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Circulant Matrices and Their Application to 
Vibration Analysis

This paper provides a tutorial and summary of the theory of circulant matrices and their application to the modeling and analysis of the 
free and forced vibration of mechanical structures with cyclic symmetry. Our presentation of the basic theory is distilled from the classic 
book of Davis (1979, Circulant Matrices, 2nd ed., Wiley, New York) with results, proofs, and examples geared specifically to vibration 
applications. Our aim is to collect the most relevant results of the existing theory in a single paper, couch the mathematics in a form that 
is accessible to the vibrations analyst, and provide examples to highlight key concepts. A nonexhaustive survey of the relevant literature 
is also included, which can be used for further examples and to point the reader to important extensions, applica-tions, and 
generalizations of the theory.

1 Introduction

“The theory of matrices exhibits much that is visually attractive.
Thus, diagonal matrices, symmetric matrices, (0, 1) matrices, and
the like are attractive independently of their applications. In the
same category are the circulants.”

Philip J. Davis

The modeling and analysis of structural vibration is a
mature field, especially when vibration amplitudes are small
and linear models apply. For such models, the powerful tools
of modal analysis and superposition allow one to decompose
the system and its response into a set of uncoupled single
degree-of-freedom (DOF) systems, each of which captures the
motion of the overall system in a given normal mode. For
geometrically simple continua, the natural frequencies, vibra-
tion modes, and response to known excitations can be analyti-
cally determined. When discrete models are developed, matrix
methods are readily applied for both natural frequency and
response analyses. For general system models with no special
properties, which occur in the majority of applications, large-
scale computational models must be developed, typically
using finite element methods. However, certain classes of

systems possess special properties, such as symmetries, which
aid in the analysis by enabling significant reduction of the fi-
nite element models (Fig. 1(a)). This is particularly true for
systems with cyclic symmetry.

The main goal of this tutorial is to consider the vibrations of
structural systems with cyclic symmetry, also known as rotation-
ally periodic systems. A useful geometric view of these systems is
that of a circular disk (a pie) split into N equal sectors (i.e., equally
sized pieces of the pie), each of which contains an identical
mechanical structure with identical coupling to forward-nearest-
neighbors and to ground (Fig. 1(b)).

The theory of circulants also applies to more general forms
of coupling with non-nearest-neighbors, for example through
a base substructure, as long as the rotational symmetry is
preserved. These structural arrangements arise naturally in
certain types of rotating machines. Turbomachinery examples
include bladed disks, such as fans, compressors, turbines, and
impeller stages of aircraft, helicopter engines, power plants,
as well as propellers, pumps, and the like. Rotational perio-
dicity also arises in some stationary structures such as satel-
lite antennae. In some systems, such as planetary gears and
rotors with pendulum vibration absorbers, the overall system
is not necessarily cyclic, but subcomponents of it may be.
When perfect cyclic symmetry of a model is assumed, special
modal properties exist that significantly facilitate its vibration
analysis.
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The nature of rotationally periodic systems imposes a cyclic
structure on their mass and stiffness matrices, which are block cir-
culant for systems with many DOFs per sector (Fig. 1(a)) and cir-
culant for the special case of a single DOF per sector (Fig. 1(b)).
By denoting the stiffness of the internal elements of each sector
by K0 and the coupling stiffness between sectors as –K1, the stiff-
ness matrices of rotationally periodic structures with nearest-
neighbor coupling have the general form

K ¼

K0 �K1 0 … 0 �K1

�K1 K0 �K1 … 0 0
0 �K1 K0 … 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 … K0 �K1

�K1 0 0 … �K1 K0

2
66666664

3
77777775

where K0 and K1 are themselves matrices for the complex model
shown in Fig. 1(a) and scalars for the simplest prototypical model
shown in Fig. 1(b). A key property of K is that the elements of
each row are obtained from the previous row by cyclically per-
muting its entries. That is, for j ¼ 2; 3;…;N, row j is obtained
from row j – 1 by shifting the elements of row j – 1 to the right by
one position and wrapping the right-end element of row j – 1 into
the first position. This is precisely the form of a circulant matrix,
which is formally defined in Sec. 2.2. The mass matrix of a rota-
tionally periodic structure with nearest-neighbor coupling is block

diagonal and also shares this cyclic property. The size of the ele-
ments of K is equal to the number of DOFs per sector, and is
denoted byM. Thus, a system with N sectors andM DOFs per sec-
tor has a total of NM DOFs. The most important utility of the
theory of circulants in analyzing rotationally periodic systems is
that they enable a NM-DOF system to be decomposed to a set of
NM-DOF uncoupled systems using the appropriate coordinate
transformation. Admittedly, the same can be accomplished using
brute-force methods to uncouple the entire system using modal
analysis, but such an approach overlooks fundamental properties
that are crucial to understanding the free and forced response of
these systems and requires significantly more computational
power. This is the central motivation for understanding and utiliz-
ing circulants to analyze cyclic systems.

