as is typical in

design centering.

We ran both exact and approximate PSTA on different microprocessor blocks and
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Rcrit

Figure 6.8: Cumulative robustness distribution of failed slacks
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Figure 6.9: Nominal slack vs robustness

have determined parameterized arrival times at every node and parameterized slacks

at the inputs of all registers in the blocks. Our robustness analysis was then applied

on the parameterized slacks to quantify their robustness, as described in Section 6.5.

Recall that we have normalized the variation range of every parameter to [−1, 1], and

have considered 14 parameters. Therefore, if a slack fails somewhere in the parameter

space, then its robustness r must fall between rmin = 0 and rmax (based on the L2-

norm), where:

rmax =

√

√

√

√

14
∑

i=1

(±1)2 ≈ 3.74 (6.24)

Fig. 6.8 shows a plot of the cumulative robustness distribution of all failed slacks

for one microprocessor block, ckt1. It provides a ranking of all failed slacks according

to where in the range [0, 3.74] their robustness falls. Looking at the plot, it makes

sense to start by fixing the slacks that have the smallest values of robustness, since

those are the ones that are most prone to failure. In general, it is useful to have a
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robustness threshold, Rcrit, such that all slacks with robustness less than Rcrit would

be considered critical and thus fixed. Note that Rcrit does not have to be large since

one is interested in detecting the slacks that are failing for a small deviation around

the nominal point, at least for microprocessors.

Fig. 6.9 shows a plot of nominal slack vs robustness for different nodes. Slack values

were normalized, and 16 nodes with very similar nominal slacks were picked (as shown).

We have also assumed, for purpose of illustration, that if a slack goes below 90% of

its nominal value (due to variations), then this would be considered a timing failure.

In other words, we’re simply using 90% of nominal slack instead of 0 as the threshold

for failed slack. Based on this slack threshold, we have computed the robustness of

the different slacks, and plotted nominal slack vs robustness. As shown on the plot,

robustness values fall in [0.05, 0.6], which is a large spread given that the nominal slacks

are almost the same. In fact, if one had no access to robustness information, all the 16

slacks would seem to be equally robust looking only at their nominal slack. However,

after factoring in our robustness metric, one can easily determine which nodes are the

most susceptible to variations. In a sense, the circled slacks are closer to the edge of

the cliff than the ones with larger robustness.

We also checked if the results of robustness analysis are consistent when applied

to i) exact PSTA vs ii) approximate PSTA. First, exact PSTA is invoked on another

microprocessor block, ckt2, to obtain parameterized arrival times at every node and

parameterized slacks at the inputs of all registers in the block. There were ≈ 1500

parameterized slacks, with n (number of hyperplanes defining every slack) ranging from

1 to 346 hyperplanes. Robustness analysis is then applied on the parameterized slacks

with slack threshold set to 0, and (exact) robustness is recorded. Then, approximate

PSTA is invoked, and parameterized slacks were obtained, each consisting of only a

single hyperplane. Robustness analysis is then applied and (approximate) robustness

is recorded. Out of the 1500 parameterized slacks, only 41 slacks failed somewhere in

the parameter space, and thus have robustness values in [0, 3.74]. Fig. 6.10 shows a

plot of approximate robustness (based on approximate PSTA) versus exact robustness

(based on exact PSTA). In general, for the results of both robustness analyses to be

consistent, the ranking of slacks in terms of their robustness should be preserved. In
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Figure 6.10: Ranking nodes according to their robustness: exact PSTA vs approximate
PSTA

other words, the points should follow some straight line (not necessarily y = x, although

y = x would be an ideal case). This is what we see in the plot; the points are highly

correlated (we have found the correlation to be ρ = 0.93) and they fall close to y = x.

6.7 Summary

In this chapter, we presented a new robustness metric that can be used to quantify

the vulnerability of designs to parameter variations. Our robustness metric provides

a novel way to easily interpret the results of parameterized static timing analysis by

i) determining if and when nodes can fail, ii) ranking those nodes according to their

robustness, and iii) fixing the ones that are least robust. Using distance as a metric

for robustness, we find the smallest normed distance from the nominal point in the

PVT space to any timing violation, which can be computed efficiently using closed
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form expressions.
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7 Statistical Leakage Estimation

7.1 Introduction

In this chapter, we present an efficient technique for finding the mean and variance

of the full-chip leakage of a candidate design, while considering logic-structures and

both die-to-die and within-die process variations, and taking into account the spatial

correlation due to within-die variations. Our model uses a “random gate” concept

to capture high-level characteristics of a candidate chip design, which are sufficient

to determine its leakage. These high-level characteristics include information about

the process, the standard cell library, and expected design characteristics. We show

empirically that, for large gate count, the set of all chip designs that share the same

high level characteristics have approximately the same leakage, with very small error.

Therefore, our model can be used as either an early or a late estimator of leakage,

with high accuracy. In its simplest form, we show that full-chip leakage estimation

reduces to finding the area under a scaled version of the within-die channel length

auto-correlation function, which can be done in constant time.

7.2 Background

As a result of technology scaling, leakage current is becoming a major design chal-

lenge, affecting both circuit performance and power. Leakage power is expected to

continue to increase and due to limited power budgets, it will affect the feasibility of

future microprocessor and ASIC designs [61]. Thus, estimating full-chip leakage be-

comes increasingly important. The leakage current of a circuit is not, however, simply

the sum of the leakages of the devices in the circuit. Not only do logic-gate struc-
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tures, such as stacking, affect the device leakage, but process variations make leakage

estimation statistical in nature. Leakage current can be classified into two main com-

ponents, namely sub-threshold leakage and gate tunneling leakage [62, 63]. Over the

past few years, both types of leakage currents have been extensively studied, partic-

ularly sub-threshold leakage. Nevertheless, gate leakage can be important as noted

in [64], although recent advances in the process, such as the introduction of new high-k

materials and metal gates claim to have reduced gate leakage substantially.

Full-chip leakage estimation is useful at different points in the design flow. Towards

the end of the design flow (late mode estimation), leakage estimation can be used as

a final sign-off tool, and requires a complete netlist with possibly a circuit placement.

On the other hand, early estimation of leakage (early mode estimation) provides the

full-chip leakage given limited information about the design, which is very useful to

allow for design planning.

Earlier work on leakage estimation [65–68] concentrated on early mode estimators.

However, they either did not consider logic-gate structures and other transistor topolo-

gies, and/or did not consider the effect of correlation between the variations on the

total leakage, which is important to model. Narendra et al. [65] estimate the mean of

full-chip sub-threshold leakage; they consider within-die variations, but ignore within-

die correlations and do not take into account the effect of gate topologies. Furthermore,

they do not estimate the standard deviation of full-chip leakage. Rao et al. [66] esti-

mate sub-threshold leakage by first finding fitting parameters for the leakage current for

individual gates in the library, and use the parameters to map the leakage distribution

of the gate, due to within-die variations, to a log-normal distribution. They compute

the total leakage of a circuit block using an approximation for sums of independent

lognormal distributions. The authors, however, ignore within-die spatial correlations.

Rao et al. have also tackled the problem of estimating full-chip leakage in another

way [67]. They model different types of leakage separately as a product of a nomi-

nal value and a multiplicative function that represents the deviation from the nominal

value due to variations. While, the authors separate the variations into global and local

variations, the local variations are considered to be independent, and thus the effect of

correlation is not factored into the final result; also, they do not provide an estimate
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of the standard deviation of full-chip leakage. Zhang et al. [68] in addition to consid-

ering process variations, also consider temperature and voltage variations. Instead of

fitting the effect of process variations on leakage into an analytical equation, they use

the BSIM model equations directly. However, just as the other early-estimators, they

do not consider spatial correlations; they also do not consider gate topologies in their

work.

