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Circuit Waveforms for Periodic Waves 

D. L. WAIDELICH 
FELLOW IEEE 

Summary: A method usiug steady-state 
-trausforms is described which indicates 
how the sum function of a Fourier series 
may be obtained. The method can be 
applied to problems arising from circuits 
containing concentrated circuit parameters, 

but is uot quite so useful for those having 
distributed parameters. Tables of Fourier 
series and their sum functions are presented, 
and several examples of the application of 
the method in circuit problem~ are given 
in this paper. 

IN THE CIRCUIT theory of linear 
networks the use of nonsinusoidal 

periodic waves usually leads to a Fourier 
series representation of voltages and cur-
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rents. The series is useful in determining 
th'e amplitude and phase of the harmonic 
voltages and currents, but it is not very 
useful in determining the waveforms of 
the voltages and currents. The sum func-
tion of the Fourier series might be defined 
as the repetitive waveform in the time 
domain, or, alternately, the closed-form 
expression of the sum of the Fourier series. 
If the sum function is known, the required 
waveform may be reproduced with ease . 
The sum function may be obtained in 
various ways, 1- 9 although none of the 
methods seem to be well known, prob-
ably because of their difficulty. The pur-
pose of this paper is to recover the wave-
form from the Fourier series, and this will 
be done by presenting another method of 
summing Fourier series and giving some 
examples of how the method may be 
used in circuit theory. The method 
consists of changing the Fourier series into 
a steady-state transform;10-11 and then 
evaluating the transform by residues10 or 
by using a table of steady-state trans-
forms. 6· 12 It is believed that this method 
using the transform tables will provide a 
comparatively simple way of obtaining 
the required sum function of the Fourier 
series. 

Theory 

The direct steady-state transform8 is 

S [f(t )] = JoT e-P'j(t)dt = F(p) (1) 

where f(t) is given in the time interval 
O<t<T and p is a complex variable. 
The inverse transform is 

s-1[F(p)] =~ { eP'F(~)!P f(t) (2) 
21rJ Jw 1-e P 

where W is the contour in the complex 
p plane shown in Fig. 1. The evaluation 
of equation 2 is presented in some detail 
in the Appendix. If equation 2 is eval-
uated at the poles p = Pn = (j21rn/T) 
within W where n is an integer (n=O, 
± 1, ±2, ... ), the resulting Fourier series 
is 

(t)=i L F(j21rn/T)ei(2,rnt/T) (3) 

or 

1 2 "'"' f(t)= 1J(O)+T .L...J Re[F(j21rn/T)] 
n~l 

cos (21rnt/T)-f L Im[F(j21rn/T)J 
n=l 

sin (2 1rnt/T) ( 4) 

If F(p) has one or more poles at Pn = 

(j21rn/T), then equations 3 and 4 have to 
be modified for the multiple poles and this 
may be done by evaluating equation 2 
directly. The function F(p) may be ob-
tained from the coefficients of the series of 
·equations 3 or 4 by replacing n by 
( - jpT/ 2rr) . The functionf(t) then may 
be evaluated as a sum function 10 by 
evaluating the integral of equation 2 or 
by the use of the steady-state trans-
forms.6· 12 Fortunately, in linear circuit 
theory the F(p) obtained from a given 
Fourier series will not have poles at Pn = 
(j21rn/T) and so the procedure mentioned 
above for multiple poles need not be 
considered. 

As an example showing how the sum 
function may be determined from a 
Fourier series consider 

f(t)= '""(-It(cosnt+ nsinnt) .L...J n2+ 1 (5) 
n=l 

Comparing equation 5 with equation 4 
the following quantities are found : 

T=21r 

1 c-1r 
- Re[F(j21rn/T)] = ~-
,r n 2+ 1 

1 ( - lrn 
- - Im[F(j21rn/T)] =---

1r n•+ 1 

Then 

F(j21rn/T)= ( -lt(l - n)j,r 
n 2+1 

(6) 

and put p = (jz1r2n/T) = jn. The ( - 1) n 
term should be replaced by (e-i")n when-
ever alternating signs are encountered. 

