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A belief rule-based (BRB) system provides a generic nonlinear modeling and inference mechanism. It is capable of modeling
complex causal relationships by utilizing both quantitative information and qualitative knowledge. In this paper, a BRB system
is �rstly developed to model the highly nonlinear relationship between circuit component parameters and the performance of the
circuit by utilizing available knowledge from circuit simulations and circuit designers. By using rule inference in the BRB system
and clustering analysis, the acceptability regions of the component parameters can be separated from the value domains of the
component parameters. Using the established nonlinear relationship represented by the BRB system, an optimization method is
then proposed to seek the optimal feasibility region in the acceptability regions so that the volume of the tolerance region of the
component parameters can be maximized. �e eectiveness of the proposed methodology is demonstrated through two typical
numerical examples of the nonlinear performance functions with nonconvex and disconnected acceptability regions and high-
dimensional input parameters and a real-world application in the parameter design of a track circuit for Chinese high-speed railway.

1. Introduction

Tolerance has become a crucial design consideration in
integrated and discrete circuit designs due to the demand
of improved product quality, longer product lifetimes, and
shorter design cycle. Designers have to unceasingly seek a
central point with the maximum tolerances in the space of
circuit component parameters so as to maximize parametric
yield and minimize costs while maintaining compliance
with design speci�cations [1–3]. On the other hand, circuit
reliability is closely linked to its yield, namely, only those
products with high yield would have high reliability. So,
tolerance design and yield optimization are also the eective
ways to improve circuit reliability [4].

In essence, there are mainly two kinds of methods for
tolerance design and yield estimation, that is, theMonteCarlo
based statistical methods and the deterministic methods [5–
11]. Because the former requires numerous circuit simula-
tions and computationally expensive analysis runs [5, 6],
researchers have proposed alternative deterministic methods
based on response surface modeling to approximate the
performance function and the corresponding acceptability

region (��). �us, the optimal center and tolerances (i.e.,
feasibility region ��) of component parameters can be found
in the approximated region ��. �e deterministic meth-
ods mainly include simplicial approximation [7], polyhedral
approximation [8], quadratic approximation [9], ellipsoidal
method [10], and neural network [11]. However, such approx-
imation methods and low-order polynomial models may
not be applicable to some complex cases in which ranges
of parameter variables are wide, performance functions are
highly nonlinear, and the feasibility regions are nonconvex
and even disconnected [1–3]. Hence, there is a need to
develop newmethods that can be used tomodel and optimize
the design in such a highly complex setting.

�is paper develops a novel method of the acceptability
region approximation and tolerance optimization to obtain
available feasibility region using belief rule-based (BRB)
model. In the belief rule base, each possible consequent of
a rule is associated with a belief degree. Such a rule base
is capable of capturing highly nonlinear and continuous
causal relationships between dierent factors [12, 13]. When
applying a belief rule base, the input of an antecedent is
transformed into a belief distribution over the referential
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values of an antecedent. �e distribution is then used to
calculate the activation weights of the rules in the rule base.
Subsequently, inference in the belief rule base is through the
combination of all the activated rules using the evidential
reasoning (ER) approach [14, 15]. Comparedwith polynomial
and neural network models, the model parameters in the
BRB can be extracted not only from objective data, but
also from experts’ subjective knowledge [16]. Moreover, the
physical meanings of these parameters are easy to understand
for experts and engineers, so they can intuitively participate
in the whole course of system modeling [17]. �e BRB
modeling technique has been widely applied in nonlinear
system modelling and decision support systems [16–21].

In this paper, a BRB system is designed to model the
complex nonlinear relationship between circuit component
parameters (i.e., input variables to the BRB system) and a
performance index of the circuit (i.e., output) by utilizing the
limited knowledge from circuit simulations and its designers.
�rough rule inference in the BRB and clustering analysis,
the acceptability regions can be separated from the value
domain of component parameters. �en, an optimization
method is presented to seek the optimal feasibility region in
the acceptability regions tomaximize the volume of tolerance
region of the circuit parameters. �e remainder of this paper
is organized as follows. �e research issue is expounded in
Section 2. Section 3 describes the use of the BRB modelling
technique to approximate the acceptability regions.�e toler-
ance optimizationmethod is presented in Section 4. Section 5
shows some encouraging results obtained from two typical
numerical examples of nonlinear performance functionswith
nonconvex and disconnected acceptability regions and high-
dimensional input parameters and a real-world application in
the parameter design of track circuit of Chinese high-speed
railway.

2. Problem Formulation

Given a product performance or response speci�cation [2–6]

Lb ⩽ � (�) ⩽ Ub, (1)

here � = (�1, �2, . . . , ��) is a vector of design parameters. �
is the performance index or function of an electrical circuit.
Ub and Lb are constants, respectively, representing the upper
and lower allowable limits of variation of the resonance per-
formance. For discrete component circuits, these parameters
may include, but are not limited to, resistances, capacitances,
and inductances, whereas for integrated circuits these may
be resistivities, linewidths, speci�c capacitances, and so forth.
Commonly, the element �� of � is characterized by a nominal
value �� 0 and a tolerance ��, � = 1, 2, . . . , �.

