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Abstract In a previous paper (Graham et al. in J Comput Phys 230:3668–3694, 2011),

the authors proposed a new practical method for computing expected values of func-

tionals of solutions for certain classes of elliptic partial differential equations with

random coefficients. This method was based on combining quasi-Monte Carlo (QMC)

methods for computing the expected values with circulant embedding methods for

sampling the random field on a regular grid. It was found capable of handling fluid

flow problems in random heterogeneous media with high stochastic dimension, but

no convergence theory was provided. This paper provides a convergence analysis

for the method in the case when the QMC method is a specially designed randomly

shifted lattice rule. The convergence result depends on the eigenvalues of the underly-

ing nested block circulant matrix and can be independent of the number of stochastic

variables under certain assumptions. In fact the QMC analysis applies to general fac-

torisations of the covariance matrix to sample the random field. The error analysis for
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the underlying fully discrete finite element method allows for locally refined meshes

(via interpolation from a regular sampling grid of the random field). Numerical results

on a non-regular domain with corner singularities in two spatial dimensions and on a

regular domain in three spatial dimensions are included.

Mathematics Subject Classification 60G10 · 60G60 · 65C05 · 65C60 · 35Q86 ·
65D32

1 Introduction

In the paper [12], the present authors proposed a new practical algorithm for solving

a class of elliptic partial differential equations with coefficients given by statistically

homogeneous lognormal random fields—and in particular for computing expected

values of spatial functionals of such solutions. In this algorithm, the required expected

value is written as a multidimensional integral of (possibly) high dimension, which

is then approximated by a quasi-Monte Carlo (QMC) method. Each evaluation of

the integrand is obtained by using a fully discrete finite element (FE) method to

approximate the PDE. A key original feature of the method in [12] was the procedure

for sampling the random field: instead of sampling the continuous random field by

a truncated Karhunen–Loève (KL) expansion, the field was sampled discretely on

a regular grid covering the domain and then interpolated at the (irregularly spaced)

quadrature points. This completely eliminated the problem of truncation error from

the KL expansion, but requires the factorisation of a dense matrix of dimension equal

to the number of sample points. In [12] this was done using a circulant embedding

technique. The method was found to be effective even for problems with high stochastic

dimension, but [12] did not contain a convergence analysis of the algorithm.

The main purpose of the present paper is to provide an analysis for a method closely

related to that of [12], with an error bound that is independent of stochastic dimension,

and a convergence rate faster than that of a simple Monte Carlo method. The setting

differs in two ways from [12]: first, the FE method considered here is the standard

nodal FE method for elliptic problems, whereas in [12] the mixed FE method was

used; and second, the QMC method considered here is a specially designed randomly

shifted lattice rule (see (1.12) below), instead of using Sobol’ points as in [12]. (We

expect the present analysis can be extended to mixed FEs using results in [14], but do

not attempt this here.)

Thus our PDE model (written initially in strong form) is

−∇ · (a(x, ω)∇u(x, ω)) = f (x) for x ∈ D ⊆ [0, 1]d , and almost all ω ∈ Ω.

(1.1)

Given a functional G of u with respect to the spatial variable x, our aim here (as in [12])

is to compute efficiently and accurately E[G(u)], the expected value of G(u(·, ω)). The

(spatial) domain D ⊂ R
d (d = 1, 2, 3) in (1.1) is assumed to be a bounded interval

(d = 1), polygon (d = 2) or Lipschitz polyhedron (d = 3), while Ω is the set of

events in a suitable probability space (Ω,A, P). The solution u is required to satisfy the
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homogeneous Dirichlet condition u = 0 on the boundary ∂ D of D. The spatial domain

D is allowed to be irregular but we assume for convenience that it can be embedded

in the d-dimensional unit cube; this is always possible after a suitable affine scaling.

(The length-scale of our random field is therefore always considered with respect to

the unit cube.) The driving term f is for simplicity taken to be deterministic.

We consider the lognormal case where

a(x, ω) = exp(Z(x, ω)), (1.2)

with Z(x, ω) a Gaussian random field with prescribed mean Z(x) and covariance

rcov(x, x′) := E[(Z(x, ·) − Z(x))(Z(x′, ·) − Z(x′)], (1.3)

where the expectation is with respect to the Gaussian measure. Lognormal random

fields are commonly used in applications, for example in hydrology (see, e.g., [18]

and the references there). Throughout we will assume that Z is stationary (see, e.g.,

[1, p. 24]), i.e., its covariance function satisfies

rcov(x, x′) = ρ(x − x′). (1.4)

Strictly speaking, ρ only needs to be defined on a sufficiently large ball B(0, diam(D))

for the prescription above, but as in many applications we assume that it is defined on

all of R
d . A particular case that will be discussed extensively, is the Matérn covariance,

where ρ is isotropic, i.e., ρ depends on x only through its Euclidean length ‖x‖2.

In the present paper (1.1) is discretised by piecewise linear finite elements in space,

using simplicial meshes with maximum diameter h, and a simple low order quadrature

rule for suitable approximation of the associated stiffness matrix. In consequence,

the only values of the stochastic coefficient Z(x, ω) that enter the FE computation

are its values at the quadrature points. However, the FE quadrature points will in

general be irregularly distributed, and (for refined meshes) very large in number,

typically rendering a direct evaluation of the field at the quadrature points prohibitively

expensive. It is much more efficient, as explained below, to instead evaluate exactly

the realisation of the field at a uniform grid of

M = (m0 + 1)d

points x1, x2, . . . , xM on the d-dimensional unit cube [0, 1]d (containing the domain

D), with a fixed integer m0 and with grid spacing h0 := 1/m0. We assume further

that h0 ∼ h. (The extension to general tensor product grids with different mesh sizes

in the different coordinate directions is straightforward and not discussed here.) We

use multilinear interpolation to obtain a sufficiently good approximation of the field

Z(x, ω) at any other spatial point x ∈ D, i.e., we use repeated linear interpolation in

each coordinate direction with respect to the vertices of the surrounding grid cell.

At this stage of the algorithm, the output is the approximate FE solution uh(x, ω),

which inherits randomness from the input data

Z(ω) := (Z(x1, ω), . . . , Z(xM , ω))⊤ .
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The M-vector Z(ω) is a Gaussian random vector with a covariance structure inherited

from the continuous field Z . Thus it has mean Z := (Z(x1), . . . , Z(xM ))⊤ and a

positive definite covariance matrix

R = [ρ(xi − x j )]M
i, j=1. (1.5)

Because of its finite length, Z(ω) can be expressed exactly (but not uniquely) as a

linear combination of a finite number of i.i.d. standard normal random variables, i.e.,

as

Z(ω) = BY(ω) + Z , where Y ∼ N (0, Is×s). (1.6)

for some real M × s matrix B with s ≥ M satisfying

R = B B⊤. (1.7)

To see this, note that (1.6) and (1.7) imply

E[(Z − Z)(Z − Z)⊤] = E[BYY⊤ B⊤] = B E[YY⊤]B⊤ = B B⊤ = R.

An efficient computation of a suitable factorisation (1.7) using the extension of R

to a nested block circulant matrix and then diagonalisation using FFT (the “circulant

embedding method”) is described in detail in [5,6,9,12]. It is essential for that approach

that the random field is sampled on a uniform grid of points. In a related paper [13], we

have analysed certain key properties of the circulant extension and its factorisation,

which will be crucial for efficiency and for the dimension independence of the QMC

convergence analysis in this paper. Other approaches, such as Cholesky factorisation

or direct spectral decomposition, could also be used to find a factorisation of the

form (1.7). These alternative approaches have the advantage that they do not require

the sample grid to be uniform, but when M is large these approaches are likely to

be prohibitively expensive. Some ideas of how to overcome this problem using a

pivoted Cholesky factorisation or hierarchical matrices can be found in [15] or [4,10],

respectively.

From now on, realisations of the random vector Y(ω) are denoted by y. Thus, y

contains s independent realisations of N (0, 1). Hence, if F : R
s → R is any Lebesgue

measurable function then the expected value of F(Y(ω)) may be written as

Is(F) :=
∫

Rs

F( y)

s∏

j=1

φ(y j ) d y =
∫

(0,1)s

F(Φ−1
s (v)) dv , (1.8)

where φ is the one-dimensional standard normal probability density, and Φ−1
s is the

inverse of the cumulative normal distribution function applied componentwise on

(0, 1)s . Since uh(·, ω) is derived from Y(ω), we make the notational convention

uh(x, ω) = uh(x, y), (1.9)
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and so our approximation to E[G(u)] is

E[G(uh)] = Is(F), with F( y) = G(uh(·, y)). (1.10)

Because s ≥ M , the integral (1.8) can have very high dimension. However, two

important empirical findings in [12] were that (for all the applications considered)

the accuracy of the QMC cubature rule based on Sobol′ points did not appear to be

affected by the size of s and that it was always superior to classical Monte Carlo (MC)

methods. Successful computations with s ∼ 4×106 were reported in [12]. One aim of

the present work is to provide a rigorous proof of the independence of the QMC error

on the dimension s (under appropriate conditions) for a specially designed randomly

shifted lattice rule. Furthermore, we will also prove here the superior asymptotic

convergence rate of QMC over MC in this setting.

