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Many parameters driving the behavior of biochemical circuits vary
extensively and are thus not fine-tuned. Therefore, the topology of
such circuits (the who-interacts-with-whom) is key to understand-
ing their central properties. I here explore several hundred differ-
ent topologies of a simple biochemical model of circadian oscilla-
tions to ask two questions: Do different circuits differ dramatically
in their robustness to parameter change? If so, can a process of
gradual molecular evolution find highly robust topologies when
starting from less robust topologies? I find that the distribution of
robustness among different circuit topologies is highly skewed:
Most show low robustness, whereas very few topologies are
highly robust. To address the second evolutionary question, I
define a topology graph, each of whose nodes corresponds to one
circuit topology that shows circadian oscillations. Two nodes in this
graph are connected if they differ by only one regulatory interac-
tion within the circuit. For the circadian oscillator I study, most
topologies are connected in this graph, making evolutionary tran-
sitions from low to high robustness easy. A similar approach has
been used to study the evolution of robustness in biological
macromolecules, with similar results. This suggests that the same
principles govern the evolution of robustness on different levels of
biological organization. The regulatory interlocking of several
oscillating gene products in biological circadian oscillators may
exist because it provides robustness.

complexity � gene networks

Quantitative models of cellular circuits have recently expe-
rienced a renaissance. Such models help understand pro-

cesses as different as bacterial chemotaxis (1), circadian rhythms
(2–10), organismal development (11–15), and the behavior of
synthetic circuitry (16–19). Most such models represent biolog-
ical circuits through differential equations. The state variables in
these equations correspond to the concentrations or activities of
gene products. The interactions of these gene products are
represented through biochemical parameters such as binding
affinities of transcriptional regulators to DNA, dissociation
constants of ligand–receptor complexes, or kinetic rate constants
of enzymes. A nearly universal problem is that quantitative
information about these biochemical parameters is absent, even
for experimentally well studied systems. In other words, some
knowledge on the topology of a circuit, who interacts with whom,
may exist, but the strengths of the interactions are usually
unknown. Even where measurements of biochemical parameters
are available, they are often order-of-magnitude estimates rather
than quantitative measurements with known precision. Sets of
parameters that reproduce experimentally known phenomena
may or may not reflect biological realities.

In a living organism, all biochemical parameters that determine
the behavior of a cellular circuit change continually. Such change
has three sources: mutations, noise internal to the organism, and
environmental change. Mutations are relatively rare. In contrast,
internal noise is ubiquitous and substantial. Much of it consists of
stochastic variation in gene expression and expression regulation
(20–25). Such noise makes all biochemical parameters affecting a
circuit’s behavior appear to fluctuate randomly. Environmental
change, such as a change in temperature, salinity, or nutrient

availability, can similarly affect many parameters at once. These
observations suggest that biological circuits are not fine-tuned to
exercise their functions only for precise values of their biochemical
parameters. Instead, they must be able to function under a range of
different parameters. In other words, they must be robust to
parameter change. These insights have led to explorations of the
robustness of circuits in processes as different as bacterial chemo-
taxis and embryonic development (1, 11, 12, 15, 26–31).

Incessant parameter change and the resulting requirement for
robust circuit functioning have one important implication: They
render robust circuit architectures or topologies (instead of differ-
ent parameters within one topology) an important subject of study
(12, 14, 15). The focus of this contribution is such an analysis for
several hundred variants of a cellular circuit model that has been
successfully used to describe circadian rhythms in different organ-
isms (6, 32, 33).