�e acceptability region �� is de�ned as [3, 22]

�� = {� | Lb ⩽ � (�) ⩽ Ub} . (2)

If � ∈ ��, then the product is acceptable; otherwise it is
unacceptable. �e tolerance region �� is de�ned as [3, 22]

�� = {� | ������ − �0 ����� ≤ ��, � = 1, 2, . . . , �} . (3)

When given a nominal value �0 = (�0 1, �0 2, . . . , �0 �)
and a tolerance � = (�1, �2, . . . , ��), the corresponding par-
ametric yield is de�ned as [3, 22]

�� = � (�� ∩ ��)� (��) × 100% = �� × 100%. (4)

Here, � is the number of total products, � is the number
of acceptable products (� ∈ ��), and �(⋅) is the volume of a
region.�� = ��∩�� is de�ned as the feasibility region which
is a subset of �� at the intersection between �� and ��.

When given the design constraints ��, the actual goal
of tolerance design is to maximize �� (i.e., to seek for the
maximum � and corresponding �0) so that a 100% yield is
achievable. In this case, the maximum �� is equal to the
maximum �� [3, 22]. In tolerance design, the key step is
to calculate performance �(�) and estimate the parametric
yield. In most cases, the structures of the integrated circuit
and analogous circuit are too complex to obtain analyt-
ical expressions of circuit performance functions. Hence,
designers have to build the circuit simulator using some
design so�ware tools (e.g., HSPICE, Simulink) to evaluate
the performance function �(�) and estimate yield by sim-
ulation runs [22, 23]. However, this kind of simulation-
based tolerance design (e.g., Monte Carlo methods) requires
numerous circuit simulations and computationally expensive
analysis runs [2–6]. In the following section, instead of using
a circuit simulator, we will build a BRB system to model
the performance function by running as few simulations as
possible and using experts’ knowledge. �e proposed BRB
system can be used to approximate the acceptability region
and obtain the corresponding feasibility region.

3. Approximating Acceptability Region by
Using a BRB System

As an extension of traditional IF-THEN rules, belief rules are
the key parts of a BRB system. In a belief rule, each antecedent
attribute takes a referential value, and each possible conse-
quent is related to a belief degree [13]. To build a BRB system
for circuit performance modelling and acceptability region
approximating, wemap the relationship between BRB system
and circuit performance function in Table 1.

Corresponding to Table 1, the �th (� = 1, 2, . . . , �) refer-
ential relationship between input and output of performance
function, that is, the belief rule � in the BRB system, can be
de�ned as

Rule �:
{{{{{{{{{

IF (�1 is ��,1) ∧ (�2 is ��,2) ∧ ⋅ ⋅ ⋅ ∧ (�� is ��,�)
THEN {(�1, ��,1) , (�2, ��,2) , . . . , (�	, ��,	)}
with rule weight ��, � = 1, 2, . . . , �
and attribute weight ��, � = 1, 2, . . . , �;

(5)

here, “∧” denotes “and.”
To use the BRB system to approximate acceptability

region �� involves the following steps: (1) constructing ref-
erential values of parameter inputs and performance output
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Table 1: Belief rule-based system for circuit performance modelling.

BRB system Circuit performance function

Antecedent attributes Parameter inputs �1, �2, . . . , ��
�e set of referential values  � = { �,
 | ! = 1, 2, . . . , "�} Referential values of the design parameter ��
Antecedent in the �th rule, � = 1, 2, . . . , �, � = 1, 2, . . . , � �e �th referential value of the input vector ��� = (��,1, ��,2, . . . , ��,�), ��,� ∈  �
Consequent in the �th rule {(�1, ��,1), (�2, ��,2), . . . , (�	, ��,	)},∑	�=1 ��,� ≤ 1

�� is the referential value of performance output, ��,� is the belief
degree of�� when � is taken as ��

Rule weights �� ∈ [0, 1] Relative importance of the �th rule

Attribute weights �� ∈ [0, 1] Relative importance of �� in the rule base

about acceptability region ��; (2) generating new perfor-
mance output by ER inference of belief rules; (3) training BRB
by the selected samples near to ��.
3.1. Constructing Referential Values of Parameter Inputs and
Performance Output about Acceptability Region ��. �e ini-
tial belief rules can be established in the following four
ways [16]: (1) extracting rules from expert knowledge; (2)
extracting rules by examining historical data; (3) using the
precious rule bases if available; (4) random rules without any
preknowledge. In our context, we use (1) and (2) to determine
the parameters in BRB system as listed in Table 1.

In the tolerance design, we �rst need to specify the upper
and lower bounds of each design parameter ��. Let lb� and ub�
represent, respectively, the lower and upper bounds on the �th
parameter��.�us, the space inwhich the vector� takes value
can be constructed as

$� = {� = (�1, �2, . . . , ��) | lb� ⩽ �� ⩽ ub�, � = 1, 2, . . . , �} .
(6)

Generally speaking, we have to set $� large enough to rela-
tively entirely include the acceptability region.�e referential
points are uniformly selected from $�, and then the circuit
simulations are implemented to calculate the performance
outputs of those points.