More recent work [63, 69] has taken into consideration both the effects of gate

topologies and within-die spatial correlation. Chang et al. [69] first precharacterize

their library by fitting the different types of leakage currents to analytical forms. To

model spatial correlation, they use the grid model [27] and determine the leakage in

a grid by summing a set of correlated lognormal distributions, and then find the full-

chip leakage distribution by summing the leakage distributions for each grid. Agarwal

et al. [63] modeled spatial correlations differently using a quad-tree die partitioning

method. To determine the final leakage distribution they sum the correlated lognormals

using Wilkinson’s method. Both these methods are late mode estimators of leakage,

requiring minimally the circuit netlist and possibly a circuit placement to provide a

leakage estimate. Also, since they operate at the level of the netlist, they can be

expensive on large circuits, with a complexity of O(n2) (some refinements are possible

to reduce this cost, but with some loss of accuracy [69]).

7.3 Overview

Given the need to budget for power constraints, there is a need for accurate early mode

estimators that take into consideration both correlation and gate topologies. As for late

mode estimators, more efficient techniques are required. In this chapter, we present a

new model and methodology for full-chip leakage estimation, in which certain high-level

characteristics of a candidate chip design are used to determine its leakage statistics

with high accuracy. For late mode estimation, these characteristics can be extracted

from the netlist and/or placement. For early mode estimation, these characteristics

can be simply specified as expected values based on previous design experience or on

decisions made in the floorplanning stage. Our methodology uses a concept of a “ran-

122



7 Statistical Leakage Estimation

dom gate” to capture these characteristics and considers both correlations and gate

topologies. We show that these high-level characteristics are sufficient to determine

the leakage statistics of a design. We restrict our analysis to sub-threshold leakage

estimation, although our mathematical framework can be easily extended to handle

gate leakage.

A flow diagram of the system is shown in Fig. 7.1. Given information about (1) the

process, (2) the standard cell library, and (3) certain high-level design characteristics,

we predict the mean and standard deviation of full-chip leakage. The process infor-

mation includes the mean and standard deviation of the underlying process variations,

such as the variations in transistor length or threshold voltage, and information regard-

ing the within-die spatial correlation. The standard cell library information includes

the leakage characteristics of the cell library under process variations; this information

can be obtained by pre-characterizing the cells in the library. Finally, some informa-

tion on the candidate design is needed, including the (extracted or expected) cell usage

histogram (i.e., frequency of use distribution) for cells in the library, the (extracted or

expected) number of cells in the design, and the dimensions of the layout area. With

this, we determine the full-chip leakage statistics (mean and variance) for the design.

To carry out the estimation, we propose a model that is generic, in the sense

that it is a template for all designs that share the same values for these high-level

characteristics. We use probability theory as the vehicle to implement this template,

so that all designs that share the same values of these high-level characteristics will be

members or instances of this probabilistic template model. We introduce the concept of

the Random Gate (RG), which allows us to capture the characteristics of a candidate

design. This allows the leakage statistics to be obtained in O(n) time, where n is

the number of cells in the design, but we then also show that, for large gate counts,

the statistics of the full-chip leakage can be written in integral form, allowing for the

computational complexity of our estimator to become O(1) time1. The key point in

this chapter is that large designs that share the same high-level characteristics will

have approximately the same leakage statistics and, by leveraging this property, our

1When used as a late mode estimator, there will be some additional cost to extract the cell usage
histogram from the netlist, but that also can be constant-time, or linear-time in the worst case.
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estimation engine provides accurate and efficient estimation, either early or late in the

design flow.

7.4 Modeling Process Variations

7.4.1 Parameter Model

Variations normally have two components: a Die-to-Die (D2D) component, and a

Within-Die (WID) component. The D2D component is a variation between different

instances of the die and is shared by all devices on the same die. The WID component

of variation, however, causes different devices on the same die to have different pro-

cess parameters; the WID variations have some correlation across the die. D2D and

WID variations are considered to be (statistically) independent [41] and thus the total

variance of a process parameter, such as the channel length (L), when both sources of

variation are considered can be written as:

σ2 = σ2
dd + σ2

wd (7.1)

where σ2
dd is the variance of the D2D variation and σ2

wd is the variance of the WID

variation. We will assume that all process parameters follow a Gaussian distribution,

which is in line with the literature on leakage estimation. The resulting Random

Variable (RV) for channel length (or any process parameter) can also be written with

respect to their D2D and WID components as:

L(i) = µ + σddZ0 + σwdZ(i) (7.2)

where i refers to an arbitrary device, µ is the mean of L, Z0 is a zero mean standard

normal RV with unit variance representing the D2D component which is shared by all

devices on the die, and where the WID component is represented by a zero mean unit

variance standard normal RV Z(i), a notation that emphasizes that it may be different

for different devices on the die. For example, a second device j on the die will have a

channel length with the following RV:
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L(j) = µ + σddZ0 + σwdZ(j) (7.3)

Given that Z(i) and Z(j) may be spatially correlated with a correlation of ρLwd
(i, j),

and that Z0 is shared by L(i) and L(j), then L(i) and L(j) will be correlated as well.

We now show how we can express the total length correlation in terms of the D2D and

WID breakdown, and the WID spatial correlation. Let us first write (7.2) and (7.3) as

follows:

L(i) − µ = σddZ0 + σwdZ(i) (7.4)

L(j) − µ = σddZ0 + σwdZ(j) (7.5)

Assuming that the correlation between the WID variations ρLwd
(i, j) is available as

will be discussed in the next section, the covariance between the process parameters

can then be written as:

E [(L(i) − µ) (L(j) − µ)] = σ2
dd + σ2

wd ρLwd
(i, j) (7.6)

= σ2ρLtotal
(i, j) (7.7)

where ρLtotal
(i, j) is the total channel length correlation between L(i) and L(j) due to

both D2D and WID components. We can now solve for the correlation between the

total variation that composes both the D2D and WID variation to be:

ρLtotal
(i, j) =

σ2
dd + σ2

wd ρLwd
(i, j)

σ2
(7.8)

The above equation can be simplified if we define α to be a ratio of the D2D variance

to the total variance as:

α =
σ2

dd

σ2
(7.9)

which allows the total correlation to be written as a function of the correlation of the
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WID variation and the ratio of the D2D variance to the total variance:

ρLtotal
(i, j) = α + (1 − α) ρLwd

(i, j) (7.10)

The next section will describe the model that we used to capture the correlation in

process parameters.

7.4.2 Correlation Model

Previous work on early-estimators of leakage did not take into account the spatial

correlation that exists between the WID variations in the process parameters of different

cells. However, to accurately estimate leakage, spatial correlation between variations

must be taken into account [63,69].

To model the WID spatial correlation between variations in transistor character-

istics, we assume the existence of a spatial correlation function [70] that depends on

the distance between the two transistors. Given the D2D and WID parameter vari-

ances, and the WID correlation, one can easily determine the total correlation between

parameter variations (due to D2D and WID effects) by a simple normalization as

was shown in (7.10). Not all functions, however, can be used as a spatial correlation

function [70]; specifically spatial correlation functions are a family of monotonically

decreasing non-negative functions [70]. One example of a spatial correlation function

for WID variations is shown as the bold line in Fig. 7.2; the function has a correla-

tion of one at a distance of zero since the devices are in fact the same device [70];

furthermore the sudden drop from one at distance zero is the cause of a uncorrelated

random variation in the parameter, which exists even in devices that are very close

together [70]. The above spatial correlation function considers only the correlation

in WID variations and therefore it dies down to zero after a certain distance. If we

consider the D2D variation using (7.10), the total correlation will decrease down to α

as shown in Fig. 7.2, where α is set to 0.5 [70].
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7.5 Modeling at the Cell Level

While the statistics of the underlying process parameters can be obtained from the

foundry, the leakage statistics of each cell cannot be immediately obtained. Since each

cell has a different topology, with different transistor stacks, the leakage in each cell is

affected differently by the underlying variations in the transistor length and threshold

voltage. Furthermore the cell’s input vector states also affect the leakage distribution

of each cell.

