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CIRCULANT GRAPHS:
RECOGNIZING AND ISOMORPHISM TESTING

IN POLYNOMIAL TIME

S. A. EVDOKIMOV AND I. N. PONOMARENKO

Abstract. An algorithm is constructed for recognizing the circulant graphs and
finding a canonical labeling for them in polynomial time. This algorithm also yields
a cycle base of an arbitrary solvable permutation group. The consistency of the
algorithm is based on a new result on the structure of Schur rings over a finite cyclic
group.

§1. Introduction

A finite graph1 is said to be circulant if its automorphism group contains a full cycle,2

i.e., a permutation the cycle decomposition of which consists of a unique cycle of full
length. This means that the graph admits a regular cyclic automorphism group, and,
consequently, is isomorphic to a Cayley graph over a cyclic group. In particular, any
circulant graph can be specified in a compact form by a full cycle automorphism and a
neighborhood of some vertex.

One of the main computational problems concerning circulant graphs is that of finding
an efficient algorithm to recognize them. (This problem is a special case of the following
NP-complete problem: test whether or not a given graph has an automorphism without
fixed points [15].) The first attempt to solve this problem was undertaken in [24], where
a polynomial-time algorithm for recognizing circulant tournaments was described. In the
subsequent papers [21, 22, 5] several results on recognizing some special classes of circu-
lant graphs were presented, but the general problem remained open up to now. In the
present paper we solve this problem completely. Another problem about circulant graphs
is to find an efficient isomorphism test for them. In fact, this problem is polynomial-time
reducible to the recognition problem, because two circulant graphs with the same number
of vertices are isomorphic if and only if their disjoint union is a circulant graph. In this
paper we present a solution to a more difficult problem of finding a canonical labeling
for circulant graphs.3 It should be mentioned that the isomorphism problem for Cayley
graphs over a cyclic group (which is a special case of the isomorphism problem for cir-
culant graphs) has been extensively studied through the last forty years (see [20]). Most

2000 Mathematics Subject Classification. Primary 5C25, 20F65.
Key words and phrases. Regular cycle automorphism group, Cayley graph, polynomial-time

algorithm.
Supported by RFBR (grants nos. 01-01-00219 and 03-01-00349). The second author was supported

by RFBR, grants nos. 02-01-00093 and NSh-2251.2003.1.
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2In what follows, such an automorphism is said to be cycle.
3Suppose that associated with each graph belonging to a class C is a labeling, i.e., a bijection from

the set of vertices to an initial interval of the set of nonnegative integers. This labeling is said to be

canonical provided Γ1
∼= Γ2 if and only if Γf1

1 = Γf2
2 for all Γ1, Γ2 ∈ C, where fi is the labeling of the

graph Γi and Γfi
i is the image of Γi under fi, i = 1, 2 (cf. [1]).
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814 S. A. EVDOKIMOV AND I. N. PONOMARENKO

papers were aimed at finding efficient necessary and sufficient conditions for isomorphism
of Cayley graphs over various special classes of cyclic groups.

The key notion of our approach is a cycle base of a finite permutation group G; by
definition, this is any set of full cycles in G with the property that any full cycle of G
is conjugate in G to exactly one element of this set. Cycle bases were studied in [19]
where it was proved that the cardinality of any cycle base of the group G is at most n
(and even ϕ(n), where ϕ is the Euler function, modulo the classification of finite simple
groups) where n is the degree of G. A cycle base of a graph Γ is defined to be a cycle
base of its automorphism group Aut(Γ). As will be shown below (see Theorem 1.2), the
problems treated in this paper are reduced efficiently to the problem of finding a cycle
base of a graph. In its turn, this problem reduces (see the proof of Theorem 1.1) to
a similar problem for cellular rings, and the solution of the latter occupies most of the
paper (as to the cellular rings, see Subsection 8.1).

Theorem 1.1. A cycle base of a graph on n vertices can be found in time nO(1).

Proof. Let Γ be a graph on n vertices, and let W be the smallest cellular ring containing
the adjacency matrix of the graph Γ. It is easy to show that Aut(Γ) = Aut(W ) (see,
e.g., [27]). From Theorem 7.1 it follows that a cycle base of the ring W (i.e., of the group
Aut(W )) can be found in time nO(1). Since the ring W can be efficiently constructed by
Γ (see Theorem 8.3), we are done. �

The following statement contains the main results of the paper. Though some parts
of the proof are folklore, we present all the details in order to make the exposition self-
contained.

Theorem 1.2. Let Gn (respectively, Cn) be the class of all graphs (respectively, circulant
graphs) on n vertices. Then the following problems can be solved in time nO(1):

(1) given a graph Γ ∈ Gn, test whether Γ ∈ Cn, and (if so) find a cycle automorphism
of it;

(2) given a graph Γ ∈ Cn, find a canonical labeling of it;
(3) given graphs Γ, Γ′ ∈ Cn, test whether Γ ∼= Γ′, and (if so) find an isomorphism of

them;
(4) given a graph Γ ∈ Gn, find a full system of pairwise nonequivalent Cayley repre-

sentations4 of Γ over a cyclic group of order n.

Proof. Obviously, a graph is circulant if and only if every cycle base of it is nonempty.
Therefore, Problem (1) can be solved in time nO(1) by Theorem 1.1. Furthermore,
Problem (3) is O(n)-reducible to Problem (2). We concentrate on Problems (2) and (4).

Let V be a set of cardinality n. For any full cycle c on V and any element v ∈ V ,
there exists a unique bijection f : V → {0, . . . , n− 1} taking vci

to i (then c goes to the
full cycle (0, . . . , n−1)). If Γ is a graph on V and c ∈ Aut(Γ), then, obviously, the image
Γf of Γ under f does not depend on the choice of v ∈ V ; we denote it by Γ(c). It is easily
seen that for any two cycle automorphisms c1 and c2 of Γ we have

(1) Γ(c1) = Γ(c2) ⇐⇒ c1 ∼ c2,

where c1 ∼ c2 means that c1 and c2 are conjugate in the group Aut(Γ). Thus, the
set C(Γ) = {Γ(c) : c ∈ C} does not depend on the choice of a cycle base C of Γ. By
Theorem 1.1, this set together with a set of isomorphisms f : Γ → Γ′, Γ′ ∈ C(Γ) (one f
for each Γ′) can be found in time nO(1).

4By a Cayley representation of a graph Γ over a group G we mean a Cayley graph over G isomorphic
to Γ; two such representations are said to be equivalent if some isomorphism of the corresponding Cayley
graphs belongs to Aut(G) (see, e.g., [14]).
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CIRCULANT GRAPHS 815

Now, let Γ ∈ Cn. Then C(Γ) �= ∅. Moreover, from the previous paragraph it follows
that the element Γ′ of C(Γ) whose adjacency matrix is the lexicographical leader among
the adjacency matrices of the graphs belonging to C(Γ), can be found in time nO(1), to-
gether with the corresponding isomorphism f . The labeling f of the graph Γ is canonical
(in the class Cn) because, obviously,

Γ1
∼= Γ2 ⇐⇒ Γf1

1 = Γf2
2

for all Γ1, Γ2 ∈ Cn, where fi is the labeling of Γi (i = 1, 2). Thus, Problem (2) can be
solved in time nO(1).

Finally, let Γ ∈ Gn. We treat the set {0, . . . , n−1} of the vertices of the graphs in C(Γ)
as the additive group Z

+
n of the ring Zn = Z/(n). It is easily seen that each graph in C(Γ)

is a Cayley representation of Γ over this group. From (1) it follows that every Cayley
representation of Γ over Z

+
n is equivalent to at least one element of the set C(Γ). On the

other hand, two elements of C(Γ) are equivalent if and only if there exists an isomorphism
between them induced by multiplication by an element of the multiplicative group of the
ring Zn. Since the set C(Γ) can be found in time nO(1), this implies that Problem (4)
can be solved within the same time. �

As we saw in the proof of Theorem 1.1, the problem of finding a cycle base of a
graph reduces to the problem of finding a cycle base of a cellular ring, i.e., a cycle
base of its automorphism group. To approach the latter problem, we introduce the
classes of quasinormal and singular cellular rings (see §§3 and 4) and prove that each
Cayley ring over a cyclic group belongs to one of these classes (Theorem 5.1). We also
show that both classes are efficiently recognizable. Moreover, the automorphism group
of a quasinormal ring has a polynomial-time computable solvable subgroup containing
all cycle automorphisms (Theorem 3.6), whereas a singular ring has a polynomial-time
computable admissible extension (Theorem 4.4). (An extension of a cellular ring is said
to be admissible if it is proper and each of its cycle bases contains a cycle base of the
ring.) In a sense, a quasinormal ring can be thought of as a ring covered by normal
Cayley rings over cyclic groups (see Definition 3.2). The latter rings were defined and
studied in [11]; in fact, any such ring is the centralizer ring of a 2-closed subgroup of
the holomorph of a cyclic group. On the other hand, each singular ring has a special
subfactor of rank 2 (Definition 4.1); every automorphism of this subfactor can be lifted
to an automorphism of the entire ring (Lemma 4.3). When passing to the corresponding
admissible extension, we regularize the subfactor, thereby resolving the singularity. Now
the algorithm of finding a cycle base of a cellular ring (Main Algorithm) can be outlined
as follows (see §7 for the details).