The accuracy of the approximation to E[G(u)] depends on the FE mesh diameter h

(through the FE error and the interpolation error), as well as on the number n of

QMC points. We analyse convergence with respect to both these parameters. Our

first set of theoretical results concern the accuracy with respect to h. In particular, for

bounded linear functionals G (with respect to the spatial variable x) and under suitable

assumptions, one result, obtained in Sect. 2.2, is that

| E [G(u) − G(uh)] | ≤ Ch2t , (1.11)

for some parameter t ∈ (0, 1], determined by the smoothness of realisations of a(x, ω),

and with a constant C independent of h. This result differs from that of [21] through

the use of interpolation to approximate the random vector Z.

Then, a substantial part of the paper is concerned with the convergence of the QMC

rules for (1.8). In particular, we consider randomly shifted lattice rules,

Qs,n(∆, F) := 1

n

n∑

k=1

F
(
Φ−1

s (vk)
)

, with vk = frac

(
k z

n
+ ∆

)
, (1.12)

where z ∈ N
s is some suitably chosen generating vector, ∆ ∈ [0, 1]s is a uniformly

distributed random shift, and “frac” denotes taking the fractional part of every com-

ponent in a vector. For the particular integrand F( y) := G(uh(·, y)), we provide in

Sect. 3 upper bounds on the error of approximating the integral (1.10) by (1.12). In

particular, in Theorem 5, we give sufficient conditions on the matrix B appearing in

(1.7) for the root-mean-square error to satisfy an estimate of the form:

√
E∆

[
| Is(F) − Qs,n(∆, F)|2

]
≤ Cδ n−(1−δ) , (1.13)

for arbitrary δ > 0. Here, E∆ denotes expectation with respect to the random shift ∆.

Moreover, we also provide conditions under which the constant Cδ in (1.13) is inde-

pendent of s. Our proof of Theorem 5 differs from the corresponding result in [11]

because of the use of multilinear interpolation of the random field in space, and because
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of the different meaning of the parameters y j . The problem is no longer about trun-

cating an infinite Karhunen–Loève expansion, but rather of dealing with a sequence

of matrix problems with ever increasing size s.

Finally, combining (1.11) and (1.13), the overall error estimate is

√
E∆

[
| E[G(u)] − Qs,n(∆, F)|2

]
≤

√
2 C h2t +

√
2 Cδ n−(1−δ).

Although the algorithm in [12] applies to both linear and nonlinear functionals, our

theory at present is restricted to the linear case. In the numerical experiments, we will

use the average of q different random shifts as our final QMC estimator, bringing the

total number of integrand evaluations (i.e., PDE solves) to N = q n. We compare

with a classical Monte Carlo (MC) method for which we use N i.i.d. random samples

wk ∼ U [0, 1)s , i.e.,

QMC
s,N (F) := 1

N

N∑

k=1

F
(
Φ−1

s (wk)
)

, with wk ∼ U [0, 1)s . (1.14)

The layout of the paper is as follows. The PDE with random coefficient and its FE

approximation with quadrature are described in Sect. 2.1. The estimate (1.11) is proved

in Sect. 2.2. The QMC theory is given in Sect. 3. In particular, one of the key results

proved in Sect. 3.3 is the upper bound (1.13). A sufficient condition on B for this result

in the case of circulant embedding is identified in Sect. 3.4. The circulant embedding

algorithm is summarised briefly in Sect. 3.4 and we refer to [13] for its theoretical

analysis. Numerical experiments are given in Sect. 4, illustrating the performance of

the algorithm on PDE problems on an irregular domain with corners and holes in two

space dimensions, as well as on the unit cube in three dimensions.

2 Finite element implementation and analysis

In Sect. 2.1, we first give the algorithmic details of our practical finite element method,

before proving error estimates for this method in Sect. 2.2, in particular Theorem 1

and Corollary 1.

2.1 Model formulation and implementation

We start with (1.1) written pathwise in weak form: seek u(·, ω) ∈ V := H1
0 (D) such

that

A (ω; u(·, ω), v) = 〈 f, v〉 for all v ∈ V and for almost all ω ∈ Ω , (2.1)

where

A (ω;w, v) :=
∫

D

a(x, ω)∇w(x) · ∇v(x) dx , w, v ∈ V,
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and a(x, ω) is given by (1.2)–(1.4). The norm in V is ‖v‖V := ‖∇v‖L2(D). For

simplicity we assume that f ∈ L2(D), so that 〈 f, v〉 reduces to the L2(D) inner

product in (2.1). In general, it denotes the duality pairing between V and its dual

space V ′ := H−1(D).

To discretise (2.1) in the physical domain D, let {Th}h>0 denote a family of con-

forming, simplicial meshes on D, parametrised by the maximum mesh diameter

h := maxτ∈Th
diam(τ ) with diam(τ ) := maxx,x′∈τ ‖x − x′‖2 . On this mesh, we

let Vh ⊂ V denote the usual finite element space of continuous piecewise linear func-

tions that vanish on ∂ D. We assume that dim(Vh) = O(h−d). This includes many

locally refined mesh families, including anisotropic refinement in 3D (e.g., [2,3]).

Since any function in Vh has a piecewise constant gradient, we have

A (ω;wh, vh) =
∑

τ∈Th

aτ (ω) (∇wh(x) · ∇vh(x))
∣∣
τ

for all vh, wh ∈ Vh , (2.2)

where

aτ (ω) :=
∫

τ

a(x, ω) dx, τ ∈ Th . (2.3)

We approximate the required integrals (2.3) using a two-stage interpolation/quadra-

ture process as follows. Recall the uniform grid on the cube containing D, with points

x j for j = 1, . . . , M , and grid spacing h0 ∼ h, defined in Sect. 1. Let x ∈ D and

let {t i,x}2d

i=1 ⊂ {x1, . . . , xM } be the vertices of the surrounding grid cell labelled in

arbitrary order. Since multilinear interpolation is done by repeatedly applying linear

interpolation in each coordinate direction, we can write the interpolated value of g at

x as a convex combination of the surrounding vertex values {t i,x}2d

i=1, i.e.,

Ih0

(
g; {x j }M

j=1

)
(x) =

2d∑

i=1

wi,x g(t i,x), with

2d∑

i=1

wi,x = 1 and 0 ≤ wi,x ≤ 1.

(2.4)

The operator Ih0 : C(D) → C(D) is linear and satisfies Ih0(g; {x j }M
j=1)(xi ) =

g(xi ), for every point xi of the uniform grid.

Let us further define an r -point quadrature rule on each element τ , which is exact

for constant functions, has positive weights μτ,k ≥ 0 and only uses quadrature points

xτ,k ∈ τ , i.e.,

Qτ (g) :=
r∑

k=1

μτ,k g(xτ,k), with

r∑

k=1

μτ,k = |τ | and μτ,k ≥ 0. (2.5)

Here, |τ | denotes the volume of τ . The quadrature points xτ,k in (2.5) are unrelated

to the uniform grid points x j in general. Examples of rules satisfying (2.5) are the

centroid, nodal or face-centroid rules.

Using the rule (2.5) to approximate all the integrals (2.3) would require evaluating

a(·, ω) at the union of all the (in general irregularly distributed) quadrature points

{xτ,k}, which could be costly. We avoid that and compute the field only at the points
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of the uniform grid. We then interpolate these values using Ih0(a(·, ω); {x j }M
j=1) and

then approximate aτ (ω) using (2.5). In summary, we approximate the bilinear form

in (2.2) by

Ah(ω;wh, vh) :=
∑

τ∈Th

âτ (ω) (∇wh · ∇vh)
∣∣
τ

, (2.6)

where

âτ (ω) := Qτ

(
Ih0(a(·, ω); {x j }M

j=1)
)

= (Qτ ◦ Ih0)(a(·, ω)). (2.7)

Proposition 1 For all τ ∈ Th , there is a sparse positive vector pτ = (pτ,1, . . . , pτ,M )

∈ R
M such that

âτ (ω) =
M∑

j=1

pτ, j a(x j , ω), and âτ (ω) ≥ |τ | amin,M (ω) , for all τ ∈ Th ,

where amin,M (ω) := min1≤ j≤M a(x j , ω).

Proof It follows from (2.7) together with (2.4) and (2.5) that

âτ (ω) =
r∑

k=1

2d∑

i=1

μτ,k wi,xτ,k
a(t i,xτ,k

, ω). (2.8)

The second result then follows from the definition of amin,M (ω) and the fact that the

coefficients μτ,k and wi,xτ,k
are all positive and their sum is |τ |. ⊓⊔

Extending the notational convention (1.9), we may thus write our discrete finite

element method for (2.1) as the problem of finding uh(·, y) which satisfies

Ah( y; uh(·, y), vh) = 〈 f, vh〉, for all vh ∈ Vh y ∈ R
s, (2.9)

where Ah( y;wh, vh) is identified with Ah(ω;wh, vh).

2.2 Finite element error analysis

Let us first define some relevant function spaces. Let C1(D) denote the space of con-

tinuously differentiable functions on D with seminorm |φ|C1(D) := supx∈D |∇φ(x)|.
For β ∈ (0, 1), let Cβ(D) denote the space of Hölder continuous functions on D with

exponent β and let |φ|Cβ (D) := supx1,x2∈D : x1 �=x2
|φ(x1)−φ(x2)|/‖x1 − x2‖β

2 < ∞
denote the Hölder coefficient which is, in fact, a seminorm. Also let L p(Ω, X) denote

the space of all random fields in a Banach space X with bounded pth moments over

Ω .

We assume throughout that Z(·, ω) ∈ Cβ(D), for some β ∈ (0, 1], P-almost surely.