7.5.1 Cell Leakage

Leakage current is determined primarily by transistor, not interconnect, parameters.

Of the many transistor parameters that affect sub-threshold leakage, the truly rele-

vant ones are channel-length (L) and threshold voltage (Vt), as shown in [71], due to

the exponential dependence of sub-threshold leakage current on these two parameters.

Threshold voltage variations are mainly due to two effects: random dopant fluctuations

in the channel and the Vt roll-off effect whereby Vt varies in response to variations in

L. In this chapter, when we refer to Vt variations, we specifically refer to the effect

of random dopant fluctuations. We lump the effect of Vt roll-off on leakage into the

L variations, because the two are directly related. This allows us to make the simple

statement that Vt variations are purely random (independent) across the die [72], while

L variations are not [69] (they include some within-die correlation). This approach is

in line with the modern treatment of leakage in published work [66].

Since Vt variations are independent, while L variations are not, it follows imme-

diately that, for full-chip leakage estimation, while Vt variations may be relevant for

finding the mean of the total leakage, they are definitely not relevant for finding the

variance of the total leakage. The reason for this is simple: the variance of the sum

of n independent random variables is ∼ nσ2, while the variance of the sum of n highly

correlated random variables is ∼ n2σ2. Thus, for large chips (large n), the variance of

chip leakage due to Vt variations is negligible compared to that due to L variations.

This too is in line with the modern published work on leakage [66]. Thus, for leakage

variance estimation, we can focus on L alone. As for the effect of Vt variations on
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the mean leakage, that can be easily determined through a multiplicative term that

depends on the variance of Vt, which is derived from the mean of the log-normal dis-

tribution, similar to [73]. As this is standard textbook material, it will not be covered

here.

To model the distribution of the leakage of each cell, we use two methods that have

different levels of computational complexity and accuracy. The first method uses a

Monte-Carlo (MC) analysis to obtain the leakage statistics of each cell. While this

technique needs extensive simulations, it does give us some confidence in the resulting

distributions. The second method, an analytical approach, uses a limited sampling of

the leakage of the cell, and then fits the leakage of the cell into a functional form, from

which we easily compute the mean and variance of the distribution. These two methods

are discussed below, and we then discuss correlation and circuit state dependency.

Monte-Carlo Technique

We use a commercial 90nm CMOS technology, along with its associated standard cell

library of which we use 62 cells that include the Static Random Access Memory (SRAM)

cell, various flip flops and a range of different logic cells. For each cell and input

combination, we perform a MC analysis to determine the mean and standard deviation

of the cell’s leakage. The MC analysis is done assuming all the variations in the

transistor channel length within the cell are completely correlated, which is reasonable

in practice given that the transistors in each cell are very close together. This is in

line with previous work [69], where all cells within a grid are assumed to be completely

correlated.

Analytical Technique

Rao et al. [66] introduced a mathematical model to express the leakage current, X, of

a given cell as a function of channel length, L as:

X = aebL+cL2

(7.11)
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and showed that the analytical BSIM3 models vastly overestimated the leakage of

devices that had gate lengths that deviated by more than 5% from their nominal, and

that the fitted model above with the triplet (a, b, c) can accurately model the leakage

of different topologies including individual transistors and transistor stacks [66].

In our work, we first fit each cell’s leakage into (7.11), and then use the triplet

(a, b, c) to determine analytically the mean and variance of the underlying leakage

distribution. To determine the triplet for each cell, we first perform a series of seven

SPICE simulations, where the length of the transistors in the cell are modified from

−3σ to 3σ in intervals of σ (where σ is the standard deviation in the transistor length)

and measure the leakage. We then perform the Levenberg-Marquardt [74] method to

fit the data into the above functional form and obtain (a, b, c). The model in (7.11) can

fit the leakage of most cells quite well as can be seen in Fig. 7.3 where the analytical

model is compared to SPICE simulations of a four-input-AND-into-OR cell. For some

cells, however, the analytical model does not fit quite as well, as can be seen in Fig. 7.4,

for a double-two-input-AND-into-two-input-NOR cell.

Note that, unlike [66] where numerical integration is used to approximate the leak-

age mean and variance, we use the fitted model with the triplet (a, b, c) to determine

analytically and exactly the mean and variance of the underlying leakage distribution.

The complete derivation, which was moved to Appendix A, results in the following:

µX = MY(1) (7.12)

σ2
X

= MY(2) − µ2
X

(7.13)

where MY(t) is the moment-generating function of Y = lnX which can be shown to

be:

MY(t) = (1 − 2K1t)
− 1

2 e

»

K2
2K1t

1−2K1t
+K3t

–

(7.14)

by using the moment generating function of the “Non-Central Chi-square” distribution

where K1, K2 and K3 are simple functions of the regression parameters (a, b, c) and
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Figure 7.3: Comparison of analytical fit with results from SPICE of an AO cell

the mean µ and standard deviation σ of the channel length, as follows:

K1 = c σ2 K2 =
1

σ

(

b

2c
+ µ

)

(7.15)

K3 = ln a + bµ + c µ2 − c

(

b

2c
+ µ

)2

(7.16)

To check the accuracy of the analytical model in determining the mean and standard

deviation of cell’s leakage, we compare the results obtained from the fitted model to

the results obtained through MC analysis for all 62 cells with all input combinations.

For the mean, the analytical method is quite close to the MC results; there is less than

a 2% error for all gates, and the average absolute error is 0.44%. For the standard

deviation, the average absolute error is 3.1%, and the maximum error is about 10%.

The histogram of error in the mean and standard deviation for all cells and all input

combinations is shown in Appendix A. Note that the error in the mean and standard

deviation is not a result of the mathematical derivation, but due to the leakage curve
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Figure 7.4: Comparison of analytical fit with results from SPICE of an double-two-
input-AND-into-two-input-NOR

not being exactly mapped to the functional form aebL+cL2
. Thus, there is a trade-off

between computational complexity and accuracy; if MC analysis is performed on all

gates, then the distribution models for all gates will have high accuracy; on the other

hand, using the functional form requires minimal simulation time.

7.5.2 Leakage Correlation

As mentioned earlier, we assume the existence of a spatial correlation function that gives

the correlation between process parameters as a function of the distance separating two

locations, but which does not provide the correlation between the leakages of two cells

at these locations. Using the regressed triplets, (a, b, c), we have developed an analytical

method that determines the leakage correlation between any pair of gates placed at two

arbitrary locations on the die given the correlation in their channel lengths. In other

words, we have determined a mapping ρm,n(li, lj) = fm,n (ρL(li, lj)) where ρL(li, lj) is

the channel length correlation between two locations li and lj, fm,n(·) is the derived
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mapping for gates m and n and ρm,n(li, lj) is the leakage correlation for gates m and n

placed at locations li and lj respectively. Note that the mapping depends on the types

of gates m and n since a triplet (a, b, c) is associated with every gate type.

The details of the derivation leading to this mapping were omitted from this sec-

tion and moved to Appendix B. Fig. 7.5 shows the results of the leakage correlation

for a pair of gates given channel length correlation, as determined by the analytical

mapping fm,n(·), compared with the leakage correlation from MC analysis; note that

the analytical technique shows a good match to the MC results. Also the leakage

correlation is near the y = x line, at which leakage correlation equals channel length

correlation. We have performed the analysis for all pairs of gates, and shown that the

analytical mapping provides accurate results in all cases. The set of mappings fm,n(·)
for different pairs of gates are slightly different but they all closely follow the y = x

line (refer to Appendix B). We will use this observation that the leakage correlation

is close to the length correlation in the case where MC analysis is used to obtain the

cell leakage statistics since we do not have the (a, b, c) triplet to obtain the leakage

correlation exactly. We will discuss this in more detail in Section 7.7.1.