(e-i")-i"(l - p)1r 1re- P" 
F(p)= - p•+1 + P+l (7) 

The quantity [F( 0) /T ] = ( 1r /T) = (1/2) 
and let 

f 1(t) = ! '"" ( - lt(cos nt+n sin nt) 
2 + .L...J n'+l (S) 

n= l 

Fig. 1. The contour of the 
inverse transform 

2 

where 
f(t) = J,(t)-(1/2) (9) 

Now F(p) andf1(t) are a pair of steady-
. state transforms, and if f 1(t) is evaluated 

as the sum function 10 of the Fourier series 
by the use of equation 2 or by the use 
of the steady-state transform tables6-12 
the result is 

j ,re - (1+") 
_,.,,0<t<1r 

1 - e 
J,(t) =l ,re-(t - or) 

( l - e-2.,,..-<t<21r 

or from equations 9 and 10, 

1 
2, 0<t< 1r 

1 
- - 1r<t<2..-

2 

(10) 

(11) 

Equation 11 then is the sum function of 
the fourier series of equation 5. The 
waveform of equation 5 as obtained in 
equation 11 is shown in Fig. 2. 

At first glance it would appear as if any 
Fourier series whose general term could 
be expressed in terms of n could be 
summed by this method, but this is not 
true. If the series cannot be written in 
the form of equation 3 except for a finite 
number of terms, then the sum function 
of the fourier series can not be found by 
this method. An example of a series that 
can not be summed by this method is 

(12) 

If equation 12 is written in the form of 
equation 3, 
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Fig. 2. The waveform of the example of a Fourier series Fig. 3. The waveform of the example involving an essential singularity 

From the first part of equation 13 

1 1 
-F(y·21rn/T) = ---
T 2j(n2 -f,,,1) 

(14) 

while from the second part 

(IS) 

Thus, there is no one analytic function 
F(p) in closed form that can be assigned 
to the series of equation 12 and so the 
sum function in closed form cannot be 
found by using this method. An infinite 
series for F(p) can be obtained, but F(p) 
is not useful in finding the sum function 
in closed form. The constant term is 
missing in equation 13, but this could be 
supplied as was done in equations 5, 8, 
and 9 of the first example. 

Another difficulty that may arise is 
that which occurs often in series corning 
from problems involving distributed 
parameters such as those of transmission 
lines and wave guides. In almost all 
cases the problems arising from linear 
circuit theory with concentrated param-
eters such as resistance, inductance, and 
capacitance involve an F(p) which has a 
finite number of single or multiple poles 
as the singularities in the complex p 
plane. The linear circuit the'ory in-
volving distributed parameters, on the 
other hand, involves an F(p) which may 
have one or more essential singularities 
or branch points in the p plane. 13 This 
F(p), when evaluated as a sum function, 
may lead to another infinite series or to 
an integral which cannot be evaluated in 
terms of known functions. The infinite 
series may or may not be a Fourier series, 
but it may have the advantage that it 
converges faster than the original series, 
and thus, an approximate sum of the series 
may be obtained more quickly. An ex-
ample of this type of Fourier series is 

) L sin (2n- l)t 
f(t = 

(2n-1) cos [(2n-1)1r/3] 
n=l 

(16) 

Before proceeding it is helpful to put 
m = 2n -1 where the summation in equa-
tion 16 is taken over the odd values of m or 

f(t)= """' sin mt 
L...J m cos (m1r/3) 

(17) 
m=l,3,5,7, . . 

Then by comparison with equation 4 

T=21r 

1 
- Re[F(im)] =0 ,r 

1 
- - Im[F(jm)] = 

7r 

1 

mcos(~m) for m=l,3,5,7 .. . 

0 for m=2, 4, 6, 8 ... (18) 

To obtain the required F(p) it is neces-
sary to multiply the imaginary part of 
F(jm) in equation 18 by a function of m 
which takes on the value of unity when m 
is odd, and zero when m is even. One 
such function is 

1 -jm,r -( 1-2. ) and then for all m's 
2 

1 1-e-jm,r 
- - Jm[F(jm)]=---,r 

Now, from equations 18 and 19, 

J. (1 e-jm1r) 
F(jm) = 0- _1r __ -__ _ 

m1r 
2mcos-' 

3 

and putting p = jm 

F(p)= (1-e-P") 
2p cosh (p1r /3) 

From equation 20, 

3 

(19) 

(20) 

(21) 

(l/T)F(0)= ( 1r/4) 

Now let 

f1(t)=(1r/4)+ I: 
m=t,3,6,7, ... 

where 

f(t) = J,(t)-( ,r/4) 

sin mt 
m1r 

mcos-
3 

(22) 

(23) 

The function F(p) is to be changed into 
a sum function using equation 2 by eval-
uating the integrand by residues 10 at the 
poles of F(p). The following series are 
then obtained: 

1(t)=(1r/2)+ I: (1/K)X 
K=i,3,6.i",-• 

[( -l)(K+IJ/2 ws (3/2)Kt+sin (3/2)Kt] 
(24) 

J,(t) = L (1/K)X 
K=l,3,6,7, .. 