1. While a current ring remains singular, replace it by an admissible extension.
2. If the current ring is not quasinormal, then the cycle base of the input ring is

empty.
3. Find a solvable subgroup G of the automorphism group of the current ring that

contains all full cycle automorphisms.
4. Find a cycle base of G and reduce it to a cycle base of the input ring.
Step 1 is performed by Algorithm A2 (§4), which involves, in particular, the Weisfeiler–

Leman algorithm (Subsection 8.3). Steps 2 and 3 are performed by Algorithm A1 (§3).
At the first stage of that algorithm we test whether or not the current ring is quasinormal,
and if it is, we find a solvable group containing all cycle automorphisms of the current
ring. At the second stage we apply the Babai–Luks algorithm to find the group G in
question as the intersection of the group mentioned in the preceding sentence and the
automorphism group of the current ring. Finally, Step 4 is performed by Algorithm A3
(§6). This algorithm allows us to efficiently find a cycle base of an arbitrary solvable
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816 S. A. EVDOKIMOV AND I. N. PONOMARENKO

permutation group. The consistency of the Main Algorithm follows from Theorem 5.1
based on deep results on the structure of Schur rings over a cyclic group [11, 13].

All undefined terms and all results concerning permutation groups to be used in the
sequel can be found in [28, 29, 4]. To make the paper self-contained, we collect the
background material on cellular rings and Schur rings in §8. That section also contains
some remarks on algorithms for such rings and for permutation groups.

Notation. As usual, we denote by Z the ring of integers.
Throughout the paper, V denotes a finite set. For a (binary) relation R on V we set

RT = {(u, v) ∈ V 2 : (v, u) ∈ R} and R(u) = {v ∈ V : (u, v) ∈ R},
where u ∈ V .

By an equivalence on V we always mean a usual equivalence relation on V ; the set of all
such equivalences is denoted by E(V ). If E ∈ E(V ), then the set of classes of E is denoted
by V/E, and for X ⊂ V we set X/E = X/(E∩X2). If E equals ∆(V ) = {(v, v) : v ∈ V },
then the set X/E is identified with X .

If R is a relation on V , X ⊂ V , and E ∈ E(V ), then we put

RX/E = {(Y, Z) ∈ (X/E)2 : (Y × Z) ∩ R �= ∅}
and treat this set as a relation on X/E.

The ring of all integral matrices with rows and columns indexed by the elements of V
is denoted by MatV , the identity matrix in MatV is IV , and the all-one matrix is JV .

The adjacency matrix of a relation R on V is denoted by A(R); this is a {0,1}-matrix
in MatV such that its (u, v)-entry equals 1 if and only if (u, v) ∈ R.

The group of all permutations of V is denoted by Sym(V ). For S ⊂ Sym(V ), we
denote by Cyc(S) the set of all full cycles on V belonging to S, and we set Cyc(V ) =
Cyc(Sym(V )).

Each bijection f : V → V ′ (v 	→ vf ) naturally determines a bijection R 	→ Rf from
the relations on V onto the relations on V ′, a ring isomorphism A 	→ Af from MatV onto
MatV ′ , and a group isomorphism g 	→ gf from Sym(V ) onto Sym(V ′). For X ⊂ V and
E ∈ E(V ), the bijection f induces a bijection fX/E : X/E → X ′/E′, where X ′ = Xf

and E′ = Ef .
For a group G, the permutation group on the set G defined by the left (respectively,

right) multiplications is denoted by Gleft (respectively, Gright).
For integers l, m, the set {l, l + 1, . . . , m} is denoted by [l, m]. We write [m] instead of

[1, m].

§2. Equivalences in homogeneous cellular rings

This section is of preliminary nature. The material presented here will be used
throughout the paper. The relations R on V to be dealt with are assumed to have
full support (i.e., R(v) ∪RT (v) �= ∅ for all v ∈ V ). Below we fix a homogeneous cellular
ring W ≤ MatV , and we set R = R(W ), R∗ = R∗(W ), E = E(W ), and B = B(W ) (see
Subsection 8.1).

2.1. Let R be a relation on V . We denote by 〈R〉 the smallest equivalence on V con-
taining R and call it the equivalence closure of R:

〈R〉 =
⋂

E∈E(V ),E⊃R

E.

It is easily seen that the classes of 〈R〉 are precisely the connected components of the
graph on V with the edge set R ∪ RT , so that 〈R〉 can be constructed efficiently. If
E1, E2 ∈ E(V ), then, obviously, 〈E1 ∪E2〉 is the smallest equivalence on V the classes of
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CIRCULANT GRAPHS 817

which are unions of classes of E1 and E2. A routine check shows that if R ∈ R∗, then
〈R〉 ∈ E . This implies that every E ∈ E \ {∆(V )} is of the form E = 〈E1 ∪R〉, where E1

is a maximal element of the set {E′ ∈ E : E′ ⊂ E, E′ �= E} and R ∈ R. Therefore, the
elements of E can be listed in polynomial time in |V | and |E|.

Let R be a relation on V . It is easily seen that the set of all equivalences E ∈ E(V )
such that

(2) R =
⋃

(X,Y )∈RV/E

X × Y

is closed with respect to taking the equivalence closure of a union. Therefore, this set
has the largest element. We call it the radical of R and denote by rad(R). Obviously,
rad(R) ⊂ 〈R〉. Furthermore,

(3) rad(R) = Eq(R) ∩ Eq(RT ),

where for a relation S on V we set Eq(S) = {(u, v) ∈ V 2 : S(u) = S(v)}. Indeed, from
the definition it follows that rad(R) ⊂ Eq(R)∩Eq(RT ). On the other hand, it is easy to
show that the equivalence E = Eq(R) ∩ Eq(RT ) satisfies (2). Formula (3) implies that
rad(R) can be found in polynomial time in |V |. Now, if R ∈ R∗, then Eq(R), Eq(RT ) ∈ E
(see [6, p. 94]), so that rad(R) ∈ E by (3).

2.2. Let E1, E2 ∈ E(V ) be such that

(4) E1 ∩ E2 = ∆(V ), 〈E1 ∪ E2〉 = V 2.

The first condition enables us to define the mapping

(5) f : V → V/E1 × V/E2, v 	→ (X1, X2),

and, for X1 ∈ V/E1, the mapping

(6) tX1 : X1 → V/E2, v 	→ X2,

where Xi is the class of the equivalence Ei containing v (i = 1, 2 for (5) and i = 2 for (6)).

Lemma 2.1. The mappings f and tX1 are bijections whenever the matrices A(E1) and
A(E2) commute.

Proof. It suffices to prove the bijectivity of f . For this, we observe that the injectivity
follows from the first relation in (4). On the other hand, the second relation implies that
any two vertices of the graph on V with the edge set E1 ∪E2 are connected by a path. If
A(E1)A(E2) = A(E2)A(E1), then, obviously, such a path can be chosen to be of length
not exceeding 2. This means that X1 ∩ X2 �= ∅ for all X1 ∈ V/E1 and X2 ∈ V/E2, i.e.,
the mapping f is surjective. �

The following theorem describes the properties of the mappings f and tX1 in the case
where E1, E2 ∈ E .

Theorem 2.2. Suppose the ring W is commutative, and let E1, E2 ∈ E be equivalences
satisfying (4). Then the mappings f and tX1 are bijections, and the following statements
are true:

1) W f ≥ WV/E1 ⊗ WV/E2 ;
2) if X1 ∈ V/E1, then tX1 ∈ Iso(WX1 , WV/E2) and (RX1 )

tX1 = RV/E2 for all R ∈ R,
R ⊂ E1;

3) tX1,Y1 ∈ Iso(WX1 , WY1 , ϕX1,Y1) for all X1, Y1 ∈ V/E1, where tX1,Y1 = tX1 ◦ t−1
Y1

and
ϕX1,Y1 is the weak isomorphism described in Lemma 8.1.
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818 S. A. EVDOKIMOV AND I. N. PONOMARENKO

Proof. The bijectivity of f and tX1 follows from Lemma 2.1. We prove statement 1). A
straightforward check shows that A(E1)f = IV/E1 ⊗ JV/E2 and( ∑

R∈R,RV/E2=R2

A(R)
)f

= IV/E1 ⊗ A(R2)

for all R2 ∈ R(WV/E2). This implies that W f ≥ {IV/E1} ⊗ WV/E2 . Similarly, W f ≥
WV/E1 ⊗ {IV/E2}. Thus, statement 1) follows from these inclusions. Next, let R ∈ R,
R ⊂ E1. Then, obviously, (RX1)tX1 ⊂ RV/E2 . Therefore, it suffices to prove the first
part of statement 2) only. Since the matrices A(E1) and A(E2) commute, we have

R ∩ (X2 × Y2) = E1 ∩ (X2 × Y2)

for all X2, Y2 ∈ V/E2 such that R ∩ (X2 × Y2) �= ∅. Thus, for each X1 ∈ V/E1 the
bijection tX1 induces a bijection R(WX1 ) → R(WV/E2 ), whence tX1 ∈ Iso(WX1 , WV/E2).
Finally, statement 3) follows from statement 2) and the definition of ϕX1,Y1 . �

Corollary 2.3. Under the conditions of Theorem 2.2, suppose that G ≤ Aut(W ) is a
regular Abelian group. Then the equivalences E1 and E2 are G-invariant, and

Gf = GV/E1 × GV/E2 , (GX1)
tX1 = GV/E2

for all X1 ∈ V/E1.

Proof. From statement 1) of Theorem 2.2 it follows that gf = (gV/E1 , gV/E2) for all
g ∈ Aut(W ). Therefore, Gf ≤ GV/E1 × GV/E2 . On the other hand, since G is regular
and Abelian, so are the groups Gf , GV/E1 , and GV/E2 . This implies that

|Gf | = |V f | = |V/E1| · |V/E2| = |GV/E1 | · |GV/E2 | = |GV/E1 × GV/E2 |,

and the first relation follows. Since, obviously, (X1, v
tX1 ) = vf for all v ∈ X1, the second

relation is a consequence of the first. �

2.3. Suppose E0, E1 ∈ E and E0 ⊂ E1. We intend to compute the group Aut(W ) in the
case where W satisfies the E1/E0-condition in the sense of the following definition (see
also [5]).

Definition 2.4. We say that the ring W satisfies the E1/E0-condition if E0 ⊂ rad(R)
for all R ∈ R such that R ∩ E1 = ∅.