The vibration modes of rotationally periodic systems consist of
multiple pairs of repeated natural frequencies (eigenvalues) that
lead to pairs of degenerate normal modes (eigenvectors). The
number and nature of such pairs depend on whether N is even or
odd. Each mode pair is characterized as a pair of standing waves
(SWs) with different spatial phases, or a pair of traveling waves,
labeled as a forward traveling wave (FTW) and backward travel-
ing wave (BTW) when following the terminology used in applica-
tions to rotating machinery. The choice of formulation is based on
convenience for a given application, which depends on the nature
of the system excitation. For example, the excitation frequency is
proportional to the engine speed for many cyclic rotating systems,
which leads to the so-called engine order (e.o.) excitation, and
often the spatial nature of the excitation (in the rotating frame of
reference) is in the form of a traveling wave. When such excita-
tion is applied to systems with cyclic symmetry, the response also
has special properties that can be easily uncovered by making use
of the system traveling wave vibration modes.

The strength of the intersector coupling is an important parame-
ter in rotationally periodic systems. When the intersector coupling
is strong, the frequencies of the mode pairs are well separated. In
contrast, weak intersector coupling yields closely spaced frequen-
cies, high modal density, and large sensitivity to cyclic-symme-
try-breaking imperfections. A wave representation of the response
[2] shows that the strength of the coupling determines frequency
passband widths, wherein unattenuated propagation of waves
takes place. Weak intersector coupling leads to narrow passbands,
and the passbands widen as the coupling strength increases.
Another important parameter for cyclically symmetric structures
is the total number of sectors. The modal density is larger for large
N, which corresponds to more natural frequencies within each fre-
quency passband. In all cases, the modes are spatially distributed,
or extended, for models of cyclic systems. That is, the pattern of
displacements in a modal response is uniformly spread around the
circumference of the structure.

Systems with cyclic symmetry have been studied in the context
of vibration analysis for over 40 yr. Early work considered proper-
ties of the vibration modes [3,4] and the steady-state response to
harmonic excitation [5–7] of tuned and mistuned turbomachinery
rotors. Many of these contributions were motivated by vibration
studies of general rotationally periodic systems [8–20], bladed
disks [1,3,21–30], planetary gear systems [31–43], rings [44,45],
circular plates [46–48], disk spindle systems [49–51], centrifugal
pendulum vibration absorbers [52–56], space antennae [57], and
microelectromechanical system frequency filters [58]. Implicit in
these investigations is the assumption of perfect symmetry which,
of course, is an idealization. Perfect symmetry gives rise to well-
structured vibration modes [9,31,33–37,39,53,56], which are char-
acterized by certain phase indices that define specific phase rela-
tionships between cyclic components in each vibration mode [18].
This vibration mode structure is critical in the investigation of
dynamic response of cyclic systems using modal analysis
[54]. These special properties of rotationally periodic structures
save tremendous calculation effort in the analysis of the system
dynamics [59–61]. The properties of cyclic symmetry are not only
used in the study of mechanical vibrations, they are also important

Fig. 1 (a) Finite element model of a bladed disk assembly [1]
and (b) general cyclic system with N identical sectors and
nearest-neighbor coupling
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to the analysis of elastic stress [62,63] and coupled cell
networks [64].

The special properties of systems with cyclic symmetry extend
to nonlinear systems, where they are expressed quite naturally in
terms of symmetry groups: the cyclic group, in particular [65–68].
The group theoretic formulation can also be applied to the linear
vibration problems considered in this paper [69,70], but the
approach presented here is more approachable to readers with a
standard engineering background in linear algebra.