[( -l)(K+1)/2 cos (3/2)Kt-sin (3/2)Kt] 

From equations 23 and 24, 

0<t<,,-

f(t)=(,r/4)+ L (1/K)X 
K=l,3,6,7,., 

[( - l)<K+iJ/2 cos (3/2)Kt+sin (3/2)Kt] (25) 

f(t)= -(,r/4)+ L (1/K)X 
K=l,3,6,7,., 

[( - l)<K+IJ/2 cos (3/2)Kt-sin (3/2)Kt] 

The process of finding the sum func-
tion has led to two Fourier series, one 



of which is to be used in the first half-
period, and the second of which is to be 
used in the second half-period. In this 
case a dosed-form expression of the sum 
function is not obtained although other 
methods13 may lead to a dosed form. In 
the example whose results are given in 
equation 25 the time function f(t) may be 
recognized as the superposition of two 
square waves and this leads to the wave-
form shown in Fig. 3. The original 
Fourier series of equation 17 may also 
be written in the following form: 

(ft) = 2 

ffl=l,3,6,7, . . 

sin mt 
m 

sin 3mt 

m=l,3,6,7, .. 

(26) 

This also is the difference of two square 
waves and again leads to the waveform 
of Fig. 3. 

Another question which arises in this 
solution is the choice of the function 1/ 2 
(1-e-Jmrr) used in equation 19. Another 
possible choice is 1/4(1-e-jmrr) 2 which 
leads to 

(27) 

where 

(l/T)F1(0) = 0 

If this quite different value of Fi(P) 
is used in place of the F(p) of equation 2 
and evaluated at the poles of F1(P) to 
obtain the sum function, it will be found 
that equation 25 again results. This 
remarkable result that the same j(t) re-
sults from two quite different F(p) 's may 
be explained in the following manner. 
From equations 21 and 27 let 

A(P)= F(p)-Fi(P) 

.,,-(1-e-P") 1r(l-e-P")2 

2p cosh (p.,,-/3) 4p cosh (p.,,-/ 3) 

.,,-(1-e '--p2rr) =---+ 4p 
.,,-(1 - e-P2")[1- cosh (p.,,-/ 3 )] 

4p cosh ( ~.,,.) 
(28) 

When F2(P) from equation 28 is sub-
stituted in equation 2 the first term of 
equation 28 yields (1r/4) which is the 
same ( 1r / 4) as that of equations 22 and 23, 
while the second term of equation 28 
yields zero. The fact that certain direct 
transforms that might be called null trans-
forms yield zero when evaluated in the 
inverse transform has been discussed 
previously. 10, 12 Therefore, both F(p) and 
F1 (p) should yield the same f(t). 

It appears as if this method will be 
very useful for Fourier series arising from 
the problems of circuits containing con-
centrated circuit parameters, but not 
quite as useful for those of circuits con-
taining distributed parameters. In the 
result of equation 25, Fourier series were 
obtained because the poles of F(p) lay on 
the imaginary axis. In general, the poles 
of F(p) will lie anywhere in the p plane 
and the series will contain exponential 
terms as well as the trigonometric terms 
and thus will not be Fourier series. 

Tables of Fourier Series 

From the foregoing theory it appears 
then that for a given function of a com-
plex variable, F(p), the corresponding 
time function, j(t), may be obtained either 
as a Fourier series or the sum function of 
the Fourier series. Table I presents a 
short table of basic F(p)'s with their 

Table I. Steady-State Transforms 

Direct Transform, F (p) Sum Function, f (t) 

,-pkT 
1. - p - , o :s;K ::,; 1 . . . .... .... .. . ...... . . . ... • ..• . ..... . 0, O<t<KT 

1, kT<t<T 
,-pkT 

2. P+a , 0 ::s;K :::;1. . . . .. . ... . .. .. . . .... . • . .. • . . 
e-act - K T > 

. 1_ ,-aT, KT<t<(K T+T) 
(a1P+ao)e- PKT 

3. (P+a)(P+/1) 'o ::s;K:::;t . ... . .. . .. .... . . . . 
(ao - a1a)e-a<t - KT) 

· · · (/1-a)(l-,-aT) 
(ao- a1/1),-t1<t-KT ) 

+ (a -/J)(l-,-/JT) , KT<t<(KT+T) 
(a1P+ao) e- PKT O <K < 1. 

