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Abstract

Converging evidence from anatomic and physiologic studies suggests that the interaction of high-

order association cortices with the thalamus is necessary to focus attention on a task in a complex

environment with multiple distractions. Interposed between the thalamus and cortex, the inhibitory

thalamic reticular nucleus intercepts and regulates communication between the two structures.

Recent findings demonstrate that a unique circuitry links the prefrontal cortex with the reticular

nucleus and may underlie the process of selective attention to enhance salient stimuli and suppress

irrelevant stimuli in behavior. Unlike other cortices, some prefrontal areas issue widespread

projections to the reticular nucleus, extending beyond the frontal sector to the sensory sectors of the

nucleus and may influence the flow of sensory information from the thalamus to the cortex. Unlike

other thalamic nuclei, the mediodorsal nucleus, which is the principal thalamic nucleus for the

prefrontal cortex, has similarly widespread connections with the reticular nucleus. Unlike sensory

association cortices, some terminations from prefrontal areas to the reticular nucleus are large,

suggesting efficient transfer of information. We propose a model showing that the specialized

features of prefrontal pathways in the reticular nucleus may allow selection of relevant information

and override distractors, in processes that are deranged in schizophrenia.
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Introduction

In recent years it has become increasingly apparent that thalamic processing involves a dynamic

change of peripheral or cortical input, and is thus more complex than a direct, linear relay of

information /23/. Thalamocortical interactions of high-order association cortices in particular,

have an important role in an array of cognitive, mnemonic, and emotional processes /11,51,52,

150,151,182/.
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Reciprocal circuits between the dorsal thalamus and the cortex involve first-order thalamic

nuclei, which relay information from ascending pathways to the cortex, and high-order

thalamic nuclei that receive input from one cortical area and transmit it to other cortical areas.

Studies, based largely on the linkage of sensory systems with the thalamus, separate pathways

into driver and modulatory. Driver pathways initiate activity in the next processing station, and

modulatory pathways change the driving signal. Pathways from the sensory periphery that

terminate in first-order thalamic nuclei, which then project to the middle layers of the cortex,

are driver pathways. Pathways from the thalamus that terminate extensively in the superficial

cortical layers, or the prevalent cortical projections form layer VI to the thalamus, are

considered to be modulatory pathways. Some studies have provided evidence that driver

pathways, at least in the thalamus, have large terminals, whereas modulatory pathways have

small terminals /1,68,72,86,87,88,96,104,113,138,139,151,153/.

Interposed between the dorsal thalamus and the cortex, lies the thalamic reticular nucleus

(TRN), a thin sheet of inhibitory neurons that intercept communication between the dorsal

thalamus and the cortex. Thalamocortical and corticothalamic axons send collateral branches

to TRN, and the TRN projects to the thalamus but not to the cortex. The strategic position of

TRN and its unique functional properties that can regulate the activity of thalamocortical

neurons through inhibition and disinhibition, have fueled the hypothesis that the TRN has a

key role in selective attention /39,69,107,131/. Interestingly, studies in sensory systems suggest

that the physiologic properties of TRN neurons change during attentional tasks, possibly

modulating thalamocortical communications even at early processing stages /108,116,114,115/.

Attentional mechanisms are thought to be regulated by high-order cortical areas, like the

prefrontal cortex, which has a supervisory function and a key role in selecting relevant

information and discarding irrelevant information. In this review we discuss recent findings

on widespread, driver- and modulatory-like prefrontal pathways in TRN /184/ and show how

they differ from sensory corticoreticular projections, which appear to be exclusively

modulatory. We summarize circuits suggesting novel mechanisms for cross-modal

corticocortical, corticothalamic and intrathalamic interactions in TRN that may have a

significant role in attentional modulation. The focus is on the interactions of prefrontal and

some sensory cortices with TRN in the primate brain, with references to other mammalian

species, as necessary.

Features of TRN

Anatomy and cellular architecture

The TRN develops from the ventral thalamus /84,140/ forming a thin veil that covers most of

the dorsal thalamus along its entire antero-posterior extent and separates it from the cortex

(Figs. 1, 2A). The nucleus is bordered laterally by the internal capsule, medially by the external

medullary lamina, ventromedially by the zona incerta and posteriorly by the ventrolateral

geniculate nucleus. The TRN covers the dorsal and lateral parts of the thalamus as an open

umbrella with the handle positioned at the midline, between the dorsal thalamus of each

hemisphere. It has a similar shape across mammals, appearing round rostrally, is progressively

thinner in its central and caudal parts along the medio-lateral dimension and elongated along

the dorsoventral axis, and tapers caudally into a narrow spur.

