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Abstract

We introduce periodic covariance approximations designed for embedding covariance ma-
trices for lattice-located observations inside of nested block circulant covariance matrices. The
approximations are positive definite provided that the embedding lattice is at least as large as
the observation lattice, in contrast with standard circulant embedding methods that require
the embedding lattice to be at least twice the size of the observation lattice in each dimen-
sion. Recently proposed computationally efficient Markov chain Monte Carlo and Monte Carlo
Expectation-Maximization (EM) methods for estimating covariance parameters rely on succes-
sive imputations of values on the larger embedding lattice. We demonstrate in simulations that
the use of smaller embedding lattices, and thus smaller numbers of imputed values, leads to
Markov chains with less autocorrelation and EM algorithms that converge more quickly, with-
out sacrificing the accuracy of the parameter estimates. Our approximations are particularly
advantageous in more than two dimensions. We also present numerical studies to guide the
construction of the approximations. We conclude with an analysis and interpolation of photo-
synthetically available radiation data and show that our approximate procedures are faster to
compute per iteration, in addition to the improved iterative performance.

1 Introduction

The Gaussian process model plays a central role in the analysis of spatially and spatial-temporally
correlated data. It is used directly for modeling the data that can be assumed to be Gaussian and
often used indirectly as a stage in a hierarchical process model when the data are not assumed to
be Gaussian. Consider a stochastic process Z(x) ∈ R, x ∈ Rd. The defining property of a Gaussian
process is that for any n ∈ N and x1, . . . ,xn ∈ Rd, the vector Z = (Z(x1), . . . , Z(xn))

′ has a
multivariate normal distribution. A Gaussian process is characterized by its mean at every location
E(Z(x)) and the covariance between its observations at any two locations Cov(Z(x), Z(y)), and it
is common to assume that both the means and the covariances are specified by parametric functions.

We write µβ = E(Z) and Kθ = E((Z −µβ)(Z −µβ)
′) to signify a mean vector with parameter

β and covariance matrix with parameter θ for observations at a specific set of locations, understood
from context. Statistical computation with Gaussian process models requires algebraic manipulations
involving µβ and Kθ. For example, if we wish to simulate Z, we draw a mean-zero vector with
independent components X ∼ N(0, In) and construct Z = µβ + CX, where C is an n× n matrix
for which CC′ = Kθ. The matrix C is generally not unique, but a popular choice is a triangular
factorization, also known as a Cholesky factorization in this case where Kθ is symmetric and positive
definite. The Cholesky factorization is also commonly used in computing the Gaussian loglikelihood
function. If Kθ has no exploitable structure, the Cholesky factorization requires O(n3) floating point
operations (flops) and O(n2) memory, so its computational burden begins to overwhelm modern
standard computational facilities when n is greater than 10,000. The addition or subtraction of the
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mean vector requires only O(n) flops and memory, so we focus our attention here on computations
involving covariances and assume throughout that the mean is identically zero.

Some covariances and sets of observation locations induce structure in Kθ that allows for the
exploitation of algorithms that sidestep these computational burdens. It is important to identify
such scenarios so that, when they occur, we avoid unnecessary computational effort and streamline
statistical analysis of spatial and spatial-temporal data. A well-known case is the pairing of regular
lattice locations with stationary covariances. A process has stationary covariances if the covariance
between observations at any two locations x and y depends only on the vector lag x − y. Then
we write Cov(Z(x), Z(y)) = Kθ(x − y) and call Kθ(·) the covariance function, which depends
on parameter θ. We define δZd to be the d-dimensional regular lattice with spacing δ > 0, that
is, x = (x1, . . . , xd) ∈ δZd if xj/δ ∈ Z for each j ∈ {1, . . . , d}. For any particular finite set of
lattice locations J = {x1, . . . ,xk} ⊂ δZd, there exists n = (n1, . . . , nd) such that J ⊂ δJn, a finite
rectangular lattice with dimension sizes given by the components of n. We definite n = n1×· · ·×nd

to be the number of locations in δJn, and we call δJn the observation lattice.
Wood and Chan (1994) showed that if J ⊂ δJn, and the covariances are stationary, then the

resulting covariance matrix K11 for Z1 = (Z(x1), . . . , Z(xk)) can always be embedded within a
larger covariance matrix that is nested block circulant, meaning block circulant with each successive
subblock being block circulant. We give a formal definition of nested block circulant in Appendix A.
Letting ⌊y⌋ denote the integer part of y, “circulant embedding” is achieved by defining mj := ⌊τjnj⌋
with τj ≥ 1 for each j ∈ {1, . . . , d}, m = (m1, . . . ,md), m = m1 × · · · ×md, and by constructing a

covariance function K̃θ(·) that is periodic in each dimension with periods given by the components

of m, and for which K̃θ(x−y) = Kθ(x−y) for any x,y ∈ δJn. The periodicity of K̃θ(·) ensures that
the covariance matrix K̃θ for the observations on δJm (ordered lexicographically) is nested block
circulant. We call δJm the embedding lattice. Defining Z2 to be the set of observations on δJm \ J ,
we write the covariance matrix for (Z1,Z2) as

PK̃θP
T =

[
K̃11 K̃12

K̃21 K̃22

]
,

where P is a permutation matrix for reordering the rows of K̃θ so that K̃ij = E(ZiZ
′
j) under K̃θ(·).

Since K̃θ(x − y) = Kθ(x − y) for any x,y ∈ δJn, K̃11 = K11, which is the covariance matrix

for Z1 under Kθ(·), we say that K11 is embedded inside the nested block circulant matrix K̃θ.
Circulant embedding derives its usefulness from the fact that the d-dimensional discrete Fourier
transform (DFT) diagonalizes nested block circulant matrices. Since fast Fourier transform (FFT)

algorithms return the eigenvalues of K̃θ in O(m logm) flops and use only O(m) memory, the authors
proposed using circulant embedding to generate computationally efficient simulations of stationary
Gaussian processes on lattices. This method proceeds by simulating a complete set of observations
on the embedding lattice δJm–using an FFT to factor K̃θ–extracting the simulated values on J , and
discarding the rest.

Circulant embedding has a rich literature and has been reinvented at least once independently for
the purpose of Gaussian process simulation by Dietrich and Newsam (1997). Chan and Wood (1999)
described extensions to the multivariate case, and circulant matrices are used extensively in statistical
computations with Gaussian Markov random field models (Rue and Held, 2005). For given choices

τj ≥ 1, it is not always possible to find a suitable function K̃θ(·). Aside from covariance functions
that are compactly supported, which is a somewhat limiting restriction, it is generally required that
τj ≥ 2 for each j.1 Even if we set τj ≥ 2 for each j, the existence of K̃θ(·) for a particular Kθ(·)
may still not be guaranteed, and other authors, including Stein (2002) and Gneiting et al. (2006),

1It is sometimes possible to achieve positive definite circulant embedding with mj = 2nj − 1, but we ignore this

possibility for simplicity of notation since it is not important asymptotically and negligible in practice for large lattices.
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have provided methods for constructing valid K̃θ(·) while minimizing the size of each τj . When there

exists K̃θ(·) with τj = 2 for each j, this is referred to as minimal embedding.
Until recently, circulant embedding methods focused primarily on simulation. Stroud et al. (2014)

proposed methodology for drawing inferences about covariance parameter θ from two-dimensional
lattice data. The authors describe an MCMC algorithm for Bayesian inference that consists of
alternating updates of the missing values Z2 and the possibly vector-valued parameter θ. The missing
values are updated with conditional simulations given the observed values and the current parameter.
The parameter is updated with a either a Gibbs or Metropolis-Hastings (MH) algorithm given the
observed data and the current imputed missing values. Computing the MH acceptance probabilities is
completed in O(m logm) flops since factoring K̃θ is the limiting computational task in evaluating the
Gaussian loglikelihood for (Z1,Z2). The computational effort required for the conditional simulations
is dominated by solving two linear systems of the form K11y = z. The linear systems are solved
by applying a preconditioned conjugate gradient algorithm, which is efficient since the forward
multiplication K11y is sped up by computing instead the embedded multiplication K̃θ[y, 0]

′, which
requires O(m logm) flops with an FFT. Several efficiently computed preconditioners are proposed,
with one based on the likelihood approximation in Stein et al. (2004) effective in several scenarios.