7.5.3 Input Combinations

The signal probability (probability that a logic signal is 1) certainly has an effect on

leakage. This effect is quite strong for single logic gates, causing a spread of 10× in

some cases. However, for large circuits, the impact of signal probability is significantly

diminished due to averaging of their effects (law of large numbers). To study this

effect, we have swept the signal probabilities from 0 to 1 and have found, as shown in

Fig. 7.6, that the effect on large circuit leakage is not pronounced and is also dependent

on the frequency by which various cells are employed in the design. The figure shows

the leakage mean, and similar behavior has been found for the leakage variance. For a

practical solution approach, one has the option of simply setting the signal probabilities

at some ball-park mid-level value, such as 0.5. A better approach, which we employ, is to

first characterize every cell for all its input states; then, based on this pre-characterized

data, and for the given frequency of use distribution for cells, find the signal probability

setting which maximizes the mean leakage, effectively finding the maximum of a plot
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Figure 7.5: Correlation in leakage vs correlation in channel length for a pair of gates

such as Fig. 7.6. Empirically, we find that this setting turns out to be very good for

finding the maximum leakage mean for the candidate design, as well as its maximum

leakage variance. This approach gives a conservative estimate, in the face of uncertainty

about eventual signal probabilities.

7.6 Full-Chip model

What determines the leakage of a large circuit? We will demonstrate empirically that

certain high-level characteristics of a candidate design are sufficient to determine its

leakage. In a library-based standard-cell design environment, these characteristics are:

1. The cell library (characterized for leakage)

2. The (actual or expected) frequency of usage for cells in the library

3. The (actual or expected) number of cells in the design
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Figure 7.6: Effects of signal probability on chip leakage

4. The dimensions of the layout area

To carry out the leakage estimation, we propose a model for the candidate chip

design that is generic, in the sense that it is a template for all designs that share the

same values for these high-level characteristics. We use probability theory as the vehicle

to construct this template, so that all designs that share the same values of these high-

level characteristics will be members or instances of this probabilistic template model.

After developing our leakage predictor based on this model, we will then show that the

leakages of all instances of specific designs which are members of this model converge

towards the predicted leakage value as the circuit size increases; Fig. 7.9 offers a “sneak

preview” of this convergence.
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7.6.1 Model Definition and Suitability

Formally, our full-chip model is a rectangular array of a number (n) of identical sites,

as shown in Fig. 7.7, where every site is occupied by a probabilistic abstraction that

we call a random gate (RG), and such that the dimensions of the array are equal to

the dimensions of the layout area of the candidate design, and that the number of sites

n is equal to the number of cells in the design. But what is a RG? Simply put, a

RG is similar to a Random Variable (RV); however, unlike a RV that assumes real

numbers as outcomes or instances, the instances of a RG are gates from the standard-

cell library, with probabilities identical to those in the frequency of use distribution.

In other words, the RG discrete probability distribution is identical to the frequency

of cell usage of the design.

This full-chip array model is a suitable probabilistic representation of all designs

having the high-level characteristics highlighted earlier. On one hand, its dimensions

and gate count match the dimensions of the layout and the number of cells in the

candidate design. On the other hand, the frequency of cell usage of the design is also

matched by the way the RG discrete probability distribution is defined. Hence, if an

instance of the full-chip model is defined to be n RG instances at every site in the array,

then the frequency of cell usage for that full-chip model instance will be identical to

the frequency of cell usage of the candidate design, for large n. Therefore, the full-

chip model is a probabilistic representation of a set of designs with the same high-level

characteristics, and those designs are in fact instances of our model. Using this fact,

we will use the full-chip model to estimate the leakage of the candidate design.

One possible reaction to this proposal is that all sites in the full-chip model are of

identical size while obviously cells in the library are of different sizes. Another comment

is that the array seems to leave no room for interconnect routing. Both these issues do

not present a problem. In fact, the size of a site is really the size of the layout area,

divided by the number of cells, thus it is the average size of a cell and the interconnect

that may be associated with it. Thus, all that is captured by the notion of a RG site is

the idea that the leakage due to one cell would on average be spread out or “allocated”

to the layout area of a single site.
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7.6.2 Leakage Statistics of a Random Gate

As stated earlier, the RG is simply a gate picked at random from the library, according

to a discrete probability distribution that is identical to the frequency of gate usage.

To perform full-chip leakage estimation based on our model, we need to construct and

mathematically define the leakage statistics of the RG.

Let I be an RV that takes as values the type of a gate picked from the library at

random to be used in the design. This means that I ǫ {1, 2, . . . , p}, where p is the

total number of gates in the library, and that the distribution of I is identical to the

frequency of gate usage. Let αi be the frequency of usage of gate i. Then:

P{I = i} = αi ∀i = 1, 2, . . . , p and

p
∑

i=1

αi = 1 (7.17)

Let XI be an RV that represents the leakage of a gate picked according to the distribu-

tion of I. Then by definition, XI is the leakage of the RG. Consequently, XI is defined

on two probability spaces; the space of X due to channel length variations, and the
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space of I due to the choice of gate type. Note that for an arbitrary realization of say

I = i, XI will be equal to Xi, that is the RV that represents the leakage of gate of type

i. Recall that the statistics of Xi, i.e., its mean µi and standard deviation σi, have

already been determined during pre-characterization for all gates i in the library, using

either the MC or the analytical techniques. We can determine the mean leakage µXI

of the RG as follows:

µXI
= E [XI] = EI [EX [XI | I = i]] (7.18)

= EI [EX [Xi]] =

p
∑

i=1

αi µi (7.19)

where EX [·] and EI [·] are the expected values over the spaces of X and I, respec-

tively. To determine the variance σ2
XI

of XI, we start by determining its second mo-

ment E
[

XI
2
]

as:

E
[

XI
2
]

= EI

[

EX

[

XI
2 | I = i

]]

(7.20)

= EI

[

EX

[

X2
i

]]

=

p
∑

i=1

αi (σ
2
i + µ2

i ) (7.21)

Given the second moment and the mean, the variance can be determined as follows:

σ2
XI

= E
[

XI
2
]

− µ2
XI

=

p
∑

i=1

αi (σ
2
i + µ2

i ) −
(

p
∑

i=1

αi µi

)2 (7.22)

To account for different input states, the summation in the above equations for the

mean and variance are updated to account for the different weights of each input state.

7.6.3 Random Gate Leakage Correlation

In addition to the RG leakage statistics defined in the previous section, we need to

construct and define the RG leakage correlation.

Recall that XI is defined as the leakage of a random gate picked from the library
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according to the distribution of I, and placed at some location on the die. Let XI(li)

and XI(lj) be the leakages of the two RGs at two arbitrary locations li and lj. It is

important to understand that XI(li) and XI(lj) are identically distributed, and any

correlation among these RVs is only due to the correlation over the space of process

variations and not over the space of gate selection.