The TRN consists of about 1 million neurons on each side of the adult rhesus monkey brain /
184/. Unlike other thalamic nuclei, it is composed entirely of inhibitory neurons, which are

GABAergic and most are parvalbumin-positive (PV+; ∼70%) /184/ (Fig. 2B). Morphologic

studies of TRN in monkeys and humans have classified reticular neurons into several groups

mainly according to cell body size and dendritic morphology /21,122,167/ (Fig. 3). The majority

of neuronal somata have diameters of 20-50 μm and appear fusiform or ovoid with a markedly
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invaginated nuclear envelope and thin cytoplasm. Most neurons have long, sparsely branched,

aspiny dendrites, emerging from the poles of the soma, but some have beaded structures along

their dendrites /21/. The axons of TRN neurons target underlying thalamic nuclei but also send

local collaterals within neighboring TRN regions, and interacting through chemical axoaxonic,

axosomatic and dendrodendritic synapses inhibit each other /9,43,82,98,123,146,155,168,175,180/.

Moreover, neighboring reticular neurons in rodents are electrically coupled, forming highly

synchronized networks /28,95/.

There is no general agreement among studies about the morphology of reticular neurons across

species. Some reports suggest that TRN neurons cannot be classified into separate groups based

solely on dendritic morphology and orientation, which extends either dorsoventrally or

rostrocaudally and is determined mainly by the shape of the nucleus /103,124/. There is general

agreement that reticular neurons conform to the available space, subject to mechanical factors

as in other brain regions /46,79/, having round perikarya and multipolar dendrites at the more

spacious rostral pole (Fig. 3 top B, C), and elongated and flattened perikarya and dendritic trees

in the more cramped central and posterior parts of the nucleus (Fig. 3 bottom B, C). Other

studies in rats, rabbits and cats report diversity in the TRN neuronal population, similar to that

described in primates /79/. These findings, along with the differential expression of calcium-

binding proteins in subsets of TRN neurons for the monkey /184/, and other species (reviewed

in /131/), suggest that TRN may be considered an architectonically heterogeneous structure.

Electrophysiologic properties

The physiologic properties of TRN neurons suggest functional heterogeneity. The TRN

contains at least two types of neurons that exhibit two activity modes, burst and tonic.

Importantly, the type of activity depends on the animal's behavioral state /45,74,112,119,157,

159/. Dual discharge modes have also been observed in thalamic relay neurons but they differ

in duration and interval between spikes /47,100/. When the animal is in a state of attentive

wakefulness or REM sleep, depolarized reticular neurons fire single action potentials

continuously, leading to high background activity in TRN and consequent tonic inhibition of

the thalamus /108/. In contrast, during states of drowsiness or slow-wave sleep, activity in TRN

is in bursts of intermittent groups of high frequency discharges separated by periods of

quiescence, causing bursts of firing after a delay period in the thalamus. Interestingly, some

TRN neurons have intrinsic physiologic properties that allow switch between tonic and burst

firing modes based on the membrane potential /8,29,30,47,100/. In these neurons, a depolarizing

current elicits tonic activity if the membrane potential is more positive than normal (>-65 mV),

and a burst of action potentials, if the membrane is hyperpolarized. The ability to generate low-

threshold spikes and switch from tonic to burst firing appears to be based on the presence of

voltage-dependent, low-threshold, Ca2+ channels. In contrast, another population of TRN

neurons, possibly lacking the low-threshold Ca2+ conductance channels can fire only tonically /
30,47,81/. The functional diversity of reticular neurons has not yet been correlated with specific

morphological characteristics.

Connections of TRN with cortical areas and their associated thalamic nuclei

Basic circuitry linking the cortex and dorsal thalamus with TRN

Because the TRN is interposed between the dorsal thalamus and the cortex, it is crossed by

corticothalamic and thalamocortical axons, as well as axons coming to the thalamus from the

striatum. The axons that pass through the mesh of inhibitory TRN neurons give the nucleus its

reticulated appearance and name. The TRN receives unidirectional projections from the cortex

and has bidirectional connections with the dorsal thalamus, and is thus in a unique position to

modulate the flow of information between thalamus and cortex. In a simplified representation

of these pathways (Fig. 4), input reaching the thalamus from the sensory periphery or the cortex,
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excites thalamocortical projection neurons, which then transmit that information to the cortex.

On their way to the cortex, thalamocortical axons give off collateral branches that terminate

in TRN. In the feedback loop of this circuit, corticothalamic axons thought to originate from

layer VI /70,131/ give off collateral branches that innervate the same TRN regions. The TRN,

therefore, receives excitatory input from the cortex and the thalamus and sends inhibitory

projections only to the thalamus. These reticulothalamic projections can form closed or open

loops (Fig. 5). The loop is considered to be closed when specific TRN and thalamic neurons

are connected reciprocally, and is open when TRN neurons receive input from one part of the

thalamus and send output to a neighboring region, or to local inhibitory neurons in the

thalamus /131/.