Suppose we are given a permutation g0 ∈ Sym(V/E0) that respects the equivalence
E1 and, for each X ∈ V/E1, a bijection gX : X → Y , where Y ∈ V/E1. The pair
({gX}X∈V/E1 , g0) is said to be E1/E0-admissible if (gX)X/E0 = (g0)X/E0 for all X ∈
V/E1. In this case there exists a unique permutation of V equal to g0 on V/E0 and to gX

on any X ∈ V/E1. We say that this permutation is induced by the pair ({gX}X∈V/E1 , g0).
We say that an E1/E0-admissible pair is compatible with W if the following conditions

are satisfied:

(P1) gX ∈ Iso(WX , WY , ϕX,Y ) for all X ∈ V/E1;
(P2) g0 ∈ Aut(WV/E0).

Let P(W, E1/E0) denote the set of all permutations induced by E1/E0-admissible pairs
compatible with W .

Theorem 2.5. Suppose the ring W satisfies the E1/E0-condition for some E0, E1 ∈ E
such that E0 ⊂ E1. Then Aut(W ) = P(W, E1/E0).
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Proof. The inclusion Aut(W ) ⊂ P(W, E1/E0) is clear because any g ∈ Aut(W ) is induced
by the pair ({gX}X∈V/E1 , gV/E0), which is obviously compatible with W . Conversely,
suppose that g is induced by an E1/E0-admissible pair ({gX}X∈V/E1 , g0) compatible
with W . Then Rg = R for all R ∈ R. Indeed, if R ⊂ E1, then, by condition (P1),

Rg =
⋃

X∈V/E1

(RX)gX =
⋃

X∈V/E1

(RX)ϕX,Y =
⋃

X∈V/E1

RY = R,

where Y = Xg. Otherwise, we have R ∩E1 = ∅, whence E0 ⊂ rad(R) by the conditions
of the theorem (see Definition 2.4). Consequently, relation (2) and condition (P2) imply
that

Rg = (
⋃

(X0,Y0)∈R0

X0 × Y0)g =
⋃

(X0,Y0)∈R0

(X0)g × (Y0)g

=
⋃

(X0,Y0)∈R0

(X0)g0 × (Y0)g0 =
⋃

(X0,Y0)∈R
g0
0

X0 × Y0 =
⋃

(X0,Y0)∈R0

X0 × Y0

= R,

where R0 = RV/E0 . �

§3. Quasinormal cellular rings

3.1. Let W be a Cayley ring over a group G (see Subsection 8.2). In accordance with [11],
the ring W is said to be normal if Gright is a normal subgroup of Aut(W ). We denote
by Wnorm the class of all cellular rings strongly isomorphic to a normal Cayley ring over
a cyclic group. It is easily seen that a cellular ring belongs to Wnorm if and only if its
automorphism group contains a normal regular cyclic subgroup. Any element of Wnorm

is called a normal ring (over a cyclic group). It can be proved that the automorphism
group of a normal ring is isomorphic to a subgroup of the holomorph of a cyclic group
(see [11, Theorem 4.5]). In particular, this automorphism group is solvable. Furthermore,
from [11, Theorem 6.6] it follows that every weak isomorphism of normal rings is induced
by a strong isomorphism. The following result allows us to handle normal rings efficiently
(see also [5]).

Theorem 3.1. The following problems for cellular rings on n points can be solved in
time nO(1):

(1) given a cellular ring W , test whether W ∈ Wnorm, and (if so) list all elements of
the group Aut(W );

(2) given cellular rings W, W ′ ∈ Wnorm and a weak isomorphism ϕ : W → W ′, list all
elements of the set Iso(W, W ′, ϕ).

Proof. First we recall that a cellular ring W ≤ MatV is said to be 1-regular if there exists
a regular point, i.e., an element v of V such that |R(v)| ≤ 1 for all R ∈ R(W ) (see [11,
§9]). Next, obviously, if ϕ : W → W ′ is a weak isomorphism of cellular rings, then

Rϕ(vf ) = R(v)f , f ∈ Iso(W, W ′, ϕ),

for every point v of W . It follows that if v is a fixed regular point of this ring, then any
such isomorphism f is uniquely determined (and can be constructed efficiently) by vf . In
particular, | Iso(W, W ′, ϕ)| ≤ n, and the elements of this set can be listed in time nO(1).

Suppose W ≤ MatV is a cellular ring and v ∈ V . We set Wv = [W, Iv], where
Iv = A({(v, v)}) (see Subsection 8.1). If ϕ : W → W ′ is a weak isomorphism and
v′ ∈ V ′, where V ′ is the point set of W ′, then, obviously, there exists at most one weak
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820 S. A. EVDOKIMOV AND I. N. PONOMARENKO

isomorphism ϕv,v′ : Wv → W ′
v′ that coincides with ϕ on W and takes Iv to Iv′ . Moreover,

it is easy to show that

Iso(W, W ′, ϕ) =
⋃

v′∈S′

Iso(Wv, W ′
v′ , ϕv,v′),

where S′ is the set of all v′ ∈ V ′ such that the isomorphism ϕv,v′ does exist. Now,
if W, W ′ ∈ Wnorm, then from [11, Theorem 6.1] it follows that the cellular rings Wv

and W ′
v′ are 1-regular for all v ∈ V and v′ ∈ V ′. So, by the previous paragraph and

Theorem 8.3, Problem (2) can be solved in time nO(1). Since Aut(W ) = Iso(W, W, idW ),
the same argument shows that the elements of this group can be listed efficiently whenever
the ring Wv is 1-regular for all v ∈ V . Since the latter condition is satisfied for any
W ∈ Wnorm, we see that Problem (1) is nO(1)-reducible to the recognition problem for
1-regular rings. �

3.2. Let W ≤ MatV be a homogeneous cellular ring. Set

F(W ) = {F = (E0, E1) : E0, E1 ∈ E(W ), E0 ⊂ E1}.
Any element F of the set F(W ) is called a flag of W and will be denoted by E1/E0.
From Lemma 8.1 it follows that the cellular rings WX/E0 , X ∈ V/E1, are pairwise weakly
isomorphic. Therefore, the numbers |X/E0| and rk(WX/E0 ) do not depend on the choice
of X ∈ V/E1; we denote them by |F | and rk(WF ), respectively. Moreover, all the rings
WX/E0 are primitive or not simultaneously. In the former case we say that the flag F is
primitive. The flag F is said to be normal if WX/E0 is a normal ring for all X ∈ V/E1.
We say that F is a subflag of a flag F ′ = E′

1/E′
0 if E1 ⊂ E′

1, E0 ⊃ E′
0. In this case,

obviously,

(7) Aut(W )X/E0 ≤ Aut(WX′/E′
0
)X/E0

for X ∈ V/E1 and X ′ ∈ V/E′
1 with X ⊂ X ′ (we identify X/E0 with (X/E′

0)/(E0)X/E′
0
).

Now suppose that the ring W is commutative. Let F = E1/E0 and F ′ = E3/E2 be
flags of W . We say that F ′ is a multiple of F if E0 = E1 ∩ E2 and E3 = 〈E1 ∪ E2〉.
In this case, if G ≤ Aut(W ) is a regular cyclic group and X ∈ V/E3, then, obviously,
GX/E0 is a regular cyclic subgroup of Aut(WX/E0). Applying Corollary 2.3 to the ring
WX/E0 and the equivalences (E1)X/E0 and (E2)X/E0 , we see that

(8) (GX1/E0)
tX1/E0 = GX/E2 , X1 ∈ X/E1,

where tX1/E0 is the bijection (6). Denote by ∼ the equivalence closure of the relation “to
be a multiple” on the set F(W ). It can be checked that the set E(W ) forms a modular
lattice with respect to the operations of intersection and the equivalence closure of a
union. Thus, the ∼-equivalence corresponds to the projectivity in a modular lattice [2].

Definition 3.2. A flag of a commutative cellular ring W is said to be subnormal if it is
a subflag of a normal flag of W ; a flag is quasinormal if it is ∼-equivalent to a subnormal
one. We say that the ring W is quasinormal if every primitive flag of it is quasinormal.

Obviously, each normal cellular ring is quasinormal. The converse is not true. Indeed,
let W be the centralizer ring of the wreath product of two groups of prime order p.
Obviously, the ring W is not normal for p ≥ 3. On the other hand, W is quasinormal,
because any primitive subfactor of it is strongly isomorphic to the centralizer ring of a
regular group of order p, and, consequently, is normal. It can be proved that there exists
a quasinormal ring such that not every primitive flag of it is subnormal.

Before stating the main result of the subsection, we need the following technical notion.
Let W ≤ MatV be a homogeneous cellular ring. By a majorant of a group G ≤ Aut(W )
with respect to a flag E1/E0 ∈ F(W ) we mean a permutation group G′ on a set V ′
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together with a family of bijections fX : X/E0 → V ′ (X ∈ V/E1) such that (GX/E0)
fX ≤

G′. If E0 = ∆(V ) and E1 = V 2, then we call G′ simply a majorant of G.

Theorem 3.3. If W is a quasinormal cellular ring, then there exists a solvable majorant
of the group AutCyc(W ) generated by all cycle automorphisms of W . In particular, the
group AutCyc(W ) is solvable.

Proof. We deduce the theorem from the following two lemmas. Below for permutation
groups G1, . . . , Gs, s ≥ 0, we define a permutation group wr(G1, . . . , Gs) as follows: this
group is {1} if s = 0; it coincides with G1 if s = 1; with the wreath product of G1 and
G2 (in imprimitive action) if s = 2; and with wr(wr(G1, . . . , Gs−1), Gs) if s ≥ 3.

Lemma 3.4. Suppose W ≤ MatV is a homogeneous cellular ring and G ≤ Sym(V ). Let
E0, . . . , Es ∈ E(W ) be equivalences satisfying the following conditions:

1) ∆(V ) = E0 ⊂ E1 ⊂ · · · ⊂ Es = V 2;
2) for each i ∈ [s] we are given a majorant (Gi, Vi, {fX}X∈V/Ei

) of the group G with
respect to the flag Ei/Ei−1.