As an illustrative example suppose there are two inputs� = (�1, �2) with the bounds 1 ⩽ �1 ⩽ 14, 1 ⩽ �2 ⩽ 9
and its performance function is �(�). We uniformly select
126 initial referential points as (1, 1), (1, 2), . . . , (14, 9) shown
in Figure 1 and calculate their performance outputs by circuit
simulations. Assume we have known the acceptability region��, which is nonconvex and shown in Figure 1. �en, we can
�nd out 35 points in �� by constrains in (1). �ese points
are divided into two parts, one is called as “inside point”
(12 points), and the other is “inside boundary (IB) point”
(23 points). From Figure 1, it can be seen that 126 initial
referential points subdivide $� into 104 gridding cells. �e
boundary of �� passes through 26 cells, called boundary
gridding (BG) cells and vertexes of each BG cell certainly
contain one or two IB points. Hence, in each of BG cells,
starting from its IB points, we can seek out three or two
vertexes as external boundary (EB) points adjacent to the IB
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Figure 1: Selection of referential values of parameter inputs and
performance output.

points, as demonstrated in the BG cell directly below ��. In
this example, totally, 29 EB points can be found out.

As a result, we totally select 64 points (including 29 EB, 23
IB, and 12 inside points) as the referential values of parameter
input. �e sets of referential values can be listed as

 1 = {3, 4, . . . , 13} ,  2 = {2, 3, . . . , 8} . (7)

Denote the referential values of parameter input as �� =(��,1, ��,2), then �� ∈  1 ×  2, � = 1, 2, . . . , �, � = 77;
here “×” denotes Cartesian product. Correspondingly, we can
construct 77 belief rules.

Next, we need to calculate the bounds of performance
output as

Lb� ≤ � (��) ≤ Ub�,
Lb� = min

��∈�1×�2
(� (��)) , Ub� = max

��∈�1×�2
(� (��)) . (8)

Obviously, Lb� ≤ Lb, Ub� ≥ Ub. According to designers’
experiences, the & referential values of performance output
can be selected from the interval [Lb�,Ub�] uniformly or not,

denoted as {�1, �2, . . . , �	} and �1 = Lb� < �2 < ⋅ ⋅ ⋅ <�	 = Ub�. For the �th rule, the input �� = (��,1, ��,2) and
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its performance output is �(��); then the consequent belief
distribution can be given as

{(�1, ��,1) , (�2, ��,2) , . . . , (�	, ��,	)} . (9)

Here

��,� = (��+1 − � (��))(��+1 − ��) , �� ≤ � (��) ≤ ��+1,

��,�+1 = (� (��) − ��)(��+1 − ��) , �� ≤ � (��) ≤ ��+1,
��,� = 0, ' = 1, 2, . . . , * − 1, * + 2, . . . , &.

(10)

Obviously, ∑	�=1 ��,� = 1, �(��) = ��,�+1��+1 + ��,���.
In Table 1, the remaining rule weights �� and the attribute

weights �� re�ect the importance (or unimportance) of the�th rule and �th referential parameter input, respectively.
�eir values can be determined based on designers’ knowl-
edge. When designers’ knowledge cannot be collected, ��
and �� will be set equal to 1, respectively, which means equal
importance.

Note that, in practice, there may be more than one
acceptability region in the parameter space $�; in this case,
some available clustering analysis methods (e.g., �-means
clustering [24]) can be used to recognize every disconnected
acceptability region. �en, by using the proposed procedure
as shown in Figure 1, the belief rules of all disconnected
regions can be generated so as to compose a rule base for
modelling the whole acceptability regions. In Section 5.1, an
example of the disconnected acceptability regions will be
given to show the procedure of BRB based modeling.

3.2. Generating New Performance Output by ER Inference of
Belief Rules. Section 3.1 gives the BRB system to describe the
acceptability region��. Actually, the BRB uses the grid-based
mechanism to approximate�� and one vertex of gridding cell
corresponds to one belief rule in rule base. �erefore, given
a new input � = (�1, �2, . . . , ��), which certainly falls into a

certain �-dimension cell. �is input � can activate 2� rules
of this cell. �us, the activation weight of the �th rule, -�, is
calculated as [16]

-� = ��∏��=1 (6�� )��
∑��=1 [��∏��=1 (6�� )��]

; (11)

here, the relative attribute weight is de�ned as [16]

�� = ��
max�=1,2,...,� {��} . (12)

6�� is the individual matching degree to which the input ��
matches the �th antecedent referential value ��,� in the �th
rule. Here, ��,� ∈  �,  � = { �,
 | ! = 1, 2, . . . , "�}, "� is the

number of referential values of ��, and  �,1 <  �,2 < ⋅ ⋅ ⋅ < �,��. 6�� is calculated as

6�� =

{{{{{{{{{{{{{{{{{{{{{{{{{

(�� −  �,�)
( �,�+1 −  �,�) ,  �,� ≤ �� ≤  �,�+1, ��,� =  �,�+1
( �,�+1 − ��)
( �,�+1 −  �,�) ,  �,� ≤ �� ≤  �,�+1, ��,� =  �,�
1, �� ≤  �,1 = ��,� or �� ≥  �,�� = ��,�
0, otherwise.