Topography of cortical projections and thalamic connections in TRN: sensory sectors

Cortical areas and their associated thalamic nuclei share the same projection sites on TRN,

which are topographically organized, as shown in anatomic and physiologic studies in several

species, including rats, cats, rabbits and primates (reviewed in /69/). The projections create a

crude map of the cortex and the thalamus on TRN, and divide the nucleus into anatomic and

functional sectors, related to motor and sensory modalities /24,26,27,31,32,33,34,35,36,38,70,83,

101,102,179/. The most detailed maps are based on studies in rodents, but the relative topography

of projections onto TRN seems to be similar across mammals. Along the rostrocaudal axis of

TRN, the central to posterior sectors are linked consecutively with the somatosensory, visual,

visceral, gustatory and auditory cortices and their associated thalamic nuclei. Available

information in non-human primates places projections from somatosensory, visual and

auditory cortices in comparable positions in TRN (Fig. 6A). Each of these sectors includes

tiers, which are defined as subdivisions of a TRN sector having connections with different

cortical or thalamic areas, or both. For example, corticoreticular terminals from visual areas

V1 and V2 in the primate Galago terminate within the visual sector of TRN, but axons from

V2 terminate more medially than axons from V1, forming separate tiers /26,27,166/. The

topography in TRN is blurred, especially in sectors connected with high-order association

cortices or thalamic nuclei, so that connection zones of nearby cortices or thalamic nuclei

overlap, allowing indirect modulation of TRN inhibition (reviewed in /35,131/).

The blurred topography is evident in the visual and auditory sectors of the monkey TRN, which

are not only connected with temporal visual area TE1 and auditory area Ts1, respectively, but

also with auditory association area Ts2 and polymodal area 36 /184/. The projections from Ts2

and 36 are more diffuse than projections from TE1 and Ts1 (Fig. 6B). Projections from auditory

association areas Ts1 and Ts2 overlap extensively in the caudal sectors of TRN, consistent

with the location of the auditory sectors of TRN in other species. In addition, terminations from

polymodal area 36 and visual area TE1 are found mainly rostral to the auditory sector, in the

visual sector of TRN, situated in the central-caudal parts of the nucleus. These projections are

more prominent in the ventral parts of TRN, which include the perigeniculate region. The

projections onto TRN in the rhesus monkey have a similar organization as projections from

auditory and visual association cortices in other species /25,26,36,38/.

Topography of cortical projections and thalamic connections in TRN: the prefrontal sector

In contrast to the plethora of information on the central and caudal sectors of TRN, the anterior

part has received less attention. The anterior TRN includes a motor sector, connected with

motor cortex and the ventrolateral thalamic nucleus, and the rostral pole, associated with the

limbic cortex and the anterior, midline and intralaminar thalamic nuclei /24,65,91,102,164,179/.

Recent studies have provided evidence that the anterior quarter of the rhesus monkey TRN

constitutes the prefrontal sector, overlapping extensively with the motor and limbic sectors /
179,184/ (Fig. 7A). In agreement with previous studies in sensory and other systems (reviewed

in /69,70/), there is considerable overlap in the terminal fields of different prefrontal areas.
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Projections from areas 10 and 32 terminate in the rostral sector of TRN, and are the most focal

among prefrontal areas examined. Interestingly, such focal projection is unusual for area 32,

which is a cingulate limbic area and has widespread cortical and subcortical connections /13,

14,16,58,59,60,136/. Other prefrontal areas, including areas 46, 13, and 9, have widespread

projections in TRN (Fig. 7A), which will be presented in more detail below.

The same TRN regions that receive prefrontal terminations also project to the mediodorsal

(MD), ventral anterior (VA) and anterior medial (AM) thalamic nuclei /184/, which together

receive the majority of prefrontal cortical input /42,83,93,160,164,179/. Reticular neurons

projecting to these three thalamic nuclei are most prevalent in the anterior and dorsal half of

TRN, but some are also found in its ventral sector. Both VA and AM receive projections from

rostral TRN, especially its medial segment, whereas projection neurons directed to MD

originate from a wider region, encompassing the first three quarters of TRN (Fig. 7B). In some

cases the same TRN neurons project both to MD and VA, providing an indirect anatomic link

between thalamic nuclei.

Circuits that may underlie attentional regulation through prefrontal cortex

and TRN

Overlap of prefrontal and cortical sensory projections in TRN

An unusually widespread pattern of termination in TRN is seen for lateral prefrontal areas 46

and 9 and orbitofrontal area 13. The projections of these prefrontal areas extend beyond the

rostral sector of TRN to its second and third quarters, where they overlap extensively with

terminations from temporal auditory association, visual association, and polymodal cortices /
184/ (Fig. 7A). This comparison was possible by alignment and registration of brain sections

containing TRN and labeled terminals on a reconstructed map of TRN. As noted above, the

size of TRN in rhesus monkeys is remarkably similar across animals allowing comparisons.

Simultaneous mapping of prefrontal and sensory association terminals in TRN, showed that

areas 46 and 13 exhibit the most extensive overlaps with temporal sensory association cortices

(Fig. 7A, asterisks), and to a lesser extent, area 9. Interestingly, among prefrontal areas

examined, only area 46 has terminations that overlap with projections from anterior and medial

temporal cortices within the sensory sectors of TRN. Projections from orbital area 13 overlap

with temporal polymodal or auditory association areas. In contrast, terminations from area 9

show limited overlap with projections from polymodal area 36 and auditory association area

Ts2, in dorsal regions of TRN /184/.

The above evidence suggests that specific prefrontal cortices have widespread projections to

TRN, which overlap with other corticoreticular projections, possibly modulating them.