Let CXI
(li, lj) be the covariance of XI(li) and XI(lj), which is defined as CXI

(li, lj) =

E [XI(li)XI(lj)] − µ2
XI

. It can be shown, using conditional expectation, that this co-

variance is given by:

CXI
(li, lj) =

p
∑

m=1

p
∑

n=1

αm αn Cm,n(li, lj) (7.23)

where Cm,n(li, lj) is the covariance of the leakage of two gates of types m and n, when

placed at locations li and lj, respectively, i.e., Xm(li) and Xn(lj). Note that the

covariance of the leakage of the random gate XI is the expected value over I of the

covariances of all pairs of gate types. This result is somewhat intuitive since the random

gate is an abstraction that embodies all gates in the library. Starting from (7.23), we can

normalize Cm,n(li, lj) by the standard deviations of gates m and n to get their leakage

correlation ρm,n. Then, we use the analytical mapping fm,n(·) from Section 7.5.2 to

relate the leakage correlation ρm,n to channel length correlation ρL, as follows:

CXI
(li, lj) =

p
∑

m=1

p
∑

n=1

αm αn [ρm,n(li, lj)σm σn]

=

p
∑

m=1

p
∑

n=1

αm αn σm σn fm,n(ρL(li, lj)) (7.24)

Let F (ρL(li, lj)) be equal to the final expression in (7.24) above, and notice that this

equation assumes that li and lj are different. When they are the same, CXI
(li, lj) is

just the variance σ2
XI

. Thus:

CXI
(li, lj) =

{

F (ρL(li, lj)) for li 6= lj

σ2
XI

for li = lj
(7.25)
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By enforcing this correlation structure on our RG array, we ensure that instances of

this array have the same correlation structure as the candidate design.

7.7 Full-Chip Leakage Estimation

For a specific placed design, based on a pre-characterized cell library, one can determine

the full-chip leakage statistics using techniques from standard probability theory [24]

for finding the sum of a number of correlated RVs (each RV corresponds to the leakage

of one cell instance). This would be an O(n2) approach, which can be expensive for

large circuits (some refinements are possible to reduce this cost, but with some loss of

accuracy [69]). Throughout this chapter, we will refer to the leakage obtained from

such an O(n2) approach as the true leakage of a given design.

Apart from the issue of computational cost, such an approach is available only later

in the design flow once a netlist and placement are available; it is useful only as a final

check, and not as a prelude to corrective action. In this section, we will first show how

we can determine the full-chip leakage statistics in linear time, O(n), and then show

how this can be improved to obtain the statistics in constant time, O(1). Importantly,

we will also show that, for large gate counts, the statistics of any specific design that

shares the same high-level characteristics under consideration converge to the values

predicted by our model.

7.7.1 Linear-time method

Let IT be an RV that represents the leakage of our full-chip model, i.e., of the array of

n RGs. This means that:

IT =
n
∑

i=1

XI(li) (7.26)

where li is the location of the ith random gate. We are interested in determining the

statistics of IT , namely its mean µIT
and variance σ2

IT
. The mean of IT is equal to:

µIT
= E [IT ] =

n
∑

i=1

E [XI(li)] =
n
∑

i=1

E [XI] = nµXI
(7.27)
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The variance of IT can be easily determined using a result from probability theory

that the variance of a sum of correlated RVs is equal to the sum of pairwise covari-

ances [24]. In other words:

σ2
IT

=
n
∑

a=1

n
∑

b=1

CXI
(la, lb) (7.28)

Note that the above double summation accounts also for the cases where la = lb,

for which the covariance is essentially the variance. Using the fact that any covariance

can be written in terms of the correlation, CXI
(la, lb) = ρXI

(la, lb)σ
2
XI

, we can write the

total leakage variance in its final form:

σ2
IT

= σ2
XI

n
∑

a=1

n
∑

b=1

ρXI
(la, lb) (7.29)

where the variance of the full-chip leakage is a function of the variance of the random

gate and the extent of leakage correlation across the chip.

At this point, we have determined the mean of the total leakage (in constant time),

and have shown that the computation of the variance of the total leakage requires a

double summation over the number of gates on the chip. This O(n2) complexity is

not practically acceptable, especially knowing that n can be extremely large, on the

order of millions. By taking into account the rectangular shape of the die and the sole

dependence of the leakage correlation on the distance between different locations, we

are able to cut down the complexity of computing the total leakage variance to O(n),

as follows.

Let the RG array consist of k rows and m columns, where the total number of gates,

n, is equal to the product k × m, as shown in Fig. 7.7. Each location or “site” on the

grid can be represented by a pair (r, s) where r is the horizontal index taking values

r = 1, . . . ,m and s is the vertical index taking values s = 1, . . . , k. Also, assume that

the height H and width W of the array are known. Let ∆H and ∆W be the height

and width of the site where every gate will be placed.

Given the above parameters, the centre to centre distance dij between any two
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Figure 7.8: Number of occurrences of a certain distance vector

sites (r1, s1) and (r2, s2) can be easily determined to be dij=
√

(i·∆W )2+(j·∆H)2 where i

is defined as the algebraic difference in horizontal indices, i.e., (r2 − r1), and j is

defined as the algebraic difference in vertical indices, i.e., (s2 − s1). Note that i =

0,±1, . . . ,±(m − 1) and j = 0,±1, . . . ,±(k − 1).

Now recall the total leakage variance defined in (7.29) where the double summation

covers all possible pairs of locations, and each location is a site on the grid defined by

two indices. Since the correlation depends only on the distance dij between the pairs

of locations, we can simplify the above expression greatly by performing the sum over

the different distances rather than the pairs of locations. To do that, however, we need

to determine the number of times each distance dij occurs. This is relatively easy for a

rectangular k×m grid, as can be seen in Fig. 7.8, where the number of times a distance

dij occurs along the width of the die is m − i and along the height of the die is k − j.

Using these two value, the number of occurrences nij of dij can be determined to be
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the following:

nij = (m − |i|) · (k − |j|) (7.30)

Since the leakage correlation between any two given locations depends only on the

distance between these locations, we will explicitly highlight this fact, ρXI
(la, lb) =

ρXI
(dij) where i and j in the above equation are the algebraic differences in the hori-

zontal and vertical indices of la and lb.

Starting from (7.29), we will transform the quadratic summation that runs over

all pairs of locations, into a summation that runs over the set of possible distances

induced by the rectangular shape of the grid. This set will be covered if all the algebraic

differences i and j are covered. After accounting for the number of times each algebraic

difference occurs, nij, we get the following expression for the total leakage variance:

σ2
IT

= σ2
XI

m
∑

i=−m

k
∑

j=−k

(m − |i|) · (k − |j|) ρXI
(dij) (7.31)

where the double summation runs at most O(k × m) = O(n) times, which is linear

in circuit size. Note that the expression in (7.31) is an exact transformation of (7.29)

without any approximations, and was possible due to different factors:

1. The concept of random gate which allows us to express the total leakage as a

sum of identically distributed RVs. This in turn made it possible to extract the

variance of the random gate outside the double summation in (7.29).

2. The sole dependence of the leakage correlation on the distance between the pair

of locations rather on the location itself.

3. The rectangular shape of the grid, which allows for closed form expression of the

number of times each distance occurs.

Next, we validate our full-chip leakage model, both as an early and a late estimator

of leakage.

Validation

Two types of validation tests were run, by first considering randomly generated circuits,

as a way to make conclusions about the set of all circuits of a given size, and then by
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Table 7.1: % Error in full-chip standard deviation for ISCAS85 circuits compared to
the RG estimates

c499 c1355 c432 c1908 c880 c2670 c5315 c7552 c6288

1.04% 0.41% 1.14% 0.36% 0.74% 0.52% 0.23% 0.34% 1.38%

considering specific benchmark circuits.

In the first set of experiments, a large number of circuits were randomly generated so

as to match a frequency of cell usage that was specified a priori. The circuits were then

placed and routed using Cadence Encounter, and their true leakage statistics (mean

and variance) were found. Fig. 7.9 shows the maximum positive and negative difference

between the means and standard deviations of the leakages of these circuits compared

to the estimates provided by our model. It can be seen that as the number of gates in

the circuits increases, the difference approaches zero; at a circuit size of 11,236 gates,

the maximum difference is 2.2%. This small amount of error indicates that the set of

all chip designs that share the same high level characteristics have approximately the

same full chip leakage statistics and thus these high-level characteristics are sufficient

to determine chip leakage. This first set of experiments serves to justify the statement

that this approach is useful as an early estimator of full-chip leakage.