Frequentist inference employs a Monte Carlo Expectation-Maximization (EM) algorithm. At
iteration k the expected loglikelihood for (Z1,Z2) given Z1 is approximated by averaging M log-

likelihoods for (Z1,Z
(j)
2 ), where Z

(1)
2 , · · · ,Z(M)

2 are mutually independent conditional simulations
of Z2 given Z1 with parameter for iteration k, denoted by θ(k). The M conditional simulations are
computed efficiently using the same methods proposed for updating the missing values in the MCMC
algorithm. Then θ(k+1) is set to the value that maximizes the averaged loglikelihood. This process is
repeated for N iterations, where N is selected by a convergence criterion, and the set of parameters
(θ(1), . . . , θ(N)) is used to construct estimators for θ. We investigate in Section 4 the selection of M
and N .

The construction of K̃θ(·) adopted by Stroud et al. (2014) is a variation of circulant embedding
called cutoff embedding that was originally proposed by Stein (2002). There are multiple forms of
cutoff embedding; in this paper, we use the term “cutoff embedding” to refer to the specific form
implemented in Stroud et al. (2014). They require τj ≥ 2

√
d for square lattices and use τj = 3 in

two-dimensional simulations. The Bayesian and frequentist methods described above are exact in the
sense that the covariance function that the likelihood implies for the actual observations is equal to
the target covariance function, a desirable feature of their construction that stands in contrast with
various approximate likelihood or composite likelihood methods (Whittle (1954), Vecchia (1988),
Stein et al. (2004)). However, for inferential procedures, which are generally more computationally
intensive than simulation, it can be beneficial to sacrifice exactness if computational gains are made
by employing approximations, especially considering that all of the proposed estimators contain
Monte Carlo error. Further, cutoff embedding is not guaranteed to define positive definite covariance
functions and sometimes produces covariance matrices that are not positive definite.

In this paper, we provide methods for achieving positive definite circulant embedding with ap-
proximate covariances and demonstrate the computational gains that these approximations afford.
In Section 2, we describe approximations to covariance functions based on their spectral densities,
producing positive definite, periodic covariance functions on δJm for any choices τj ≥ 1. If each
τj = 1, the approximations we propose reduce to the approximation inherent to the Whittle like-
lihood (Whittle, 1954). We present numerical studies in Section 3 showing that, for the purposes
of likelihood-based parameter estimation, the approximations improve as each τj increases, and the
approximations can be extremely sharp even if each τj < 2. Selecting smaller τj defines a smaller
embedding lattice δJm, which decreases the number of missing values to impute in the iterative
inferential procedures. Section 4 includes the results of simulation studies demonstrating that us-
ing approximate covariances to reduce the number of imputed values has a dramatic effect on the
performance of the iterative algorithms. Specifically, in two-dimensional simulations, our methods
increased the number of effective samples per iteration by at least a factor of five over cutoff embed-
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ding methods, and in three-dimensional simulations, the increase in the number of effective samples
was at least a factor of eight, without sacrificing the accuracy of parameter estimates. In Section
5 we apply the methodology to a spatial dataset consisting of satellite measurements of photosyn-
thetically available radiation, and we show that the approximate procedures reduced the computing
time required for each iteration by nearly a factor of four compared to cutoff embedding. Thus, our
proposed methods provide computational benefits on two fronts in iterative estimation procedures:
reducing the total number of iterations required and the computing time required for each iteration.

2 Circulant Embedding with Approximate Covariances

In this section we provide methods for constructing periodic covariance functions with period in
dimension j given by mj . The covariance functions are guaranteed to produce positive definite co-
variance matrices for observations on δJm as long as mj ≥ nj for each j, or equivalently, each
expansion factor τj ≥ 1. This relaxes the requirement that each mj ≥ 2nj in standard circulant em-
bedding, and thus our approximations allow for embedding lattices that are smaller than the smallest
embedding lattices allowed in standard circulant embedding. Although not required in practice, we
assume for notational brevity throughout the rest of the paper that the observation lattice is ex-
panded by a common factor in each dimension and write τ for the common expansion factor. In
Figure 1, we illustrate the sizes of the embedding lattices used in our approximate procedures with
τ = 5/4 and in cutoff embedding. We show in Sections 4 and 5 that the use of smaller embedding
lattices offers substantial computational advantages. Our methods differ from standard circulant em-
bedding methods in that the covariances for the observed values approximate the target covariances
Kθ(h), with the accuracy of the approximations depending on the expansion factor, so some care
must be taken to choose the expansion factor to ensure that approximations are sufficiently sharp.
In Section 3, we provide numerical studies that guide our choice of the expansion factor.

A full understanding of our approximations requires some background on spectral representations
of stationary covariance functions. Bochner’s Theorem (Yaglom, 1987) states that every stationary
covariance function K(·) corresponds to a unique spectral measure F (·), with the correspondence
given by the continuous inverse Fourier transform

K(h) =

∫

Rd

exp(iω′h)dF (ω). (1)

If F (·) is differentiable, then dF (ω) = f(ω)dω, and we call f(ω) the spectral density. We assume
throughout this article that the spectral density exists and is continuous. While covariance functions
must be positive definite, which is often difficult to establish directly, the spectral density need only
be positive almost everywhere and integrable, which is usually easy to check.

Spectral representations are useful for checking positive definiteness of covariance functions and
for proving theoretical results about random fields, but they are also useful for statistical com-
putations when data are observed on a regular lattice δZd. In this case we need to consider only
covariances K(h) with h ∈ δZd, and thus the covariance function can be expressed as

K(h) =
∑

j∈Zd

∫

[0,2π/δ]d
f(ω + 2πj/δ) exp(i(ω + 2πj/δ)′h)dω

=

∫

[0,2π/δ]d
fδ(ω) exp(iω′h)dω, (2)

with the second equality following by exchanging summation and integration and using the fact
that exp(iω′h) is indistinguishable from, or aliased with, exp(i(ω + 2πj/δ)′h) on h ∈ δZd. We call
fδ(ω) =

∑
j∈Zd f(ω + 2πj/δ) the aliased spectral density.
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τ = 5/4  Lattice

Cutoff Embedding Lattice

Figure 1: Illustration of the relative sizes of the embedding lattices (δJm, gray+white) and the
observation lattice (δJn, gray) used in our approximate procedures with τ = 5/4 and in cutoff
embedding, which uses τ = 3 in Stroud et al. (2014). Here, the observation lattice has size n =
(12, 12).