Interestingly, none of the sensory association or polymodal areas studied have such widespread

corticoreticular projections, consistent with their topography in other species, even though

terminations from the polymodal area 36 extend to the auditory sector, and terminations from

auditory association area Ts2 extend to the visual sector (Fig. 6B). These findings suggest that

high-order sensory association cortices may have more widespread corticoreticular projections

than earlier-processing sensory cortices, but are not as extensive as the prefrontal.

Widespread TRN connections with the mediodorsal thalamic nucleus

The vast majority of projection neurons in TRN directed to the principal thalamic nucleus of

the prefrontal cortex, the mediodorsal nucleus, are found in anterior loci, but also originate in

posterior TRN sectors, albeit to a lesser extent /164,184/. In contrast to other thalamic nuclei

connected with prefrontal areas, such as AM and VA, projection neurons in TRN directed to

MD extend beyond the rostral sector, encompassing the first three quarters of TRN /184/ (Fig.

7B). Simultaneous mapping in 3D of terminals from prefrontal cortices in TRN, and neurons
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in TRN that project to MD, reveal considerable overlap in the two projection systems.

Superimposed terminations from auditory, visual and polymodal association cortices on the

same map show partial overlap with projections from dorsal area 46 and area 13 in the third

quarter of TRN, at sites that also project to MD (Fig. 7A, B).

In concert with prefrontal corticoreticular projections, TRN connections with MD may

influence relay cells in other high-order or first-order thalamic nuclei situated beneath the

central and posterior sectors of TRN. This extensive prefrontal and MD network may thus exert

indirect control over other cortices or subcortical structures through their thalamic nuclei that

are connected bidirectionally with TRN.

The fine structure of cortical terminations in TRN

Examination of the fine structure of the projections from the cortex to TRN reveals further

specialization. Previous studies in rats, cats and monkeys have identified three types of

terminals synapsing on TRN neurons /98,123,176/. The first type of terminal is GABAergic,

where axonal boutons form symmetric synapses and have flattened vesicles. These GABAergic

synapses are from TRN recurrent collaterals, or from projections originating outside the

thalamus, including the substancia nigra, globus pallidus or pretectum /5,40,127/. The second

type of terminal consists of large glutamatergic boutons with round vesicles that form

asymmetric, presumed excitatory synapses, and originate in the dorsal thalamus. The third type

of terminal consists of small glutamatergic terminals with round vesicles that form asymmetric

(and presumed excitatory synapses) that originate in the cortex. Here we focus on the

corticoreticular axonal terminals, which are the most abundant and have special characteristics.

Several studies have indicated that projections from sensory or motor cortices to TRN terminate

exclusively as small boutons and are thought to originate from layer VI /67,68,69,70,71,89,142,

143,144,151/, which is also the predominant pattern of cortical innervation in other thalamic

nuclei. In contrast to projections from sensory association cortices, prefrontal axons in TRN

have a dual mode of termination, consisting mostly of small, but also a significant proportion

of large boutons (∼10% of the total population; /184/) (Fig. 8). Somatosensory corticoreticular

terminations are reported to have dual morphology as well /176/, but the large boutons are

significantly smaller than the prefrontal terminals, well within the range of the small terminals

from temporal visual and auditory association cortices in TRN /184/.

Prefrontal cortices, therefore, unlike other cortices, issue some driver-like projections to TRN,

which terminate as large boutons and could originate from cortical layer V. Prefrontal cortices,

in particular, issue substantial projections to the thalamus from layer V in comparison with

other cortices. Projection neurons in layer V of prefrontal cortices account for about 20% of

all neurons directed to the anterior thalamic nucleus /178/, and about half of those projecting

to the ventral anterior thalamic nucleus /179/.

Large boutons have more synaptic vesicles /56,130,148/ and are more likely to undergo

multivesicular release upon stimulation /121,141/, and could thus be more efficient in activating

TRN neurons. Large boutons may be present in highly active networks, consistent with their

increased mitochondrial content /57/, which is activity dependent /165/. Moreover, because

neighboring reticular neurons communicate synaptically and can inhibit adjacent TRN regions /
183/, subsets of thalamic neurons could be inhibited and others disinhibited, facilitating

discrimination of incoming information. In rodents, and possibly other mammals, reticular

neurons are additionally coupled by electrical synapses /94,95/, suggesting that even a small

number of large boutons could initiate widespread activation in TRN.
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Cholinergic and monoaminergic input to TRN

In addition to the glutamatergic projections from the cortex and thalamus, or the GABAergic

projections from the substancia nigra, globus pallidus, and pretectum, the TRN receives strong

cholinergic and monoaminergic inputs from the brainstem /6,24,76,92/. These ascending

brainstem projections arise primarily from mesopontine cholinergic nuclei /31,128,129,134,162/

and the monoaminergic nuclei locus coeruleus and dorsal raphe /118/. The monoaminergic

projection slightly depolarizes TRN neurons, favoring a switch to tonic firing mode, whereas

cholinergic input hyperpolarizes them, enabling a switch to burst firing /18,90,111,112,132/. The

effect of cholinergic hyperpolarization of TRN neurons is the removal of their tonic inhibition

on thalamocortical projection neurons, leading to increased spontaneous firing in the thalamus.