Since Z(x, ω) is Gaussian, it follows from Fernique’s Theorem that ‖a‖L p(Ω,Cβ (D))

is finite, for all p ∈ [1,∞) (see [7]). Moreover, this implies that ‖amax‖L p(Ω) < ∞
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and ‖1/amin‖L p(Ω) < ∞, for all p ∈ [1,∞), where amin(ω) := minx∈D a(x, ω) and

amax(ω) := maxx∈D a(x, ω).

Models where realisations of a(x, ω) lack smoothness are often of interest in appli-

cations, and a class of coefficients of particular significance is given by the Matérn

class with smoothness parameter ν ≥ 1/2, described in detail in Example 1. For ν ≤ 1,

realisations are in Cβ(D) P-almost surely, for all 0 < β < ν (see, e.g., [11,17]).

There are two factors that limit the convergence rate of the finite element error:

(i) the regularity of the coefficient field a(·, ω) and (ii) the shape of the domain D.

Since a(·, ω) ∈ Cβ(D), then (if ∂ D is smooth enough), we have u(·, ω) ∈ H1+t (D)

for all 0 ≤ t ≤ β. Here, when β < 1, the loss of H2 regularity is global and the

resulting reduction in the finite element convergence rate cannot be corrected by local

mesh refinement. On the other hand, the influence of corner or edge singularities can

typically be eliminated by suitable local mesh refinement near ∂ D.

Using the notation in [21, Def. 2.1], let λΔ(D) be the order of the strongest singu-

larity of the Dirichlet-Laplacian on D. Then u(·, ω) ∈ H1+t (D), for all t ≤ λΔ(D)

and t < β, and ‖u‖L p(Ω,H1+t (D)) is bounded for all p ∈ [1,∞) (see [21, Lem. 5.2]).

When λΔ(D) ≥ β uniform mesh refinement leads to a best approximation error that

satisfies

inf
vh∈Vh

‖u(·, ω) − vh‖V ≤ CFE(ω)ht , for all t < β , (2.10)

with CFE(ω) ∼ ‖u(·, ω)‖H1+t (D). When λΔ(D) < β, (2.10) cannot be achieved

by uniform refinement. However, it can be recovered by a suitable local refinement.

For example, consider the 2D case where D is smooth except for a single reentrant

corner with interior angle θ > π and where W ⊂ D is a local neighbourhood of this

corner. Then λΔ(D) = π/θ and u(·, ω) ∈ H1+t (D\W ), for all t < β, but u(·, ω) /∈
H1+t (W ), for π/θ < t < β. However, by considering the best approximation error

over W and over D\W separately, we see that it suffices to grade the meshes such that

the mesh size is O(hβθ/π ) near the reentrant corner and O(h) away from it. This is

because

inf
vh∈Vh

‖u(·, ω) − vh‖V ≤ C1‖u(·, ω)‖H1+t (D\W )h
t

+ C2‖u(·, ω)‖H1+λΔ(D)(D)(h
βθ/π )λΔ(D)

for all 0 < t < β. Such a mesh grading can often be achieved while retaining the

desired complexity estimate dim(Vh) ≤ Ch−2 (e.g., [20]).

Thus, using similar techniques to those in the proof of [21, Lem. 5.2] it can be

shown that (2.10) holds with CFE(ω) ∼ ‖u(·, ω)‖H1+t (D\W ) + ‖u(·, ω)‖H1+λΔ(D)(D),

for all t < β. The case of multiple reentrant corners can be treated in an identical

fashion. Analogous but more complicated (anisotropic) refinement is needed in 3D,

especially in the presence of edge-singularities (e.g., [2,3]). In practice, such local

refinements can be constructed adaptively. The important observation here is that the

locally refined mesh needs to be constructed only once for exp(Z(·)) (or for one sample

of a), since the boundary singularities will be the same for all samples.

We start our analysis by estimating the error in approximating aτ (ω) by âτ (ω).
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Lemma 1 Assume a(·, ω) ∈ Cβ(D) for some β ∈ (0, 1]. Furthermore, for h0 ∼ h

and for τ ⊆ D with diam(τ ) ≤ h, let Ih0 and Qτ be as defined in (2.4) and (2.5),

respectively. Then, with aτ (ω) and âτ (ω) given by (2.3) and (2.7),

|aτ (ω) − âτ (ω)| ≤ |τ | hβ γ β |a(·, ω)|Cβ (D),

with γ = 1 +
√

d (h0/h). If the quadrature points all lie on the regular grid and we

do not need interpolation, we may take γ = 1.

Proof Using the fact that a(·, ω) is continuous, the integral mean value theorem asserts

the existence of an x∗
τ ∈ τ such that

aτ (ω) = |τ | a(x∗
τ , ω) =

r∑

k=1

2d∑

i=1

μτ,k wi,xτ,k
a(x∗

τ , ω),

where we used (2.4) and (2.5). Then it follows from (2.8) that

|aτ (ω) − âτ (ω)| =
∣∣∣∣

r∑

k=1

2d∑

i=1

μτ,k wi,xτ,k

(
a(x∗

τ , ω) − a(t i,xτ,k
, ω)

) ∣∣∣∣

≤
r∑

k=1

2d∑

i=1

μτ,k wi,xτ,k

∣∣a(x∗
τ , ω) − a(t i,xτ,k

, ω)
∣∣

≤
r∑

k=1

2d∑

i=1

μτ,k wi,xτ,k
‖x∗

τ − t i,xτ,k
‖β

2 |a(·, ω)|Cβ (D)

≤
r∑

k=1

2d∑

i=1

μτ,k wi,xτ,k

(
‖x∗

τ − xτ,k‖2

+‖xτ,k − t i,xτ,k
‖2

)β |a(·, ω)|Cβ (D)

≤ |τ | (h +
√

dh0)
β |a(·, ω)|Cβ (D) .

In the last step we used the fact that the distance between a point in a cell of the regular

grid and a vertex of that cell is at most
√

d h0. If the quadrature points all lie on the

regular grid then the second term can be omitted. This completes the proof. ⊓⊔

Theorem 1 Suppose that Z(·, ω) ∈ Cβ(D) for some β ∈ (0, 1) and suppose that

there exists a family {Th}h>0 of conforming, simplicial meshes on D such that (2.10)

holds with dim(Vh) ≤ Ch−d . Let Ih0 and Qτ be defined in (2.4) and (2.5), respectively.

Then, we have P-almost surely

‖u(·, ω) − uh(·, ω)‖V ≤ CIQ(ω) ht , for all t < β,

with CIQ a positive random variable that satisfies E[C p

IQ
] < ∞, for all p ∈ [1,∞).

123



Circulant embedding with QMC: analysis for elliptic PDE… 489

If Z(·, ω) ∈ C1(D) and (2.10) also holds for t = 1, then

‖u(·, ω) − uh(·, ω)‖V ≤ CIQ(ω) h.

Proof The proof follows that of [7, Prop. 3.13]. First, using Lemma 1 and the fact that

∇vh,τ := ∇vh |τ is constant, for all piecewise linear finite element functions vh ∈ Vh ,

as well as applying the Cauchy–Schwarz inequality in the last step we obtain the

estimate

|A (ω;wh, vh) − Ah(ω;wh, vh)| =
∑

τ∈Th

|aτ (ω) − âτ (ω)|
∣∣(∇wh · ∇vh)|τ

∣∣

≤ hβ γ β |a(·, ω)|Cβ (D)

∑

τ∈Th

|τ |
∣∣∇wh,τ · ∇vh,τ

∣∣

≤ hβ γ β |a(·, ω)|Cβ (D) ‖vh‖V ‖wh‖V .

Now, using this bound in Strang’s First Lemma (cf. [7, Lem. 3.12]), we can write

‖u(·, ω) − uh(·, ω)‖V

≤ inf
vh∈Vh

{(
1 + amax(ω)

amin(ω)

)
‖u(·, ω) − vh‖V + hβγ β

|a(ω)|Cβ (D)

amin(ω)
‖vh‖V

}
.

(2.11)

Since

‖vh‖V ≤ ‖u(·, ω) − vh‖V + ‖u(·, ω)‖V ≤ ‖u(·, ω) − vh‖V +
‖ f ‖L2(D)

amin(ω)
,

we can combine (2.11) with (2.10) to establish the result.

The fact that the constant CIQ(ω) in the above bounds has bounded moments of any

(finite) order is a consequence of our assumptions that Z(x, ω) is Gaussian and that

Z(·, ω) ∈ Cβ(D). As stated above, it can be proved as in [7] via Fernique’s Theorem.

⊓⊔
An O(h2t ) bound on the L2-norm of the error follows via the well-known Aubin–

Nitsche trick (cf. [7, Cor. 3.10]). We omit this and finish the section with an error

bound for linear functionals G of u, which we have already stated in (1.11).

Corollary 1 Let G be a bounded linear functional on L2(D). Then, under the assump-

tions of Theorem 1, there exists a constant C > 0 independent of h and u such that

E
[
|G(u) − G(uh)|

]
≤ Ch2t , for all t < β .

For β = 1, we get E
[
|G(u) − G(uh)|

]
≤ Ch2.

Proof The proof follows, as in [21, Lem. 3.3], from Hölder’s inequality using the fact

that Theorem 1 applies verbatim also to the FE error ‖z(·, ω)− zh(·, ω)‖V for the dual

problem A (ω; v, z(·, ω)) = G(v), for all v ∈ V . ⊓⊔
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Using the techniques in [21, §3], this corollary can be extended in a straightforward

way also to higher order moments of the error or to functionals G of u that are random,

nonlinear or bounded only on a subspace of L2(D). In summary, we have provided

in this section a recipe for extending all results of [21, §3] to general meshes, with

the random field being sampled on a regular grid and then interpolated onto the finite

element grid.