Circadian rhythms are activity cycles with a period of �24 h.
Their phase can typically be changed by light stimuli, but they often
also continue to operate when such stimuli are absent, such as in
constant light or darkness. In recent years, the molecular mecha-
nisms behind these clocks have begun to be characterized in
multiple organisms (34, 35). Despite limited conservation of clock
genes (35), circadian clocks exhibit two important similarities. First,
the principal clock mechanism is simple. It minimally involves one
gene that is expressed to produce a mRNA and a protein product
that may undergo further modification and exerts direct or indirect
negative feedback on the expression of its own gene. Examples
include the frequency ( frq) gene in the fungus Neurospora crassa, the
timeless (tim) gene in the fruit fly Drosophila melanogaster, and the
kaiC gene in the cyanobacterium Synechococcus spp (36–38). This
simple mechanism will generate sustained oscillations in protein
concentrations only if the negative feedback is slow. That is, there
must be a delay between the time at which the gene product’s
concentration rises because of its expression and the time at which
the gene product represses its own expression. At least two mech-
anisms can cause such a delay, multistep processing of gene
products and strong cooperativity in gene regulation. If, for exam-
ple, the repression step is cooperative, then repression may become
effective only after the protein’s concentration has reached a critical
threshold. The two mechanisms are equivalent in that they can
cause the feedback delay necessary for oscillation. Unfortunately, it
is not clear which of these mechanisms is prevalent in living cells.
Pertinent information is available only in some cases. For example,
the promoter of the Drosophila tim gene contains the closely spaced
transcription factor-binding sites that are indicative of cooperative
transcriptional regulation (39). The second common feature of
many circadian oscillators is that they consist of not one but two or
more oscillating gene products whose regulation is linked. This
holds in organisms as different as the fungus Neurospora, the fruit
fly Drosophila, and mammals (34, 35, 40–44).
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My point of departure is whether interlocked circadian oscillators
may be an accident of life’s history (there are infinitely many ways
to obtain limit cycle oscillations in regulatory systems), or whether
such interlocking may exist because it provides especially robust
oscillations (3, 4, 10, 26, 27). I explore this question by extending a
well established model for an elementary circadian oscillator (45)
involving one gene and three of its products to a two-gene six-
product oscillator, which allows several hundred different circuit
topologies that differ in how gene products regulate each other’s
activity. Are differences in robustness among these topologies
slight, or are some topologies much more robust than others? If so,
what are the robust topologies? Are similar topologies also similarly
robust? After having asked these questions, I ask an even more
important one: Can evolutionary searches in a space of possible
circuit topologies discover highly robust topologies when starting
from circuits with low or intermediate robustness?

Methods and Results
Many Topological Variants of a Simple Oscillator Model. The basic
oscillator module I use is a Goodwin oscillator (45), which has been
successfully used to model circadian oscillations in the fungus
N. crassa. Not only can it exhibit stable circadian oscillations of an
appropriate frequency, but it also correctly predicts the response of
circadian rhythms to stimuli such as temperature pulses, light
pulses, and an inhibitor of protein synthesis (6, 32, 33). In this

elementary oscillator, a gene expresses a mRNA molecule R that
is translated into protein P. This protein is modified, such as through
dimerization or phosphorylation, to generate an inhibitor P� of its
own expression. Why use this simple oscillator and not one of
several other oscillator models that have been developed in recent
years (2–5, 8, 10, 46)? First, all available models contain uncon-
firmed biochemical assumptions and are thus no less phenomeno-
logical than the model I use. In addition, these others have one
disadvantage: They involve many more parameters, which makes
them intractable for the purpose of exploring many different circuit
topologies.

I here first explore how the ubiquitous regulatory linking (34,
35) of oscillatory molecules may affect the robustness of circa-
dian oscillations. I do so in the simplest possible scenario, that
of two gene products that can regulate each other’s expression
or activity either transcriptionally or posttranscriptionally (Fig.
1a and Supporting Text, which is published as supporting infor-
mation on the PNAS web site). The behavior of each circuit is
determined by between 10 and 16 different parameters, depend-
ing on circuit topology. Even for this simple system, there are
�700 possible circuit topologies or ways of regulatory linkage
between the molecules involved. Notice that the system of Fig.
1a (equation 2 in Supporting Text) is not simply a coupled
oscillator. The reason is that in some topologies, the feedback of
Pi

� on Ri
� is absent, such that the systems (R1, P1, P1�) and (R2, P2,

Fig. 1. Different oscillator topologies vary greatly in their robustness. (a) Circadian oscillator topologies. Shown are six molecular species (circles) that are the
mRNA (R) and protein (P) products of two genes, 1 and 2. The upper and lower solid vertical arrows represent translation and posttranslational modification,
respectively, of these species. Arrows terminated by a crossbar indicate that a regulatory interaction can be either activatory or inhibitory. Solid lines indicate
interactions that are present in all of the circuit topologies examined here. Dashed lines indicate regulatory interactions that may be present or absent, depending
on topology. There are six such regulatory interactions, each of which can be activating, repressing, or absent. This amounts to a total of 378 possible circuit
topologies that I explore here (36 � 729 total topologies minus symmetric topologies, as defined in Supporting Text). (b) Histogram of the fractional parameter
space volume P leading to oscillatory solutions for 201 topologies for which at least one in 5 � 103 randomly chosen parameter combinations leads to oscillatory
solutions. (c) Statistical association between the number of parameters and P. (d) Statistical association between the number of parameters and eln P/k.
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P2�) would not oscillate when considered separately, yet the
interaction between them leads to oscillations.