In the second set of experiments, we show how the model can be used as a late

estimator of leakage for real (placed and routed) circuits. In this test, we have extracted

the relevant high-level characteristics from each ISCAS85 circuit, namely the number

of gates used, the histogram of cells used, and the dimensions of the layout; then with

these values, we have used our model to estimate the leakage statistics of every circuit.

Table 7.1 lists the errors in the full-chip leakage standard deviation, for all ISCAS85

circuits, between our model and the true leakage of these circuits. The errors are very

small (notice, however, that these do not include any cell leakage modeling errors,

which were discussed earlier in Section 7.5). We do not show the errors in the mean

leakage because they are truly negligible.
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Figure 7.9: Errors in the estimation of mean and standard deviation of full-chip leakage
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Simplified Correlation Assumption

In Section 7.5 we noted that the cell leakage statistics (i.e., the mean and standard

deviation of leakage) can be obtained in two ways; either (1) a MC analysis would be

done or (2) the cell’s leakage would be fitted into a functional form to get three fitting

parameters (a, b, c). Using these parameters, the leakage mean and standard deviation

were analytically obtained. The fitted parameters also allowed us to determine the

leakage correlation between any pair of gates, ρm,n, given the channel length correlation

ρL. Using the mapping, fm,n(·), the RG leakage correlation was determined in (7.24).

If we, however, choose to obtain the leakage statistics of each cell through MC

analysis, we would not be able to use fm,n(·) to determine the leakage correlation be-

tween pairs of cells because the correlation mapping depends on the fitting parameters,

which are not available in MC mode. Without this mapping, the RG leakage corre-

lation cannot be determined. The solution to this problem lies in Fig. 7.5, where we

have noted that the leakage correlation of any pair of cells is approximately equal to

the correlation in the channel length of these cells. In other words, ρm,n ≈ ρL, ∀m,n.

With this simplified correlation assumption, (7.24) can be used to determine the RG

leakage correlation.

To determine the amount of error introduced by this assumption, we have compared

the difference between the standard deviation when assuming ρm,n = ρL compared to

the analytical approach, i.e., when using the true fm,n(·) mapping. Regardless of

whether we assume solely WID variations or have both WID and D2D variations, the

percentage error is below 2.8%, as shown in Fig. 7.10.

7.7.2 Constant-time method

In this section, we show how, for large values of n, we can approximate the linear sum-

mation in (7.31) by an integral to obtain the statistics of full-chip leakage in constant

time. This transformation is possible because the correlation function that shows up

under the integral (as shown next) is a well-behaved monotonically decreasing function.
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Figure 7.10: % Error in leakage standard deviation for ρm,n = ρL compared to ρm,n =
fm,n(ρL)

2D Integration in Rectangular Coordinates

Starting from (7.31), let xi = i · ∆W and yj = j · ∆H, and by multiplying out ∆W

and ∆H we obtain:

σ2
IT

=
σ2

XI

∆W∆H

m
∑

i=−m

k
∑

j=−k

(W − |xi|) · (H − |yj|) ρXI
(dij) (7.32)

where W = m · ∆W , H = k · ∆H, and dij =
√

x2
i +y2

j . By using a double integral to

approximate the double summation over discrete values, we obtain:

σ2
IT

≈ σ2
XI

(∆W∆H)2

∫ W

−W

∫ H

−H

(W−|x|)(H−|y|)ρXI

“√
x2+y2

”

dydx (7.33)

Let the area of a RG site be Asite = ∆W∆H and the area of the die be A = nAsite.
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Note that the function being integrated is even, so that we can write:

σ2
IT

≈ 4σ2
XI

n2

A2

∫ W

0

∫ H

0

(W − x)(H − y)ρXI

“√
x2+y2

”

dydx (7.34)

The expression in (7.34) approximates the full-chip leakage variance for large values

of n. Since the number of gates on the chip is typically in the order of millions, the

approximation is valid in most cases. What is interesting about this expression is that it

only requires the computation of an integral, which can be performed in constant-time

using a good numerical integration routine; the leakage variance computation does not

depend on the number of gates n, it is O(1).

1D Integration in Polar Coordinates

To make our computation even more efficient, under certain conditions we can trans-

form the double integral in (7.34) into a single integral in polar coordinates. First we

write an exact mapping of (7.34) in double-integral form using polar coordinates:

σ2
IT

≈
4σ2

XI
n2

A2

∫ π
2

0

∫ D(θ)

0
(W − r cos θ)(H − r sin θ)ρXI

(r) rdrdθ (7.35)

where D(θ) is the distance from the origin to the boundary of the rectangular inte-

gration domain, which is less than the largest distance on the array. If the distance at

which the WID correlation function reaches 0 is less than the minimum of the height

or width of the array, then the double integral in (7.35) can be written as a single

integral. To derive this single integral, let us for the moment assume that there are

no D2D variations and that ρXI
becomes zero at a distance Dmax. If Dmax is less than

min(W,H) then (7.34) can be written as:

σ2
IT

≈
4σ2

XI
n2

A2

∫ Dmax

0

∫ π
2

0
(W − r cos θ)(H − r sin θ)ρXI

(r) rdθdr (7.36)
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Since the correlation function does not depend on θ, we can further simplify the above

expression by separating the integrals:

σ2
IT

≈
4σ2

XI
n2

A2

∫ Dmax

0
ρXI

(r)r

[

∫ π
2

0
(W−r cos θ)(H−r sin θ)dθ

]

dr (7.37)

The expression in the brackets can be analytically integrated and results in the fol-

lowing expression:

g(r) = 0.5r2 − (W + H)r +
π

2
WH (7.38)

which leads to the final expression for full-chip leakage variance:

σ2
IT

≈ 4σ2
XI

n2

A2

∫ Dmax

0

r · g(r) · ρXI
(r)dr (7.39)

When also considering D2D variations, recall from Section 7.4 that the correlation

never reaches zero, and thus the single integral technique does not immediately apply.

However, if we divide up the correlation function ρXI
(r) into a constant portion, ρc,

and a portion that does go to 0 at Dmax, ρ′
XI

(r) = ρXI
(r)− ρc, then the single integral

can be written as:

σ2
IT

≈
[

4σ2
XI

n2

A2

∫ Dmax

0

r · g(r) · ρ′
XI

(r)dr

]

+ ρcσ
2
XI

n2 (7.40)

Validation

The value of the standard deviation of the full-chip leakage obtained from the numer-

ical integration (7.34) was compared to the value obtained from the O(n) approach

presented in Section 7.7.1.

As can be seen in Fig. 7.11, for circuits that have more than ten thousand gates

there is less than 0.01% error between the numerical integration and that of the linear-

time algorithm. For circuits with a small number of gates (<100) the % error is more

than 1%; this is due to the granularity of the gates being a significant proportion of the

total area of the design causing the integral to be less accurate than the true sum. For
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Figure 7.11: % Error between numerical integration and linear time algorithm

150



7 Statistical Leakage Estimation

larger designs, the area of the logic gates compared to the area of the design approaches

zero, allowing the numerical integration to provide good results, with less than 0.1%

error.

Given that the O(n) time algorithm takes less than one second for circuits with

less than 1000 gates, one can use the O(n) time algorithm in those cases, and use the

numerical integration for circuits with a much larger number of gates.

7.8 Summary

In this chapter, we presented a probabilistic full-chip model that can be used to esti-

mate, in constant-time, the leakage statistics of candidate designs either at an early or a

late stage, while considering within-die correlations. We proposed and verified that cer-

tain high-level characteristics of a candidate chip design are sufficient to determine its

leakage. These high-level characteristics, shown in Fig. 7.1, include information about

the process, the standard-cell library, and the design in question. We showed that, for

large gate count, the set of all chip designs that share the same high level character-

istics have approximately the same full-chip leakage statistics, with very small error.