3 QMC error analysis

The QMC theory for integrals of the form (1.8) is set in a special weighted Sobolev

space. Provided the integrand lies in this space, we obtain an estimate for the root

mean square error when a specially chosen, randomly shifted lattice rule (1.12) is

used to approximate (1.8). The cost for explicitly constructing a good rule tailored to

our analysis with n points in s dimensions grows log-linearly in n and quadratically

in s (cf. Remark 1 below). However, applying the rule is essentially as cheap as

obtaining samples from a random number generator, see, e.g., [16, §7]. Full details of

the convergence theory are in other sources, e.g., [11,16], so we will be brief here.

Later in this section we use this theory to estimate the error when the rule is applied

to the particular F given in (1.10). We assume first that the random field Z is sampled

by employing the quite general factorisation (1.7) of the covariance matrix R. Later,

in Sect. 3.4 we will discuss the case when this is done by circulant embedding.

3.1 Abstract convergence result and proof strategy

The relevant weighted Sobolev norm is defined as:

‖F‖2
s,γ :=

∑

u⊆{1:s}

Ju(F)

γu

, (3.1)

where

Ju(F) : =
∫

R|u|

(∫

Rs−|u|

∂ |u|F

∂ y
u

( y
u
; y{1:s}\u)

∏

j∈{1:s}\u
φ(y j ) d y{1:s}\u

)2

×
∏

j∈u

ψ2
j (y j ) d y

u
.

Here, {1 :s} denotes the set {1, 2, . . . , s}, ∂ |u| F
∂ y

u

denotes the mixed first order derivative

with respect to the “active” variables y j with j ∈ u, y{1:s}\u denotes the “inactive”

variables y j with j /∈ u, and φ is the univariate normal probability density (see

(1.8)). The remaining ingredients in (3.1) are the weight parameters γu and the weight

functions ψ j , which are used, respectively, to moderate the relative importance of the

derivatives of F with respect to y
u

and to control the behaviour of these derivatives

asymptotically as ‖ y‖∞ → ∞. As in [11], we shall restrict ourselves to the choice
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ψ2
j (y j ) = exp(−2 α j |y j |) , for some α j > 0 . (3.2)

The following result is then essentially [11, Thm. 15] (see also [16]).

Theorem 2 Suppose ‖F‖s,γ < ∞ and n is a power of a prime. Then, a generating

vector z ∈ N
s for a randomly shifted lattice rule (1.12) can be constructed so that the

root mean square error in applying (1.12) to (1.8) satisfies

√
E∆

[
|Is(F) − Qs,n(∆, F)|2

]
≤

(
2

n

)1/(2κ)

C̃s(γ ,α, κ) ‖F‖s,γ , (3.3)

for all κ ∈ (1/2, 1], where

C̃s(γ ,α, κ) =
( ∑

∅�=u⊆{1:s}
γ κ
u

∏

j∈u

̺(α j , κ)

)1/(2κ)

, (3.4)

̺(α, κ) = 2

( √
2π exp(α2/η(κ))

π2−2η(κ)(1 − η(κ))η(κ)

)κ

ζ
(
κ + 1

2

)
, η(κ) := 2κ − 1

4κ
, (3.5)

and ζ is the Riemann zeta function.

A method for constructing the vector z one component at a time is described in

[19] for weights γ
u

of a special form, see Remark 1 below.

In the remainder of this section we shall apply this theory to the function F given

in (1.10). The main result is Theorem 5. It is obtained in the steps summarised as

follows.

1. By differentiating the parametrised discrete weak form (2.9), we estimate the

norms ‖
(
∂ |u|uh/∂ y

u

)
(·, y)‖V for any u ∈ {1 : s}. The estimate (which uses an

induction argument over the set of all partial derivatives of uh(·, y)) is given in

Theorem 3 and involves the quantities

b j := ‖B j‖∞, j = 1, . . . , s, (3.6)

where B j is the j th column of the M × s matrix B introduced in (1.7). We let

b ∈ R
s be the vector (b1, . . . , bs)

⊤.

2. Using the result from Step 1 and the linearity of G, we estimate ‖F‖s,γ in The-

orem 4. The shape parameters α j from (3.2) are constrained to be in the range

α j > b j . The precise values of α j are arbitrary at this point, and so are the values

of the weight parameters γu.

3. We substitute the result from Step 2 into the right hand side of (3.3) to obtain an

error bound for this particular F , and we choose the weight parameters γu and

then the shape parameters α j to minimise this bound. The end result, Theorem 5,

is a convergence estimate with order O(n−1/(2κ)), valid for κ ∈ (1/2, 1], and with

the implied constant depending on the sum
∑s

j=1 b
2κ/(1+κ)

j .
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The theory (in particular Theorem 5) is essentially independent of the choice of

factorisation (1.7). In Sects. 3.4 and 4 we then focus on the circulant embedding

approach.

3.2 Regularity of F

In this subsection it is helpful to introduce more general partial derivatives than those

mixed first order derivatives which appear in (3.1). Thus for any multiindex ν ∈ N
s

with order |ν| =
∑

ν j , we let ∂ν denote the corresponding mixed derivative. For any

multiindex ν ∈ N
s and any vector c ∈ R

s we also write cν =
∏s

j=1 c
ν j

j .

Theorem 3 For any y ∈ R
s , any f ∈ V ′, and for any multiindex ν ∈ N

s , the solution

uh(·, y) of (2.9) satisfies

‖∂νuh(·, y)‖V ≤ |ν|!
(

b

log 2

)ν
1

amin,M ( y)
‖ f ‖V ′ ,

where b = (b1, . . . , bs)
⊤ is defined in (3.6) and amin,M ( y) = min1≤i≤M a(xi , y).

Proof The proof is similar to that of [11, Thm. 14], but there are some differences

due to the fact that we are working with the FE discretisation (2.9) with quadrature

and interpolation, and because of the finiteness of the ‘expansion’ (1.6). (In [11] an

infinite KL expansion was used in the context of the continuous problem.)

To simplify the proof we introduce the y-dependent discrete norm � · � on Vh :

� vh�2
y :=

∑

τ∈Th

âτ ( y) |∇vh |2
∣∣∣
τ

, vh ∈ Vh , (3.7)

with âτ ( y) = âτ (ω) given by (2.7). Then we have �vh�2
y = Ah( y; vh, vh), see (2.6).

Since we consider piecewise linear finite elements, for vh ∈ Vh we have that ∇vh is

piecewise constant on each element τ .

We first prove by induction on |ν| that the solution uh(·, y) of (2.9) satisfies

�∂νuh(·, y)� y ≤ Λ|ν| bν � uh(·, y)� y , y ∈ R
s , (3.8)

where the sequence (Λn)n≥0 is defined recursively by

Λ0 := 1 and Λn :=
n−1∑

i=0

(
n

i

)
Λi , for all n ≥ 1 .

Clearly (3.8) holds for |ν| = 0. For ν �= 0, we differentiate (2.9), using the multi-

variate Leibniz rule to obtain (since the right-hand side is independent of y),

∑

m≤ν

(
ν

m

) ∑

τ∈Th

(
∂ν−mâτ ( y)

)(
∇∂muh(·, y) · ∇vh

)∣∣
τ

= 0, for all vh ∈ Vh . (3.9)
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Now inserting vh = ∂νuh(·, y) into (3.9), keeping the term with m = ν in the outer

sum on the left-hand side and moving the remaining terms to the right-hand side, we

have

� ∂νuh(·, y)�2
y = −

∑

m≤ν
m �=ν

(
ν

m

) ∑

τ∈Th

(
∂ν−mâτ ( y)

)(
∇∂muh(·, y) · ∇∂νuh(·, y)

)∣∣
τ

≤
∑

m≤ν
m �=ν

(
ν

m

) (
max
τ∈Th

∣∣∣∣
∂ν−mâτ ( y)

âτ ( y)

∣∣∣∣
) ∑

τ∈Th

âτ ( y)
∣∣(∇∂muh(·, y) · ∇∂νuh(·, y)

)∣∣
τ

∣∣.

Then, after an application of the Cauchy–Schwarz inequality and a cancellation, we

obtain

�∂νuh(·, y)� y ≤
∑

m≤ν
m �=ν

(
ν

m

)(
max
τ∈Th

∣∣∣∣
∂ν−mâτ ( y)

âτ ( y)

∣∣∣∣
)

� ∂muh(·, y) � y . (3.10)

To estimate (3.10), we have from Proposition 1 that âτ ( y) =
∑M

i=1 pτ,i a(xi , y)

with all pτ,i ≥ 0, and we recall from (1.2) and (1.6) that a(xi , y) = exp(
∑s

j=1 Bi, j y j+
Z i ). Then, noting that a(xi , y) ≥ 0 it is easy to see that, for any multiindex ν,

|∂νa(xi , y)| = a(xi , y)

s∏

j=1

|Bν j

i, j | ≤ a(xi , y) bν ,

which leads to |∂ν âτ ( y)| ≤ âτ ( y)bν , and hence

max
τ∈Th

∣∣∣∣
∂ν−mâτ ( y)

âτ ( y)

∣∣∣∣ ≤ bν−m .

Inserting this into (3.10) we obtain

�∂νuh(·, y)� y ≤
∑

m≤ν
m �=ν

(
ν

m

)
bν−m � ∂muh(·, y) � y . (3.11)

Using (3.11), the estimate (3.8) then follows by induction in exactly the same way as

in [11, Thm. 14].