Then the mapping

(9) f : V →
s∏

i=1

Vi, v 	→ (. . . , fXi(Xi−1), . . .),

is a bijection, where Xi is the class of Ei containing v, and Gf ≤ wr(G1, . . . , Gs).

Proof. It is easily seen that f is a surjection. Thus, statement 1) follows from the relation
|V | = |Es/E0| =

∏s
i=1 |Ei/Ei−1|. To prove the second statement, we assume (without

loss of generality) that s > 0. Let X ∈ V/Es−1. Then for every i ∈ [s − 1] the triple
(Gi, Vi, {fY }Y ∈V/Ei,X

) with Ei,X = Ei ∩X2 is a majorant of the group GX ≤ Aut(WX)
with respect to the flag Ei,X/Ei−1,X ∈ F(WX). By induction, for the bijection fX :
X →

∏s−1
i=1 Vi we have

(10) (GX)fX ≤ wr(G1, . . . , Gs−1).

On the other hand,

(11) (GV/Es−1)
fV ≤ Gs

(we have used the fact that V/Es = {V }). Moreover, it is easy to check that (Gf)XfX =
(GX)fX for all X ∈ V/Es−1, and (Gf)V f/(Es−1)f = (GV/Es−1)

fV (we identify V f/(Es−1)f

with Vs). Thus, from (10) and (11) we deduce that Gf ≤ wr(wr(G1, . . . , Gs−1), Gs) =
wr(G1, . . . , Gs). �

Lemma 3.5. If W is a quasinormal ring, then the group AutCyc(W ) admits a solvable
majorant with respect to any given primitive flag of W .

Proof. Let F be a primitive flag of W . Then the quasinormality of W implies that there
exist flags Fi = Ei,1/Ei,0, i ∈ [0, s], such that F0 = F , the flag Fs is subnormal, and
for every i ∈ [s] one of the flags Fi−1, Fi is a multiple of the other. From (8) it follows
that if (G′, V ′, {fX}X∈V/Ei,1) is a majorant of the group AutCyc(W ) with respect to Fi,
then (G′, V ′, {t̃X ◦ fX}X∈V/Ei−1,1) is a majorant of the same group with respect to Fi−1,
where t̃X = tX/Ei,0 if Fi−1 is a multiple of Fi and t̃X = t−1

X/Ei,0
otherwise. Thus, there

is no loss of generality in assuming that the flag F = E1/E0 is subnormal, i.e., it is a
subflag of a normal flag F ′ = E′

1/E′
0 of W . For X, Y ∈ V/E1, we denote by X ′, Y ′ the

classes of the equivalence E′
1 containing X and Y (respectively) and put X

′
= X ′/E′

0,
Y

′
= Y ′/E′

0. Since WX
′ , WY

′ ∈ Wnorm, there exists f ∈ Iso(WX
′ , WY

′ , ϕX
′
,Y

′) that takes
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X/E′
0 to Y/E′

0 (see Subsection 3.1), where ϕX
′
,Y

′ is the weak isomorphism described in
Lemma 8.1. Consequently,

(Aut(WX
′)X)fX = Aut(WY

′)Y ,

where X = X/E0, Y = Y/E0, and fX : X → Y is the bijection induced by f . Then, by
(7), for a fixed Y the triple (G, Y , {fX}X∈V/E1) is a majorant of Aut(W ) (and, hence,
of AutCyc(W )) with respect to F , where G = Aut(WY

′)Y . Since the group G is solvable
(see Subsection 3.1), we are done. �

Returning to the proof of the theorem, we choose equivalences E0, . . . , Es of W such
that condition (1) of Lemma 3.4 is satisfied and the flag Fi = Ei/Ei−1 is primitive for
all i ∈ [s]. By Lemma 3.5, for all i there exists a solvable majorant (Gi, Vi, {fX}X∈V/Ei

)
of the group AutCyc(W ) with respect to the flag Fi. Set G′ = wr(G1, . . . , Gs), V ′ =∏s

i=1 Vi. Then Lemma 3.4 shows that the triple (G′, V ′, {f}), where f is the bijection (9),
is a majorant of the group AutCyc(W ). Since the wreath product of solvable groups is
solvable, we are done. �

3.3. In this subsection we describe an algorithm for recognizing quasinormal cellular
rings. Before doing this, we make some remarks concerning computations with flags.

Let W be a commutative cellular ring on n points. We denote by Γ the graph con-
structed on the set of all primitive flags of W and such that two vertices of Γ are adjacent
if and only if one of the corresponding flags is a multiple of the other. Since the intersec-
tion of equivalences and the equivalence closure of their union can be found efficiently, it
is not hard to test in time nO(1) whether or not two given vertices of Γ are adjacent. Since
the set E(W ) can be found in time (mn)O(1), where m = |E(W )| (see Subsection 2.1),
the graph Γ can be constructed within the same time. Moreover, two primitive flags are
∼-equivalent if and only if the corresponding vertices of Γ are joined by a path. It is well
known that the connected components of a graph and a path joining any two vertices of
a connected graph can be found efficiently. Thus, given two primitive flags of W , we can
test whether or not they are ∼-equivalent and (if they are) find an appropriate sequence
of flags in time (mn)O(1). Next, from statement 1) of Theorem 3.1 it follows that the
normality of any flag of W can be tested in time nO(1). Therefore, given a primitive flag
of W , we can test in time m2nO(1) whether it is subnormal by the exhaustive search over
the set of all normal flags of W . This enables us to efficiently recognize the primitive
quasinormal flags. Finally, from the proof of Lemma 3.5 and Theorem 3.1 it follows
that a solvable majorant of the group AutCyc(W ) with respect to any given primitive
quasinormal flag of W can be found in time (mn)O(1).

Algorithm A1.
Input: a cellular ring W ≤ MatV .
Output: a solvable group G such that AutCyc(W ) ≤ G ≤ Aut(W ) if W is a quasinormal
ring, or G = ∅ otherwise.

Step 1. If W is not commutative, then the output G is empty. Otherwise
construct the graph Γ on the set of all primitive flags of W (see above) and the
set F of all subnormal flags of W .
Step 2. If none of the vertices of some connected component of Γ belongs to F ,
then the output G is empty. Otherwise choose a maximal path ∆(V ) = E0 ⊂
E1 ⊂ · · · ⊂ Es = V 2 of equivalences of W .
Step 3. Find a solvable majorant (Gi, Vi, {fX}X∈V/Ei

) of the group Autcyc(W )
relative to the flag Ei/Ei−1, i ∈ [s] (see above), the group G′ = wr(G1, . . . , Gs),
and the bijection f defined by (9).
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Step 4. The output group G = Aut(W ) ∩ (G′)f
−1

is found by the Babai–Luks
algorithm (see Theorem 8.4).

Theorem 3.6. Algorithm A1 tests the quasinormality of the ring W in time (mn)O(1),
where m = |E(W )| and n = |V |. Moreover, if W is quasinormal, then it finds a solvable
group G such that Autcyc(W ) ≤ G ≤ Aut(W ) within the same time.

Proof. From the definitions of a quasinormal ring and the graph Γ it follows that W is not
a quasinormal ring if and only if the algorithm terminates before Step 3. This implies that
the flags Ei/Ei−1 (i ∈ [s]) (which, obviously, are primitive) are quasinormal. Moreover,
the group G′ defined at Step 3 is solvable because it is a wreath product of solvable
groups. Thus, the consistency of the algorithm follows from Lemma 3.4 (which implies
that AutCyc(W )f ≤ G′), and from the consistency of the Babai–Luks algorithm. The
required time bound follows from Theorem 8.4 and the remarks before the algorithm. �

§4. Singular rings

4.1. As will be shown below (see Theorem 5.1), every cellular ring admitting a cycle
automorphism is quasinormal or has a singularity in the following sense.

Let W ≤ MatV be a commutative cellular ring, and let F = E1/E0 and F ′ = E3/E2

be flags of W . Suppose that F ′ is a multiple of F and the following conditions are
satisfied (see Subsection 2.3):

(S1) W satisfies both the E2/E0-condition and the E3/E1-condition;
(S2) WX/E0 = WX/E1 ⊗ WX/E2 for all X ∈ V/E3.

(The set X/E0 is identified with X/E1 × X/E2 with the help of the bijection (5) in
Lemma 2.1 applied to V = X/E0.) We observe that rk(WF ) = rk(WF ′) by statement 2)
of Theorem 2.2.

Definition 4.1. We say that the ring W has singularity in the pair (F, F ′) if rk(WF ) = 2.
In this case the number d = |F | = |F ′| is called the singularity degree. The ring W is
said to be singular if it has singularity of degree d ≥ 3 in some pair (F, F ′).

We shall resolve the singularity by replacing W with the smallest cellular ring W ′ =
[W, A] that contains W , A being the adjacency matrix of a relation of the form

(12) R(F) =
⋃

X∈V/E3

⋃
Y ∈X/E2

Y × Y fX ,

where F = {fX}X∈V/E3 with fX ∈ Cyc(X/E2). The next theorem shows that in this
case we can control the cycle bases of the rings W and W ′. As in [19], we say that a
subgroup G′ of a permutation group G is well embedded if every cycle base of G′ contains
a cycle base of G, or, equivalently, if every full cycle of G is conjugate in G to some full
cycle of G′.

Theorem 4.2. In the above notation, for any family F the group Aut(W ′) is a well-
embedded subgroup of Aut(W ).