The approximation for K(h) that we propose for use in circulant embedding is a discretization
of the integral in (2),

Rm(h) =
(2π)d

m

∑

j∈Jm

fδ(ωj) exp(iω
′
jh), (3)

where ωj = (2πj1/(δm1), . . . , 2πjd/(δmd)) are the d-dimensional Fourier frequencies on a grid of size
m. The expression in (3) has been called a discrete spectral approximation (Dietrich and Newsam,
1997). By varying the size ofm–or equivalently, τ–in Rm(·), the practitioner has the ability to control
its accuracy, and the approximations can be made arbitrarily accurate by choosing large τ . The
approximation is powerful since Rm(·) is automatically periodic with period mj in each dimension,
due to the periodicity of the complex exponentials exp(iω′

jh), which guarantees that the covariance
matrix Rm for all observations on δJm (ordered lexicographically) is nested block circulant. This
implies that the DFT diagonalizes Rm, which has positive eigenvalues fδ(ωj). Therefore Rm is
automatically positive definite for any τ ≥ 1, and it is efficient to compute Rm(h) for all h ∈ δJm
with FFT algorithms when fδ(ωj) is available. Rue and Held (2005) and Lindgren et al. (2011)
discuss methods for constructing Markov random field models that are periodic on a domain that is
slightly larger than the observation domain. Here, we do not assume that the model has a Markov
or approximately Markov structure, only that it is stationary.

The approximation in (3) has the additional attractive feature that the covariance function Rn(·),
which is obtained by setting τ = 1, is identical to the covariance function implied by the Whittle
likelihood (Whittle, 1954). To see this, write Rn = F †

nDFn, where † is conjugate transpose, Fn is
the matrix that performs the DFT, and D is a diagonal matrix containing appropriately ordered
eigenvalues fδ(ωj). Then the Gaussian loglikelihood for Z1 (assuming no missingness on δJn) with
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covariance matrix Rn is

−1

2
log detF †

nDFn − 1

2
Z ′

1F
†
nD

−1FnZ1 = −1

2

∑

j∈Jn

fδ(ωj)−
1

2

∑

j∈Jn

|I(ωj)|2
fδ(ωj)

, (4)

where I(ωj) is the DFT of Z1 (|I(ωj)|2 is called the periodogram). The expression on the right of
(4) is a common form of the Whittle likelihood. We now see that the Whittle likelihood implies a
covariance model that is periodic on the observation domain δJn, so observations on the edges of the
lattice are assumed to be correlated with each other. It is for this reason that the performance of the
Whittle likelihood degrades with increasing the number of dimensions d, since in higher dimensions,
greater proportions of observations are near the edges (Guyon, 1982). Dahlhaus and Künsch (1987)
showed that multiplying the boundary observations by a tapering function to downweight their
influence can improve the asymptotic behavior of parameter estimates when an adjusted Whittle
likelihood is used, but this comes at the expense of altering the data.

The covariance function in (3) is periodic on the embedding lattice δJm, so the resulting co-
variance matrix Rm for the set of all values on δJm (ordered lexicographically) has a nested block
circulant structure, and after permutation of rows and columns, can be written in block form as

PRmP ′ =

[
R11 R12

R21 R22

]
,

where P is a permutation matrix for reordering the rows of Rm so that Rij = E(ZiZ
′
j) under Rm(·).

We propose to use the Bayesian and frequentist methods in Stroud et al. (2014) and discussed in

the Introduction. The difference here is that we replace K̃θ with Rm (which depends on θ as well).
We show in the Sections 4 and 5 that this replacement has dramatic impacts on the computational
efficiency of the methods without sacrificing the accuracy of the parameter estimates.

The drawback of our approach is that R11 is not generally equal to K11, but the advantage is
that since the approximations can often be made very sharp with τ < 2, the number of imputed
values required for the Monte Carlo methods is not large compared to the number of observed values,
allowing the observed values to drive the parameter updates. We demonstrate the accuracy of this
approximation for small τ in Section 3. The simulations in Section 4 show that the computational
advantage of using fewer imputed values far outweighs the drawback of the approximate nature of
the method, and in Section 5, we show that the overall computational effort is smallest when fδ(·)
is modeled directly with flexible elementary parametric functions.

2.1 Computation of Rm

In this subsection we discuss three methods for computing and approximating the covariances
Rm(h). We show in Appendix C that

Rm(h) =
∑

j∈Zd

K(h+ δj ◦m)

= lim
N→∞

N−1∑

j1=−N

· · ·
N−1∑

jd=−N

K((h1 + δj1m1, . . . , hd + δjdmd)), (5)

so when K(h) decays quickly with ‖h‖, where ‖ ·‖ denotes Euclidean distance, as in the exponential
covariance function, Rm(h) is well-approximated by a truncation of (5). This truncation does not
guarantee positive definiteness, but the commonly used covariance functions often decay very quickly
with ‖h‖, so the resulting covariance matrices rarely fail to be positive definite with N = 2 or 3,
especially when the components of n are large.
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If the spectral density f(ω) is available in closed-form, and it decays quickly with ‖ω‖, one may
approximate fδ(ωj) by truncating

∑
k∈Zd f(ωj +2πk/δ). This approximation is guaranteed to gen-

erate a positive definite function. Most of the commonly-used covariance models in spatial statistics
possess the property that either the spectral density or the covariance function decays quickly. The
Matérn covariance function (Matérn, 1960), for example, decays faster than any polynomial, as do
the spectral densities for the Gaussian and Cauchy covariance functions.

In Section 5 we show that our methods are particularly efficient when the aliased spectral density
fδ(·) is modeled directly in closed form. Then the array of eigenvalues fδ(ωj), j ∈ Jm, can be formed
directly without any truncations, and Rm is thus guaranteed to be positive definite. We recommend
this modeling approach due to its computational advantages, and we discuss in Section 5 a parametric
model for fδ(·) that mimics the flexibility of the Matérn covariance function.

3 Numerical Studies

In the previous section, we presented a periodic covariance approximation whose accuracy depends
on an expansion factor τ . The numerical studies in this section concern the resulting approximate
covariance matrix R11 and the effect that the number of observations, the strength of spatial cor-
relation, and the choice of τ have on how well R11 approximates K11. Since both the Bayesian and
frequentist methods discussed in this paper are likelihood-based, we study the approximations with
respect to Kullback-Leibler (KL) divergences. Let Z1 be the set of all observations on δJn. Defining
Lτ (θ; Z1) to be the Gaussian loglikelihood function for Z1 under covariance function Rm(·) with
m = τn, and defining L(θ; Z1) to be the Gaussian loglikelihood function for Z1 under the target
model, which has covariance function Kθ(·), the KL divergence of our approximate model from the
target model is

E0(L(θ0; Z1)− Lτ (θ; Z1)), (6)

where the expectation is taken with respect to the target model with parameter θ0. The θ that
maximizes Lτ (θ; Z1) is consistent for θ

τ , the minimizer of (6), under replication of Z1 (Varin et al.,
2011). Since E0(L(θ0; Z1)) does not depend on θ, θτ is the minimizer of

E0(−Lτ (θ; Z1)) =
1

2
log detR11 +

1

2
tr(R−1

11 K11),

where R11 implicitly depends on θ and τ , and K11 is formed using the covariance function Kθ0(·).
In this section, we compute θτ for various choices of τ in two different asymptotic scenarios and
for various values of true parameter θ0. While we do not propose using maximizers of Lτ (θ; Z1) as
estimators in practice, the results of these computations are nonetheless useful for understanding
how the quality of the approximate covariance functions depends on τ , the size of the observation
lattice, and the strength of spatial correlation.