Now, using the definition of the discrete norm (3.7) and the fact that uh(·, y) is the

solution of (2.9), we have

(
min
τ∈Th

âτ ( y)

|τ |

)
‖uh(·, y)‖2

V ≤ �uh(·, y)�2
y = 〈 f, uh(·, y)〉 ≤ ‖ f ‖V ′‖uh(·, y)‖V .

(3.12)
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Hence, using Proposition 1, we conclude that

‖uh(·, y)‖V ≤ ‖ f ‖V ′

amin,M ( y)
and � uh(·, y)� y ≤ ‖ f ‖V ′√

amin,M ( y)
. (3.13)

Using the same argument as for the lower bound in (3.12), together with Proposition 1

again, we obtain from (3.8) and (3.13) that

√
amin,M ( y) ‖∂νuh(·, y)‖V ≤ �∂νuh(·, y)� y ≤ Λ|ν| bν ‖ f ‖V ′√

amin,M ( y)
.

This together with the estimate Λn ≤ n!/(log 2)n (proved in [11, Thm. 14]) completes

the proof. ⊓⊔
We can now use this theorem to show that F lies in the weighted Sobolev space

characterised by the norm (3.1). We make use of the s-dependent quantities

‖b‖p,s =
( s∑

j=1

|b j |p

)1/p

, p > 0 , and ‖b‖∞,s = max
j∈{1:s}

|b j | .

Theorem 4 Suppose that ‖b‖1,s is uniformly bounded with respect to s. Suppose also

that α j > b j for all j . Then, for any f ∈ V ′ and for any linear functional G ∈ V ′,
the integrand F( y) = G(uh(·, y)) in (1.10) satisfies

‖F‖s,γ ≤ C

( ∑

u⊆{1:s}

1

γu

( |u|!
(log 2)|u|

)2 ∏

j∈u

b̃2
j

α j − b j

)1/2

,

where C is independent of s and

b̃ j = b j

2 exp(b2
j/2)Φ(b j )

,

with Φ denoting the univariate standard cumulative normal distribution function.

Proof Using the linearity of G, together with Theorem 3, but replacing the multiindex

ν with any set u ⊆ {1 : s} (i.e., restricting to the case where all ν j ≤ 1), we obtain the

following estimate for the first order partial derivatives of F appearing in the norm

(3.1),

∣∣∣∣
∂ |u|F

∂ y
u

( y)

∣∣∣∣ ≤ |u|!
(log 2)|u|

( ∏

j∈u

b j

)
1

amin,M ( y)
‖ f ‖V ′ ‖G‖V ′

≤ |u|!
(log 2)|u|

(
exp(b⊤| y|)

∏

j∈u

b j

)(
exp(‖Z‖∞) ‖ f ‖V ′ ‖G‖V ′

)
,

(3.14)
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where we used the estimate amin,M ( y) = min1≤i≤M a(xi , y) ≥ exp(−‖Z‖∞)

exp(−bT| y|).
Examining the right-hand side of (3.14), we see that the only factor which depends

on y is exp(b⊤| y|). An elementary calculation (see [11, Thm. 16]) shows that

∫

R|u|

( ∫

Rs−|u|

(
exp(b⊤| y|)

∏

j∈u

b j

) ∏

j∈{1:s}\u
φ(y j ) d y{1:s}\u

)2 ∏

j∈u

ψ2
j (y j ) d y

u

=
( ∏

j∈{1:s}\u

(
2Φ(b j ) exp(b2

j/2)
)2

)( ∏

j∈u

b2
j

α j − b j

)

=
( ∏

j∈{1:s}

(
2Φ(b j ) exp(b2

j/2)
)2

)( ∏

j∈u

b̃2
j

α j − b j

)
.

Since 2Φ(b j ) ≤ 1 + 2b j/
√

2π < exp(b j ) for all j , we have

∏

j∈{1:s}

(
2Φ(b j ) exp(b2

j/2)
)2

≤ exp(2‖b‖1,s + ‖b‖2
2,s) .

Thus, it follows from (3.14) and the definition of the norm (3.1) that

‖F‖s,γ

exp(‖Z‖∞) ‖ f ‖V ′‖G‖V ′
≤ exp(2‖b‖1,s + ‖b‖2

2,s)

×
( ∑

u⊆{1:s}

1

γu

( |u|!
(log 2)|u|

)2 ∏

j∈u

b̃2
j

α j − b j

)1/2

.

The final result, with the constant factor C being independent of s, is then a conse-

quence of the assumption on b. ⊓⊔

3.3 Error estimate

In order to obtain a dimension-independent estimate for the QMC method we need a

stronger assumption on b than that used in Theorem 4. The following theorem shows

that under that stronger assumption there is a choice of γ and α which ensures that the

QMC error is bounded independently of s. The appropriate choice of γ is of “POD”

type, which allows a good generating vector z for the QMC rule to be efficiently

computed by the “component-by-component” procedure, see Remark 1 below.

Theorem 5 Under the assumptions of Theorem 4, let κ ∈ (1/2, 1), set p = 2κ/(1+κ)

and assume in addition that ‖b‖p,s is uniformly bounded with respect to s. Then there

exists a positive constant C(κ) depending on κ (as well as on Z, f , G) such that

√
E∆[| Is(F) − Qs,n(∆, F)|2] ≤ C(κ) n−1/(2κ) . (3.15)
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Proof Some parts of the proof are similar to that of [11, Thm. 20], and for these parts

we will be brief. We remind the readers that each vector b = (b1, . . . , bs)
⊤ depends

fundamentally on s; changing the value of s leads to completely different components

b j . This is different from the situation in [11] where there is just one infinite sequence

b that is truncated to s terms.

First, combining Theorems 2 and 4 we see that (3.15) holds with C(κ) proportional

to

Cs(γ ,α, κ) := C̃s(γ ,α, κ)

( ∑

u⊆{1:s}

1

γu

( |u|!
(log 2)|u|

)2 ∏

j∈u

b̃2
j

α j − b j

)1/2

,

with C̃s(γ ,α, κ) defined in (3.4). Now, we choose the weight parameters γ to minimise

Cs(γ ,α, κ). This minimisation problem was solved in [11, Lem. 18], yielding the

solution:

γu = γ ∗
u

:=
(( |u|!

(log 2)|u|

)2 ∏

j∈u

b̃2
j

(α j − b j ) ̺(α j , κ)

)1/(1+κ)

, (3.16)

which is of “product and order dependent” (POD) form. With this choice, one can

show that

Cs(γ
∗,α, κ) = Ss(α, κ)(κ+1)/(2κ) ,

where

Ss(α, κ) =
∑

u⊆{1:s}

(( |u|!
(log 2)|u|

)2 ∏

j∈u

̺1/κ(α j , κ) b̃2
j

α j − b j

)κ/(1+κ)

. (3.17)

It remains to estimate Ss(α, κ). Apart from the constraint α j > b j , the shape

parameters α j are still free at this stage and so we choose them to minimise the right-

hand side of (3.17). This minimisation problem is also solved in [11, Cor. 21]); the

solution is

α j := 1

2

(
b j +

√
b2

j + 1 − 1

2κ

)
. (3.18)

Now, to estimate Ss(α, κ), let bmax be an upper bound on ‖b‖∞,s for all s (guar-

anteed by assumption). Then b j ≤ bmax for all j = 1, . . . , s and all s. For a given

value of κ ∈ (1/2, 1], let αmax denote the value of (3.18) with b j replaced by bmax.

Then we have α j ≤ αmax for all j = 1, . . . , s and all s, and

α j − b j = 1

2

1 − 1/(2κ)√
b2

j + 1 − 1/(2κ) + b j

≥ 1

2

1 − 1/(2κ)√
b2

max + 1 − 1/(2κ) + bmax

= αmax − bmax.

123



Circulant embedding with QMC: analysis for elliptic PDE… 497

Note also that for ̺ defined in (3.5) we have ̺(α j , κ) ≤ ̺(αmax, κ) for all j and all s.

Moreover, since 2 exp(b2
j/2)Φ(b j ) ≥ 1, it follows that b̃ j ≤ b j , and so from (3.17)

we can conclude that, with p := 2κ/(1 + κ),

Ss(α, κ) ≤
∑

u⊆{1:s}
(|u|!)p

∏

j∈u

(τκ b2
j )

p/2 =
s∑

ℓ=0

(ℓ!)p
∑

u⊆{1:s}, |u|=ℓ

∏

j∈u

(τκb2
j )

p/2 ,

where

τκ := ̺1/κ(αmax, κ)

(log 2)2(αmax − bmax)
.

Now using the inequality

ℓ!
∑

u⊆{1:s}
|u|=ℓ

∏

j∈u

a j ≤
( s∑

j=1

a j

)ℓ

,

(which holds since for |u| = ℓ each term
∏

j∈u
a j from the left-hand side appears in

the expansion of the right-hand side exactly ℓ! times, but the right-hand side includes

other terms) and with K denoting the assumed uniform bound on ‖b‖p
p,s , we obtain

Ss(α, κ) ≤
s∑

ℓ=0

(ℓ!)p−1τ pℓ/2
κ

( s∑

j=1

b
p
j

)ℓ

≤
∞∑

ℓ=0

(ℓ!)p−1τ pℓ/2
κ K ℓ < ∞ .