Proof. Let F = {fX}X∈V/E3 , where fX ∈ Cyc(X/E2). Since W ′ ≥ W , without loss of
generality we may assume that Cyc(Aut(W )) �= ∅. Let g be a cycle automorphism of
W . Then (E3)g = E3, so that Xgk

= X for all X ∈ V/E3, where k = |V/E3|. It is easily
seen that g̃X = (gk)X/E2 is a full cycle on X/E2. Therefore, we can find a permutation
hX ∈ Sym(X/E2) such that fX = h−1

X g̃XhX . Suppose for a while that there exists
h∗ ∈ Aut(W ) such that

(13) (h∗)X/E2 = hX , X ∈ V/E3.
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Then, obviously, the permutation g′ = (h∗)−1gh∗ belongs to Cyc(Aut(W )). Conse-
quently, for X ∈ V/E3 and Y ∈ X/E2, we have

(Y fX )g′
= (Y fX )(h

∗)−1gh∗
= (Y fXh−1

X )gh∗
= (Y h−1

X g̃X )gh∗

= ((Y h−1
X )g)g̃Xg hXg = ((Y h−1

X )g)hXg fXg = (Y (h∗)−1gh∗
)fXg

= (Y g′
)fXg ,

whence

Rg′
=

⋃
X∈V/E3

⋃
Y ∈X/E2

Y g′ × (Y fX )g′
=

⋃
X∈V/E3

⋃
Y ∈X/E2

Y g′ × (Y g′
)fXg = R,

where R = R(F). Thus, g′ ∈ Cyc(Aut(W ′)). Since g is conjugate in Aut(W ) to g′, we
are done.

Now we prove the existence of h∗ ∈ Aut(W ) satisfying (13). For this, we observe that
the permutation gl with l = |V/E1| induces the identical permutation of X/E1 and a
full cycle of X/E2. This implies that for each Y ∈ X/E2 there exists a power of this
permutation that takes Y to Y ′ = Y hX . Obviously, the induced bijection hY : Y → Y ′

satisfies the following conditions:

(14) hY ∈ Iso(WY , WY ′ , ϕY,Y ′), (hY )Y/E0 = tY/E0,Y ′/E0 ,

where ϕY,Y ′ is the weak isomorphism described in Lemma 8.1, and tY/E0,Y ′/E0 is the
bijection defined in statement 3) of Theorem 2.2. Thus, the required statement follows
from the next lemma.

Lemma 4.3. In the notation of the theorem, suppose that for every X ∈ V/E3 we are
given a permutation hX ∈ Sym(X/E2) and for every Y ∈ X/E2, a bijection hY : Y → Y ′

satisfying (14), where Y ′ = Y hX . Then there exists a unique h∗ ∈ Aut(W ) such that
(h∗)X/E2 = hX , (h∗)X/E1 = idX/E1 , and (h∗)Y = hY for all X and Y .

Proof. The uniqueness of h∗ follows from the third condition imposed on it. To prove
the existence, we take X ∈ V/E3 and denote by h̃X the permutation of the set X/E0 =
X/E1 × X/E2 taking (X1, X2) to (X1, X

hX
2 ). Then the pair ({hY }, h̃X) is (E2/E0)X -

admissible, where (E2/E0)X = (E2)X/(E0)X (see Subsection 2.3), because (hY )Y/E0 =
tY/E0,Y ′/E0 = (h̃X)Y/E0 for all Y ∈ X/E2. Moreover, it is compatible with the ring
WX . Indeed, condition (P1) is satisfied by assumption. Next, since rk(WX/E2 ) = 2,
condition (S2) implies that h̃X ∈ Aut(WX/E0 ). Thus, condition (P2) is also satisfied.
Now, we set h′

X to be the permutation of X induced by the pair ({hY }, h̃X). Then
h′

X ∈ P(WX , (E2/E0)X). On the other hand, condition (S1) implies that the ring WX

satisfies the (E2/E0)X -condition. Then h′
X ∈ Aut(WX) by Theorem 2.5. Moreover,

since (h′
X)X/E1 = h̃X , we have (h′

X)X/E1 = idX/E1 . Thus, the pair ({h′
X}, idV/E1) is

E3/E1-admissible and, therefore, compatible with W . Moreover, the ring W satisfies the
E3/E1-condition (see (S1)). By Theorem 2.5, the permutation h∗ of V induced by this
pair belongs to Aut(W ). Since (h∗)X = h′

X for all X ∈ V/E3, we are done. �
4.2. Below we present an efficient algorithm for recognizing singular rings and for re-
solving their singularities. We start with some preliminary remarks. Let F = E1/E0

and F ′ = E3/E2 be flags of a commutative cellular ring W ≤ MatV . First, since the
equivalences E1 ∩ E2 and 〈E1 ∪ E2〉 can easily be constructed (see Subsection 2.1), we
can test efficiently whether or not F ′ is a multiple of F . Next, since the radical of any
relation can easily be found, the E2/E0-condition and the E3/E1-condition for W can be
tested efficiently. Finally, for a given X ∈ V/E3, the identity in (S2) can also be tested
efficiently (e.g., by comparing the basis relations). Thus, the presence of singularity for
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W in the pair (F, F ′) can be tested in time nO(1), where n = |V |. We say that an ex-
tension W ′ of W is admissible if Aut(W ′) is a well-embedded subgroup of Aut(W ) and
W ′ �= W .

Algorithm A2.
Input: a cellular ring W ≤ MatV .
Output: an admissible extension W ′ of W if W is singular or W ′ = ∅ otherwise.

Step 1. If W is not commutative, then the output W ′ is empty. Otherwise
construct the set E(W ) (see Subsection 2.1) and then the set F(W ).
Step 2. Find the set P of all pairs (F, F ′) ∈ F(W )2 such that W has singularity
of degree at least 3 in (F, F ′) (see above).
Step 3. If P = ∅, then the output W ′ is empty. Otherwise choose (F, F ′) ∈ P .
Step 4. Take W ′ = [W, A] as the output, where A is the adjacency matrix of
relation (12) with a family F chosen arbitrarily. �

Theorem 4.4. Algorithm A2 tests the singularity of the ring W in time (mn)O(1),
where m = |E(W )| and n = |V |. Moreover, if W is singular, then it finds an admissible
extension W ′ of W within the same time.

Proof. The consistency of the algorithm is a consequence of Theorem 4.2, the definition
of a singular ring, and the fact that at Step 4 we have W ′ �= W because W has singularity
of degree at least 3 in (F, F ′). Since the set E(W ) can be constructed in time (mn)O(1)

(see Subsection 2.1), the required time bound follows from Theorem 8.3 and the remarks
before the algorithm. �

In this paper, Algorithm A2 will be applied only in the case where m ≤ n, so that in
this case its complexity is bounded by nO(1). In the general case, this algorithm can be
modified so as to achieve the same time upper bound. Indeed, it can be proved that if W
has singularity in (F, F ′), then E1 \ E0 ∈ R(W ) and E2 coincides with the equivalence
closure of the union of all R ∈ R(W ) such that 〈R〉 ∩ E1 ⊂ E0.

§5. Quasinormal and singular Cayley rings over a cyclic group

In this section we deal with quasinormal and singular rings (see §§3 and 4) that are
Cayley rings over a cyclic group. The main result can be formulated as follows.

Theorem 5.1. Every cellular ring admitting a full cycle automorphism is either quasi-
normal or singular.

Proof. Let W be a cellular ring such that Cyc(Aut(W )) �= ∅. Without loss of generality
we may assume that W is a Cayley ring over a cyclic group G (see Subsection 8.2). We
observe that, by Theorem 8.2, the lattice E = E(W ) of equivalences of W is isomorphic
to a sublattice of the lattice of subgroups of the group G, which, by the cyclicity of G,
is isomorphic to the lattice of divisors of the integer n = |G|.5 In accordance with [2],
the latter lattice is distributive; consequently, so is the lattice E . Let C be a class of
∼-equivalence on the set of all flags of the ring W . We say that an element of C is a
smallest (respectively, a greatest) one if every element of this class is a multiple of it
(respectively, it is a multiple of every element of this class).

Lemma 5.2. Each class of the ∼-equivalence on the set F(W ) of all flags of W contains
a smallest element and a greatest element.

5In what follows, for E1, E2 ∈ E we write E1E2 instead of 〈E1 ∪ E2〉.
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Proof. Since the notion of ∼-equivalence is self-dual, we only verify the existence of a
smallest element. The transitivity of the relation “to be a multiple” and the definition
of the ∼-equivalence show that it suffices to prove that if F3 is a multiple of both F1 and
F2, then there exists F0 such that both F1 and F2 are multiples of F0 (here Fi ∈ F(W )
for all i). Let Fi = Ei1/Ei0 (i = 1, 2, 3). We set F0 = E01/E00, where E0j = E1j ∩ E2j

(j = 1, 2). Then

E00 = E01 ∩ E00 = E01 ∩ Ei0 ∩ E0i′ = (E01 ∩ Ei0) ∩ (Ei′1 ∩ E30) = E01 ∩ Ei0

and, by the distributivity of the lattice E ,

Ei1 = E31 ∩ Ei1 = (Ei′1E30) ∩ Ei1 = (Ei′1 ∩ Ei1)(E30 ∩ Ei1) = E01Ei0,

where i′ = 3 − i (i = 1, 2). Thus, both F1 and F2 are multiples of F0. �

Suppose that the ring W is not quasinormal. There exists a class C of the ∼-equivalence
on the set of all primitive flags of W such that C contains no subnormal flags. Let
F = E1/E0 and F ′ = E3/E2 be a smallest and a greatest elements of C. Theorem 5.1 is
a consequence of the proposition below.

Proposition 5.3. The ring W has singularity of degree d ≥ 4 in the pair (F, F ′).

Proof. First, we observe that d = |F | = |F ′| ≥ 4, because otherwise the flags F and
F ′ must be normal. Next, it is easily seen that for all X ∈ G/E1 the ring WX/E0 is
strongly isomorphic to a Cayley ring over a cyclic group. Since this ring is primitive,
Theorem 2.10.5 in [3] implies that either its rank equals 2, or its degree is a prime. In
the latter case the rank also equals 2, because otherwise the ring WX/E0 is normal by [3,
Theorem 12.7.5]. Thus, it suffices to verify conditions (S1) and (S2).