Different Topologies Have a Highly Skewed Distribution of the Like-
lihood P to Produce Circadian Oscillations. Biological circadian os-
cillators have two germane features: a stable oscillatory period of
�24 h and entrainability, the sensitivity of the oscillation’s phase to
periodic lighting. The second feature is realized in very different
ways in different organisms and would require an organism-specific
model. For reasons of tractability, I thus focused on the first of these
features, which is a necessary prerequisite for all circadian oscilla-
tors. For each possible circuit topology (Fig. 1a), I chose 5 � 103

parameter combinations at random from a parameter space within
which circadian oscillations are known to occur (6, 32, 33) for the
elementary oscillator (Ri, Pi, Pi

�). For each of these parameter
combinations, I examined whether the circuit adopts limit cycle
oscillations with a period of �24 h. Limit cycle oscillations have two
features typical of circadian oscillators: they are stable to minor
perturbations of regulator concentrations, and they persist over
time even when the organism is not subject to periodic driving
forces (e.g., light exposure) (34, 47). The fraction of randomly
chosen parameters that yield circadian oscillations is an estimate of
the fractional volume (P) of parameter space that admits such
oscillations. I show in Fig. 4, which is published as supporting
information on the PNAS web site, that P can serve as a proxy for
a circuit’s robustness to perturbations: Changing parameters at
random in a topology with high P is more likely to yield a parameter
combination leading to circadian oscillations than in a topology
with low P.

Fig. 1b shows the distribution of P for those 201 circuit topologies
where at least one in 5 � 103 randomly chosen parameter combi-
nations yields circadian oscillations. At least two features of this
distribution are worth pointing out. First, P varies not slightly but
dramatically among different topologies. Specifically, P varies by
nearly 2 orders of magnitude among circuit topologies. For some
topologies, only one or a few of the thousands of randomly chosen
parameter combinations yield circadian oscillations. For others,
�5% of parameter combinations yield such oscillations. Another
striking feature of this distribution is its skewness. For the vast
majority of topologies, only a small fraction P of parameters yield
circadian oscillations. In contrast, a small number of topologies
have a large P. For example, only 4.5% (9) topologies have P � 0.02.
Fig. 5, which is published as supporting information on the PNAS
web site, shows and briefly discusses nine among the topologies with
the highest associated P. The topology (not shown) for which
species one and two oscillate separately and do not affect each
other’s concentration is �1 order of magnitude less robust than the
most robust topologies. The increased complexity of interlocking
oscillators may thus not be an accident of natural history: It may
indeed provide greater robustness to mutation than single oscilla-
tors (3, 10, 48).

The skewness evident from Fig. 1b is not an artifact of the specific
conditions for which I evaluated the behavior of the oscillator. It is
observed for different tolerances in the oscillator period, for
different allowed minimum and maximum amplitudes in the oscil-
lations, for different initial conditions, and for different degrees of
cooperativity in the regulatory interactions modeled.

The Skewed Distribution of P Is Not Just the Result of Varying Numbers
of Parameters. An obvious candidate explanation for the dramatic
differences in P among circuit topologies is their differences in the
number of parameters. For a circuit topology with many regulatory
interactions, and thus more parameters, a randomly chosen param-
eter combination might be much less likely to yield stable oscillatory
behavior of the right period. However, Fig. 1c shows this is not the
case. Fig. 1c plots P against the number of parameters k in a
topology and shows a nonsignificant statistical association between
the two (Spearman s � �0.05; P � 0.5). Fig. 1d shows a comple-

mentary analysis based on the following considerations. If along
each axis of parameter space the same proportion or fraction p of
randomly chosen parameters were to admit oscillatory solutions,
then P � pk, and p � eln P/k. Although p is almost certain to vary
among different parameters (48), eln P/k can still be thought of as a
per-parameter likelihood of finding circadian oscillations in a
random search of parameter space, or as a per-parameter robust-
ness of a circuit topology. Fig. 1d plots eln P/k against the number of
parameters k. Strikingly, p does not decrease but increases with the
number of parameters: The more complex a topology is, the more
likely it will yield oscillatory solutions. At the same time, both Fig.
1 c and d show that for any given number of parameters k, there is
wide variation of P and eln P/k

. Variation in the number of param-
eters alone can thus not explain variation in robustness.