The finiteness of the right-hand side follows by the ratio test, on noting that p < 1. ⊓⊔

Remark 1 A generating vector z ∈ N
s for a randomly shifted lattice rule with n points

in s dimensions that achieves the desired error bound can be constructed using a

component-by-component (CBC) algorithm, which goes as follows: (1) Set z1 = 1.

(2) For each k = 2, 3, . . . , s, choose zk from the set {1 ≤ z ≤ n − 1 : gcd(z, n) = 1}
to minimise

E2
s,n,k(z1, . . . , zk) :=

∑

∅�=u⊆{1:k}

γu

n

n∑

i=1

∏

j∈u

θ j

(
frac

(
i z j

n

))
,

where the function θ j (x) is symmetric around 1/2 for x ∈ [0, 1] and can be computed

for x ∈ [0, 1/2] by

θ j (x) :=
x − 1

2
+ exp(2α2

j )
[
Φ(2α j ) − Φ

(
2α j + Φ−1(x)

)]

α j

− 2

∫ 0

−∞

Φ(t)2

ψ j (t)2
dt.

The integral in the above formula for θ j only needs to be calculated once, while

the general formulation [19, Equation (50)] also has an integral for the first part,
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which we evaluate explicitly here for our particular choice of ψ j . Note that γu and α j

fundamentally depend on s through b j . When (and only when) the algorithm reaches

k = s, the expression E2
s,n,s(z1, . . . , zs) is the so-called squared shift-averaged worst

case error. See [19] for the analysis of an efficient implementation of the algorithm

for POD weights (3.16), so that the cost is O(sn log n + s2n) operations using FFT.

We refer to the accompanying software of [16] for an implementation.

3.4 QMC convergence in the case of circulant embedding

The circulant embedding technique is a method of computing efficiently the factori-

sation (1.7), thus yielding a method of sampling the random vector Z via (1.6). We

describe the process briefly here before verifying the assumptions of Theorem 5. This

section is a summary of our results in [13].

The M = (m0+1)d points {xi : i = 1, . . . , M} are assumed to be uniformly spaced

with spacing h0 := 1/m0 on a d-dimensional grid over the unit cube [0, 1]d enclosing

the domain D. Using a vector notation, we may relabel the points x1, . . . , xM to be

indexed by k as

xk := h0k for k = (k1, . . . , kd) ∈ {0, . . . , m0}d .

Then it is easy to see that (with analogous vector notation for the rows and columns)

the M × M covariance matrix R defined in (1.5) can be written as

Rk,k′ = ρ
(
h0(k − k′)

)
, k, k′ ∈ {0, . . . , m0}d . (3.19)

If the vectors k are enumerated in lexicographical ordering, then we obtain a nested

block Toeplitz matrix where the number of nested levels is the physical dimension d.

We extend R to a nested block circulant matrix Rext. To do this, it is convenient to

extend to the infinite grid:

xk := h0k for k ∈ Z
d .

Then, to define Rext , we consider an enlarged cube [0, ℓ]d of edge length ℓ := mh0 ≥ 1

with integer m ≥ m0. We assume that m0 (and hence h0) is fixed and we enlarge m

(or equivalently ℓ) as appropriate. We introduce a 2ℓ-periodic map on R by specifying

its action on [0, 2ℓ]:

ϕ(x) :=
{

x if 0 ≤ x ≤ ℓ,

2ℓ − x if ℓ ≤ x < 2ℓ.

Now we apply this map elementwise and define an extended version ρext of ρ as

follows:

ρext(x) := ρ(ϕ(x1), . . . , ϕ(xd)), x ∈ R
d .
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Note that ρext is 2ℓ-periodic in each coordinate direction and ρext(x) = ρ(x) when

x ∈ [0, ℓ]d . Then Rext is defined to be the s × s symmetric nested block circulant

matrix with s = (2m)d , defined, analogously to (3.19), by

Rext
k,k′ = ρext

(
h0(k − k′)

)
, k, k′ ∈ {0, . . . , 2m − 1}d . (3.20)

It follows that R is the submatrix of Rext in which the indices are constrained to lie in

the range k, k′ ∈ {0, . . . , m0}d . Since Rext is nested block circulant, it is diagonalisable

by FFT. The following theorem is taken from [12]:

Theorem 6 Rext has the spectral decomposition:

Rext = QextΛext Qext,

where Λext is the diagonal matrix containing the eigenvalues of Rext, which can be

obtained by
√

s times the Fourier transform on the first column of Rext, and Qext =
Re(F) + Im(F) is real symmetric, with

Fk,k′ = 1√
s

exp

(
2π i

k′ · k

2m

)

denoting the d-dimensional Fourier matrix. If the eigenvalues of Rext are all non-

negative then the required B in (1.7) can be obtained by selecting M appropriate rows

of

Bext := Qext(Λext)1/2.

The use of FFT allows fast computation of the matrix-vector product Bext y for

any vector y, which then yields B y needed for sampling the random field in (1.6).

Our algorithm from [13] for obtaining a minimal positive definite Rext is given in

Algorithm 1. Our algorithm from [13] for sampling an instance of the lognormal

random field is given in Algorithm 2. Note that the normalisation used within the

FFT routine differs among particular implementations. Here, we assume the Fourier

transform to be unitary.

Algorithm 1 Input: d, m0, and covariance function ρ.

1. Set m = m0.

2. Calculate r , the first column of Rext in (3.20).

3. Calculate v, the vector of eigenvalues of Rext, by d-dimensional FFT on r .

4. If the smallest eigenvalue < 0 then increment m and go to Step 2.

Output: m, v.

Algorithm 2 Input: d, m0, mean field Z , and m and v obtained by Algorithm 1.

1. With s = (2m)d , sample an s-dimensional normal random vector y.

2. Update y by elementwise multiplication with
√

v.

3. Set w to be the d-dimensional FFT of y.
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4. Update w by adding its real and imaginary parts.

5. Obtain z by extracting the appropriate M = (m0 + 1)d entries of w.

6. Update z by adding Z .

Output: exp(z).

In the case of QMC sampling, the random sample y in Step 1 of Algorithm 2 is

replaced by a randomly shifted lattice point from [0, 1]s , mapped to R
s elementwise

by the inverse of the cumulative normal distribution function (see (1.12)). The relative

size of the quantities b j = ‖B j‖∞ (as defined in (3.6)) determines the ordering of the

QMC variables in order to benefit from the good properties of lattice rules in earlier

coordinate directions in the construction of the generating vector in Remark 1.

We prove in [13] (under mild conditions) that Algorithm 1 will always terminate.

Moreover, in many cases the required m (equivalently ℓ) can be quite small. Theorem 7

below gives an explicit lower bound for the required value of ℓ.

Example 1 The Matérn family of covariances are defined by

ρ(x) = σ 2 21−ν

Γ (ν)

(√
2ν

λ
‖x‖2

)ν

Kν

(√
2ν

λ
‖x‖2

)
, (3.21)

where Γ is the Gamma function and Kν is the modified Bessel function of the second

kind, σ 2 is the variance, λ is the correlation length and ν ≥ 1/2 is a smoothness

parameter. The limiting cases ν → 1/2 and ν → ∞ correspond to the exponential and

Gaussian covariances respectively, see, e.g., [11], however, using a slightly different

scaling.

The following result, proved in [13, Thm. 2.10], shows that the growth of the size

of ℓ with respect to the mesh size h0 and with respect to the parameters in the Matérn

family is moderate. In particular, for fixed ν < ∞, it establishes a bound on ℓ that

grows only logarithmically with λ/h0 and gets smaller as λ decreases. Experiments

illustrating the sharpness of this bound are given in [13].

Theorem 7 Consider the Matérn covariance family (3.21) with 1/2 ≤ ν < ∞ and

λ ≤ 1. Suppose h0/λ ≤ e−1. Then there exist constants C1 > 0 and C2 ≥ 2
√

2 which

may depend on s but are independent of ℓ, h0, λ, ν and σ 2, such that Rext is positive

definite if

ℓ/λ ≥ C1 + C2 ν1/2 log
(

max{λ/h0, ν1/2}
)

.

In the case ν = ∞, the bound on ℓ is of the form ℓ ≥ 1 + λ max{
√

2λ/h0, C1}.

In order to verify the QMC convergence estimate given in Theorem 5 in the case

of circulant embedding, we need to bound ‖b‖p,s , where b is defined in (3.6). Since

every entry in Re(F) + Im(F) is bounded by
√

2/s, we have

b j = ‖B j‖∞ ≤
√

2

s
Λext

s, j , (3.22)

123



Circulant embedding with QMC: analysis for elliptic PDE… 501

where Λext
s, j , j = 1, . . . , s, are the eigenvalues of the nested block circulant matrix

Rext. Notice that we added ‘s’ explicitly to the notation to stress the dependence of

these eigenvalues on s. A sufficient condition to ensure the uniform boundedness of

‖b‖s,p required in Theorem 5 is that there exists a constant C > 0, independent of s,

such that
s∑

j=1

(
Λext

s, j

s

)p/2

≤ C . (3.23)

It is thus important to investigate for what values of p this inequality holds. The smaller

the value of p the faster the convergence will be in Theorem 5.

In [13, §3], we conjecture (with supporting mathematical arguments and empirical

evidence) that the eigenvalues Λext
s, j , when rearranged in non-increasing order, decay

like j−(1+2ν/d) in case of the Matérn covariance. This is the same as the decay rates

of both the eigenvalues of the original nested block Toeplitz matrix R and of the KL

eigenvalues of the underlying continuous field Z . Under this conjecture, it follows that

the smallest value of p allowed for (3.23) to hold is just bigger than 2/(1 + 2ν/d). In

turn this yields a theoretical convergence rate of nearly

O(n− min(ν/d,1))

in Theorem 5 above, for any ν > d/2, independently of s. To see this, recall that

the convergence rate of −1/(2κ) with respect to n in Theorem 5 is related to p via

p = 2κ/(1 + κ) with κ ∈ (1/2, 1). These bounds on κ imply that, for the conjectured

rate of decay of the eigenvalues Λext
s, j , Theorem 5 is only applicable for ν > d/2.