On the contrary, noradrenergic depolarization of TRN neurons, enables a switch to tonic firing

mode, and leads to decreased spontaneous firing of thalamic neurons, reducing noise /80/.

The same neurotransmitter systems and dopamine also innervate robustly thalamic nuclei

connected with prefrontal cortices. In contrast to the differential effects on TRN neurons,

thalamocortical cells are depolarized by either acetylcholine or norepinephrine /109/. The

neurotransmitter projections in the dorsal thalamus have been implicated in the sleep-wake

cycle, arousal, attentional mechanisms and the control of vigilance /7,55,75,110,145,161/. A

delicate balance of norepinephrine, acetylcholine and dopamine is essential for prefrontal

cortical function /4,111,145/ and its disruption is implicated in several diseases, including

attention deficit hyperactivity disorder and schizophrenia. The interaction of these

neurotransmitter systems with cortical or thalamic afferents in TRN, in conjunction with the

widespread prefrontal projections in TRN, may allow extensive modulation of corticothalamic

communication.

Cortical activation and functional flexibility of TRN neurons

Thalamic, cortical, and other projections to TRN play a critical role in controlling the firing

patterns of thalamocortical relay neurons, affecting corticothalamic rhythmic activity and

corticocortical communication (for reviews see /47,131/). Recent studies indicate that the

predominant synaptic input in TRN is from the cortex, suggesting that the cortex has the

greatest modulatory influence on TRN activity /98/. Physiologic studies and computational

models of reconstructed reticular neurons have shown that the number of glutamate receptor

subunits is significantly higher in corticoreticular synapses compared to other corticothalamic

synapses. Moreover, the dendrites of TRN neurons have high densities of the low-threshold

Ca2+ current channel, rendering them highly sensitive to cortical excitatory postsynaptic

potentials (EPSPs), but only when the dendrites are hyperpolarized /44,47,64/. As a result,

corticothalamic EPSPs easily evoke bursts in reticular neurons and have a net inhibitory effect

on thalamic relay cells. Hyperpolarized thalamic projection neurons then respond after a short

delay to incoming input with a long-lasting burst followed by prolonged inhibition. This

neuronal activity is observed during the early stages of sleep /161/. On the other hand, when

the dendrites of TRN neurons are depolarized, thalamic reticular neurons switch to the tonic

mode. In this state, the cortical influence on thalamic relay cells is mostly excitatory, manifested

through single spike tonic activity, resulting in desynchronization of thalamocortical

oscillations and transition to the alert state.

Comparison among some species

Studies in monkeys have shown that about half of synapses between TRN axons in the anterior

and mediodorsal thalamic nuclei are on thalamic GABAergic neurons, enabling disinhibition

of thalamic relay cells /93,164/. By contrast, in the somatosensory and visual systems of cats,

reticular neurons target preferentially projection neurons in several thalamic nuclei, including

the ventroposterior, dorsal lateral geniculate, medial interlaminar, lateral posterior, and the
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pulvinar, and tend to avoid intrinsic inhibitory neurons /99,171/. This evidence suggests that

there is a significant difference in the corticothalamic systems of primates and cats. However,

one cannot rule out the possibility that these differences are due to examination of different

thalamic nuclei in each species.

Thalamic chemoarchitecture may affect the outcome of TRN activation by the cortex

Local circuit inhibitory neurons are found in dorsal thalamic nuclei of primates and cats as well

as the dorsal lateral geniculate nucleus of rats, but are absent in rodents /10,20,73,84,105,117,

120,125,126,156,158,172/. Consequently, cortical activation of hyperpolarized TRN neurons in

rodents would inhibit or reduce the excitability of targeted thalamic neurons.

Another significant difference in the thalamus of primates and other mammals is in the dual

neurochemical character of the thalamic relay cells, which, in primates, includes neurons

positive for the calcium binding protein calbindin or parvalbumin, which often have

complementary distributions. These proteins likely play an important role in the regulation of

neuronal responses, since they are implicated in the buffering and transport of calcium and in

the regulation of related enzyme systems /3,77,78/. In the primate thalamus, these two calcium-

binding proteins are not expressed by intrinsic GABAergic neurons and only parvalbumin is

expressed by the reticular neurons /85,87,88,184/. Similar neurochemical specificity is present

at least in the medial geniculate complex of rabbits /41/. In contrast, in the cat thalamus, most

projection neurons are calbindin-positive, while parvalbumin is expressed in intrinsic

GABAergic neurons as well as in reticular neurons, but not the relay neurons of the intralaminar

nuclei (reviewed in /87/). In rodents, most thalamic projection neurons are calbindin-positive

but many do not express either calbindin or parvalbumin, but some express a third calcium-

binding protein, calretinin (reviewed in /87/). These species-specific differences in the

expression of calcium-binding proteins may underlie significant differences in the properties

of thalamic neurons and the way they respond to cortical and reticular innervation.