The extension to systems with small imperfections that perturb
the cyclic symmetry has led to important results related to mode
localization, which arises in systems with high modal density
caused by weak intersector coupling or a large number of sectors.
In particular parameter regimes, the mode shapes are highly sensi-
tive to small, symmetry-breaking imperfections among the nomi-
nally identical sectors, and the spatial nature of the vibration
modes can become highly localized. For these cases, the vibration
energy is focused in a small number of sectors, and sometimes
even a single sector. This behavior, which stems from the seminal
work of Anderson on lattices [71], was originally recognized to be
relevant to structural vibrations by Hodges and Woodhouse
[72,73] and Pierre and Dowell [74], and has been extensively
studied from both fundamental [75] and applied [76–78] points of
view. The phenomenon of mode localization is also observed in
the forced response and has practical implications for the fatigue
life of bladed disks in turbomachinery [79,80]. It is interesting to
note that localization also arises in nonlinear systems with perfect
symmetry, where the dependence of the system natural frequen-
cies on the amplitudes of vibration naturally leads to the possibil-
ity of mistuning of frequencies between sectors if their amplitudes
are different [81–88].

Another topic central to vibration analysis that relies on the
theory of circulants is the discrete Fourier transform (DFT)
[89,90]. The DFT was known to Gauss [91], and is the most com-
mon tool used to process vibration signals from experimental
measurements and numerical simulations. The DFT and inverse
DFT (IDFT) provide a computationally convenient means of
determining the frequency content of a given signal. Because the
mathematics of circulants is at the heart of the computation of the
DFT, we include a brief introduction to the relationship between
the DFT and IDFT, and its connection to the theory of circulants.

The goal of this paper is to provide a detailed theory of circu-
lant matrices as it applies to the analysis of free and forced struc-
tural vibrations. Much of the material was developed as part of the
Ph.D. research of the lead author [21,22,92–95]. References to
other relevant work are included throughout this paper, but we do
not claim to provide an exhaustive survey of the relevant
literature. The remainder of the paper is organized as follows.
Section 2 gives a quite exhaustive and self-contained treatment of
the theory of circulants, which is distilled from the seminal work
by Davis [96]. We adopt a presentation style similar to that of
�Ottarsson [97], one that should be familiar to an analyst in the
vibrations engineering community. This section is meant to act
simultaneously as a detailed reference and tutorial, including
proofs of the main results and simple illustrative examples.
Section 3 provides three examples that make use of the theory,
including ordinary circulants and the more general block circulant
matrices. Particular attention is given to cyclic systems under trav-
eling wave engine order excitation because this type of system
forcing appears naturally in many relevant applications of rotating
machinery. The apprised reader, or the reader who wishes to learn
by example, can skip directly to Sec. 3, depending on their back-
ground, and revisit Sec. 2 as warranted. The paper closes with a
brief summary in Sec. 4.

2 The Theory of Circulants

This section details the theory and mathematics of circulant
matrices that are relevant to vibration analysis of mechanical
structures with cyclic symmetry. The basic theory is distilled from

the seminal work by Davis [96] and is presented using mathemat-
ics and notation that should be familiar to the vibrations engineer.
Selected topics from linear algebra are reviewed in Sec. 2.1
to introduce relevant notion and support the theoretical
development of circulant matrices in Secs. 2.2–2.8. This material
is included for completeness; the apprised reader can skip directly
to Secs. 2.2 and 2.3, where circulant and block circulant matrices
(also referred to as circulants and block circulants) are defined.
Representations of circulants are discussed in Sec. 2.4. Diagonal-
ization of circulants and block circulants is discussed at length in
Sec. 2.5, which begins with a treatment of the Nth roots of unity
in Sec. 2.5.1 and the Fourier matrix in Sec. 2.5.2. It is subse-
quently shown how to diagonalize the cyclic forward shift matrix
in Sec. 2.5.3 a circulant in Sec. 2.5.4, and a block circulant in
Sec. 2.5.5. Some generalizations of the theory are discussed in
Sec. 2.6, including the diagonalization of block circulants with
circulant blocks. Relevant mathematics of the DFT and IDFT are
summarized in Sec. 2.7. Finally, the circulant eigenvalue problem
(cEVP) is discussed in Sec. 2.8, including the eigenvalues and
eigenvectors of circulants and block circulants, their symmetry
characteristics, and connection to the DFT process.

2.1 Mathematical Preliminaries. Definitions and relevant
properties of special operators and matrices are discussed in
Secs. 2.1.1 and 2.1.2, respectively, including the direct (Kro-
necker) product, and Hermitian, unitary, cyclic forward shift, and
flip matrices. This is followed in Sec. 2.1.3 with a treatment of
matrix diagonalizability.