(13)

Here, @ = 1, 2, . . . , "� − 1.
Having determined the activation weight of each rule in

the rule base, the ER approach can be directly applied to
combine the rules and generate �nal conclusions [14]. �e
output of the new input � by the combination is de�ned as

A (�) = {(�1, �1) , (�2, �2) , . . . , (�	, �	)} . (14)

Since the rule consequent in the BRB system has the form of
belief distribution, the result of reference in (14) is also a belief
distribution, which expresses that if the input is given as � =(�1, �2, . . . , ��); then the consequent is�1 to a degree �1,�2
to a degree �, . . ., and�	 to a degree �	.�e analytical format
of the ER algorithm can be used to calculate the combined
belief degree �� in�� as [17]

�� = (C × [ �∏
�=1
(-���,� + 1 − -� 	∑

�=1
��,�)

− �∏
�=1
(1 − -� 	∑

�=1
��,�)])

⋅ (1 − C × [ �∏
�=1
(1 − -�)])

−1

.

(15)

Here,

C = [ 	∑
�=1

�∏
�=1
(-���,� + 1 − -� 	∑

�=1
��,�)

− (& − 1) �∏
�=1
(1 − -� 	∑

�=1
��,�)]

−1

.
(16)

Next, we can estimate performance output by the weighted
average operator

�BRB (�) = 	∑
�=1
����. (17)

3.3. �e Parameter Optimization of the BRB System Using the
Selected Training Samples. Although the initial belief rules
can be constructed by the limited simulations and designers’
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knowledge and the performance outputs can be estimated by
ER inference of the initial belief rules, the estimation accuracy
can be improved if the parameters in the belief rules are �ne-
tuned through learning from some selected training samples.
�e adjustable parameters in a rule base include belief
degrees (��,1, ��,2, . . . , ��,	), rule weights (�1, �2, . . . , ��), and
attribute weight (�1, �2, . . . , ��).

When we search for the available feasibility region ��
from the approximated acceptability region �� estimated by
the BRB, the vertexes of the maximum �� certainly reach to
the boundary points of��, which are all included in the set of
critical points {� | �(�) = Lb, �(�) = Ub}. To a large extent,
the estimation accuracy of the boundary points determines
the accuracy of the optimal ��. Since the boundary points
of �� fall into the boundary gridding (BG) cells as shown in
Figure 1, we select the central points of the BG cells as training
points and then obtain their performance outputs by circuit
simulations as the training samples. �us, given I training
points �� (@ = 1, 2, . . . , I), the error function J(K) between
the simulated output�(��) and the estimated output�BRB(��)
can be de�ned as [21]

J (K) = 1I × �∑
�=1
(� (��) − �BRB (��))2 . (18)

Here, J(K) is function of the parameter set K
K = {��,�, ��, �� | � = 1, 2, . . . , �,

* = 1, 2, . . . , &, � = 1, 2, . . . , �} . (19)

�e objective of the training is to minimize the dierenceJ(K) by adjusting the parameters K. Note that the optimal K
can be obtained by using gradient-based search methods or
nonlinear optimization so�ware packages, such as the fmin-
con function in the Optimization Toolbox of MATLAB [18].

For example, in the case of two-dimensional inputs as
shown in Figure 1, there are 26 BG cells. Correspondingly,
26 training points are selected, only the extra 26 circuit
simulations are needed to get training samples. As a result,
totally 152 circuit simulations (126 initial referential points
and 26 training points) are required to construct the trained
BRB with two-dimensional inputs.

4. Tolerance Optimization Methods

In this section, the proposed BRB can be used to identify the
optimal feasibility region from the acceptability regions based
on the design criterion of maximizing volume of tolerance
region.

4.1. Choosing Initial Solution of Optimization. Firstly, we
have to select an available point and its tolerance from the
acceptability region as the initial solution of optimization,
since an arbitrary initial point and its tolerance may cause
the optimization process which is time-consuming and even
becomes trapped in the local optima [3]. �ere are two ways
of choosing the initial solution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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9

Inside point

Find out the

u1

u
2

uI = (5, 6), tI = (1, 1)

uI = (8, 5), tI = (3, 1) {x1 = 5, y1 = 11}, {x2 = 4, y2 = 6}

Inside boundary (IB) point

Search the point

�e pair of symmetrical points around
uI = (8, 5) maximizing volume of tolerance,initial solution

Figure 2: Searching for the initial solution of optimization in the
inside points.

�e �rst way is to seek the initial solution directly from
the inside points and inside boundary (IB) points thatwehave
obtained by circuit simulations.

For �-dimensional space of design parameters, let $� ={��� | L = 1, 2, . . . , M} be the set including a total of M inside

points and IB points in which ��� = (���,1, ���,2, . . . , ���,�). Set��� as the central point and search the other points on its both
sides along every coordinate direction of the�-dimensional
space. In the �th coordinate direction, we can �nd a certain
pair of symmetrical points around ���; their values in the �th
coordination is denoted as N�,� and O�,�, respectively. Because
of symmetrical characteristic, we have |���,� − N�,�| = |���,� −O�,�| and de�ne ���,� = |���,� − N�,�| as the tolerance of ��� in
the �th coordinate. �us, we need to search all pairs of the
symmetrical points about ��� in all coordinate directions and

�nd out such a tolerance vector ��� = (���,1, ���,2, . . . , ���,�) such
that (2���,1 × 2���,2 × ⋅ ⋅ ⋅ × 2���,�) is the maximum volume. ForL = 1, 2, . . . , M, the initial solution of optimization can be
found in $� which has the maximum volume of tolerance.