Robust Topologies Are Connected in a Topology Network. Much like
in any kind of cellular circuit, genetic change in a circadian oscillator
can take place in two different ways: First, it can affect biochemical
parameters within a given oscillator topology. Second, it can
generate new oscillator topologies through mutations that eliminate
or add regulatory interactions. This second kind of change is
frequent enough to be of evolutionary relevance (49).

The key evolutionary question with respect to robust oscillator
topologies is whether a blindly groping evolutionary search could
ever find such robust circuit topologies. This question is best posed
by considering the following graph or network representation of
oscillator topologies. Consider a graph where each node corre-
sponds to an oscillator topology that is capable of displaying
circadian oscillations. Connect two nodes (topologies) by an edge if
the two topologies differ by only one regulatory interaction (Fig.
2a). Such neighboring topologies can arise from each other by
genetic change that affects only one regulatory interaction. The
question whether robust oscillator topologies can be found through
a series of such changes, i.e., through gradual evolution, is a question
about the structure of this graph. There is a spectrum of possibilities
with two extremes. First, the nodes (oscillator topologies) of this
graph may be disconnected. That is, a topology capable of circadian
oscillations has no neighboring topologies also capable of producing
such oscillations. This would mean that robust topologies cannot be
reached from less robust topologies, because functional oscillators
are isolated islands in this graph. At the opposite extreme, this
graph might consist of one densely connected component, where
any two topologies are connected by a path of edges. In this case,
stepwise evolutionary alteration of a circuit topology could start
from any one topology and reach any other topology via interme-
diate topologies that admit circadian oscillations.

Fig. 2b shows an image of this graph for 201 topologies in which
at least a fraction P � 2 � 10�4 of randomly chosen parameter
combinations yielded circadian oscillations. This graph consists of
one connected component. (Any two pairs of topologies in such a
component are connected by a path of edges.) And not only is the
graph connected, its connectivity is high. On average, a node
(topology) in this graph has 7.03 (S.D., 2.29) neighboring topologies
that also yield circadian oscillations. The graph does not contain any
bridges, i.e., edges whose removal causes the graph to become
fragmented into more than one component. Finally, both the edge
and vertex connectivity of this graph are equal to two. This means
that at least two edges or at least two nodes need to be removed to
fragment the graph into two components. Similar topologies, that
is, circuits close together in this graph, also tend to have similar P
(Fig. 6, which is published as supporting information on the PNAS
web site). Perhaps surprisingly, one also finds that the number of
neighbors any one node (topology) has in this graph increases with
P (Fig. 2c; Spearman s � 0.5, P � 10�13). In other words, more
robust oscillator topologies also have more neighboring topologies
that yield circadian oscillations.

The topology graph’s connectedness is preserved if one elimi-
nates from this graph topologies with the lowest robustness, as
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indicated by a low P. Fig. 2d shows an example, the graph including
only nodes (topologies) with P � 0.01. It contains 47 topologies, has
no bridges, and has edge and vertex connectivity of two, exactly like
the graph of Fig. 2b containing all circuits. More generally, if one
varies the threshold P at which a node becomes part of the graph,
one finds threshold values of P for which this topology graph is not
connected. However, the number of disconnected components into
which the graph becomes partitioned is always small (less than five),
regardless of P. In addition, for thresholds of P where the number
of nodes (topologies) exceeds 40, the largest component contains
�94% of all nodes. All this is also consistent with the positive
association between P and a topology’s number of neighbors, and
with the similar P of similar topologies. It also holds for varying
model assumptions, such as for lower tolerance in the oscillator
period, different allowed minimum and maximum amplitudes in
the oscillations, different initial conditions, and different degrees of
cooperativity in the regulatory interactions modeled. It also holds
if the circuit topologies (nodes) to be included in the graph are
identified not by a minimal value of P but through a minimal
robustness to vector and�or scalar perturbation (results not shown).
In sum, circuits of different robustness are connected in graphs of
oscillator topologies that can readily be traversed by changes of
individual regulatory interactions.