4. p(p+a) ' - -
(ao- a1a)e ----act-KT+T> 

.. . - a(l - e-aT) 'O<t<KT 
ao (ao -a1a)e--act-KT> 
;;- a(l - e-aT) ,KT<t<T 

5. (a1P+ao)e-PKT, 0 <K < I. ............................ 0 , O<t<KT 
P' - -

a1+ao(t-KT), KT<t<T 
(a1P+ao)e-PKT O <K <I.. .. [(ao-a1a)(t-KT)+ai]e-act - KT ) 

6. (P+a) ' ' - - .. . . . . . . . . . . . . . . . . .. . . . . . (1 -e -aT) 
(ao- a1a)Te - a(t -KT+T ) 

+ (1 -e-aT)' ' 
KT<t<(KT+T) 

4 

corresponding sum functions, but much 
more complete tables are available in 
the literature. 12 - 15 

As an example of the use of Table I let 
e- pKT 

F(p)= - - o::;K9 (29) P+a 
which is item 2 of the table. This F(p) 

• I 

has one pole at p = - a and by use of 
equation 4 and Table I, 

a, 

l 2 "" [ e-J2rrnK ] 
f(t)= aT +T L..J Re a+(j21rn/ T) 

n " 1 cos (2.,,-nt / T) 
a, 

2 L [ e-12.-nx ] -- Im 
T a+(j21rn/ T) 

n=l 
sin (2.,,-nt/ T) 

e- a(t-KT) 
= l-e aT , KT<t<(K+I )T (30) 

In equation 30 let x = (2..,,-t/ T), xo = 2.-K, 
and a= (aT/ 2,,.), then 

""a cos n(x - x0 )+n sin n(x - x0 ) 

L..J n 2+a2 
n=l 

.,,-e - acx-xo) l 
= 2.-a - - , Xo<x<xo+2.,,- (31) 1-e 2a 

Results similar to equation 31 may be 
obtained for the other transforms of 
Table I , and these along with equation 
31 are shown in Table II. 

A second example is that of item 1 of 
Table I where 

(32) 

This F(p) has a single pole at P=O so 
equation 4 may not be used but we 
obtain the Fourier series from equation 2 : 

f(t)= -. 
1 f ep(t- KT)dp 

21rj W p(l - e- pT) 

d [peP( t- KT)] 
= - --=- + dp 1-e-pT p=O 

l ~· e[J2rrn(t-KT) / T) 

T L..J (j21rn/ T ) 
ff= - co 

I 1 1 
= - -K+- + -T 2 .,,. 

={O, O<t<KT 
1, KT< t< T 

"" ~sin L..J n 
ff=l 

[21rn(t - KT)/ T] 
(33) 

The prime over the summation sign 
indicates that the n = 0 term is omitted. 
With x= (21rt/ T) and x0 =21rK, equation 
33 becomes 

L 1 .,,--(x-xc) - sin n(x - x0 )= - -'-- - , 
n 2 

n = l 



Table II. Sum Functions of Basic Fourier Series 

Fourier Series 

ro 

I. 'i:""' sin n(x-xo) ... .. 
ro 

z. ~acosn(x-xo)+nsinn(x -xo) .... . . . . ... . L....J n2+a2 · · · · · .... · 
n = l 

Loo [n'(aia+a1b-ao)+abao] cos n(x-xo) 3. 
(n'+a') (n 2+b2) • • · · • • • • • • • • • • • · 

n=l 
ro + 'i:""' [ain'+(aoa+aob-a1ab)n) sin n(x-xo) 

(n 2 +a 2)(n 2 +b 2) 
: n=l 

ro L (a-ao) cos n(x-xo) 
4. n~+a 2 • • · 

n=l 
ro + 'i:""' [a,n 3+auan) sin n(x-xo) 

n 2(n 2+a 2) 
n=I 

ro 

5_ 'i:""' [a1 sin n(x-xo) _ ao cos n(x-x0 )] _ 

L...J n n2 
n=l 

ro L [n2(2aa, -ao) +a2ao] cos n(x-xo) 6. 
(n 2 +a 2) 2 • • 

n=I 
ro + 'i:""' [a,n'+(2aao-a 2a,)n] sin n(x-xo) 

(n'+a')' 
n=l 

0 

(A) 

R 

•(tl 

(B) 

r 
0 

(c) 

T 

L 

Sum Functions, xo<x<(xo+2,.-) 

,.--(x-xo) 
2 

1Te-G(X-XO) 

· 1-e -21ra 2a 

1r(ao- aia)e-a (X -xo J 

(b-a)(1-,-,,.-a) 

1r(ao-a1b)e-b<X-Xo> ao 
+ (a-b)(l-e-2" 0 ) 2ab 

1r(aia- ao)e - a <x -Xo) 

a(I-,-,,..0 ) 