The numerical studies use the isotropic exponential covariance function Kλ(h) = exp(−‖h‖/λ),
where we refer to the parameter λ as the range parameter; increasing λ decreases the rate at which
Kλ(h) decays with ‖h‖. All of the studies assume a square two-dimensional lattice. The lattice in
the first set of calculations has spacing δ = (32

√
2)−1 and λ0 = 0.15, and we specify lattice sizes

of n ∈ {322, 482, 642, 802}. Hence the spacing is fixed, and the number of locations increases; this
is sometimes called increasing domain asymptotics. The covariance approximations are calculated
with values of τ ∈ {1, 17/16, 9/8, 5/4, 3/2, 5}, and we recall that setting τ = 1 corresponds to
the approximation implied by the Whittle likelihood. Choosing τ = 5 is intended to show how λτ

behaves when R11 is a very good approximation to K11. In Table 1, we present the results of the first
numerical study. When τ = 1, λτ < λ0, although λτ increases with n. This is not surprising because
we expect the Whittle likelihood to underestimate range parameters since the Whittle likelihood
assumes periodic correlation on δJn when the true covariance function is not periodic at all. For
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n
τ 322 482 642 802

1 0.1234 0.1310 0.1353 0.1380
17/16 0.1457 0.1484 0.1493 0.1496
9/8 0.1485 0.1495 0.1498 0.1499
5/4 0.1496 0.1499 0.1500 0.1500
3/2 0.1499 0.1500 0.1500 0.1500
5 0.1500 0.1500 0.1500 0.1500

Table 1: Numerical values of λτ for various choices of τ and n with constant lattice spacing (32
√
2)−1

and λ0 = 0.15.

λ0

τ 0.05 0.10 0.15 0.20 0.25
1 0.0482 0.0932 0.1353 0.1748 0.2120

17/16 0.0500 0.0997 0.1493 0.1986 0.2477
9/8 0.0500 0.0999 0.1498 0.1996 0.2494
5/4 0.0500 0.1000 0.1500 0.1999 0.2499
3/2 0.0500 0.1000 0.1500 0.2000 0.2500
5 0.0500 0.1000 0.1500 0.2000 0.2500

Table 2: Numerical values of λτ for various choices of τ and λ0 for a lattice with 642 points and
spacing (32

√
2)−1. The third column of this table is equivalent to the third column of Table 1

every n, λτ approaches λ0 as τ increases, with λτ converging more quickly for larger n. For every
τ > 1, λτ approaches λ0 as n increases. This last remark is an important one because it suggests
that we obtain very accurate approximations with small τ when the number of observations is large,
which is desirable because the methods are designed for analyzing very large datasets.

The second numerical study considers the behavior of λτ for various choices of λ0 to under-
stand how the performance of the approximation depends on the strength of the spatial correlation.
We fix the lattice spacing at δ = (32

√
2)−1 and the number of lattice locations at 642. We vary

λ0 ∈ {0.05, 0.10, 0.15, 0.20, 0.25}. The results presented in Table 2 show that λτ approaches λ0 as
τ increases. We also observe that λτ converges faster to λ0 when λ0 is small, that is, when the
spatial correlation is weak. In every case, τ = 3/2 is large enough to ensure that λτ and λ0 agree
to four decimal places. In Figure 2, we plot the target covariance functions and several of the ap-
proximations with λ = 0.25. It is important to note that approximations need not be accurate at
all spatial lags in order for λτ to be very close to λ0. To say this more concretely with a specific
example, when λ0 = 0.25 and τ = 5/4, λτ = 0.2499 even though Rm(δ(63, 0)) = 0.2283 is not close
to the target covariance Kλ0

(δ(63, 0)) = 0.0038. This suggests that it is not necessary for Rm(h) to
well approximate K(h) at large lags in order for R11 to produce a likelihood function that returns
accurate parameter estimates.

The third numerical study addresses how the approximations perform when the size of the spatial
domain is fixed, and the lattice spacing decreases. This increasing resolution scenario is sometimes
called fixed domain asymptotics. We use lattice spacing (

√
n
√
2)−1 with n ∈ {322, 482, 642, 802},

and we set λ0 = 0.15. The results are reported in Table 3. When τ = 1, λτ is again less than
λ0, but in this fixed domain scenario, λ1 does not improve much as n increases; it changes from
λ1 = .1234 when n = 322 to λ1 = .1237 when n = 802, as opposed to λ1 = .1380 when n = 802 in
the increasing domain scenario. This is perhaps not surprising because increasing the resolution does
not necessarily give much more information about the range of spatial dependence. When τ > 1,
however, λτ does appear to be approaching λ0 as n increases, even when τ is as small as 17/16. In
that case λ17/16 = 0.1457 when n = 322 versus λ17/16 = .1488 when n = 802. The error λ17/16 − λ0
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Figure 2: Target covariance function and approximations with several values of τ for λ = 0.25.

n
τ 322 482 642 802

1 0.1234 0.1235 0.1236 0.1237
17/16 0.1457 0.1474 0.1483 0.1488
9/8 0.1485 0.1492 0.1495 0.1497
5/4 0.1496 0.1498 0.1499 0.1499
3/2 0.1499 0.1500 0.1500 0.1500
5 0.1500 0.1500 0.1500 0.1500

Table 3: Numerical values of λτ for various choices of τ and n when the resolution of the lattice
increases on a fixed domain. The lattice spacing is (

√
n
√
2)−1, and λ0 = 0.15. The first column of

this table is the same as the first column of Table 1.

decreases by 72% as we increase n from 322 to 802 versus a 1.3% decrease in the error λ1 − λ0 for
the same increase in n. As before, λτ approaches λ0 as τ increases in every case.

4 Simulations

The previous section showed that τ need not be large in order for the parameter minimizing the KL
divergence to be close to the true parameter, especially when the number of observations is large.
This section presents simulations that provide further support that we can obtain very accurate
parameter estimates with small values of τ . Further, choosing a small value of τ defines a relatively
small embedding lattice, which we show has a dramatic effect on the speed of convergence of the
Monte Carlo inferential procedures. With small embedding lattices, the number of imputed values
is not large relative to the number of observations, so the observations hold greater authority in
driving the parameter updates in the iterative algorithms. Using a large embedding lattice leads
to highly correlated Markov chains and slowly converging Monte Carlo EM algorithms. Standard
circulant embedding requires an embedding lattice that is at least two times larger–and in practice
often three or more times larger–than the observation lattice in each dimension. We show that using
approximate covariances allows us to obtain accurate parameter estimates with τ as small as 1.25.

To demonstrate these points, we focus our simulation studies on the estimation of a single pa-
rameter in the powered exponential covariance function. In Section 5, we pursue the estimation of
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multiple parameters in the powered exponential covariance function, as well as in the Matérn covari-
ance function for the photosynthetically available radiation data. The isotropic powered exponential
covariance is a flexible and commonly used covariance function defined by

K(h) = σ2 exp
(
− (‖h‖/λ)α

)
+ γ1(h = 0),

where σ2, λ, γ > 0 and α ∈ (0, 2], with λ interpreted as a range parameter, γ as a nugget parameter,
and α controlling the local behavior of K(·).

4.1 Two-dimensional simulations

We simulate 100 spatial data sets on a lattice of size n = (32, 32) with spacing (32
√
2)−1 from

a mean-zero Gaussian process model with powered exponential covariance function with σ2 = 4,
λ = 0.1, α = 1 (exponential model), and γ = 0.01. We focus on the estimation of α and specify its
prior to be uniform over (0, 2]. The lattice dimensions, covariance model and parameters, and prior
are the same as those used in Stroud et al. (2014).