These conjectures will be investigated in detail in our numerical experiments in the

next section. As we will see there, the theoretically predicted rates may be pessimistic.

In the experiments here, we see nearly optimal QMC convergence, i.e., O(n−1), even

when ν < d, and at least as good convergence as for standard MC, i.e., O(n−1/2),

even when ν < d/2. All these findings are in line with the results we obtained in the

case of KL expansions in [11], and they guarantee a dimension-independent optimal

QMC convergence for sufficiently large smoothness parameter ν.

4 Numerical experiments

In this section we perform numerical experiments on problem (1.1) in 2D and 3D

which illustrate the power of the proposed algorithm. Our quantity of interest will be

the average value of the solution u

G(u(·, y)) = 1

|T |

∫

T

u(x, y) dx , (4.1)

over some measurable T ⊆ D, with D being an L-shaped domain with a hole in 2D

or the unit cube in 3D; all details to be specified below. In both cases, the domain D

is contained in the unit cube [0, 1]d , as assumed.
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Table 1 The values of s needed to ensure positive definiteness for different combinations of parameters in

2D and 3D

d = 2 λ = 0.2 λ = 0.5

ν = 0.5 ν = 2 ν = 4 ν = 0.5 ν = 2 ν = 4

m0 = 12 576 576 576 1,296 5,476 9,216
(nbe=424) (0.07) (0.03) (0.04) (0.11) (0.22) (0.15)

m0 = 24 2,304 2,916 4,900 8,464 34,596 59,536
(nbe=1,255) (0.04) (0.04) (0.05) (0.09) (0.26) (0.39)

m0 = 48 9,216 19,044 33,124 49,284 198,916 350,464
(nbe=5,559) (0.03) (0.05) (0.07) (0.15) (0.32) (0.44)

m0 = 96 36,864 114,244 200,704 270,400 1,077,444 1,721,344
(nbe=23,202) (0.02) (0.06) (0.11) (0.14) (0.40) (0.49)

d = 3 λ = 0.2 λ = 0.5

ν = 0.5 ν = 3 ν = 4 ν = 0.5 ν = 3 ν = 4

m0 = 7 2,744 2,744 2,744 64,000 97,336 125,000
(nbe=2,642) (0.002) (0.001) (0.001) (0.01) (0.02) (0.03)

m0 = 14 27,000 39,304 39,304 1,061,208 2,000,376 2,406,104
(nbe=21,491) (0.001) (0.002) (0.002) (0.04) (0.06) (0.10)

m0 = 28 438,976 778,688 941,192 15,625,000 30,371,328 37,933,056
(nbe=172,421) (0.002) (0.003) (0.004) (0.06) (0.12) (0.14)

The numbers in round brackets show the cost of random field generation as a fraction of the total compu-

tational cost per sample. These numbers increase with increasing s (from left to right) for a fixed FE mesh.

For reference, we also provide the number of elements (nbe) for each of the FE meshes

Random field generation. In all experiments the random coefficient a is of the form

(1.2) where Z is a Gaussian random field with the Matérn covariance (3.21). We take

the mean Z to be 0, the variance to be σ 2 = 0.25, and we consider two different values

for the correlation length, namely λ ∈ {0.2, 0.5}, combined with three different values

for the smoothness parameter ν ∈ {0.5, 2, 4} in 2D and ν ∈ {0.5, 3, 4} in 3D (thus

illustrating the cases ν < d, ν = d, ν > d in each case). The forcing term is taken to

be f ≡ 1.

For different values of m0, we first obtain values of the random field on a uniform

grid with (m0+1)d points on the unit cube [0, 1]d by circulant embedding as described

in Sect. 3.4. We choose m0 ∈ {12, 24, 48, 96} in 2D and m0 ∈ {7, 14, 28} in 3D.

The necessary length ℓ = m/m0 of the extended cube [0, ℓ]d to ensure positive

definiteness, where m ≥ m0, depends on the values of d, λ and ν, and affects the

dimensionality s = (2m)d of y. This dependence is investigated in detail in [13] (see

Theorem 7). In Table 1, we summarise the values of s for the different combinations

of parameters.

FE solution of the PDE. For each realisation of the random field (i.e., for each y), we

solve the PDE using a finite element (FE) method with piecewise linear elements on an

unstructured grid produced with the help of the Matlab PDE toolbox. The quadrature

rule for the matrix assembly is based on the mid point rule, where the values of the

random field at the centroids of the elements are obtained by multi-linear interpolation

of the values on the uniform grid, computed with circulant embedding (see (2.6) and

(2.7)). In order to balance the quadrature error and the FE discretisation error in light

of Lemma 1 and Theorem 1, the maximum FE mesh diameter is chosen such that

h ≈
√

d h0 =
√

d/m0. In particular, we choose h ∈ {0.12, 0.06, 0.03, 0.015} in 2D

and h ∈ {0.24, 0.12, 0.06} in 3D, for each of the respective values of m0 above. In 2D,

the Matlab functionadaptmesh is used to build a family of adaptive meshes for the
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Fig. 1 Adaptive FE mesh of an L-shaped domain with a hole. Left: h = 0.12 (424 elements). Middle:

h = 0.06 (1255 elements). Right: h = 0.03 (5559 elements). Our fourth FE mesh not shown here: h = 0.015

(23,202 elements)

Fig. 2 A local view of the meshes from Fig. 1, showing the quadrature points at the centroids of the

triangles (blue dots) and the uniform grid points where the random field is sampled (purple crosses). Left:

(m0, h) = (12, 0.12). Middle: (m0, h) = (24, 0.06). Right: (m0, h) = (48, 0.03) (color figure online)

L-shaped domain with a hole (see Fig. 1). We use the same adaptive mesh, constructed

with a ≡ 1, for all realisations. To find meshes with our desired maximum mesh

diameters h, we gradually increase the maxt parameter of the Matlab adaptmesh

command. Figure 2 zooms in on the shaded region in the bottom left corner of each

of the adaptive meshes to show the centroids of the triangles in relation to the uniform

grids. The PDE is solved with the Matlab function assempde. For the 3D problem,

we use the Matlab PDE toolbox to mesh and solve the PDE. The integral in (4.1) is

approximated by applying the midpoint rule on each of the elements in T . In 2D, the

resulting linear system is solved with the default sparse direct solver (“backslash”) in

Matlab. We believe that that is also the solver used in the Matlab PDE toolbox for

our 3D experiments, but we could not verify this.

As we can see from the fraction of time needed to construct the random field,

which is shown in brackets in Table 1 for each case, the majority of time is spent on

assembling and solving the FE systems. As expected this is even more pronounced in

3D, since sparse direct solvers are known to be significantly more expensive for 3D

FE matrices with respect to the number of unknowns (both in terms of the order and

in terms of the asymptotic constant), while the cost of the FFT factorisation grows

log-linearly with the number of unknowns in 2D and in 3D. In any case, the random

field generation is insignificant in the majority of cases and it takes less than 50% of

the computational time in all cases.
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Construction of lattice sequences. We approximate the expected value of (4.1) by

randomly shifted lattice rules obtained using the fast CBC code from the QMC4PDE

website https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/ (see also [16]). A typ-

ical call to the QMC4PDE construction script would be:

./lat-cbc.py –s=2000 –b_file=[f] –m=16 –d1=1 –d2=2 –a3=1

–outputdir=[o]

where s=2000 specifies an initial maximum number of dimensions and [f] is a file

containing the calculated values of b j in (3.6) in nonincreasing order for a particular

case of d, λ and ν. See [16] for an explanation of the other parameters.

In specifying parameters for the CBC construction, we follow the theory of [16]

as closely as possible, but we make a couple of modifications for practical reasons.

Firstly, the implementation follows [8] to construct “embedded” lattice sequences in

base 2, so that in practice we can increase n gradually without throwing away existing

function evaluations. At every power of 2, the points form a full lattice rule which

complies with the theory from Sect. 3. Secondly, with the POD weights in (3.16) the

CBC construction to find the generating vector z has a cost of O(s2n + sn log n)

operations which becomes quite high for the large s we are considering (see Table 1).

Thus, we only carry out the CBC construction up to a certain dimension s∗ and then

randomly generate the remaining components of z. In particular, we stop the CBC

algorithm at the first component s∗ where the generating vector has a repeated entry.

Repeated components in z yield bad two-dimensional projections of lattice points and

randomly generated components are intuitively better in that situation. The highest

dimensionality for the switch-over dimension for all cases in Table 1 is s∗ = 1811.

The only two cases where we did not need to add random components were ν = 2

and ν = 4, for d = 2, m0 = 12 and λ = 0.2.

Estimation of (Q)MC error. For fixed h, we can compute the standard error on the

QMC estimate of the expected value of (4.1) by using a number of random shifts.