We set A = W ρ−1
and Hi = Eρ−1

i , i = 0, 1, 2, 3, where ρ = ρG is the monomor-
phism (24). Then A is an S-ring over the group G, Hi ∈ H(A) for all i, and H0 = H1∩H2,
H3 = H1H2 (here and below we freely use the notation and the facts of Subsection 8.2).
Since, obviously, rad(R) = rad(X)ρ for all R ∈ R∗(W ), where X = Rρ−1

, the cellular
ring W satisfies the Ei+2/Ei-condition if and only if the S-ring A satisfies the Hi+2/Hi-
condition (i = 0, 1). Furthermore, the correspondence between the Cayley rings and the
S-rings respects the tensor product. Thus it suffices to check the following:

(S1′) A satisfies both the H2/H0-condition and the H3/H1-condition;
(S2′) AH3/H0 = AH1/H0 ⊗AH2/H0 .

For this, let X ∈ S(A). Then it suffices to verify that rad(X) ≥ Hi whenever X ⊂
G \ Hi+2, i = 0, 1 (condition (S1′)), and that XH0 = X1H0 · X2H0 for some Xi ∈
S(AHi ), i = 1, 2, whenever X ⊂ H3 (condition (S2′)). We shall check both conditions
simultaneously. First, suppose that X ⊂ H2 or rad(X) ≥ H1. Then in condition (S1′)
there is nothing to check. Next, condition (S2′) is satisfied trivially for X ⊂ H2. If
rad(X) ≥ H1, then X �⊂ H3, for otherwise the image of the basic set X under the
natural epimorphism H3 → H1/H0 would be equal to H1/H0, which is not a basic set of
the ring AH1/H0 . So, in this case condition (S2′) is also satisfied. Thus, without loss of
generality we may assume that

(15) X �⊂ H2, rad(X) �≥ H1.

Then the required conditions are satisfied by the following lemma.

Lemma 5.4. In the above notation and under the above assumptions, we have H0 ≤
rad(X) and 〈X〉 ⊂ H3. Moreover, X = X1X2, where X1 = H1 \ H0 and X2 ∈ S∗(AH2 )
with X2H0 = X2.
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Proof. Using the results of Subsection 8.2, we transfer the notions of a flag, subflag,
multiple, and ∼-equivalence, and also of normality, subnormality, and quasinormality
of a flag, from the Cayley rings to the S-rings. We observe that a flag U/L of the S-
ring A is normal if and only if the S-ring AU/L is normal in the sense of [11] (i.e., the
cellular ring (AU/L)ρU/L is normal). Moreover, from the definition of Hi (i = 0, 1, 2, 3)
it follows that the flag H3/H2 is a multiple of H1/H0, and that no flag in the class of
the ∼-equivalence containing both of them is subnormal. Moreover, the flags H1/H0

and H3/H2 are the smallest and the greatest element of this class, respectively. Putting
U = 〈X〉 and L = rad(X), we show that

(16) H1/H0 ∼ H1L/H0L, H3/H2 ∼ (H3 ∩ U)/(H2 ∩ U).

Since the proofs of both equivalences are similar, we prove the second for instance.
We start with the observation that the flag H3U/H2U is not a multiple of H3/H2.
(Otherwise, U ≤ H3 because the latter flag is maximal. Since also H3 ∩ H2U = H2,
we have H2U = H2, which contradicts the first relation in (15).) Therefore, H2 <
H3 ∩ (H2U), whence H3 ∩ (H2U) = H3 because rk(AH3/H2) = 2. Thus, H3 ≤ H2U , and
we obtain

H0(H1 ∩ U) = (H1 ∩ H2)(H1 ∩ U) = H1 ∩ (H2U) = H1

by the distributivity of the lattice H(A). This implies that H1/H0 is a multiple of
(H1 ∩U)/(H0 ∩U), so that H1 ≤ U by the minimality of the flag H1/H0. It follows that
H3 ≥ (H3∩U)H2 ≥ H1H2 = H3, and, consequently, (H3∩U)H2 = H3. Obviously, since
(H3 ∩ U) ∩ H2 = H2 ∩ U , this implies that H3/H2 is a multiple of (H3 ∩ U)/(H2 ∩ U).

From (16) and the fact that H1/H0 and H3/H2 are the smallest and the greatest
element, respectively, it follows that the flags H1L/H0L and (H3 ∩ U)/(H2 ∩ U) are
subflags of U/L. We prove that there exist groups H, H ′ ∈ H(A) such that L ≤ H, H ′ ≤
U and

(17) H1L/H0L ∼ H/L, (H3 ∩ U)/(H2 ∩ U) ∼ U/H ′, AU/L = AH/L ⊗AH′/L.

For this, we observe that the radical of the image of X in U/L is trivial. Then from [17,
Theorem 3.1] and the definition of U it follows that this image contains a generator of
the group U/L. So, the S-ring AU/L has a trivial radical in the sense of [11]. By [11,
Corollary 6.4], this implies the existence of groups Ui ∈ H(A), L ≤ Ui ≤ U (i = 0, . . . , s),
such that

(18) AU/L =
s⊗

i=0

AUi/L,

where AU0/L is a normal S-ring and rk(AUi/L) = 2 for all i > 0. It is easily seen
that every group belonging to H(AU/L) is of the form

∏s
i=0 U ′

i/L, where U ′
0 ∈ H(A),

L ≤ U ′
0 ≤ U0, and U ′

i ∈ {Ui, L} for i > 0. Therefore, every subflag F of U/L with
rk(AF ) = 2 is ∼-equivalent either to a subflag of U0/L or to both flags Ui/L and U/U ′

i

for some i > 0, where U ′
i is the product of the Uj with j �= i. On the other hand, the

flags H1L/H0L and (H3 ∩ U)/(H2 ∩ U) are not quasinormal because the flags H1/H0

and H3/H2 are not quasinormal (see (16)). Thus, by the normality of the ring AU0/L,
the first case is impossible for the former two flags. We conclude that there exists i > 0
such that H1L/H0L ∼ Ui/L and (H3 ∩U)/(H2 ∩U) ∼ U/U ′

i . Therefore, (17) is true for
H = Ui and H ′ = U ′

i (see (18)).
To complete the proof of the lemma, we observe that the first part of it follows from

the equivalences (16) and (17), because the flags H1/H0 and H3/H2 are (respectively)
the smallest and the greatest element of the ∼-equivalence class containing both of them.
Next, (17) implies that X = X1X2 for some X1 ∈ S∗(AH) and X2 ∈ S∗(AH′ ) such that
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Xi = XiL (i = 1, 2). Thus, the second part of the lemma is a consequence of the first
part and the relation X1 = (H1 \ H0)L. �

§6. Cycle base of a solvable group

6.1. In this section we construct a polynomial-time algorithm for finding a cycle base of
an arbitrary solvable permutation group. First, we treat a slightly different problem.

Let G ≤ Sym(V ) be a permutation group, and let c ∈ Sym(V ) normalize G. Suppose
that V0, . . . , Vm−1 are pairwise disjoint subsets of V such that

(19) V =
m−1⋃
i=0

Vi, where (Vi)G = Vi, (Vi)c = Vi+1 for all i

(here and below, addition of indices is meant modulo m). We denote by Gi the permuta-
tion group induced by the action of G on Vi. Then, since Gc = c−1Gc = G, from (19) it
follows that (Gi)c = Gi+1 for all i (for brevity, we write c instead of cVi). Given X ⊂ G
and S ⊂ [0, m − 1], we set XS = ϕS(X), where

ϕS : G →
∏
i∈S

Gi, g 	→ (. . . , gi, . . .),

is the homomorphism induced by the natural epimorphisms G → Gi (i ∈ S). If S = {i},
we write Xi and ϕi instead of XS and ϕS , respectively. Obviously, ϕS is a monomorphism
for S = [0, m − 1]. Concerning computation with permutation groups in the algorithm
below, see Subsection 8.3.

Algorithm A3′.
Input: a group G ≤ Sym(V ) and a permutation c ∈ Sym(V ) as above.
Output: a set X ⊂ Gc (given as a list of elements) such that Gc =

⋃
g∈G Xg.

Step 1. If G = {1}, then the output X is equal to {c}. Otherwise, use the
normal closure algorithm to find a maximal cm-invariant normal subgroup K0

of G0.
Step 2. Set G(0) = G. For i = 0, . . . , m − 1 successively, use the sift procedure
to find the group G(i+1) = G(i) ∩ ϕ−1

i (Ki), where Ki = (K0)ci

.
Step 3. By the sift procedure, find the maximum number l ∈ [0, m−1] for which
[G : G(i+1)] =

∏i
j=0[Gj : Kj], and then a transversal T of the group G(m) in the

group G(l).
Step 4. For each t ∈ T , recursively find the set Xt =A3′(H, tc), where H = G(m).
The output X equals

⋃
t∈T Xt.

Theorem 6.1. Algorithm A3′ finds a set X ⊂ Gc such that Gc =
⋃

g∈G Xg in time
(nr)O(1), where n = |V | and r = |G0|. Moreover, |X | ≤ |G0|.

Proof. We prove this theorem by induction on r. If r = 1, then G = {1}, and we are
done (see Step 1). Suppose that r > 1.

In order to prove the consistency of the algorithm, we first verify that if H and T
are found at Steps 2 and 3, then each pair (H, tc) with t ∈ T is an admissible input
of the algorithm. Indeed, since H ≤ G, relations (19) imply that (Vi)H = Vi and
(Vi)tc = Vi+1 for all i. Furthermore, Ki is a normal subgroup of Gi, and (Ki)c = Ki+1

(see Steps 1 and 2), whence Htc = H . Next, in accordance with Steps 1 and 3, we have
H0 ≤ K0 < G0, where H0 = ϕ0(H). Therefore, by the induction hypothesis,

(20) Htc =
⋃

h∈H

(Xt)h, t ∈ T,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CIRCULANT GRAPHS 829

where Xt is the set found at Step 4. To complete the proof of consistency we let fc ∈ Gc.
Then for every g ∈ G we have

(g−1fgc−1
)i = g−1

i fi(gi+1)c−1
, 0 ≤ i ≤ m − 2.