+ ao-a,a +~ [rr-(x-xo)] 
2a2 2a 

_':' [,.--(x-xo)] 
2 

ao{ "'} - 4 [,.-- (x-xo) ]2-3 

,.-[(ao- aw) (x-xo) +ai]e-a <x -Xo> 
(1-,-,,..a) 

2 1r2(ao - aia)e -a ex -xo +21r) ao 
+ (1-,-2,.-a), -2a' 

fig. 4. First example of a 
circuit problem 

A-Applied wave of voltage 
B- Circuit diagram 
C- Steady-state current with 

(RT / L)= 1.0 

5 

which is item 1 of Table II. The result, 
equation 34, may also be obtained from 
equation 31 by letting a approach zero. 
From item 2 of Table II it is possible to 
obtain all of the other items of the table. 
Additional and more involved senes 
and their sum functions may be obtained 
by using more involved steady-state 
transforms than those of Table I, or by 
obtaining them from combinations or 
limiting cases of the series given in 
Table II. 

Simpler series may be obtained from 
those of Table II by various manipula-
tions. As one example put x0 = - 1r in 
item 2 of Table II. Then 

_ 1 n[a co_s nx+n sin nx] 
L...J ( ) n 2 +a2 

n = l 
..-e -ax 1 

= --- - - -..-<x<..-
2 sin ha1r 2a' 

(35) 

In equation 35 x= -x' then drop primes. 

_ 1 "[a cos nx-n sin nx] L...J ( ) n 2+a 2 

..-e+ax 1 
- -..-<x< 1r (36) 

2 sinh a1r 2a' 

From equations 35 and 36: 

L ncos nx ..- cosh ax 1 (-1) --=-----
n2+a2 2a sinh a1r 2a 2 ' 

-1r<x<..- (37) 

nn sin nx ..- sinh ax 
(-1) - - = - ---

n2+a2 2 sinh a1r' 

-1r<x<1r (38) 

Equations 37 and 38 are presented as 
items 1 and 2 of Table III. Similarly, if 
x0 =0 in item 2 of Table II, items 3 and 4 
of Table III are the result. In equation 
37 let a->-0 and the result is item 6 of 
Table III . In a similar manner, letting 
a->-0 in items 1, 3, and 4 of Table III 
produces items 5, 7, and 8 of the same 
table. Items 5 and 7 may be recognized 
as the well-known saw-tooth waveforms, 
while items 6 and 8 have a parabolic 
wave shape. If item 1 is subtracted from 
item 3, item 9 results. Then if, in item 
9, a->-0, item 11 is produced and this is 
the familiar square wave. ln the same 
way items 10 and 12 may be obtained 
from items 2 and 4. 

Additional derived Fourier series similar 
to those of Table III may be obtained 
by methods such as those already given 
and others. Two examples of more com-
plicated series are derived in the Appendix 
and a table of approximately 250 such 
Fourier series is available. 16• 17 There are 
also available several shorter tables. 3, 18• 19 



Appliq1tions 

The first application will be that of the 
square wave voltage of Fig. 4(A) applied 
to the series RL circuit of Fig. 4(B), and 
the purpose is to obtain the waveform of 
the current. 

From item 11 of Table III 

) 4Em L sin (2n- l)wt e(t = -
-,,. (2n-1) 

n=l 

(39) 

is the Fourier series of the applied voltage 
where Em is the maximum voltage of the 
square wave, w= (2-,,./T) is the angular fre-
quency of the wave, and t is the time. 
FromFig.4(B) Z=R+jwL=VR 2+w2L2 
/arctan (wL/R) and the Fourier series for 
the steady-state current is 

4Em~ 
i(t) = --;; 6 

. {(2n-l)wt-arctan [(2n-l)wL/RJ} 
sm 

(2n-1) VR2+(2n-1) 2w2L2 

4EmR sin (2n- l)wt 
-,,. 6 (2n-l)[R 2+(2n-1) 2w2L 2] 

n= I 

4EmwL cos (2n- I)wt 
1r 6 [R2+(2n- I) 2w2L 2] 

(40) 
n= l 

By using partial fractions the current ex-
pression can be written: 

. 4Em L sin (2n-l)wt i( t) = - --'-----'--- -
-,,.R (2n-1) 

n=I 

4Em (2n-1) sin (2n-l)wt _ 
-,,.R 6 (2n- 1)2+a2 

n=l 

4Em cos (2n-l)wt (4 l) 
1rwL 6 (2n-1)2+a2 

n=l 

where a= (R/wL) . Now by the use of 
items 11, 9, and 10 of Table III, the sum 
function of the steady-state current is for 
0<t<(T/2) 

4Em(7r) 4Em( 7r ) «0=- - - - - - - X 
1rR 4 1rR 4 sinh a-,,. 
[sinh awt-sinh a(wt-1r)]-

4Em( 1r ) 
1rwL 4a sinh a-,,. X 
[cosh a(wt-1r)-cosh awt] 

Em[ 2e -(Rt/L) ] 

=R I- I+e-<RT/2L) (42) 

In a similar manner for (T/2)<t<T , 
. Em{ 2e-[R(t-T/2)/LJ} 

i(t) = - R l 1 +e(RT /2L) (43) 

The current waveform for (RT/ L) = 1.0 
is shown in Fig. 4(C). 