The MCMC procedure consists of Metropolis-Hastings updates of α, where the acceptance prob-
abilities are tuned to 0.50 during a burn-in period of 1000 iterations. The lattice contains n = 1024
observation locations, so MCMC estimation using the exact Gaussian likelihood is feasible. When
using the exact likelihood, no imputations are necessary. Cutoff embedding is achieved with the same
procedures outlined in Stroud et al. (2014), which give an embedding lattice of size m = (96, 96).
Circulant embedding with approximate covariances is carried out using the methods in Section 2
with various choices of expansion parameter τ ∈ {17/16, 9/8, 5/4, 3/2, 2, 3}, giving embedding lat-
tices of size m = (32τ, 32τ). The choice of τ = 3 matches the amount of imputation used in the
cutoff embedding procedure. We compute Rm(h) using a truncation of the wrapping of K(·) with
N = 3, which always produced positive definite covariance matrices.

We write αE(k, j) to denote the sample mean after k post-burn-in iterations in the exact likeli-
hood chain for the jth simulated data set, αC(k, j) to denote the corresponding mean using cutoff
embedding, and αA(k, j, τ) to denote the corresponding mean using embedding of approximate co-
variances with expansion factor τ . To evaluate the various procedures, we compare the root mean
squared deviations from the exact likelihood estimate at 10,000 iterations,

⎛
⎝ 1

100

100∑

j=1

(αC(k, j)− αE(10000, j))
2

⎞
⎠

1/2

and

⎛
⎝ 1

100

100∑

j=1

(αA(k, j, τ) − αE(10000, j))
2

⎞
⎠

1/2

,

for various choices of k and τ .
Table 4 includes results of this comparison. For small numbers of iterations, k < 2000, embedding

with approximate covariances outperformed cutoff embedding with respect to this metric, even when
τ is as small as 17/16 = 1.0625. At 6000 iterations, the parameter deviation using cutoff embedding
was no better than that of the approximate procedures with τ ∈ {9/8, 5/4} at 1000 iterations,
an iteration speedup of 6 times at this tolerance. Even at 10,000 iterations, cutoff embedding still
underperformed compared to approximate procedures, which were better at just 3000 iterations with
τ ∈ {9/8, 5/4}. An interesting result is that the deviations using cutoff embedding and embedding
of approximate covariances with τ = 3 were roughly equal at every number of iterations. This is
evidence that the slow convergence of cutoff embedding procedures can be attributed to the increased
number of imputed values, since setting τ = 3 produces an embedding lattice that is the same size
as that used in cutoff embedding.

The results in Table 4 can be explained by considering the autocorrelation in each chain and
the resulting effective sample sizes of the correlated Markov chains. To begin the exploration of
this issue, we include in Figure 3 trace plots of a Markov chain that used cutoff embedding and a
Markov chain that used circulant embedding with approximate covariances (τ = 5/4) for one of the
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Approximate
Cutoff τ

k Embed 17/16 9/8 5/4 3/2 2 3
1000 60 42 25 24 26 42 59
2000 41 38 20 20 22 30 39
3000 34 37 16 16 18 25 32
4000 29 37 17 15 19 21 29
5000 27 36 16 15 16 19 26
6000 25 36 16 14 15 17 24
7000 23 35 16 13 13 16 22
8000 21 35 16 12 13 16 21
9000 20 35 15 12 12 15 20
10000 18 35 15 11 12 14 19

Table 4: Root mean squared deviations from exact likelihood estimates after k MCMC iterations
with d = 2. We report the deviations for the various methods multiplied by 10,000.

simulated data sets. Both chains started at an initial value of α = 1.2. In this example, we do not see
an appreciable difference in mixing time–the number of iterations until the chain began to oscillate
around its mean–although we sometimes did see faster mixing in the chains that used approximate
covariances. On the other hand, we do see a noticeable difference in the two chains’ autocorrelations;
the chain that used approximate covariances with τ = 5/4 appears to be less correlated with itself
than does the chain that used cutoff embedding

The qualitative behavior we see in Figure 3 can be made more formal by analyzing the empirical
autocorrelations among the chains for the various methods and the 100 simulated datasets. To show
that the example in Figure 3 is not an isolated one, we plot in Figure 4 histograms of empirical lag
1 autocorrelations among the 100 chains and various embedding approaches. The empirical lag 1
correlations were computed using 10,000 paramter iterates after a burn-in period of 1000 iterations.
The exact likelihood Markov chains, which used no imputation, offered the smallest lag 1 correlations.
The lag 1 correlation increased as we increased τ in the approximate procedures. Cutoff embedding
and embedding with our approximate procedure with τ = 3 produce essentially the same lag 1
correlations. This is strong evidence that the amount of autocorrelation in the Markov chains is well
explained by the number of imputed observations

The strength of correlation in a Markov chain is directly related to the computational effort
required for MCMC parameter estimation. Effective sample size is a useful measure intended to
summarize how much information about a parameter is contained in a correlated Markov chain.
The variance of the sample average of parameter iterates in a Markov chain of length k is given by
(1′Σ1)/k2, where Σ is the covariance matrix of the parameter iterates, and 1 is a vector of ones. As
k increases, the variance of the sample average tends to

Var
(
α(i)

)

k

∞∑

j=∞

Corr
(
α(i), α(i+j)

)
,

which does not depend on i for a stationary chain. The effective sample size is defined as

ESS(k) =
k∑∞

j=−∞ Corr
(
α(i), α(i+j)

) ,

which is equal to the actual sample size k if the chain is uncorrelated. Therefore, effective sample
size is a measure of how much information the sample average of a correlated Markov chain contains
relative to a sample average of uncorrelated draws from the posterior distribution.
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Figure 3: Trace plots of Markov chains for α with cutoff embedding and with our approximate
methods for τ = 5/4.
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Figure 4: Histograms of lag 1 correlation in the Markov chains among 100 simulations and various
methods for d = 2 simulations.
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Figure 5: Histograms of effective sample size in the Markov chains relative to approximate methods
with τ = 5/4 among 100 simulations and various methods for the d = 2 simulations.

If we assume that the correlation between successive parameter iterates decays exponentially, as
is the case for an autoregressive model of order 1, the effective sample size is k(1− ρ)/(1+ ρ), where
ρ is the lag 1 correlation. We define the relative effective sample size of two autocorrelated chains
as ESS1(k)/ESS2(k), which does not depend on k. This is a measure of the relative computational
cost of reaching a desired number of effective samples. In Figure 5, we plot histograms consisting of
the relative effective sample sizes of the various methods among the 100 simulated datasets, where
we take as a reference the effective sample size of the approximate procedures with τ = 1.25. The
histograms in Figure 5 represent the proportional changes (relative to the approximate procedure
with τ = 1.25) in the number of MCMC samples required to reach a desired number of effective
samples. As we see from Figure 5, compared to our approximate procedures, cutoff embedding
procedures required between 5 and 8 times the number of iterations to reach a desired number of
effective samples, a range that roughly agrees with the analysis reported in Table 4.

Using the same 100 simulated datasets, we implement the Monte Carlo EM algorithm proposed
in Stroud et al. (2014). The Monte Carlo EM algorithm specifies M , the number of conditional
simulations over which the loglikelihood is averaged in each iteration of the algorithm. To see the
effect of the choice of M , we use M = 20 and M = 100 to analyze each simulated data set. Since this
is a Monte Carlo EM algorithm, the parameter iterates do not converge to any particular value. For
this reason, we suggest estimating parameters by averaging the parameter iterates after a “burn-in”
period has concluded. In this simulation study, since Cholesky decompositions of the exact covariance
matrix can be stored in memory, it is possible to obtain maximum likelihood estimates with standard
procedures. Thus we can compare root mean squared differences between the maximum likelihood
estimates and the Monte Carlo EM estimates found using various choices of burn-in iterations
and averaging iterations. The results for cutoff embedding and our approximate procedures with
τ = 1.5 are plotted in Figure 6. We see that the Monte Carlo EM algorithm with cutoff embedding
requires more burn-in iterations for the estimates to stabilize. Even if we set the burn-in time to
100 iterations, the estimates found using approximate covariances converge faster to the maximum
likelihood estimates; when M = 20, the approximations need only 50 iterations in order for the root
mean squared differences to fall below 10−3, whereas cutoff embedding needs 200 iterations to reach
this tolerance. Thus, our approximate procedures provide remarkable reductions in the number of
iterations required for both burn-in and averaging in the Monte Carlo EM algorithm.
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Figure 6: Contour plots of − log10 of root mean squared deviations between Monte Carlo EM esti-
mates and maximum likelihood estimates of α, where the mean squared differences are taken over
the 100 simulated datasets. The approximate covariances use τ = 1.5.