We capture this set by a full-chip model based on Random Gates (RGs).
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8 Conclusion

Continued technology scaling trends have led to many challenges that are facing digital

integrated circuits in current process technologies. With the impact of increased process

and environmental variability on circuit timing and leakage power reaching alarming

levels, it is becoming increasingly difficult to design circuits that will achieve their

target frequency and power budgets. With traditional corner-case analysis becoming

too expensive, pessimistic, and unable to handle within-die variations, there is a clear

need for developing new techniques that can analyze and predict circuit performance

in the presence of variability. These techniques would be used not only to quantify the

impact of variability on timing and leakage power, but also to drive circuit design and

optimization in order to achieve robust designs with high yield.

In this thesis, we have presented different techniques for variation-aware timing

and leakage analysis. On the timing front, we have considered different aspects of the

problem, including handling within-die spatial correlations at an early stage of design,

modeling random process parameters with arbitrary distributions as well as uncertain

non-random environmental parameters, allowing for different types of variational de-

lay models including linear and quadratic models, and capturing circuit timing under

variability exactly at every point in the parameter space. For example, Chapter 3

presented a pre-placement statistical static timing analysis technique that can operate

at an early stage of design, when within-die correlations are still unknown, and can

produce a margin range that is valid under any arbitrary correlation. In Chapter 4,

a general framework for parameterized static timing analysis was proposed, allowing

for linear and quadratic delay models, and supporting both random and uncertain

parameters in the same framework. In Chapter 5, another parameterized static tim-

ing analysis technique was presented, allowing to capture circuit delay exactly at any
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point in the process and environmental parameter space by propagating forward all

the potentially critical paths in the circuit. This was enabled using efficient pruning

strategies, which can identify the critical paths and discard the non-critical ones. A

novel distance-based metric for timing robustness in parameterized static timing anal-

ysis was proposed in Chapter 6. This metric can be used to quantify the susceptibility

of parameterized timing quantities to failure, thus enabling designers to fix the nodes

with smallest robustness values in order to improve the overall design robustness to

variations.

Finally, on the leakage front, a probabilistic full-chip leakage estimation technique

was presented which can be used as either an early or a late estimator of leakage

statistics, with high accuracy. This was possible using the concept of random gate

which captured certain high-level characteristics of a candidate design and allowed for

an efficient full-chip leakage estimation. In its simplest form, the leakage estimation

reduced to finding the area under a scaled version of the within-die channel length

auto-correlation function, which can be done in constant time.

Collectively, the techniques that were presented in this thesis can fill real and diverse

design needs. We believe that a natural place for these proposed algorithms would be

in commercial or in-house CAD tools, such as static timing or power analysis and

optimization engines. It is worth noting that the parameterized static timing and

robustness analysis techniques that were proposed in Chapters 4, 5, and 6 were also

implemented and successfully tested at Intel’s Strategic CAD Labs as part of a static

timing analyzer used for research purposes.

Although the techniques presented in this thesis constitute a step forward, we be-

lieve that the problem of variation-aware performance verification is far from solved,

and further research will be needed as more challenges may arise in the future, es-

pecially as technology continues to scale further toward the physical process limits.

In addition, more research is needed on variation-aware performance optimization to

answer the question of what to fix to produce designs that would meet their target

specification with high yield.
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A Leakage Statistics using Analytical Method

In this appendix, we present the mathematical framework which allows us to ana-

lytically determine the mean and standard deviation of cell leakage, given the fitted

functional form with the triplet (a, b, c). This framework can be applied for any leak-

age model that is quadratic exponential (which includes both sub-threshold and gate

leakage). Recall that the leakage of each cell in the library is modeled as:

X = a ebL+cL2

(A.1)

We are interested in determining the mean µX and variance σ2
X

of the cell leakage, X,

given the mean and variance of the channel length, L, and the regression parameters

(a, b, c). Assume that L is a normally distributed RV with mean µ and standard

deviation σ. Let Y = lnX; then X = eY. The mean and variance of X can be written

as follows:

µX = E [X] = E
[

eY
]

(A.2)

σ2
X

= E
[

X2
]

− µ2
X

= E
[

e2Y
]

− µ2
X

(A.3)

Let MY(t) be the moment-generating function of Y. By definition, this function is

equal to:

MY(t) = E
[

etY
]

(A.4)

This function has been studied in the literature, and has a closed form expression

for most known distributions [24]. Note that (A.2) and (A.3) can be written in terms
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of the moment-generating function of Y:

µX = MY(1) (A.5)

σ2
X

= MY(2) − µ2
X

(A.6)

The above result shows that the mean and variance of the cell leakage can be

determined if MY(t) is known. To do that, we must determine the distribution of Y.

Since Y = lnX, it follows from (A.1) that:

Y = ln a + bL + cL2 (A.7)

where L has a normal distribution. Let L̂ be a normalized version of L:

L̂ =
L − µ

σ
(A.8)

This last equation shows that L̂ has a standard normal distribution with zero mean

and unit variance. We can easily write (A.7) in the following form:

Y = K1

(

L̂ + K2

)2

+ K3 (A.9)

where:

K1 = c σ2 (A.10)

K2 =

(

b
2c

+ µ
)

σ
(A.11)

K3 = ln a + bµ + c µ2 − c

(

b

2c
+ µ

)2

(A.12)

The motivation behind this transformation is to write Y in terms of an RV with

a known distribution. Let W = L̂ + K2; then W2 has a “Non-Central Chi-square”

distribution with ν = 1 degrees of freedom because W is normal with non-zero mean

and unit variance. Therefore we can write (A.9) in terms of W2:
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Y = K1W
2 + K3 (A.13)

This allows to write the moment-generating function of Y in terms of the moment-

generating function of W2 as follows:

MY(t) = E
[

etY
]

(A.14)

= E
[

et(K1W
2+K3)

]

(A.15)

= etK3E
[

etK1W
2
]

(A.16)

= etK3MW2(K1t) (A.17)

Since W2 has a Non-Central Chi-square distribution with ν = 1 degrees of freedom,

then its moment-generating function is known [24]:

MW2(t) = (1 − 2t)−
1
2 · e λt

1−2t (A.18)

where λ = (K2)
2 is the non-centrality parameter.

Now by using the above equation for the moment-generating function of W2, we

can determine the moment-generating function of Y using (A.17) and get the final

expression in (7.14), from which the mean and variance of the cell leakage can be

determined as shown in (A.5) and (A.6).

To determine the accuracy of this analytical technique, we have compared its results

to MC analysis. Histograms of the the percent error in the mean and standard deviation

are shown in Fig. A.1 and A.2 respectively for all 62 cells with all input combinations.

For the mean, the analytical method is quite close to the MC results with errors

less than a 2% for all gates. For the standard deviation the error is larger, with an

average absolute error of 3.1% and a maximum error of about 10%. As mentioned

in Section 7.5.1, the error in the mean and standard deviation is not a result of the

mathematical derivation, but due to the leakage curve not being exactly mapped to

(A.1).
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Figure A.1: Histogram of the % error in the mean of the analytical method compared
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B Leakage Correlation using Analytical

Mapping

In this appendix, we present the mathematical framework that allows us to analytically

determine the correlation in the leakage currents of two cells given the correlation in

their channel length. We also note that leakage correlation turns out to be very close

to channel length correlation, in most cases.

Let L1 and L2 be two correlated RVs representing channel length at two arbitrary

locations l1 and l2. We will assume that the correlation in channel length, ρL(l1, l2), can

be determined from the correlation model that we presented in Section 7.4.2. Recall

that L1 and L2 are normally distributed with mean µ and standard deviation σ.