Let us take the 2-dimensional space as an example.
Figure 2 shows the inside points and IB points in Figure 1.
Searching every point, we can determine that the initial

solution is �� = (8, 5), �� = (3, 1). Compared with the other
points (e.g., �� = (5, 6)), �� = (8, 5) has themaximum volume
of tolerance (2 ⋅ 3 × 2 ⋅ 1 = 12).

Instead of circuit simulations, we use the proposedBRB to
estimatemore inside points so as to increase the density of the
cast points in the acceptability region. Hence, the second way
is to search for the initial solution from these estimated points
using the above procedure given in the �rst way. Obviously,
the initial solution got by the second way is more accurate
than that got by the �rst way, but it needsmore computational
loads.

Note that, if there are multiple disconnected acceptability
regions in the parameter space $�; then the above two ways
can be implemented in every acceptability region to obtain
the corresponding initial solution.
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4.2. Specifying the Objective Function. According to the crite-
rion of maximizing volume of tolerance region, the objective
function can be de�ned as

max (� (��))
subject to �� ⊆ ��. (20)

From (2), (3), and (17), it can be translated into

max
�0,�

�∏
�
(2��) , �0 = (�0 1, �0 2, . . . , �0 �) ,

� = (�1, �2, . . . , ��)
s.t. Lb ≤ �BRB (�0 1 ± ( �1!1) , �0 2 ± (

�2!2) , . . . ,
�0 � ± ( ��!�)) ≤ Ub,

Lb ≤ �BRB (�0 1 ± ( �1!1) , �0 2, . . . , �0 �) ≤ Ub,
Lb ≤ �BRB (�0 1, �0 2 ± ( �2!2) , . . . , �0 �) ≤ Ub, . . . ,
Lb ≤ �BRB (�0 1, �0 2, . . . , �0 � ± ( ��!�)) ≤ Ub,

0 ≤ �� ≤ ub� − lb�2 ,
for � = 1, 2, . . . , �; !1 = 1, 2, . . . , U,
!2 = 1, 2, . . . , U, . . . , !� = 1, 2, . . . , U.

(21)

�� is a cube (� = 3) or a hypercube (� > 3). Hence, if �� is
convex, then U = 1. We only need to ensure that 2� vertexes
of �� fall into the acceptability region��. If �� is nonconvex,
then U ⩾ 2 because it is necessary that the extra (2U)� +2U�−2� points on the� sides of ��must fall into��.U can
be taken according to experts’ experiences about the shape
of �� and the tradeo between the computational burden
and accuracy of optimization. �e initial �0 and � is given by
the methods in Section 4.1. Similar with the optimization of
the BRBparameters in Section 3.3, the tolerance optimization
also can be solved by the fmincon function in the MATLAB.

5. Numerical Studies

In this section, two numerical studies and an industrial case
are given to illustrate the procedure of using the BRB system
to solve tolerance design problem.

5.1. Two-Dimensional Rosenbrock Function Example. �e
Rosenbrock function is a well-known benchmark for assess-
ing nonlinear numerical optimization algorithms [22]. In
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Figure 3: �e acceptability regions ��,1, ��,2 and IB, EB inside and
training points.

our context, the two-dimensional Rosenbrock function is
considered as the performance function to construct the
nonconvex and disconnected acceptability regions. �e pro-
posedmethod can be tested using these complex acceptability
regions.

Set the acceptability regions as

�� = {� | 5 ≤ � (�) ≤ 10} . (22)

Here, the performance function is

� (�) = 100 (�2 − �21)2 + (1 − �1)2 . (23)

�e design parameters are −0.4 ⩽ �1 ⩽ +0.4, −0.4 ⩽�2 ⩽ +0.4, � = (�1, �2). From Figure 3, it can be seen that
the �� includes two disconnected and nonconvex subregions
denoted as ��,1 and ��,2, respectively.

According to the procedure of building BRB system given
in Section 3, suppose 17 referential values are uniformly
selected for the two design parameters�1 and�2, respectively;
we then have 172 initial referential points in $� = {� =(�1, �2) | −0.4 ⩽ �� ⩽ 0.4�, � = 1, 2}. �e corresponding
289 circuit simulations are implemented to generate the
initial referential performance outputs. In this numerical
example, the circuit simulations are replaced by calculations
of analytical formula (23). Based on the constraints given by
(22), the 68 inside pints and 65 IB points are picked out from
the 289 initial referential points as shown in Figure 3. Here,
the �-means clustering algorithm is used to divide these 289
points into two parts so as to recognize ��,1 and ��,2. �us,



Mathematical Problems in Engineering 7

Table 2: �e partial parameters of the initial rule base.