Table Ill. Derived Fourier Series 

Series Sum Functions 

<X> 

n sin nx 1r sinh ax 
1. L., (-l)n-;;,+_ a_' .... . ... ... .. ... .. .... -2 sinha,r' -,r<x<" 

n=l 

<X> 

n sin nx 1r sinh G(x- 1r) 
3. L., n'+a' .......... . . . .. . . . . .. ... . ... - ~h-~' O<x<2,r 

n=l 
<X> 

4. cos nx 
L...J n2+a2 . 
n = I 

,r cosh a(x- ,r) 
· · · · · · · · · · · · · · · · · · · · · 2a sinh a1r ' O<x<Z1r 

<X> 

5. L (-l)nsinnnx ... 

n=l 

<X> 

6. L (-t)nco::x ... 
n=I 

<X> 

X .. .. . . ... .. - 2, - 1r<x<1r 

- x 2 - - , -1r<x 1r 1 ( "') .. ... . .. . . ·4 3 < 

7. L sin:x ........ . .. . .. . .............. . -";- x, 0<x<21r 
n=l 

<X> 

S. L co:;x_ ..... ..... . . 1 [ ~J . . ... .. <i (,r-x) 2 - 3 , O<x<2,,. 
n=l 

<X> 

""'(2n-1) sin (2n-l)x 
9· L., (2n-1) 2+a 2 • .... • • .. • • · .-4 . "h [$inhax-sinha(~-,r)).O<x< .. 

S10 a1r 
n=l 

71' 
- 4 sinh a)sinh a(x- ,..)-sinh a(x-2,r)), ,r<x<2,.. 

<X> 

10. ""' c(2ons-(21n)-2 +1)ax2 .. • ..•.. • • • ••••• • • • •• ,r L., ... 4a sinha,.. [cosh a(x-,r) - coshax], O<x<,r 
n = l 

71' 

4a sinh a,r [cosh a(x -2,,-)- cosh a(x - .-) ], ,,-<x<2,,-

<X> 

""' sin (2n-l)x .. 
ll. L., (2n - l) . . .. ,,-/4, O<x<,,. 

n=l 
- ,r/4, ,r<x<z,,. 

<X> 

12. Lco;2~2~~)!)x·· · · ···· · ·· · · ······ · ·····I(i-x),o< x<" 
n=l 

The second application will be that of 
the sine-loop voltage of Fig. 5(A) applied 
to the filter circuit of Fig. 5(B), and the 
object is to obtain the output voltage 
waveform. The Fourier series for the in-
put voltage is 

( ) 2Em[ L°' cos (n21rt/T)] ei t = - · 1-2 
,r 4n 2-l 

n=l 

(44) 

The Fourier series for the steady-state out-
put voltage is 

,,(1)- 2E:{1-2 t. 
cos[(n21rt/T)-arctan (nb/l-n 2a2 ) ]}(4S) 

( 4n2-l)V( I-n 2a2 ) 2 +n2b2 

where a=(21r-VLC/T), b=(21rL/TR). 

6 

- - - - x 1r<x<21r .. (3" ) 
4 2 ' 

Take care that the correct sign of the 
square root in equation 45 is employed. 

Now equation 45 can be written 

2Em 4EmL eo(t)= - + -
,r 7r 

n=l 
(n 2a2-I) cos (n21rt/T) 

( 4n2-l) [(n 2a 2 -l)2 +n 2b2 ] 

4Em nb sin (n21rt/T) 
1r 6 (4n2 -I)[(n2a2 -1)2+n 2b2 ] 

n=l 

fn 2-(l/a2 )] cos (n21rt/T) E,,,b 
[n2 -(1/4)](n2 +A 2)(n2+B 2 ) 1ra 4 

L n sin (n21rt/T) 
(46) 

[n2-(1/4) ]( n 2+A 2)(n 2+B 2 ) 
n=l 



where 

A =(l/2a2)(b+-Vb'-4a2) 

B =(l / 2a2)(b--Vb'-4a2) 