Attentional modulation in TRN

Through its extensive linkage with the cortex, thalamus and brainstem, the TRN may have a

unique role among brain structures in attentional processes. The TRN can potentially regulate

the activity of thalamocortical neurons through inhibitory/disinhibitory mechanisms, and

determine whether information is relayed through the thalamus unchanged or processed. This

gate-keeping role is a result of the circuitry of TRN and depends on the physiologic state. The

functional activation of TRN is determined largely by the cortex, and by cholinergic and

monoaminergic inputs from the brainstem that regulate the membrane potential of TRN

neurons. These control mechanisms provide the substrate for the fine-tuning of the excitability

of neurons in TRN, endowing this system with the functional flexibility necessary to modulate

attention in a constantly changing environment. The involvement of TRN in attentional

modulation is exemplified after lesion of the visual sector of TRN, resulting in impairment in

selection of relevant targets in attentional orienting tasks /174/. Other studies in the visual

system of rats show that when a focus of attention is transmitted from the cortex to the thalamus

generating a core of excitation, there is a concomitant increase in Fos-positive neurons in the

associated TRN sector /114,115/. Similarly, there is evidence for an increase in TRN activity

during attentional tasks in monkeys /108/ and humans /163,170,173/.

Model for enhancement of salient stimuli and suppression of distractors

By what mechanism are relevant stimuli selected and distractors suppressed? There is general

agreement that in order to modulate attention, TRN should either enhance relevant stimuli or

dampen the noise, increasing the signal-to-noise ratio /39,69,131/. Figure 9 shows a model of

circuits through which salient or distracting stimuli may gain access to the cortex or may be
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dampened in the awake brain in primates (Fig. 9A-D). The proposed wiring underlying these

circuits is based on the circuitry known from anatomic studies and on physiologic studies

examining how salient or distracting input entering the thalamus can reach the cortex and

initiate a cascade of cortico-reticulo-thalamic activation through open loops (Fig. 9A, C, D) or

closed loops (Fig. 9B, C, D). Open loops allow prolonged activation between the thalamus and

cortex, and closed loops allow brief thalamo-cortical activation. Figure 9 shows the possible

combinations of salient and distracting input interacting with open or closed loops in the

bidirectional linkage between the dorsal thalamus and TRN, and also shows the unidirectional

link from sensory and prefrontal cortex onto TRN. Behaviorally salient inputs can have

prolonged access to the cortex through open reticulothalamic loops, as shown in Figure 9A,

C. In this case, an increase in TRN activity, elicited by the incoming salient signal, would lead

to surround inhibition of neighboring thalamic neurons, enhancing the incoming signal, and

suppressing distractors (Fig. 9A, C) /93,131,133,164/. In the case of closed loop reticulothalamic

projections, a behaviorally salient input would gain brief access to the cortex, before an increase

in TRN activity inhibits the thalamic relay neurons that transmit the salient stimulus and prevent

further relay to the cortex (Fig. 9B, D). This brief access to the cortex may be enough to guide

attention. Alternatively, it has been suggested that during wakefulness, the rhythmic burst firing

in thalamic relay neurons initiated after feedback inhibition from TRN may serve as a wake

up call to alert the cortex of the presence of behaviorally relevant sensory input /149,152/.

The model also explains how incoming distracting stimuli can be suppressed, or reach the

cortex. In the open reticulothalamic loop depicted in Figure 9A, D a distracting stimulus gains

access to the cortex for a prolonged period through activation of thalamocortical pathways.

Distractors can also reach the cortex, in the closed loop mode, but only briefly, before a

feedback projection from a TRN neuron inhibits the thalamic relay neuron (Fig. 9B, C). The

best case scenario for the selection of relevant information and suppression of distractors is

presented in Figure 9C, where salient input gains prolonged access to the cortex, through

activation of open reticulothalamic loops, and distracting input accesses the cortex only briefly,

through activation of closed reticulothalamic loops. Figure 9D presents the worst case scenario,

in which the transmission of salient and distracting inputs is reversed.

Model of prefrontal influence in attentional modulation through TRN

The above discussion shows how salient stimuli may reach the cortex and distractors

suppressed or pass on to the cortex by virtue of activity in sensory cortices through the thalamus,

TRN and cortex, consistent with previous findings /108,116,114,115/. Prefrontal pathways can

perform both functions more effectively, as summarized on the basis of recent findings /184/,

in Figure 9 (blue pathways). Prefrontal pathways serve three key functions. First, through their

widespread small and large terminals onto TRN prefrontal pathways can increase the drive for

the salient stimuli and ensure passage to the cortex (Fig. 9A-D). Second, through the same

mechanism prefrontal pathways to TRN can increase the drive of reticular neurons, effectively

inhibiting distractors in both open loop (Fig. 9A, D) and closed loop (Fig. 9B, C) circuits. Third,

prefrontal activation of MD, which maps broadly on the same TRN sites as the prefrontal

pathways, also enhances transmission of relevant signals and eliminates distractors. Given that

sensory and other systems can modulate attention at early processing stages, interactions of

the prefrontal system with TRN may be especially necessary in complex situations involving

cognitive and emotional processing.