� ��,1 ��,2 ��,1 ��,2 ��,3 ��,4 ��,5 ��,6 ��,7
1 −0.4 −0.15 0 0 0 0 0.215 0.785 0

2 −0.4 −0.1 0 0 0 0.64 0.36 0 0

3 −0.4 −0.05 0 0 0.815 0.185 0 0 0

4 −0.4 0 0 0.74 0.26 0 0 0 0

5 −0.4 0.3 0.04 0.96 0 0 0 0 0

6 −0.4 0.35 0 0.215 0.785 0 0 0 0

7 −0.4 0.4 0 0 0.14 0.86 0 0 0

8 −0.35 −0.2 0 0 0 0 0 0.8884 0.1116... ... ... ... ... ... ... ... ... ...
121 0.35 −0.1 0 0.3134 0.6866 0 0 0 0

122 0.35 −0.05 0.3009 0.6991 0 0 0 0 0

123 0.35 0.3 0.2134 0.7866 0 0 0 0 0

124 0.35 0.35 0 0.2009 0.7991 0 0 0 0

125 0.35 0.4 0 0 0 0.9384 0.0616 0 0

126 0.4 −0.2 0 0 0 0 0 0.34 0.66

127 0.4 −0.15 0 0 0 0.015 0.985 0 0

128 0.4 −0.1 0 0 0.44 0.56 0 0 0

Table 3: �e partial parameters in the trained rule base.

� ��,1 ��,2 �� ��,1 ��,2 ��,3 ��,4 ��,5 ��,6 ��,7
1 −0.4 −0.15 1 0.0177 0.0005 0 0 0 0.9818 0

2 −0.4 −0.1 1 0 0 0 1 0 0 0

3 −0.4 −0.05 0.9789 0.0411 0.03 0.9289 0 0 0 0

4 −0.4 0 1 0.0982 0.9018 0 0 0 0 0

5 −0.4 0.3 1 0.0118 0.9882 0 0 0 0 0

6 −0.4 0.35 1 0.0185 0.11 0.8715 0 0 0 0

7 −0.4 0.4 0.9990 0.0185 0 0.9815 0 0 0 0

8 −0.35 −0.2 1 0.0283 0 0 0 0 0.9152 0.0565... ... ... ... ... ... ... ... ... ... ...
121 0.35 −0.1 1 0.0308 0.0004 0 0.2358 0.7332 0 0

122 0.35 −0.05 0.9746 0.0625 0 0.9375 0 0 0 0

123 0.35 0.3 0.9990 0.5379 0.4620 0 0 0 0 0

124 0.35 0.35 1 0.0156 0.0587 0.9254 0 0 0 0

125 0.35 0.4 1 0.0158 0 0.1587 0.8255 0 0 0

126 0.4 −0.2 0.9677 0.0391 0.9609 0 0 0 0 0

127 0.4 −0.15 0.9878 0.0429 0.0039 0 0 0 0.2058 0.7474

128 0.4 −0.1 1 0.0308 0.0004 0 0.2355 0.7333 0 0

the 79 EB points can be found out from the 79 BG cells. As a
result, we obtain the sets of antecedent referential values as

 1 = {−0.4, −0.35, −0.3, −0.25, −0.2, −0.15, −0.1, −0.05,
0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4} ,

 2 = {−0.3, −0.25, −0.2, −0.15, −0.1, −0.05, 0, 0.15,
0.2, 0.25, 0.3, 0.35, 0.4} .

(24)

�e referential values of parameter input �� = (��,1, ��,2),�� ∈  1 ×  2, � = 1, 2, . . . , �, � = 128. By (8), we have

Lb� = 2, Ub� = 14. Suppose & = 7 referential values of
performance output are uniformly taken from the interval

[Lb�,Ub�]; then �1 = 2,�2 = 4, . . . , �7 = 14. �us, we can
construct the initial belief rules by (9) and (10) and list the
partial parameters of the initial rule base in Table 2.

In Table 2, the other parameters �� and �� are set equal to
1, respectively.

Next, set the 79 central points of the BG cells as training
points and then obtain their performance outputs by circuit
simulations as the training samples as shown in Figure 3. By
(18), we can optimize the parameter set of the initial rule
base and get the trained rule base. Table 3 lists the partial
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Table 4: Comparisons of the optimization results for ��,1.
��� ���,BRB ���,BRB�� �� ��BRB ��BRB re�BRB ��BRB ��BRB re�BRB

(−0.026, 0.266) (0.186, 0.033) (−0.0255, 0.265) (0.191, 0.035) 4.4% (−0.02, 0.26) (0.15, 0.04) 20.3%

Table 5: Comparisons of the optimization results for ��,2.
��� ���,BRB ���,BRB�� �� ��BRB ��BRB re�BRB ��BRB ��BRB re�BRB

(0.0164, −0.234) (0.182, 0.033) (0.0195, 0.234) (0.185, 0.034) 2.4% (0.02, −0.24) (0.14, 0.04) 22.1%
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Figure 4:�e relative errors of the initial BRB and the trained BRB.

parameters obtained by training; here, a�er training, �� is still
equal to 1 for � = 1, 2.

Weuniformly select 404 sample points from��,1 and��,2
and calculate their performance outputs by the initial BRB
and trained BRB. Figure 4 shows the relative errors of the
trained BRB and the initial BRB, respectively. Obviously, the
training process improves the estimation accuracy of the BRB
system.