Then, by the use of equations 49, 51, 52, 
and 53 of the Appendix, the steady-state 
output voltage of equation 46 becomes for 
O<t<T: 

Em{ e0(t) = - - 2K1 sin\ 1rt/ T)-2a2 

where 

K, cosh A [(21rt/ T)- 1r] 
A sinh A1r 

Ka cosh B [(21rt/T)- 1r ]}-
B sinh B1r 

Emb{ - K 4 cos ( 1rt/T)-2a4 
K 5 sinh A [(21rt/ T)- 1r] 

sinh A1r 
K, sinh B [(21rt/T)- 1r )} 

(47) 
sinh B1r 

4a2(a1 -4) Ki- - ----
- (a2 -4)'+4b 2 

4(a 2A 2+l) K - - -------,- a2(4A'+I)(A 2 -B 2 ) 

4(a 2B 2 +1) 
Ka= a'(4B'+l)(A 2 -B 2 ) 

16a4 
K ------,- (a2-4)2+4b2 

4 
K,= (4A 2 +l)(A'-B 2 ) 

4 
(4B 2 +1)(A 2 -B 2 ) 

An algebraic manipulation of equation 47 
produces the following, for O<t<T, 

e0 (t) =4Em[( 4-a')'+4b 2 ] - 1 X 
[(4-a2) sin ( 1rl/ T)-2b cos ( 1rt/ TJ]-4Em [ e -(A2,rt / T) 

a2(A -B) (4A 2+ l)(l-e-2"A) 

-(B2,r// T) ] 
(4B'e+l)(l-e-'"B) (48) 

The output voltage waveform eo(t) for 
a=2.0 and b=4.l, as calculated from 
equation 48 is shown in Fig. 5(C). Much 
of the algebraic manipulation, such as 
the use of partial fractions, could be 
eliminated by the use of a more extensive 
table of series similar to the one mentioned 
previously 16 and to be employed in place 
of Table III. 

Conclusions 

The following conclusions have been 
reached by the author: 

1. A method using steady-state transforms 
has been presented that will find the sum 
function of most Fourier series occurring 

when periodic nonsinusoidal waves are 
applied to linear circuits with concentrated 
parameters. This method, however, may 
not be useful in some circuits with dis-
tributed parameters. 

2. The tables of Fourier series presented 
are useful in applications to circuit problems. 
A more complete table of such series would 
aid in lessening the amount of algebraic 
manipulation required in obtaining the 
simplest form of the sum function of a 
Fourier series. 

Appendix. Examples of More 
Complicated Series 

Suppose the sum function of 

.( ) L (a,n 4 +a,n 2+ao) cos nx j X = 
(n'+a')(n 2 +b')( n2+c') 

(49) 

is to be found where the a's and a 2, b2, c2 

are real constants. Use the method of 
partial fractions to resolve equation 49 
into the sum of three series 

I: cos nx L cos nx fx - K ·-- K - -• ( ) - I 2+ 2 + 2 2+ 2 + n a n o 
n=l n=l 

where 

Fig. 5. Second example of 
a circuit problem 

A-Applied sine-loop voltage 
8- Circuit diagram 
C- Steady-state output voltage 

with A=2.0 and 8=4.1 
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(SO) 

•;(t) 

t .. 

•o(t) 

tE,. 

0 

ao-a,a 2+a4a4· Ki=------
(b2-a2)(c2-a2) 

K _ ao-a,b2 +a4b4 

, - (a2-b2)(c2 -b2) 

ao-a,c2 +a,c4 
Ka= ------

(a2-c2)(b2-c') 

Then, by the use of item 4 of Table III, 
the sum function of equation 49 is for 
O<x<21r 

f ) 1r[K1 cosh a(x-1r) 
(x = - ---- -+ 

2 a sinh a1r 
K, cosh b(x-1r) 

b . + smh b1r 

Ka cosh c(x- 1r )]- (Sl) 
c sinh c1r 2a'b2c2 

A second example is 

n=l 

The sum function of this series could be 
found in the same way as that of equation 
49, but perhaps a quicker way is to take 
the derivative of equations 49 and 51 and 
with respect to x and then change the 
constants to those of equation 52. The 
result for O<x<21r is 

1r[K4 sinh a(x- 1r) f(x)=- - . .+ 
2 smh a1r 

K, sinh b(x- 1r) K, sinh c(x- 1r )] 
. h b + . sm 1r smh c1r 

(53) 

(A) 

R 
'c 

(B) 

(C) 

7 
•c(t) 

J 

-t 
T 



where 

a1 -a3a2+asa 4 
K,=-------

(b2-a2)(c2-a2) 

a1 -a3c2+asc4 
Ks=------

(a2-c2)(b2-c2) 

Equations 52 and 53 can be found also by 
the method employing steady-state trans-
forms as exemplified by the finding of the 
sum functions of equation 5. 