We are interested in determining ρm,n(l1, l2) defined as the correlation in the leakage

of two gates m and n given the channel length correlation ρL(l1, l2). Particularly, we

will use the analysis that follows to find a mapping fm,n(·) such that:

ρm,n(l1, l2) = fm,n (ρL(l1, l2)) (B.1)

Let Xm and Xn be the leakage of two gates of type m and n from the library; these

RVs depend respectively on L1 and L2 in the following way:

Xm = a1e
b1L1+c1L2

1 (B.2)

Xn = a2e
b2L2+c2L2

2 (B.3)

It is important to understand that the channel length and leakage correlations are

due to the spatial correlation between the locations l1 and l2, and depend particularly

on the distance between the two locations. Let Cm,n(l1, l2) be the covariance of Xm
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and Xn defined as follows:

Cm,n(l1, l2) = E [XmXn] − µXm
µXn

(B.4)

The leakage correlation ρm,n(l1, l2) can be expressed as a function of the covariance:

ρm,n(l1, l2) =
Cm,n(l1, l2)

σXm
· σXn

(B.5)

where µXm
, µXn

, σXm
, σXn

denote the means and standard deviations of Xm and Xn

respectively, as determined in Section 7.5.1.

Examining (B.5) and (B.4), it is easy to see that the problem of finding ρm,n(l1, l2)

can be solved if E [XmXn] is determined. By letting Y = ln (XmXn), we can write

E [XmXn] as a function of the moment-generating function of Y:

E [XmXn] = E
[

eY
]

(B.6)

= MY(1) (B.7)

since MY(t) = E
[

etY
]

.

In this way, if we are able to determine the moment-generating function of Y, we

can evaluate it at 1 to determine E [XmXn] using (B.7). Then, using (B.4) and (B.5),

we can determine the leakage correlation ρm,n(l1, l2). Using (B.2) and (B.3), we can

write:

Y = ln (XmXn)

= ln a1 + ln a2 + b1L1 + b2L2 + c1L
2
1 + c2L

2
2

(B.8)

Assume that the correlation in the channel lengths L1 and L2 is ρL(l1, l2) = ρ. To

model this correlation, we will use the following transformation; Let Z1 and Z2 be two
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RVs defined as follows:

Z1 =
1

2α

(

L1 − µ

σ
+

L2 − µ

σ

)

(B.9)

Z2 =
1

2β

(

L1 − µ

σ
− L2 − µ

σ

)

(B.10)

where:

α =

√

1 + ρ

2
(B.11)

β =
√

1 − α2 =

√

1 − ρ

2
(B.12)

The way they are defined above, Z1 and Z2 are guaranteed to have certain prop-

erties. First, they are normally distributed since L1 and L2 are jointly normally dis-

tributed. In addition, they are guaranteed to have zero-mean, unit variance, and zero

correlation (or covariance). This can be easily shown:

E [Z1] =
1

2α

(

E

[

L1 − µ

σ

]

+ E

[

L2 − µ

σ

])

= 0 (B.13)

Var(Z1) =
1

4α2

(

Var (L1)

σ2
+

Var (L2)

σ2
+ 2

Cov (L1,L2)

σ2

)

=
2

4(1 + ρ)
(1 + 1 + 2ρ) = 1

(B.14)

Cov(Z1,Z2) =
1

4αβ
E

[(

L1 − µ

σ
+

L2 − µ

σ

)(

L1 − µ

σ
− L2 − µ

σ

)]

=
1

4αβ

(

E

[

(

L1 − µ

σ

)2
]

− E

[

(

L2 − µ

σ

)2
])

= 0

(B.15)

Being normally distributed with zero-mean and unit variance, and having zero

correlation, imply that Z1 and Z2 are independent standard normal RVs. By reorder-

ing (B.9) and (B.10), we can express both L1 and L2 as a function of Z1 and Z2 as
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follows:

L1 = σ (αZ1 + βZ2) + µ (B.16)

L2 = σ (αZ1 − βZ2) + µ (B.17)

By substituting (B.16) and (B.17) in (B.8), we can write Y in the following matrix

form:

Y = K1 + K2 +
[

K3 K4

]

[

Z1

Z2

]

+
[

Z1 Z2

]

[

K5 K6

K7 K8

][

Z1

Z2

]

(B.18)

where:

K1 = ln a1 + b1µ + c1µ
2 (B.19)

K2 = ln a2 + b2µ + c2µ
2 (B.20)

K3 = ασ [(b1 + b2) + 2µ (c1 + c2)] (B.21)

K4 = βσ [(b1 − b2) + 2µ (c1 − c2)] (B.22)

K5 = α2σ2(c1 + c2) (B.23)

K6 = αβσ2(c1 − c2) (B.24)

K7 = K6 (B.25)

K8 = β2σ2(c1 + c2) (B.26)

Generally, K6 and K7 are non-zero, which will lead to cross terms when performing

the matrix multiplication in (B.18) (i.e., terms in Z1Z2). These terms will complicate

the determining of Y and we would ideally like to remove them from the expression.

This can be achieved through matrix diagonalization; let’s denote the 2 × 2 matrix

in (B.18) by A. Because A is symmetric, we can diagonalize A in the following way:

A = PDP T (B.27)

where D is a diagonal matrix having as entries the eigenvalues of A, i.e.,

[

λ1 0

0 λ2

]

and

P is a matrix having as columns the eigenvectors of A. Since A is symmetric, these
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eigenvectors are orthogonal. Moreover, we can choose P in such a way that its columns

are also orthonormal. This decomposition is a standard practice and we use it here

to transform Z1 and Z2 into a new set of RVs V1 and V2 that are also independent

standard normals:
[

V1

V2

]

= P T

[

Z1

Z2

]

(B.28)

Using the above transformation, (B.18) is written as follows:

Y = K1 + K2 +
[

K̂3 K̂4

]

[

V1

V2

]

+
[

V1 V2

]

[

λ1 0

0 λ2

][

V1

V2

]

(B.29)

where:
[

K̂3

K̂4

]

= P T

[

K3

K4

]

(B.30)

Note that both D and P can be easily determined for a 2 × 2 symmetric matrix as

there is a closed form expression for the eigenvalues and eigenvectors of A. Note also

that since the off-diagonal entries of D are zero, Y will have no cross terms.

Now that we removed the cross terms, we can write Y into the following quadratic

form:

Y = K1 + K2 + K̂3V1 + K̂4V2 + λ1V
2
1 + λ2V

2
2

= (K1 + K̂3V1 + λ1V
2
1) + (K2 + K̂4V2 + λ2V

2
2)

(B.31)

where V1 and V2 are independent standard normal RVs.

Note that the above equation is essentially two instances of (A.7). Using exactly

the same analysis that follows (A.7), we can write Y in terms of two independent RVs

that have a non-central chi-square distribution; this allows us to determine the moment

generating function of Y, MY(t). Once this is done, we use (B.7) to find E [XmXn],

and consequently determine ρm,n(l1, l2) from (B.4) and (B.5).

The above analysis, whereby the leakage correlation between any pair of gates placed

at two arbitrary locations can be determined given the correlation in the channel length
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Figure B.1: Leakage correlation of pairs of different gates

at these two locations, is referred to as the mapping fm,n(·):

ρm,n(l1, l2) = fm,n (ρL(l1, l2)) (B.32)

We have used this mapping to determine the leakage correlation between the pairs

of cells in our library. The results obtained for all pairs of gates, while being close to

each other, are not exactly the same as can be seen in Fig. B.1, where the correlation

of 63 pairs of gates are plotted compared to the y = x line. The difference can be

better seen in a zoomed version of the plot in Fig. B.2. The resulting curves are convex

functions that pass through (0, 0) and (1, 1); they closely follow the y = x, deviating

slightly at ρL(l1, l2) = 0.5.

164



B Leakage Correlation using Analytical Mapping

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54

Length Correlation

L
e
a
k
a
g

e
 C

o
rr

e
la

ti
o

n

Figure B.2: Leakage correlation of pairs of different gates (zoom in)
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