Classic studies have shown that detection of novel stimuli evokes large negative slow potentials

in the prefrontal cortex and correlated positive slow potentials in rostral TRN /154,181/.

According to these authors (reviewed in /22/), selective intermodal attention might be realized

by prefrontal control over TRN through the inferior thalamic peduncle. A potential problem

for this hypothesis was thought to be in the topography of prefrontal cortical input to the rostral
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part of TRN, while the processing of salient or distracting sensory stimuli takes place in more

posterior parts of the thalamus, in sensory related nuclei. Since there are no direct connections

between dorsal thalamic nuclei, another link between the anterior and the posterior part of TRN

is needed to provide an anatomic substrate for selective attention. The recent findings of strong

and widespread prefrontal projections in TRN that overlap extensively with projections from

other cortical and thalamic pathways provide a link between different sectors of TRN /184/

(Figs. 7, 9). Moreover, some TRN neurons project simultaneously to more than one thalamic

nucleus, like the MD and VA /184/. Consistent with the circuitry, there is evidence that

stimulation of neurons in sensory- or motor-related dorsal thalamic nuclei robustly inhibits

other dorsal thalamic nuclei of the same or different modalities through disynaptic inhibition

mediated by TRN /35,37/.

The prefrontal corticoreticular pathway has two unique characteristics that other

corticoreticular pathways lack. The first is its dimorphic termination into many small but also

a significant proportion of large terminals, which may be more efficient in affecting information

processing. Large terminals could override input from small terminals arising in sensory, motor

or even other prefrontal cortical areas promoting the relay of relevant stimuli over distracting

stimuli. The nature of prefrontal corticoreticular interactions, combined with the properties of

TRN neurons, favor the searchlight hypothesis proposed by Crick in 1984 /39/. According to

Crick's hypothesis, the TRN acts as an attentional searchlight in the brain that can discover

action ‘hotspots’ in the cortex and the thalamus, intensify the ‘hotspot’ activity and then rapidly

turn off and repeat the same process for the next field of attention. This integration and

intensification of relevant cues was thought to occur through rapidly modifiable synapses that

are ‘strengthened’ to temporarily coordinate two already connected neurons, when those

neurons fire in a highly correlated manner. The large terminals of prefrontal pathways may

facilitate selection of specific loops through TRN and provide the flexibility needed to direct

attention to relevant stimuli, creating ‘hotspots’ through the thalamus and cortex.

The second unique feature of some prefrontal corticoreticular pathways is their widespread

extent, poised to modulate relevant signals from several modalities, as shown in Figure 7. The

evidence presented suggests involvement of these pathways in attentional mechanisms through

direct interaction of prefrontal terminals, MD, and temporal sensory association areas in TRN.

It seems plausible that, through these overlaps in TRN, prefrontal areas 46, 13, and 9 may help

modulate signals conveyed by projections from temporal sensory association cortices in the

same TRN sites, guiding the selection of relevant and motivationally significant signals.

The uniquely widespread circuitry of some prefrontal cortices and MD with TRN may

contribute to the functional specialization of the prefrontal cortex in executive control.

Pathways linking area 46 with MD, in particular, are active when animals must hold

information temporarily in mind to solve the task at hand /2,48,49,50,53,62/. The interdependence

of prefrontal cortex and MD is exemplified after cooling and incapacitating lateral prefrontal

cortex, leading to disruption of activity in MD related to working memory /2/. In addition, area

46 processes detailed sensory information, necessary for discrimination, and has connections

with premotor cortices for action /15,106/. Interestingly, axonal terminations from area 46

overlap in TRN with projections from inferior temporal cortices associated with visual

perception and visual memory /54,66/. On the other hand, area 13 has robust connections with

limbic structures and is associated with emotional processing and evaluation of reward

contingencies /12,17/. The widespread prefrontal projections to TRN from these cortices may

help focus attention on relevant and motivationally salient stimuli. In schizophrenia, both

lateral prefrontal cortex and MD are disrupted /19,61,63,97,135,137,147,169,177/, potentially

impairing the ability to effectively select relevant stimuli and suppress distractors.
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Figure 1.

Position of TRN in the rhesus monkey brain. Reconstructed hemisphere shown from the lateral

surface, which was rendered transparent to show the position of the TRN (gray) surrounding

the thalamus (black).
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Figure 2.

The TRN nucleus and some of its neurochemical features. Brightfield photomicrographs of

coronal sections from rostral (top) to caudal (bottom) levels of the rhesus monkey thalamus

showing the TRN in sections treated for: Column A, acetylcholinesterase (AChE)

histochemistry, showing TRN as it enveils the dorsal thalamus. Column B, High magnification

of sections at the same rostrocaudal levels as in column A, immunohistochemically labeled

with PV, showing that the majority of TRN neurons are PV+. Black and white arrows indicate

the borders of TRN. Scale bars A, 5 mm; B, 500 μm.
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Figure 3.