Specifically, for each case we took q = 64 independent random shifts of one n-

point lattice rule, giving q independent approximations Q1, . . . , Qq to the expected

value. We take their average Q = (Q1 + · · · + Qq)/q as our final approximation,

and we estimate the standard error on Q by
√

1
q(q−1)

∑q

i=1(Qi − Q)2. The total

number of function evaluations in this case is N = q n. According to our theory

(see also [16]), the convergence rate for our randomised QMC method is of the order

q−1/2 n−r = qr−1/2 N−r , with r ≈ min(ν/d, 1). Hence, for r > 1/2, the constant in

any of the convergence graphs with respect to N depends on qr−1/2. To provide less

erratic curves, the number of random shifts is chosen to be fairly large here. In practice,

e.g., q = 16 shifts would be sufficient. This would effectively push all convergence

graphs down, leading to bigger gains for QMC.

We compare QMC with the simple Monte Carlo (MC) method (1.14) based on N

random samples. Denoting the function values for these samples by Y1, . . . YN , then

the MC approximation of the integral is Y = (Y1 + · · · + YN )/N . The standard error

can be estimated by

√
1

N (N−1)

∑N
i=1(Yi − Y )2. The expected MC convergence rate is

O(N−1/2).
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In our figures later, we plot the relative standard error obtained by dividing the

estimated standard error by the estimated mean.

Computing environment. All our computations were run as serial jobs on reserved

8-core Intel Xeon E5-2650v2 2.60 GHz nodes on the computational cluster Katana

at UNSW (or on almost identical hardware). Since they are embarrassingly parallel,

both the MC and QMC simulations could easily be parallelised with roughly linear

speedup. We chose to run different jobs in parallel instead of parallelising individual

jobs, and to report the actual serial computation times for our test cases.

4.1 Results for an L-shaped domain in 2D

In this example the domain D is the complex 2D domain shown in Fig. 1: an L-shaped

region with a hole. We consider five choices for the averaging domain T ⊆ D in (4.1):

T1 the full domain,

T2 the bottom left corner with a circular segment cut out,

T3 the lower right interior square, and

T4 the upper left interior square in a symmetrical location to T3,

T5 the L-shape near the reentrant corner.

Figure 1 shows the different averaging domains T , as well as some of the adaptive

meshes that were used. Note that the circular sections of the boundary of D are

approximated polygonally and the averaging domains T2, …, T5 are resolved on all

meshes. The meshes are adapted to capture the loss of regularity near the reentrant

corner, but nevertheless the number of elements grows roughly with O(h−2), the same

as for a uniform family of meshes with mesh size h. We specify the domain in Matlab

by means of constructive solid geometry (CSG), i.e., the union and subtraction of the

basic pieces. This ensures that all the averaging domains T are covered by complete

elements.

Mesh errors. Before we compare the performance of our QMC method with the

basic MC method, let us first estimate the discretisation errors for each of the adaptive

meshes. In Table 2, we present results for T1 and T5 for the case λ = 0.2 and ν = 2.

The estimates of E[G(uh)], obtained using QMC, are stated together with the estimated

standard error for each mesh. We use sufficiently many QMC cubature points, so that

the significant figures of the estimates are not affected by QMC errors. The product

of m0 and h is kept fixed (approximately equal to
√

d), as discussed above. From the

results we can clearly see that the convergence rate for the discretisation error is O(h2)

on the given meshes. This shows that the mesh refinement near the reentrant corner

is working optimally. Using Richardson extrapolation, we can thus compute a higher

order approximation of the limit of E[G(uh)] that is stated in the last row of Table 2.

The relative error with respect to this extrapolated value is stated in the last column

for both T1 and T5.

The behaviour is similar for the other quantities of interest and for the other values

of λ when ν = 2. For ν = 0.5, on the other hand, the solution is globally only in

H3/2, so that the local mesh refinement near the reentrant corner plays no role and

the convergence of E[G(uh)] is only O(h). Thus, to achieve acceptable accuracy,

comparable to the QMC errors we quote below, we would in practice need much finer
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Table 2 Mesh convergence for the case λ = 0.2 and ν = 2 for T1 and T5

T1 T5

(m0, h) E[G(uh)] rel. h-error E[G(uh)] rel. h-error

(12, 0.12) 0.0114378 ± 3.4e−08 4.6e−02 0.0108212 ± 7.9e−08 7.9e−02

(24, 0.06) 0.0118095 ± 2.8e−08 1.5e−02 0.0114086 ± 6.6e−08 2.9e−02

(48, 0.03) 0.0119549 ± 4.1e−08 3.3e−03 0.0116850 ± 8.1e−08 5.9e−03

(96, 0.015) 0.0119846 ± 4.9e−08 8.3e−04 0.0117372 ± 1.1e−07 1.5e−03

0.0119945 (extrapolated) ∼ h2 0.0117546 (extrapolated) ∼ h2

The estimates of E[G(uh)] (stated together with one standard deviation) are computed with our randomised

lattice rule with n sufficiently large, such that the standard error is significantly smaller than the discretisation

error. Richardson extrapolation is used to compute a more accurate estimate of the limit of E[G(uh)],
as h → 0 (final row). The columns denoted “rel. h-error” give the relative error with respect to these

extrapolated estimates

meshes for ν = 0.5. However, since this would not affect the behaviour of the QMC

cubature errors, we did not do that.

QMC convergence rates. For the remainder we will now demonstrate the dimension

independence of our QMC method and its superiority over basic MC. In Fig. 3, we plot

the relative standard error in (4.1) with T = T1 against the total number of PDE solves

(top) and against the total calculation time (bottom). We consider six combinations of

the values of ν and λ and plot the graphs for four levels of mesh refinement. (The MC

estimates were not computed on the finest mesh.) The convergence of the MC method

is proportional to N−0.5, as expected. The convergence of the QMC method ranges

from O(N−0.72) up to O(N−0.89). For example, for ν = 0.5 and λ = 0.2, to achieve

the same relative standard error of 10−4 we need about 106 PDE solves with the MC

method while the QMC method only needs about 3 · 104 PDE solves. Also in terms

of computational time, all the results consistently show huge computational savings

for the QMC method over the MC method, even with the relatively large number of

q = 64 random shifts.

We note that the convergence graphs are meant to illustrate the convergence

behaviour and in practice one would not try to achieve such high precision, espe-

cially not on the coarser meshes. One would rather aim to balance the QMC errors

with the discretisation errors in Table 2. From the theory, we expect the smoothness

ν of the random field to have an effect on the convergence rate of QMC. Specifically,

the bound in Theorem 5 would suggest a rate of O(N− min(ν/2,1)) in 2D, as discussed

in Sect. 3.4. This effect is not immediately observed in the graphs. For ν = 2 and 4 we

expect an asymptotic convergence rate of order 1, while we see very good convergence

rates on the graphs, we did not reach this asymptotic regime yet. On the other hand, we

do observe excellent convergence behaviour for the case ν = 0.5 for which our theory

does not apply. From the graphs we also observe that a smaller correlation length λ

corresponds to a better convergence rate, which is in full agreement with our findings

in [12].
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Fig. 3 Relative standard error for T = T1 (the average solution over the entire domain) against total number

of PDE solves (top) and execution time (bottom) for Monte Carlo (red triangles) and QMC (blue circles).

In the timing plot, results appear from bottom to top from the coarsest mesh with (m0, h) = (12, 0.12) to

the inest mesh with (m0, h) = (96, 0.015) for QMC and (m0, h) = (48, 0.03) for MC, respectively (color

figure online)
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Fig. 4 Relative standard error for Monte Carlo (red triangles) and the lattice sequences (blue circles) for

T2 (the average over the bottom-left corner with circular cutout) versus number of PDE solves (top), as well

as for T5 (the average over the L-shaped region near the reentrant corner) versus execution time (bottom).

In the bottom figure, the results appear from bottom to top from the coarsest mesh to the finest (color figure

online)
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Fig. 5 Relative standard error of the average solution over the unit cube in 3D against the total number of

PDE solves (top) and the execution time (bottom) for Monte Carlo (red triangles) and the lattice sequences

(blue circles). As in Fig. 3, the results appear from bottom to top from the coarsest mesh with (m0, h) =
(7, 0.24) to the finest mesh with (m0, h) = (28, 0.06) (color figure online)
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A more important observation is the overlay of the convergence lines for the different

meshes in the plots of relative standard error versus number of PDE solves in Fig. 3.

For example, for the case λ = 0.5 and ν = 4 the dimensionality s increases from

about 9 thousand to 1 million as we increase m0 from 12 to 96 (see Table 1), while

the convergence rate and the asymptotic constant for the relative standard error are

clearly independent of the increasing dimension.

In Fig. 4, we confirm that the superiority is independent of the quantity of interest,

by presenting similar graphs as for T1 also for T2 and T5. We do not include the

results for the two symmetrical squares T3 and T4, which look very similar.

4.2 Results for the unit cube in 3D

Our second example is the unit cube in 3D and our quantity of interest is (4.1) with

T = D = [0, 1]3. We use the mesh generator and the solver from the Matlab

PDE toolbox to obtain three meshes with desired maximum mesh diameters h and to

calculate the solution. To evaluate the random field Z at the centroids of the elements

we used the function interpolateSolution from the toolbox.

In Fig. 5 we plot again the relative standard error for six combinations of parameters

against the total number of PDE solves and against the calculation time. We observe

convergence rates from N−0.73 up to N−0.84 for our QMC rules, and the expected

N−0.5 for the plain MC method. The lattice sequences were again constructed with

the actual values of b j from (3.6), except for the combination of λ = 0.5 and m0 =
28 where we get the near astronomical dimensionalities ranging from about 15 to

37 million, as ν increases (see Table 1); for these cases we replaced b j by the convenient

upper bound given in (3.22).
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