Evaluation of the Inverse Steady-
State Transform 

The inverse steady-state transform, as 
given by equation 2 may be evaluated in 
two principal ways, the first of which leads 
to the Fourier series, and the second of 
which leads to the sum function, i.e., the 
closed-form of the sum of the Fourier series. 
These methods of evaluation may be found 
in a number of references10, 11, 20, 21 but 
are presented again here for convenience. 

The Fourier series evaluation may be 
obtained in the following manner. - The 
contour W as shown in Fig. 1 is assumed 
to contain only the poles P=Pn=(j21rn/T), 
where n is an integer (n=0, ±1, ±2, ... ). 
These are the poles of the function 1 / 
(1-e-PT)_ When 2 is evaluated at the 
pole P=Pe=(j21rn/T), the residue is 

Residue at= ~F(j21rn/T)e1<2,,.nt/T ) (54) 
P=Pn 

and the sum of the residues is the Fourier 
series of equation 3. As an example con-
sider item 2 of Table I 

e-pKT 
F(p)=--, o:s;K:$1 

P+a 

For equation 55 the residue at Pn is 

Residue at= - ------ e1< 2rrnt/T) l [ e-J2rrnK ] 

(55) 

p=p T (i21rn/T)+a 
n (56) 

The Fourier series then is 

s-1 [F(p)=f(t) 

1 
T 

e . ej(2rrnt/T) [ 
-j21rnK ] 

a+(;21rn/T) 

(57) 

which may also be written as the Fourier 
series of equation 30. The sum function 
evaluation consists in separating the integral 
of equation 2 into two integrals, the first 
of which is taken over the part W1 of the 
contour W to the right of the imaginary 
axis as shown in Fig 1. The second integral 
is taken over the part W2 of the contour 
W to the left of the imaginary axis of Fig. 
1. For convenience the contour W2 will be 
reversed in direction and called W3 and the 
sign on the integral will then be negative. 
Then from equation 2 

s - 1[F(p))=__..!:___ f e1"F{p)dp 
2 1r1 Jw, 1-e-pT 

The contour W, is the same as that used 
in the inverse Laplace transform and hence 
may be evaluated using L -, as the symbol 
for the inverse Laplace transform as follows: 

__!__ f ePtF(p)dp L - ,[ F(p) ] 
21rj Jw, 1-e-pT 1-e-pT 

=L - 1 [F(p)J+L-1 (F(p)e-pTI+ 

L -, [F(p )e-p2T) +. . . (59) 

For the interval 0<t<T, equation 59 
becomes 

1 i eP 1F(p) --: --_- Tdp=L- 1 [F(p)] 
21r; w, 1-e P 

(60) 

since all of the other terms are zero. 
The second integral of equation 58 must 

be evaluated at all of the poles of the 
integrand except the p = Pn included within 
the contour W. If now F(p) is assumed to 
have the poles P=sm, where mis a positive 
integer, then the second integral of equation 
58 becomes 

m 

From equations 58, 60, and 61 and for 
O<t<T 

s-1 [F(p))=L- 1 [F(p)j -

[eP 1F(p)~P-;.sm)] (6Z) 
1-e P=Sm 

m 

Consider again the example of equation 55. 
Here m = 1, s1 = - a, and using equation 29 
for O<t<T 

s- 1 [F(p) l = f(t) = L - ,[e-pKT]-
P+a 

[ epte-pKT] 
1-e-pT p= -n 

Now for O<t<KT 

e -ateaKT e -a(t-KT+T) 
f(t)=O- l--eaT l-e-aT (63) 

and for KT<t<T 

-at aKT e-a(t-KT) 
f(t)=e- a(t-KT)_el eaT =--~c- (64) 

-e 1-e-aT 

Actually, equation 64 may be used until 
the next discontinuous jump occurs at 
t=(K+l)Tand this is indicated in equation 
30. Hence, equation 63 and equation 64 
are the sum function of the Fourier series 
of equation 57. 

A physical interpretation of equation 58 

8 

may prove helpful. 20 The integral over 
W, is the usual inverse Laplace transform 
of the response of a system, and hence is 
the sum of the steady-state plus the tran-
sient response and might be called the total 
response. The steady-state response would 
be the inverse steady-state transform on 
the left-hand side of equation 58. Thus, 
the integral over W3 must represent the 
transient response. Then equation 58 
might be written: (steady-state response)= · 
(total response)-(transient response). 
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