Is the structure of this topology graph significantly different from
that of a random graph? For my purpose, a random graph is a graph
with the same number of nodes as the topology graph, but where
the nodes are drawn at random from all possible topologies,
regardless of whether a topology allows circadian oscillations or not.
I first addressed this question by generating 10,000 random graphs
with the same number of nodes as the graph shown in Fig. 2d and
determined the distribution of several different graph statistics for
these 10,000 random graphs. First, both the vertex and the edge
connectivity (as defined above) is two for the graph of Fig. 2d, but
zero for all of the 10,000 random graphs. The reason is that none
of these graphs is connected in the first place. The random graphs
consist of many more and smaller components than the oscillator
topology graph (Fig. 3 a and b; random means � standard error, x�
� s � 21.4 � 0.038, x� � s � 12.02 � 0.053, for number and size of
components, respectively). In addition, they also contain many
more bridges, edges whose removal renders a component discon-
nected (Fig. 3c; x� � s � 21.7 � 0.039). Each of these statistics in the
oscillator topology graph is multiple standard deviations removed
from the mean of the random graphs (Fig. 3). This means that the
graph is much more cohesive than a random graph. To analyze
similarly large samples of much larger graphs is computationally
infeasible. However, a more limited analysis based on a sample of
100 random graphs shows that for all oscillator topology graphs
containing between 100 (P � 1.8 � 10�3) and 15 topologies (P �
1.8 � 10�2), the mean number of components and the size of the
largest component differ by at least 10 standard errors from the
randomized graph. For larger oscillator topology graphs, these two
statistics begin to approach that of a random graph. However, even
for the largest graph examined here (P � 2 � 10�4, Fig. 2a),
structural differences remain. For example, the vertex and edge
connectivity of random graphs is smaller (x� � s � 0.85 � 0.058; n �
65 for both), and the number of bridges is greater (x� � s � 2.9 �

are connected, because they are topological neighbors, i.e., they differ by only
one regulatory interaction (bold arrow in right-hand circle). (b) The structure
of this graph for all oscillator topologies where at least one in 5 � 103 random
parameter combinations yielded circadian oscillations. Topologies (circuits)
with large P are indicated by larger circles and lighter shading than topologies
with small P. (c) Nodes (circuit topologies) with many neighbors in the graph
in Fig. 2a show greater eln P/k. (d) The same graph for those 47 oscillator
topologies where at least one in 100 parameter combinations yielded circa-
dian oscillations.

Fig. 2. A graph connecting circuits of different topology. (a) Illustration of
the concept behind this graph. Shown are two nodes of this graph (large
circles). Each node corresponds to a circuit of a given topology that allows
circadian oscillations (drawings inside the circles). The circuits shown corre-
spond to topologies 19810 and 20710, both of which have P � 0. The two nodes

11778 � www.pnas.org�cgi�doi�10.1073�pnas.0501094102 Wagner



0.23) than in the oscillator topology graph (respective values are 2,
2, and 0 for each of these indicators).

Discussion
In the most elementary biochemical circuits yielding circadian
oscillations, one gene product represses its own synthesis with a

time delay caused by either cooperative repression or multistep
expression regulation (45). I here examine the arguably simplest
possible extension of this circuit. It involves two genes, their
products, and auto- as well as cross-regulation on both the
transcriptional and posttranscriptional level. Even for the small
number of variable transcriptional and posttranscriptional reg-
ulatory interactions, the circuit has several hundred different
topological variants. The fraction P of randomly chosen param-
eter combinations that yield circadian oscillation in any one of
these topologies is a proxy for its robustness to perturbations of
either multiple or single parameters.

P has a skewed distribution: Most topologies have very low
robustness, whereas very few have high robustness. Importantly, in
the most robust topologies, the two genes influence each other’s
expression, and these topologies are �1 order of magnitude more
robust than a topology for which the two gene products do not
influence each other’s expression. This observation, even though
made in the context of a simple model, presents a possible expla-
nation for the abundant regulatory interlocking and coupling of
gene expression in circadian oscillators of living cells. It may be an
example of biological complexity that exists for a reason (50): to
ensure robust behavior, in this case of circadian oscillations. Such
complexity, however, is not a sufficient precondition for robustness:
Many circuit topologies are less robust than the most basic single-
gene oscillators, and others do not permit any circadian oscillations
at all.

These observations suggest that an evolutionary perspective is
necessary to understand whether interlocking of biochemical os-
cillators can lead to increased robustness. If only few two-gene
oscillators have increased robustness or any other desirable feature,
compared with the most elementary oscillator, can natural selection
find these oscillators through gradual genetic change of the regu-
latory structure of a circuit? To address this question, I analyzed the
structure of a graph of circuit topologies. In this graph, a node
corresponds to a circuit topology. Two topologies are immediate
neighbors in the graph if they differ by only one regulatory
interaction. For the circuits examined here, most or all circuit
topologies that yield oscillations exist in one connected component.
This means that gradual evolutionary changes in circuit topology
can generate any circuit topology from any other topology within
such a component, without transitions through circuits that do not
allow circadian oscillations. In addition, more robust topologies also
have more topological neighbors that yield circadian oscillations,
which further facilitates such gradual change. Are circuit topologies
with a desirable property connected in circuit graphs also for many
other types of biological circuits? We do not know. A general
answer to this question would be a major step in our understanding
of how biological circuits can evolve.