4.2 Three-dimensional Simulations

When d = 3, the number of imputed values required in the imputation-based procedures is generally
larger than when d = 2, since m = nτd, where τ is the factor by which the lattice is expanded in
each dimension. For this reason, our methods for reducing the size of τ are especially important
for computations in three and higher dimensions. We include here results from a simulation study
where n = (10, 10, 10), giving n = 1000 lattice locations with spacing δ = (10

√
3)−1. We simulate

from a powered exponential covariance model with σ2 = 4, λ = 0.1, α = 1, and γ = 0.01, and use
the MCMC to estimate α assuming that all of the other parameters are known. A straightforward
way to apply cutoff embedding in three dimensions is to define

K̃θ(h) =

⎧
⎨
⎩

Kθ(h) ‖h‖ ≤ 1
b(‖h‖) 1 < ‖h‖ < 1 + ε
b(1 + ε) ‖h‖ ≥ 1 + ε

.

We use K̃θ(h) to define covariances for observations within δJ(1+ε)n and then perform three-

dimensional minimum embedding of those covariances. We set ε = 1.5/
√
2, which is the same value

that was used in two-dimensional cutoff embedding, giving m = (35, 35, 35), which corresponds to
setting τ = 3.5 in our approximate procedures. This defines an embedding lattice that contains an
absurdly large 41,875 locations at which to impute the data at each iteration compared to 1,000
actual observations, so we expect cutoff embedding to produce highly correlated Markov chains and
slowly converging Monte Carlo EM algorithms in three dimensions. We compare cutoff embedding
to our approximate procedures with τ ∈ {1, 1.2, 1.4, 1.6, 2, 3.5} in MCMC. In contrast to cutoff em-
bedding, setting τ = 1.6 in our approximate procedures requires just 3,096 imputed values at each
iteration. In Table 5 we report the root mean squared deviations between the various estimates and
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Approximate
Cutoff τ

k Embed 1.2 1.4 1.6 2 3.5
1000 231 150 97 83 94 240
2000 169 149 82 62 76 192
3000 155 147 77 57 63 157
4000 139 149 74 53 55 134
5000 114 149 72 50 49 114
6000 112 150 72 51 45 110
7000 103 150 71 49 42 101
8000 95 150 72 48 42 91
9000 94 150 71 47 40 90
10000 90 150 71 47 37 82

Table 5: Root mean squared deviations from exact likelihood estimates after k MCMC iterations
with d = 3. We report the deviations for the various methods multiplied by 10,000.
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Figure 7: Histograms of lag 1 correlation in the Markov chains among 100 simulations and various
methods for d = 3 simulations.

the estimate found using MCMC with the exact likelihood (no imputations) after 10,000 post burn-
in iterations. For τ ∈ {1.4, 1.6, 2}, circulant embedding with approximate covariances outperforms
exact embedding at every number of iterations, and setting τ = 1.6 produces smaller root mean
squared deviations in 1,000 iterations than does cutoff embedding after 10,000 iterations. Setting
τ = 3.5 roughly recovers the deviations obtained with exact circulant embedding.

In Figure 7, we plot the empirical lag 1 correlations for the various embedding procedures, and
in Figure 8, we plot the effective sample sizes relative to using approximate covariances with τ = 1.6
based on an AR(1) model for the parameter iterates. All of the lag 1 correlations–aside the exact
likelihood MCMC–were larger than they were in the d = 2 case, and cutoff embedding required
between 8 and 14 times the number of iterations that the approximate procedure with τ = 1.6
required to reach a desired number of effective samples, which is consistent with our observation
that cutoff embedding required 10,000 iterations to achieve the accuracy that our approximate
procedures achieved in 1,000 iterations.

In summary, the simulations in this section showed that circulant embedding with approximate
covariances can provide substantial computational gains over cutoff embedding without sacrificing
the accuracy of parameter estimates. Compared to cutoff embedding in two dimensions, our ap-
proximate procedures increased the number of effective samples per MCMC iteration by at least a
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Figure 8: Histograms of effective sample sizes in the Markov chains relative to using τ = 1.6 among
100 simulations and various methods for d = 3 simulations.

factor of five when τ = 5/4, and in three dimensions, the increase was at least a factor of eight when
τ = 1.6. The Monte Carlo EM algorithms that used approximate covariances also burned in and
converged in fewer iterations. In the following section, we apply the various embedding techniques
to satellite data and provide timing results to show that the approximate procedures also serve to
reduce the computing time required for each iteration.

5 Photosynthetically Available Radiation Data

Aqua is NASA satellite mission whose central aim is to collect information about Earth’s water cycle.
As is typical of most polar-orbiting satellites, Aqua’s measurements do not attain complete global
coverage on short time scales; a typical daily map of Aqua data contains large swaths of missing
values at locations over which Aqua did not orbit. Our goal in this section is to provide complete
spatial maps of a quantity called photosynthetically available radiation (PAR) over a region for which
there are a substantial numer of missing values. PAR, which is detected by the Moderate Resolution
Imaging Spectrometer (MODIS), quantifies the abundance of light at wavelengths between 400
and 700 nm, the spectral range of radiation that organisms use in photosynthesis, and thus is an
important quantity affecting biological systems. In Figure 9, we plot a map of a daily gridded
data product of PAR values located west of Mexico’s Baja California peninsula. The data can be
downloaded from http://oceancolor.gsfc.nasa.gov, and this particular dataset is from December 1,
2013. PAR values derived from Aqua’s measurements are reported only over the oceans. There
is a triangular region of missing observations, as well as a few missing along the coasts. We aim
to interpolate the missing observations with values that match the statistical properties of the
observed process to obtain physically plausible reconstructions of PAR. To accomplish this, we use
the conditional simulations of the missing values that are required as part of the computationally
efficient estimation methods presented in this paper, and we report an ensemble of the conditional
simulations to provide accurate indications of the uncertainty in the interpolations.