A�er obtaining the trained BRB, the next step is to
optimize tolerances by the proposed method in Section 4.
Firstly, according to the secondway introduced in Section 4.1,
we reuse the inside points in Figure 4 generated by the trained

BRB to �nd out the initial solution ���,BRB of optimization.
Secondly, by using the objective function (U = 10) in (21), we
can get the optimal result ���,BRB together with the optimal��� by circuit simulations shown in Figure 5. Tables 4 and 5

list ���,BRB, ���,BRB, ���, and the relative errors re�BRB and re�BRB
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Figure 5:�e approximation of �� and optimization of �� by using
the trained BRB.

between the estimated ���,BRB, ���,BRB, and ��� for ��,1 and��,2, respectively. Here, re�BRB is de�ned as

re�BRB = 100% × 1�
�∑
�=1
((�����(��� − ��� ) − (��BRB,� − ��BRB�)�����
+ �����(��� + ��� ) − (��BRB,� + ��BRB,�)�����)
⋅ (2��� )−1) .

(25)

re�BRB can be gotten using the same way, in this example,� =2. Obviously, ���,BRB is very close to the optimal ���.
5.2. Eight-Dimensional Quadratic Performance Function. In
the yield estimation of integrated circuits, the high-dimen-
sional quadratics or higher order polynomials are usually
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Table 6: Comparisons of the optimization results for ��.
��� ���,BRB ���,BRB� ��� ��� ��BRB,� ��BRB,� re�BRB ��BRB,� ��BRB,� re�BRB

1 4.9929 0.0738 4.9891 0.0743

5.8%

4.99 0.065

43.2%

2 4.9913 0.0887 4.9896 0.0889 4.99 0.065

3 4.9994 0.0157 4.9969 0.0164 4.99 0.045

4 4.9925 0.0774 4.9891 0.0778 4.99 0.065

5 4.9922 0.0802 4.9893 0.0808 4.99 0.065

6 4.9928 0.0747 4.9891 0.0753 4.99 0.055

7 4.9915 0.0868 4.9895 0.0872 4.99 0.055

8 4.9940 0.0642 4.9888 0.0652 4.99 0.05

used to model the performances of interest. Here, we give
an eight-dimensional quadratic function to test the pro-
posed method. Without loss of generality, assume a circuit
performance can be expressed as an 8-dimension quadratic
function whose symmetric matrixes are diagonal or block
diagonal [6, 25, 26]. �e function for this example is taken as

� (�) = X0 + "� + 12��Y�, (26)

where X0 = 6 and matrices " andY are as follows:

" = [−1 1 0 2 3 1 2 4] ,

Y =
[[[[[[[[[[
[

1 2 0 0 0 0 0 02 −1 0 0 0 0 0 00 0 4 7 0 0 0 00 0 3 −3 0 0 0 00 0 0 0 1 −5 0 00 0 0 0 6 2 0 00 0 0 0 0 0 1 10 0 0 0 0 0 −1 3

]]]]]]]]]]
]

. (27)

Set the acceptability region as

�� = {� | 346 ≤ � (�) ≤ 360} . (28)

�e design parameter vector � = (�1, �2, . . . , �8), $� ={� | 4.5 ⩽ �� ⩽ 5.5�, � = 1, 2, . . . , 8}.
Suppose the numbers of the referential values uniformly

selected for �� are "� = 3 for � = 1, 4, 6, 8 and "� = 3 for� = 2, 3, 5, 7, respectively. �e corresponding 1296 circuit
simulations are implemented to generate the initial referential
performance outputs. Based on the constraints given by (28),
165 IB points are picked out from 1296 initial referential
points. �us, 458 EB points can be found out. As a result,
we obtain the initial rule base consisting of 623 belief rules,
in which & = 26 referential values of performance output are
uniformly taken from the interval [Lb�,Ub�]; here, Lb� = 302,
Ub� = 406, and then �1 = 302,�2 = 306, . . . , �26 = 406.
�e rule weights and attribute weights are all set equal to 1,
respectively.

By testing the selected 1373 sample points in ��, the
maximum of the relative errors of the initial BRB is only
0.25%; it is accurate enough for tolerance design. Hence,
the training process is not implemented any longer so as to

reduce the computational burden. According to the second
way introduced in Section 4.1, we reuse the 1373 sample
points in �� generated by the initial BRB to �nd out the

initial solution ���,BRB of optimization. Secondly, by using
the objective function in (21) (U = 2), we can get the
optimal result ���,BRB together with the optimal ��� by circuit
simulations. Table 6 lists ���,BRB, ���,BRB, ���, and d�BRB and d�BRB
between the estimated ���,BRB, ���,BRB, and ��� respectively.
Obviously, ���,BRB accurately approximates the optimal ���.
5.3. Application in the Tolerance Design of Railway Track
Circuit. Railway track circuit is an essential component of
information transmission system between track and vehicle
and the automatic train control system [6, 27]. It uses a
speci�c carrier frequency to transmit the coded control infor-
mation to the train. �e application considered in this paper
concerns the parameters designs of the insulating section of
a jointless track circuit named as ZPW 2000A widely used
on Chinese high-speed railway lines. �is device will �rst be
described and the problem addressed will be exposed.