On the other hand, from the definition of l at Step 3 it follows that the natural ho-
momorphism G →

∏l
j=0(Gj/Kj) is in fact an epimorphism. This allows us to choose

g in such a way that the right-hand side of the above identity belongs to Ki for all
i ∈ [0, l − 1]. Then g−1fgc−1 ∈ G(l) (see Step 2), which shows that the element (fc)g

(equal to g−1fcg = (g−1fgc−1
)c) belongs to G(l)c. Thus, we have

Gc =
⋃
g∈G

(G(l)c)g =
⋃

g∈G

(HTc)g.

By (20), this implies that

Gc =
⋃
g∈G

⋃
t∈T

(Htc)g =
⋃

g∈G

⋃
t∈T

⋃
h∈H

(Xt)hg =
⋃
g∈G

(⋃
t∈T

Xt

)g
=

⋃
g∈G

Xg,

completing the consistency proof.
For the rest of the proof we need the following lemma.

Lemma 6.2. In the notation of the algorithm, we have [G(l) : H ] ≤ [G0 : H0], where
H0 = ϕ0(H).

Proof. Since
[G(l) : G(l+1)] = [Gl : Kl] = [G0 : K0] ≤ [G0 : H0],

it suffices to check that H = G(l+1). For this, we observe that the kernel of the natural
epimorphism G →

∏l
j=0(Gj/Kj) equals G(l+1) and contains H . Thus, we only need to

show that the induced epimorphism

(21) G/H →
l∏

j=0

(Gj/Kj)

is in fact an isomorphism. By the definition of H , it suffices to verify that (G(i))i ≤ Ki

for all i ∈ [l+1, m−1]. Without loss of generality, we may assume that l < m−1. Since,
obviously, (G(i))i is a normal cm-invariant subgroup of Gi and Ki = (K0)ci

for all i, the
claim for i = l + 1 follows from the choice of K0 at Step 1 and l at Step 3. Suppose that
the claim is true for some i ∈ [l + 1, m − 2]. Then

(G(i+1))i+1 = (ϕ−1
[0,i](

i∏
j=0

Kj))i+1 ≤ (ϕ−1
[1,i](

i∏
j=1

Kj))i+1

= ((ϕ−1
[0,i−1](

i−1∏
j=0

Kj))i)c = ((G(i))i)c ≤ (Ki)c = Ki+1,

and we are done. �

To estimate |X |, observe that |Xt| ≤ |H0| for all t ∈ T by the induction hypothesis.
On the other hand, from Lemma 6.2 it follows that |T | = [G(l) : H ] ≤ [G0 : H0]. Thus,

|X | =
∑
t∈T

|Xt| ≤ |T ||H0| ≤ [G0 : H0]|H0| = |G0|.

To estimate complexity, we denote by t(G, c) the running time of the algorithm applied
to the pair (G, c). From the inequality [G(i−1) : G(i)] ≤ r, i ∈ [m], and Lemma 6.2 it
follows that Steps 1–3 can be done in time (nr)O(1) (see Subsection 8.3). The same lemma
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implies that the number of recursion calls at Step 4 is at most r = [G0 : K0] ≤ [G0 : H0].
So, by the induction hypothesis we have

t(G, c) ≤ (nr)O(1) + r(nr/r)O(1),

which completes the proof of the theorem. �

6.2. We describe the main algorithm of this section. Let c = (v1, . . . , vn) and c′ =
(v′1, . . . , v

′
n) be full cycles on V . It is easily seen that

(22) {g ∈ Sym(V ) : g−1cg = c′} = 〈c〉g0,

where g0 is the permutation of V taking vi to v′i for all i. Thus, if G ≤ Sym(V ) is an
nO(1)-recognizable permutation group,6 then, by checking whether or not cig0 ∈ G for
some i ∈ [n], we can test in time nO(1) whether or not c and c′ are G-conjugate. In
particular, if Y ⊂ Cyc(V ), then the family FG(Y ) of all G-conjugacy classes of Y (and
then a transversal of that family) can be found in time (n|Y |)O(1).

Algorithm A3.
Input: a permutation group G ≤ Sym(V ).
Output: a cycle base C of G.

Step 1. If G is not transitive, then C = ∅.
Step 2. If |V | = 1, then C = G. Otherwise, find a minimal element E in the
set of all G-invariant equivalences on V other than ∆(V ).
Step 3. Construct the groups GV/E and GE = {g ∈ G : gV/E = idV/E}.
Recursively find the set C =A3(GV/E).
Step 4. For each c ∈ C, find c ∈ G such that cV/E = c and then the set
Xc =A3′(GE , c) (the decomposition (19) is given by the classes of E).
Step 5. As the output C, take a transversal of the family FG(Cyc(X)), where
X =

⋃
c∈C Xc.

Theorem 6.3. Algorithm A3 finds a cycle base of the group G. If G is solvable, then
this algorithm runs in time nO(1), where n is the degree of G.

Proof. For the proof of consistency it suffices to verify that, if the group G is transitive,
then every full cycle of G is conjugate in G to some element of C. Let c′ ∈ Cyc(G).
Then c′V/E ∈ Cyc(GV/E), whence it follows by induction that c′V/E is conjugate in GV/E

to some element c ∈ C. This implies that c′ is conjugate in GE to some element of GEc
and, consequently, to some element of Xc by Theorem 6.1. Thus, c′ is conjugate in G to
some element of C by the choice of C at Step 5.

We estimate the running time t(G) of the algorithm applied to a solvable group G.
First, we observe that Steps 1 and 2 can easily be done in time nO(1). The running
time of Step 3 is t(GV/E) + nO(1). By Theorem 6.1, the running time of Step 4 is
|C|(nO(1) + (n|G0|)O(1)), where G0 = (GE)V0 and V0 is a fixed class of E. Finally,
Step 5 can be done in time (n|X |)O(1) (see the remark before the algorithm). From
the minimality of E it follows that the group GV0 is primitive. Therefore, we have
|GV0 | ≤ |V0|4, by the upper bound for the order of a primitive solvable group proved
in [23]. Next, |Xc| ≤ |G0| for each c ∈ C by Theorem 6.1. Thus, |X | ≤ |C||V0|4 ≤ n4

because G0 ≤ GV0 and |C| ≤ |V/E| (see §1). Summarizing, we obtain

t(G) ≤ nO(1) + t(GV/E),

which completes the proof. �

6Here the group G is not assumed to be given by generators.
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§7. Cycle base of a cellular ring

Let W be a homogeneous cellular ring on V . We set

E0(W ) = {〈R〉 : R ∈ R(W )}.
Then E0(W ) ⊂ E(W ) (see Subsection 2.1). If W is a Cayley ring over a cyclic group G,
then E0(W ) = E(W ). Indeed, let E ∈ E(W ). Then E = HρG for some H ∈ H(A),
where A is the S-ring over G corresponding to W (see Theorem 8.2). Therefore, E = 〈R〉
with R = XρG , where X is the basic set of A containing a generator of H . However,
E0(W ) �= E(W ) in general. But then we can find two different relations R, S ∈ R(W ) such
that the equivalence 〈R∪S〉 does not belong to E0(W ). Thus, the identity E0(W ) = E(W )
can be tested in time nO(1), where n = |V |.

Main Algorithm.
Input: a cellular ring W on V .
Output: a cycle base C of W .

Step 1. Set W0 = W and W ′ = W .
Step 2. While W ′ �= ∅, repeat the following: if W ′ is not homogeneous or
E0(W ′) �= E(W ′), then the output C is empty, else set W = W ′ and find
W ′ =A2(W ).
Step 3. Find G =A1(W ). If G = ∅, then the output C is emply.
Step 4. Find C′ =A3(G). As the output C, take a transversal of the family
FAut(W0)(C′) (see Subsection 6.2).

Theorem 7.1. Given a cellular ring W on n points, the Main Algorithm finds a cycle
base of W in time nO(1).

Proof. For the proof of consistency, first we suppose that Cyc(Aut(W )) = ∅. Then
we may assume that the algorithm terminates at Step 4. Since the cellular ring at
Step 3 contains the input ring, we have Cyc(G) = ∅, where G is the group found at
Step 3. Thus, the consistency of the Main Algorithm follows from that of Algorithm
A3 (Theorem 6.3). Now, let Cyc(Aut(W )) �= ∅. Then, at each iteration of Step 2,
Aut(W ′) is a well-embedded subgroup of Aut(W ) by Theorem 4.4; consequently, W ′ is
a homogeneous ring with E0(W ′) = E(W ′) (see the beginning of the section). Therefore,
at Step 3, Aut(W ) is a well-embedded subgroup of the automorphism group of the input
ring (which is equal to Aut(W0)). On the other hand, the ring W at the same step is not
singular. By Theorem 5.1, it follows that this ring W is quasinormal. By Theorem 3.6,
this implies that the group G found at Step 3 is a well-embedded subgroup of Aut(W )
and, hence, of Aut(W0). This means that every cycle base of G contains a cycle base
of the input ring. Therefore, again, the consistency of the algorithm in question follows
from that of Algorithm A3 (see Theorem 6.3).