The PAR lattice presented in Figure 9 contains 120 evenly-spaced longitude values and 100
evenly-spaced latitude values at a resolution of 1/12◦ in both latitude and longitude, for a total of
12,000 total lattice locations. There are 2,412 lattice locations for which PAR is missing, due either to
the pixel being a land pixel or the value being genuinely missing, giving 9,588 observed PAR values.
The data do not possess any obvious deviations from the isotropic Gaussian assumption, nor are
there any discernible trends in the data. After subtracting the empirical mean of the observations, we
consider three covariance models for PAR anomalies: (1) mean-zero isotropic powered exponential
covariance with zero nugget and unknown (σ2, λ, α), (2) mean-zero isotropic Matérn covariance with
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Figure 9: Grayscale map of photosynthetically available radiation from December 1, 2013. Missing
values are black, and land pixels are white; the diagonal strip of land is Mexico’s Baja California
peninsula. The resolution is 1/12◦ in both latitude and longitude.

zero nugget,

Kθ(h) = σ2 (‖h‖/λ)νKν(‖h‖/λ)
2ν−1Γ(ν)

,

and unknown (σ2, λ, ν), and (3) a mean-zero model with aliased spectral density

fδ(ω) = σ2cλ,ν

⎡
⎣
(
1 +

(
λ

δ

)2(
sin2

(
δω1

2

)
+ sin2

(
δω2

2

)))−ν−1

+ γ

⎤
⎦ . (7)

We refer to the model in (7) as the quasi Matérn model due to its similarity to the Matérn spectral
density and give an asymptotic justification for this name in Appendix B, along with a more general
specification. The parameter σ2 controls the variance of the process, λ can be interpreted as a range
parameter, ν interpreted as a smoothness parameter, and γ as a nugget, which we set to zero in this
analysis. The coefficient cλ,ν is a normalizing constant, computed numerically. The quasi Matérn
is defined in terms of its aliased spectral density, and thus no wrapping of covariances or spectral
densities is required for the computations described in this paper; we simply evaluate fδ(ω) at the
Fourier frequencies associated with m and transform the resulting array of spectral density values
with an inverse DFT to obtain the associated covariances. We assume (σ2, λ, ν) are unknown.

We implement the Bayesian MCMC methods to estimate the parameters in all models. To sim-
plify notation across the models, we define θ = (λ, α) if the model is the powered exponential or
θ = (λ, ν) if the model is either the Matérn or quasi Matérn. We specify prior π(σ2, θ) ∝ π(θ)/σ2,
where π(θ) = 1/2(1 + λ/2)−2 in the powered exponential model, which places a uniform prior on
α over (0, 2), and π(θ) = 1/4(1 + λ/2)−2(1 + ν/2)−2 in the Matérn and quasi Matérn models. We
update θ with a MH algorithm with a bivariate normal proposal distribution on the log scale. The
posterior π(σ2|θ,Z) is inverse gamma IG((m − 1)/2, S2(θ)/2), where S2(θ) = Z ′C(θ)−1Z, and
C(θ) is the correlation matrix corresponding to parameter vector θ. This is the standard conju-
gate family for variance parameter σ2. The bivariate lognormal proposal distribution for λ and ν
is tuned to have acceptance probability of 0.5 during 5,000 burn-in iterations. In cutoff embedding,
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Figure 10: CPU time required to reach 50,000 MCMC iterations with various models and embedding
methods, separated by three main computational tasks.

we use an embedding lattice of size m = (336, 336), which is highly composite and has 112,876
lattice locations. Our approximate methods are implemented with τ = 1.25 for both the isotropic
Matérn model and the quasi Matérn model, which gives embedding lattices of size m = (125, 150)
and m = 18, 750 total lattice locations. We wrap the isotropic Matérn covariance with N = 3, which
always resulted in positive definite covariance matrices, and no wrapping is required for the quasi
Matérn covariance.

The Markov chains are each run for 50,000 iterations, and with the help of Matlab’s profiling
capabilities, we record the cpu time attributed to the various computational tasks required for the
MCMC. We report those results in Figure 10. All computations are completed with a machine run-
ning Matlab R2013a on an Intel Core-i7 2600 processor at 3.4GHz. The three most time-consuming
tasks are the conditional simulations, the loglikelihoods required for evaluating the MH acceptance
probabilities, and the construction of the covariance arrays. The approximate methods are faster
overall than cutoff embedding, which required 808 minutes to reach 50,000 iterations with the pow-
ered exponential covariance and 846 minutes with the Matérn covariance, whereas the approximate
methods required 258 minutes and 348 minutes for the powered exponential and the Matérn models.
The approximate methods devoted a significant amount of time–147 minutes for the Matérn–to con-
structing the periodic covariance arrays, a consequence of the wrapping of the covariances. Cutoff
embedding, on the other hand, required a relatively negligible amount of time–8 minutes for the
Matérn–to constructing the covariance arrays. The approximate methods for the quasi Matérn also
devote a negligible amount of time to constructing the covariance arrays and is the fastest overall
of the three methods, taking 218 minutes to reach 50,000 iterations, nearly four times faster than
the Matérn with cutoff embedding. All methods use a preconditioner corresponding to the subma-
trix of the complete data precision matrix and require roughly 50 iterations for the preconditioned
conjugate gradient algorithms to converge on average. We experimented with several forms of a
preconditioner based on the Stein et al. (2004) likelihood approximation, which can be made to
converge in a smaller number of iterations but was slower overall in this instance.

We now investigate the quality of the fitted models in terms of exact loglikelihood. There are
several ways to construct fitted models from the Markov chains, one of which is to compute Kθ̂(h),

where θ̂ as an average of the parameter iterates in the chain. We refer to this as the averaged
parameter fitted model. For this estimate, we thin the chain, taking only every tenth iterate of the
45,000 post-burn-in iterations for the average. We also construct separate fitted models by averaging
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Loglikelihood
Model Method Averaged Covariance Averaged Parameter

Powered exp. Cutoff Embedding −51.75 −52.14
Powered exp. Approximate, τ = 5/4 −51.26 −52.26

Matérn Cutoff Embedding −0.34 −0.58
Matérn Approximate, τ = 5/4 0 −0.60

quasi Matérn Approximate, τ = 5/4 −1.28 −2.20

Table 6: Table of loglikelihoods for the three models and two methods. We compute the exact
Gaussian loglikelihoods for the model estimate constructed by averaging the covariances and by
averaging the parameters. Loglikelihood differences from that of the Matérn model fit with the
approximate method are reported.

the covariances associated with the parameter iterates. Specifically, we compute

K̂(h) =
1

N

∑

i

Kθi(h), (8)

where the sum is over a thinned version of the Markov chain that has N iterations. We refer to
the estimate in (8) as the averaged covariance fitted model. In cases where the loglikelihood has
irregularly shaped contours, the averaged parameter model could differ substantially from the aver-
aged covariances model. When using the quasi Matérn model we approximate Kθ(h) by discretizing
the integral in (2) over a very fine grid with m = 4n, which is still efficient to compute with FFT
algorithms. In Table 6, we include the exact loglikelihood values of the various model estimates. The
Matérn and quasi matern models provide better fits than the powered exponential model in terms of
loglikelihood. All of the fitted Matérn and quasi Matérn models agree to within a few loglikelihood
units, which is negligible for a dataset of this size. It is actually quite remarkable that even though
the quasi Matérn model is not equivalent to the Matérn model, in the sense that the aliased spectral
density of the Matérn is not equal to the spectral density in (7), both fitted models give nearly
the same loglikelihoods, an indication of the flexibility of the two models. Averaging covariances
provided slightly better fits than averaging parameters for every model. The models obtained by
approximate methods are roughly equal in terms of loglikelihood to the corresponding model esti-
mate obtained by using cutoff embedding, so the approximations provided computational benefits
without any sacrifice in the quality of the fitted models they produced.

Finally, in Figure 11, we plot conditional simulations of the PAR process over the ocean pixels
of the observation region. The three conditional simulations use three different sets of parameters
taken from the quasi Matérn Markov chain at iterations 10,000, 20,000, and 30,000, so the conditional
simulations incorporate the uncertainty of the parameters. The conditional simulations produce PAR
values over the land pixels as well, but we do not plot those since they are not reported in Aqua
MODIS datasets. The PAR values in the three conditional simulations are exactly the same except
for a few pixels along the coasts and the pixels in the triangular swath indicated by the thin black
lines, which merge neatly with the observed values on the borders of the swath. The interpolated
values also match the statistical properties of the rest of the dataset because they are simulated from
a covariance model that is fit to the observed data. In scientific applications where it is necessary
to have a complete map of PAR values as an input into larger model, the three (or possibly more)
conditional simulations could be used to propagate the uncertainty associated with the interpolations
and the fitted spatial model through the analysis. The methods discussed in this paper offer a way
to produce an ensemble of complete interpolated maps in an computationally efficient manner.
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Figure 11: Three conditional simulations with Quasi Matérn covariance parameters taken from
MCMC chain at iterations 10,000, 20,000, and 30,000.