Features of TRN neurons. Brightfield photomicrographs showing differences in the

morphology of TRN neurons from a rostral to a caudal direction (top to bottom panels), with

larger multipolar neurons with round perikarya appearing rostrally (top panels), and smaller,

fusiform, bipolar neurons appearing caudally (bottom panels). Column A, Coronal sections of

a rhesus monkey thalamus stained for Nissl. Column B, Coronal sections of a rhesus monkey

thalamus stained for PV. Column C, Coronal sections of a rhesus monkey thalamus stained for

nonphosphorylated neurofilament H (SMI-32). Scale bars A, 500 μm; B, C, 200 μm.
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Figure 4.

Basic circuits linking TRN with the cortex and the thalamus. Driving input reaching the

thalamus from the sensory periphery, subcortical regions or the cortex, activates

thalamocortical projection neurons, which then transmit that information to the cortex.

Thalamocortical axons, on their way to the cortex, give off collateral branches that terminate

in TRN. In the feedback loop of this circuit, corticothalamic axons give off collateral branches

that innervate the same TRN regions. The TRN sends inhibitory projections only to the

thalamus.
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Figure 5.

Reticulothalamic connections. TRN neurons send inhibitory projections (gray line) to thalamic

relay neurons that excite them (black line), forming closed loops (left panel). In some cases, a

TRN neuron can receive excitatory projections from one thalamic neuron (black line) and send

inhibitory projections to another thalamic relay neuron (gray line) or a local inhibitory neuron

(dotted gray line), forming open loops (right panel).
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Figure 6.

Sensory sectors of the rhesus monkey TRN. A, Three-dimensional reconstruction of TRN (light

gray) showing the approximate sectors receiving projections from auditory (green), visual

(blue) and somatosensory (yellow) cortices in non-human primates based on available

evidence. The colors between the different sectors change gradually to illustrate the blurred

topography of the sectors and their overlaps. B, Three-dimensional reconstruction of TRN

(light gray), which was rendered transparent to show the position of axonal terminations from

temporal sensory association cortices, including auditory areas Ts1 (light green) and Ts2 (dark

green), visual area TE1 (dark blue), and polymodal area 36 (light green-blue gradient).
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Figure 7.

Widespread prefrontal terminations in TRN and projection neurons to MD overlap with

projections from sensory association cortices. A, Three-dimensional reconstruction of TRN

(light gray), which was rendered transparent to show the position of axonal terminations from

prefrontal areas (red) and their overlaps with somatosensory (yellow), visual (blue) and

auditory (green) sectors. Black asterisks indicate some projections from dorsal area 46 and

white asterisks indicate some projections from orbital area 13. B, TRN neurons projecting to

MD (purple) superimposed on a 3D model of TRN with color coded sensory sectors (as in A).
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Figure 8.

Large and small bouton populations in TRN. 3D-reconstructions of large (Lb) and small (Sb)

boutons (blue), synapsing (red) on PV+ dendrites of TRN neurons (gray).
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Figure 9.

Schematic diagram summarizing the involvement of prefrontal and sensory systems in

attentional mechanisms through TRN. A-D depict all possible combinations of salient (black)

and distracting (brown) inputs interacting with open or closed reticulothalamic loops. Reticulo-

MD loops can be either closed or open. A, Salient and distracting inputs interact with open

reticulothalamic loops. Salient and distracting input is relayed from the thalamus to the cortex

(green dots and lines) and back (gray triangles and lines); Activated TRN neurons inhibit other

thalamic neurons (dotted red lines) or thalamic GABAergic neurons (red squares), allowing

prolonged access of the stimulus to the cortex. The sensory system can suppress distracting

stimuli if reticular neurons activated by the salient signal inhibit neighboring thalamic neurons

that transmit distracting signals (1a). Dimorphic prefrontal input (blue), through small and large

terminals, and input from MD (cyan) can also activate neighboring reticular neurons and inhibit

the thalamic neurons that relay distractors (2) and disinhibit thalamic neurons relaying relevant

information (1b). B, Salient and distracting inputs interact with closed reticulothalamic loops,

reaching the cortex briefly before they are inhibited by TRN neurons. Input from prefrontal

cortex and MD can reverse this outcome by activating neighboring TRN neurons that inhibit

the TRN neurons, that prevent transmission of the salient input (3a), or by inhibiting thalamic

GABAergic neurons and disinhibiting the relay of salient input (3b). Prefrontal-MD input could

also lead to increased inhibition of distractors (3c). C, Salient input has prolonged access to

the cortex, interacting with open reticulothalamic loops, and distracting input reaches the cortex

briefly, interacting with closed reticulothalamic loops. This is the best case scenario for

selection of relevant information and suppression of distractors, and can occur even at early
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processing stages. Input from the prefrontal cortex and MD to TRN results in enhancement of

selection of relevant stimuli by activating TRN neurons that suppress distractors (4a, 5) or

disinhibit neurons relaying salient input (4b). D, Salient input reaches the cortex briefly, before

TRN feedback inhibition through closed loops, and distracting input has prolonged access to

the cortex, interacting with open reticulothalamic loops. Projections from prefrontal cortex and

MD to TRN provide a mechanism to allow prolonged passage of relevant input, through lateral

inhibition in TRN (6a) or disinhibition of the thalamus (6b). The same projections have a

concomitant consequence of suppressing distractors (6c).
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