The above results show parallels to studies of structural robust-
ness in RNA and proteins (51–58), where graph-based models have
proven very useful in understanding the evolution of robustness.
Briefly, all macromolecules of different amino acids or nucleotide
sequences that adopt the same secondary or tertiary structure can
be represented as a graph. Each node of the graph corresponds to
one individual sequence adopting the structure. Two nodes (se-
quences) are immediate neighbors if they differ by a single amino
acid or nucleotide. Many or all such sequences may be connected
in graph components that can be traversed by single point muta-
tions without ever generating a sequence that does not adopt a given
structure. However, some of the molecules in this graph are more
robust than others to single point mutations. That is, random
changes of individual amino acids or nucleotides in such robust
molecules are less likely to lead to altered structures than such
changes in other sequences. Because structure is a prerequisite for
function, the evolutionary implication is clear: Robust structures
can evolve neutrally, through gradual evolutionary change that
leaves a molecule’s structure unchanged. Analogously, robust cir-
cuit topologies may evolve neutrally. If so, similar principles govern

Fig. 3. Oscillator topology graphs vs. random topology graphs. Shown are
the distributions of three graph characteristics for 10,000 random graphs
whose nodes correspond to circuit topologies (Fig. 2a) compared (vertical
arrows) with the structure of the graph of Fig. 2d, which has 47 nodes, each of
which yields oscillations with P � 0.01. Each random graph was established by
choosing a random sample of 47 of a total of 378 possible topologies and
defining topologies as neighboring that differ by only one regulatory inter-
action. As opposed to the topologies of the oscillator topology graph, many
of these randomly chosen topologies may not yield oscillations. (a) Number of
components (groups of nodes connected to each other but to no other node).
(b) Size of the largest component. (c) Number of bridges.
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the evolution of robustness on different levels of biological
organization.

The work presented here has considerable limitations. Some of
these limitations are biological. First, which is the correct mathe-
matical form of the regulatory interactions among circuit compo-
nents? The time delay afforded by multistep processing and coop-
erative regulation occurs in many regulatory phenomena, but its
mechanistic basis is still unknown. Second, can all of the circuit
types examined here be biochemically realized? Both transcrip-
tional regulation and some forms of posttranscriptional regulation
such as protein phosphorylation rely on short signal sequences in a
(DNA or protein) target molecule. This suggests that evolution has
considerable flexibility in exploring alternative circuit topologies,
but there may be some circuit architectures that it cannot ‘‘access.’’
Third, I do not explicitly address temperature compensation, an
important aspect of the robustness of circadian oscillators, whose
mechanistic basis is also unknown. However, the kind of robustness
I examine here may contribute to temperature compensation,
because a network more robust to random fluctuations in all
parameters will also show better temperature compensation.
Fourth, many biological circuits and their parts are multifunctional.
By necessity, their analysis often focuses on one or a few functions,
and robustness of this function does not necessarily mean robust-
ness of other functions. However, the robustness of one function
may allow the network to acquire other functions (14, 58). Finally,
and most importantly, which quantitative oscillator model is the
correct one? We do not know, because the biochemical interactions
among oscillator components are not fully understood for any
organism.

A second class of limitations is computational. Because of
these limitations, one can explore only a limited number of
alternative circuit topologies; one can sample only a limited
region of parameter space; one has to restrict oneself to some
criteria of circuit functioning (stable oscillations of an appro-
priate period) at the expense of others (oscillator entrainment by
light); and one can explore only a very limited number of model
variations. These limitations also preclude precise estimates of
the examined topologies’ robustness to mutations.

If the results reported here have not identified one model of
circadian oscillations as the correct or most robust one, what, then,
is their value? First, they point to the importance of an evolutionary
perspective: Although circuits with a desirable feature may exist, it
may be impossible to reach them through gradual evolution from
other circuits. Only if many different circuit types are connected in
a graph like that of Fig. 2 a and d does such evolution become
possible. Another glance at simple models of protein and RNA
folding serves to make a second point (51–58). Such models may not
have explained the folding properties of any one macromolecule.
Instead, they point to general principles important for the folding
and robustness of all macromolecules. Future work may show
whether the simple principles identified here, great differences in
robustness among different circuits and evolutionary accessibility of
robust circuits, hold for many genetic circuits.
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