6 Discussion

Numerical methods based on circulant embedding of covariance matrices are powerful tools for
statistical computations involving lattice data and stationary covariance models. Not only do they
avoid the O(n3) flops required for Cholesky decompositions of covariance matrices, they circumvent
the need to store the O(n2) covariance matrices. The use of circulant embedding for simulation of
stationary Gaussian processes on regular lattices has a mature history, and the recent work of Stroud
et al. (2014) is an important step forward in uncovering ways to exploit circulant embedding for
making inference from lattice data.

We demonstrate that, for inferential purposes, it is often advantageous to turn to approximations
that reduce the size of the embedding lattice compared to what is required in standard circulant
embedding. We present such an approximation that arises naturally from a discretization of the
spectral density of a stationary covariance function and that reduces to the approximation implied
by the Whittle likelihood in a special case. We show with numerical studies that the approximations
can be made very sharp–especially for large lattices–with embeddings that are only a factor of 1.25
or 1.5 times the size of the original lattice in each dimension. Our simulation studies show that
reducing the size of the embedding lattice decreases the amount of autocorrelation in the Markov
chains used for Bayesian inference and speeds the convergence of the Monte Carlo EM algorithm
without sacrificing the accuracy of the parameter estimates. In two-dimensional simulations, cutoff
embedding required between 5 and 8 times more iterations to reach a given number of effective
samples compared to the approximate methods with τ = 5/4. In three dimensions, the speedup
was more substantial; our approximate methods with τ = 1.6 reached a desired number of effective
samples 8 to 14 times more quickly than methods based on cutoff embedding. We demonstrate the
usefulness of these methods for interpolating gridded satellite observations of photosynthetically
available radiation. In a timing study, our approximate methods were also faster per iteration, with
nearly a factor of four decrease in cpu time when the model is written in terms of its aliased spectral
density.

Based on our numerical studies and simulations, we recommend setting τ = 5/4 (or set each mj

to the smallest mj ≥ 5/4nj giving highly composite mj) if the range of spatial correlation is less than
half the size of the observation lattice. If the spatial correlation is stronger, we recommend setting
τ = 3/2. Extremely strong spatial correlation may require even larger embedding lattices to ensure
that the approximations are sufficiently sharp, which could make cutoff embedding seem attractive,
but we expect that in situations where the spatial correlation is very strong, cutoff embedding with
m = 3n will likely not produce positive definite covariance arrays. We expect that the embedding
lattice required for cutoff embedding to produce positive definite covariance arrays will generally
always be larger than the lattice required for the approximate methods to produce extremely sharp
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approximations. Making the previous conjecture more precise is an avenue for future work.
Several aspects of the material presented here can be easily generalized. The powered exponential

and Matérn covariance functions are isotropic, but we do not require isotropy or even geometric
anisotropy, only stationarity. The quasi Matérn model has a generalization to d dimensions, which
we present in Appendix B. We also assumed that the lattice had equal spacing in every dimension,
but the models and methods are easily generalized to situations with different spacing δj in each
dimension j, although we still require regular spacing within each dimension. In this case, the
aliased spectral densities are defined on

∏d
j=1[0, 2π/δj]. The analyses that we presented used a

common expansion factor for each dimension, but this is not required, and one can see how it may
be computationally advantageous to use a smaller expansion factor in a dimension that is very large
or has weak correlation along that dimension. The methods are applicable for multivariate spatial
data as well. Guinness et al. (2014) provide a framework for defining multivariate spatial lattice
models in the spectral domain.
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A Nested Block Circulant Matrices

A matrix is block circulant if it can be written in block form as

K =

⎡
⎢⎢⎢⎣

K0 K1 K2 · · · Kn−1

Kn−1 K0 K1 · · · Kn−2

...
...

...
...

K1 K2 K3 · · · K0

⎤
⎥⎥⎥⎦ ,

where the blocks are all the same size and may be of size 1, in which case we also say that the
matrix is circulant. Nested block circulant matrices are defined recursively: a matrix is nested block
circulant if it is block circulant, and each subblock Kj is also nested block circulant. Covariance
matrices have the additional properties that they are symmetric and positive definite. Symmetry
implies that K0 is symmetric, and Kn−j = K ′

j .

B Quasi Matérn covariance

The quasi Matérn model presented in Section 5 has a generalization to d dimensions. In this case,
the spectral densities are defined on [−π/δ, π/δ]d, and the model is

fδ(ω) = σ2

⎛
⎝1 +

(α
δ

)2
⎛
⎝

d∑

j=1

sin2
(
δωj

2

)⎞
⎠
⎞
⎠

−ν−d/2

.

This expression converges pointwise as δ → 0 to

σ2

(
1 +

(α
2

)2
‖ω‖2

)−ν−d/2

,

which is one parametric form for the spectral density of the isotropic Matérn covariance function,
justifying the name quasi Matérn.
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C Proofs

The following lemma is of particular use for approximating the covariance functions introduced in
Section 2.

Lemma C.1. If f is the continuous spectral density for K, then Rm(h) =
∑

j∈Zd K(h+ δj ◦m).

To simplify the notation, we set δ = 1 in the proof. It is no more difficult to prove with arbitrary
δ, only more cumbersome notationally.

Proof. We write:

N∑

j1=−N

· · ·
N∑

jd=−N

K((h1 + j1m1, . . . , hd + jdmd))

=
N∑

j1=−N

· · ·
N∑

jd=−N

∫

[0,2π]d
f(ω)eiω

′heiω1j1m1 · · · eiωdjdmddω

=

∫

[0,2π]d
f(ω)eiω

′h

⎛
⎝

N∑

j1=−N

eiω1j1m1

⎞
⎠ · · ·

⎛
⎝

N∑

jd=−N

eiωdjdmd

⎞
⎠ dω (9)

Since the integrand in (9) is periodic in each dimension, integrating over [0, 2π]d is equivalent to
integrating over

d∏

k=1

[
− π

mk
, 2π − π

mk

]
=

⋃

ℓ∈Jm

d∏

k=1

[
2π

mk
(ℓk − 1/2),

2π

mk
(ℓk + 1/2)

]
:=

⋃

ℓ∈Jm

Aℓ,

so that the integral in (9) can be written as

∑

ℓ∈Jm

∫

Aℓ

f(ω)eiω
′h

⎛
⎝

N∑

j1=−N

eiω1j1m1

⎞
⎠ · · ·

⎛
⎝

N∑

jd=−N

eiωdjdmd

⎞
⎠ dω.

The quantities in parentheses converge to periodic delta functions with period 2π/mk in ωk (DLMF,
Section 1.17(iii)). Since f is continuous,

lim
N→∞

∑

ℓ∈Jm

∫

Aℓ

f(ω)eiω
′h

⎛
⎝

N∑

j1=−N

eiω1j1m1

⎞
⎠ · · ·

⎛
⎝

N∑

jd=−N

eiωdjdmd

⎞
⎠ dω

=
(2π)d

m

∑

ℓ∈Jm

f(ωℓ)e
iωℓh = Rm(h)

where ωℓ = (2πℓ1/m1, . . . , 2πℓd/md).
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