We estimate the running time of the algorithm. First, we observe that the number
of iterations at Step 2 is at most n by Theorem 4.4. Therefore, this step can be done
in time nO(1) by the same theorem and the remark at the beginning of the section.
Thus, the required time bound follows from Theorems 3.6 and 6.3, the remark at the
beginning of Subsection 6.2, and the fact that, obviously, the group Aut(W0) at Step 4
is nO(1)-recognizable. �

§8. Cellular rings, Cayley rings, Schur rings, and permutation groups

In this section we cite the background on cellular rings, Schur rings, and related
algorithms. The notions of a cellular ring and a Schur ring go back to [12, 26] and [25, 28],
respectively. We follow [11].
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8.1. Cellular rings. A subring W of MatV is called a cellular ring on V if it has a
(uniquely determined) Z-base consisting of {0,1}-matrices A(R), where R runs over a
family R = R(W ) of pairwise disjoint nonempty relations on V such that

∆(V ) ∈ R∗,
⋃

R∈R
R = V 2 and R ∈ R =⇒ RT ∈ R.

Here R∗ = R∗(W ) is the set of all unions of elements of R. The elements of V and R
are called the points and the basis relations of W , respectively; the numbers deg(W ) =
|V | and rk(W ) = |R| are called the degree and the rank. The ring W is said to be
homogeneous if ∆(V ) ∈ R; in this case each basis relation can be treated as the set of
arcs of a regular digraph on V . Every commutative cellular ring is homogeneous. The
set of all equivalences on V belonging to R∗ is denoted by E = E(W ); the set of all
classes of all of them is denoted by B = B(W ). Obviously, ∆(V ) and V 2 belong to E . A
homogeneous ring W is primitive if deg(W ) > 1 and E = {∆(V ), V 2}.

We say that cellular rings W on V and W ′ on V ′ are strongly isomorphic if W f = W ′

for some bijection f : V → V ′ (called a strong isomorphism from W to W ′). If W = W ′,
then the group of all strong isomorphisms contains the normal subgroup

Aut(W ) = {f ∈ Sym(V ) : Af = A, A ∈ W},
called the automorphism group of W . The rings W and W ′ are said to be weakly isomor-
phic if there exists a Z-module isomorphism ϕ : W → W ′ preserving both the matrix
and the Hadamard (componentwise) multiplications. Any such isomorphism is called
a weak isomorphism from W to W ′. From [9, Lemma 2.2] it follows that ϕ induces a
bijection from R∗(W ) onto R∗(W ′), R 	→ Rϕ, such that ϕ(A(R)) = A(Rϕ). Moreover,
this bijection maps R(W ) onto R(W ′) and E(W ) onto E(W ′) with (Rϕ)T = (RT )ϕ and
|R| = |Rϕ| for all R ∈ R∗(W ). Each strong isomorphism from W to W ′ induces a weak
isomorphism between these rings. For a weak isomorphism ϕ : W → W ′, we set

Iso(W, W ′, ϕ) = {f ∈ Iso(W, W ′) : ϕf = ϕ},
where Iso(W, W ′) is the set of all strong isomorphisms from W to W ′ and ϕf is the weak
isomorphism induced by f . In particular, Iso(W, W ′, idW ) = Aut(W ).

Let W be a homogeneous ring on V , and let X ∈ B, E ∈ E . Then the submodule WX

of MatX spanned by the matrices A(RX), R ∈ R, is a cellular ring on X (see [11]) and
the submodule W/E of MatV/E spanned by the matrices A(RV/E), R ∈ R, is a cellular
ring on V/E (see [7, Subsection 2.2]). We observe that EX ∈ E(WX), X/E ∈ B(W/E),
and WX/EX = (W/E)X/E . The latter cellular ring on X/E is denoted by WX/E . It can
be shown that

(23) R(WX/E) = {RX/E : R ∈ R, R ∩ X2 �= ∅}.
It is easily seen that the ring WX/E is homogeneous, and it is commutative whenever so
is W . The following statement is a special case of [8, Lemma 2.6].

Lemma 8.1. Let W be a homogeneous cellular ring on V , and let E ∈ E(W ). For any
X, Y ∈ V/E there exists a unique weak isomorphism ϕX,Y : WX → WY taking A(RX)
to A(RY ) for all R ∈ R(W ). In particular, |X | = |Y |.

If W1 and W2 are cellular rings on V1 and V2, respectively, then the subring W1 ⊗W2

of the ring MatV1 ⊗MatV2 = MatV1×V2 is a cellular ring on V1 × V2, and

R(W1 ⊗ W2) = {R1 ⊗ R2 : R1 ∈ R(W1), R2 ∈ R(W2)}
where R1⊗R2 = {((u1, u2), (v1, v2)) : (u1, v1) ∈ R1, (u2, v2) ∈ R2}. The ring W1⊗W2 is
called the tensor product of W1 and W2. Obviously, Aut(W1⊗W2) = Aut(W1)×Aut(W2).
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The set of all cellular rings on V is partially ordered by inclusion and is closed under
intersection. The largest and the smallest elements of this set are, respectively, the full
matrix ring MatV and the ring with Z-base {IV , JV }. We write W ≤ W ′ and call
W ′ an extension of W if W ⊂ W ′. If M1, . . . ,Ms are subsets of MatV , then their
cellular closure, i.e., the smallest cellular ring on V containing all of them, is denoted by
[M1, . . . ,Ms]. If Mi = {Ai}, we omit the braces.

8.2. S-rings and Cayley rings. Let G be a finite group. A subring A of the group
ring Z[G] is called a Schur ring (briefly, an S-ring) over G if it has a (uniquely de-
termined) Z-base consisting of elements ξ(X) =

∑
x∈X x, where X runs over a family

S = S(A) of pairwise disjoint nonempty subsets of G such that

{1} ∈ S,
⋃

X∈S
X = G and X ∈ S =⇒ X−1 ∈ S.

We call the elements of S basic sets of A and denote by S∗(A) the set of all unions of
basic sets and by H(A) the set of all subgroups of G belonging to S∗(A). The number
rk(A) = dimZ(A) is called the rank of A.

Let H, K ∈ H(A), let K be a normal subgroup of H , and let i : H → G and
π : H → H/K be natural homomorphisms. Then the ring AH/K = π(i−1(A)) is an
S-ring over the group H/K, and

S(AH/K) = {π(X) : X ∈ S(A), X ⊂ H}

(we keep the notation i and π also for the induced homomorphisms of the corresponding
group rings).

If A1 and A2 are S-rings over groups G1 and G2, respectively, then the subring A1⊗A2

of the ring Z[G1] × Z[G2] = Z[G1 × G2] is an S-ring over the group G1 × G2, and

S(A1 ⊗A2) = {X1 × X2 : X1 ∈ S(A1), X2 ∈ S(A2)}.

The ring A1 ⊗A2 is called the tensor product of A1 and A2.
For g ∈ G, we denote by Pg the permutation matrix corresponding to the left multi-

plication by g. Then the mapping

(24) ρG : Z[G] → MatG, g 	→ Pg,

is a ring monomorphism the image of which is the enveloping ring of the group Gleft. This
monomorphism induces a bijection X 	→ XρG between the subsets of G and the Gright-
invariant relations on G, and A(XρG) = ρG(ξ(X)) for all X . If A is an S-ring over G,
then W = AρG is a cellular ring on G such that Gright ≤ Aut(W ). Any such cellular
ring is called a Cayley ring over G. It is always homogeneous, and it is commutative
whenever G is. The following statement can be found in [11].

Theorem 8.2. The mapping (24) determines a bijection A 	→ W between the S-rings
over G and the Cayley rings over G. Moreover, S(A)ρG = R(W ), S∗(A)ρG = R∗(W ),
H(A)ρG = E(W ), and for H, K ∈ H(A) with K normal in H , we have G/E = {Hg :
g ∈ G} and ρH/K(AH/K) = WH/E′ , where E = HρG and E′ = KρG .

Let X ⊂ G; the group rad(X) = {g ∈ G : gX = Xg = X} is called the radical of X .
It is the largest subgroup of G such that X is a union of left as well as right cosets by
this subgroup. If this subgroup is normal in G, then the image of X under the natural
epimorphism from G to G/ rad(X) has a trivial radical. If X ∈ S∗(A), where A is an
S-ring over G, then rad(X) ∈ H(A). If H, K ∈ H(A) and K ≤ H , then we say that A
satisfies the H/K-condition if K ≤ rad(X) for all X ∈ S(A) with X ⊂ G \ H .
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8.3. Algorithms. A cellular ring W on n points will always be determined by a set
of basis relations (or their adjacency matrices). In this representation, its homogeneity,
commutativity, and primitivity can be tested in time nO(1). Also, given X ∈ B(W ) and
E ∈ E(W ), we can construct the cellular ring WX/E within the same time. As to the
cellular closure of a set of matrices, we note that, historically, the first method of finding
it was described in [26] and, in more detail, in [27], where in fact the following statement
was proved.

Theorem 8.3. For a finite set M ⊂ MatV , the basis relations of the cellular closure of
M can be found in time mnO(1), where m = |M| and n = |V |. Moreover, if ϕ : M → M′

is a bijection, where M′ ⊂ MatV ′ , then within the same time we can test whether there
exists a weak isomorphism from this ring onto the cellular closure of M′ that coincides
with ϕ on M, and find it if it does exist.

The permutation group algorithms used in this paper are standard; mostly, they are
based on the sift procedure (for the details, see [16]). Here we only make some remarks.
A permutation group G on n points will always be determined by a strong generating set
(of at most n2 generators). In this representation, the membership in G can be tested
and the order of G can be found in time nO(1). Moreover, within the same time we
can find any nO(1)-recognizable subgroup of G of index at most nc, where c > 0, and,
consequently, any permutation group GX/E = {gX/E : g ∈ G, Xg = X} and the setwise
stabilizer of X in G, where E is a G-invariant equivalence and X is a block of G. If K
is a permutation group on the same set as G, then the normal closure of G with respect
to K can also be found in time nO(1). Finally, the following statement (to be used in §3)
is a special case of [1, Corollary 3.6].

Theorem 8.4. Let G ≤ Sym(V ) be a solvable group. For a cellular ring W ≤ MatV ,
the group Aut(W ) ∩ G can be found in time nO(1), where n = |V |.
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