�e railway track is divided into dierent sections. Each
one of them has a speci�c ZPW 2000A consisting of main
track circuit and short track circuit [28] (see Figure 6). In
main track circuit, a transmitter in sending end delivers an
alternating current with the speci�c modulation frequency;
a receiver in receiving end demodulates the currents signal
transmitted along two rails and controls the track relay. �e
short track circuit is an electric insulating section composed
of two tuning units (BA1 and BA2) and a track air-core induc-
tor (SVA), which can achieve good signal insulation between
adjacent track circuits through its resonance characteristic.

Figure 7 shows the schematic diagram of the short track
circuit of G2. We take the analysis of the resonance perfor-
mance of the tuning unit 2 (BA2) as an example. &2 e2 e3
parallel resonance with the track inductance &V happens at
its frequency 2300Hz. &V is given as &V = 0.5& + 0.5&//&g.&(CY) and &g(CY) are respective inductance values of rails
and SVA in short track circuit of G2. “//” denotes parallel
operator. �e impedance value of &2 e2 e3 &V circuit gets
to maximum about 2Ω. It is equivalent to “open circuit” and
reduces the attenuation of G2 signal intensity. In our context,
parallel resonance frequency �(&2, e2, e3) is considered as
the performance function. In practical parameters designs, it
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Table 7: Comparisons of the optimization results for ��.
��� ���,BRB ���,BRB� ��� ��� ��BRB,� ��BRB,� re�BRB ��BRB,� ��BRB,� re�BRB

1 97.0506 0.5335 97.0153 0.5402

6.5%

96.9 0.6

11.1%2 91.0297 0.8900 91.1083 0.8917 91 0.9

3 262.2203 1.1877 262.2363 1.2363 262.2 1.2
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Figure 7: �e short track circuit of G2.

is generally required that the nominal values of � is 2300Hz
[28].�emaximum frequency dri�s are ±11 Hz. So we set the
acceptability region as

�� = {� | 2289Hz ≤ � (�) ≤ 2311Hz} . (29)

Here, the design parameters �1 = &2, �2 = e2, �3 = e3,� = (�1, �2, �3), and $� = {� | 96CY ⩽ �1 ⩽ 98CY, 88Ci ⩽�2 ⩽ 92Ci, 261Ci ⩽ �3 ⩽ 264Ci}. �e whole circuit model
of ZPW 2000A has been built using the so�ware Simulink in
[29]. Here, we can use the Simulink-based circuit simulator
to generate the simulation data of performance output �(�).

We uniformly select "1 = 7, "2 = 9, and "3 = 8 referential
values for �1, �2, and �3, respectively. �e corresponding 504

circuit simulations are implemented to generate the initial
referential performance outputs. Based on the constraints
given by (29), 347 inside points and 41 IB points are picked
out from the 504 initial referential points. �us, the 41 EB
points can be found out. As a result, we obtain the initial rule
base consisting of 429 belief rules, in which & = 10 referential
values of performance output are uniformly taken from the

interval [Lb�,Ub�]; here, Lb� = 2287, Ub� = 2314, and then�1 = 2287, �2 = 2290, . . . , �10 = 2314. �e rule weights and
attribute weights are all set equal to 1, respectively.

Similar with example 2, the given initial BRB is accurate
enough for tolerance design, so the training process is
cancelled. Figure 8 shows the approximated �� which is a
complex polyhedron. �e selected 2470 sample points are
generated by the initial BRB, which are used to seek for the

initial solution ���,BRB. Using the objective function in (21)
(U = 2), we can get the optimal result ���,BRB (see Figure 8)
togetherwith the optimal��� by Simulink simulations. Table 7

lists ���,BRB, ���,BRB, ���, and d�BRB and d�BRB between the esti-

mated ���,BRB, ���,BRB, and ���, respectively. Obviously, ���,BRB
accurately approximates the optimal ���.
6. Conclusions

In this paper, a BRB system is designed to model the accept-
ability region and optimize the feasibility region of circuit
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Figure 8: �e approximated �� and the optimal �� given by the
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parameters so that the volume of the tolerance region of the
circuit can be maximized. Its virtues can be demonstrated by
several examples in this paper.

�e main advantages of this new method are as follows.

(i) �e physical meanings of the parameters and struc-
tures of the BRB system are transparent and intu-
itively easy to understand by experts and engineers,
so they can participate in the main steps of system
modeling (e.g., determining the number of rules by
considering the inside points and IB points, choosing
the training samples from the BG cells, and determin-
ing the attribute weights and rule weights).

(ii) �e proposed BRB system is applicable to complex
cases, such as highly nonlinear performance function
and nonconvex and disconnected feasibility regions.

(iii) �e proposed optimization algorithm provides alter-
native ways to obtain the initial solutions of the
optimization problem so as to avoid local optimawith
a higher chance and improve the e�ciency of the
algorithm.

Like all other deterministic methods, the proposed
method also suers from exponential explosion of compu-
tational costs when the dimension of a design parameter
space increases. However, when there are strong correlations
between the design parameters, the correlation analysis
methods can be used to �nd out less independent variables or
principal components so as to reduce the dimension of design
parameter space as analyzed in [30].
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