2.1.1 Special Operators. Let C denote the set of complex
numbers and Zþ be the set of positive integers.

DEFINITION 1 (Direct Sum). For each i ¼ 1; 2;…;N and
pi 2 Zþ, let Ai 2 C

pi�pi . Then the direct sum of Ai is denoted by

�N
i¼1Ai ¼ A1 � A2 �…� AN

and results in the block diagonal square matrix

A ¼

A1 0 … 0
0 A2 … 0

..

. ..
. . .

. ..
.

0 0 … AN

2
6664

3
7775

of order p1 þ p2 þ � � � þ pN , where each zero matrix 0 has the
appropriate dimension. �

It is convenient to define the operator diagð�Þ that takes as its
argument the ordered set of matrices A1;A2;…;AN and results in
the block diagonal matrix given in Definition 1, that is,

A ¼ diagðA1;A2;…;ANÞ ¼ diag
i¼1;…;N

ðAiÞ

For the case when each Ai¼ ai is a scalar (1� 1), the direct sum
of ai is denoted by the diagonal matrix

diagða1; a2;…; aNÞ ¼ diag
i¼1;…;N

ðaiÞ

DEFINITION 2 (Direct Product). Let a;b 2 C
n. Then the direct prod-

uct (or Kronecker product) of a and bT is the square matrix

a� bT ¼

a1b1 a1b2 � � � a1bn
a2b1 a2b2 � � � a2bn

..

. ..
. . .

. ..
.

anb1 anb2 � � � anbn

2
6664

3
7775

where ð�ÞT denotes transposition. If A 2 C
m�n and B 2 C

p�q are
matrices, then the direct product of A and B is the matrix
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A� B ¼

a11B a12B � � � a1nB
a21B a22B � � � a2nB

..

. ..
. . .

. ..
.

am1B am2B � � � amnB

2
6664

3
7775

of dimension mp� nq. �

Example 1. Consider the matrices

A ¼ 1 2 3½ � and B ¼ 1 2

3 4

� �

Then the direct product of A and B is given by

A� B ¼ 1 2 3½ � � 1 2

3 4

� �

¼ 1 � 1 2

3 4

� �
; 2 � 1 2

3 4

� �
; 3 � 1 2

3 4

� �� �

¼ 1 2

3 4

� �
;

2 4

6 8

� �
;

3 6

9 12

� �� �

¼ 1 2 2 4 3 6

3 4 6 8 9 12

����
����

��

Because A is 1� 3 and B is 2� 2, the direct product A� B has
dimension 1 � 2� 3 � 2, or 2� 6.

Some important properties of the direct product are as follows:

(1) The direct product is a bilinear operator. If A and B are
square matrices and a is a scalar, then

aðA� BÞ ¼ ðaAÞ � B ¼ A� ðaBÞ (1)

(2) The direct product distributes over addition. If A, B, and C
are square matrices with the same dimension, then

ðAþ BÞ � C ¼ A� Cþ B� C (2a)

A� ðBþ CÞ ¼ A� Bþ A� C (2b)

(3) The direct product is associative. If A, B, and C are square
matrices, then

A� ðB� CÞ ¼ ðA� BÞ � C (3)

(4) The product of two direct products yields another direct
product. If A, B, C, and D are square matrices such that AC
and BD exist, then

ðA� BÞðC� DÞ ¼ ðACÞ � ðBDÞ (4)

(5) The inverse of a direct product yields the direct product of
two matrix inverses. If A and B are invertible matrices,
then

ðA� BÞ�1 ¼ A�1 � B�1 (5)

where ð�Þ�1
denotes the matrix inverse.

(6) The transpose or conjugate transpose of a direct product
yields the direct product of two transposes or conjugate
transposes. If A and B are square matrices, then

ðA� BÞT ¼ AT � BT (6a)

ðA� BÞH ¼ AH � BH (6b)

where ð�ÞH ¼ �ð�ÞT is the conjugate transpose and �ð�Þ denotes
complex conjugation.

(7) If A and B are square matrices with dimensions n and m,
respectively, then

detðA� BÞ ¼ ðdetAÞmðdetBÞn (7a)

trðA� BÞ ¼ trðAÞtrðBÞ (7b)

where detð�Þ and trð�Þ denote the matrix determinant and
trace.

2.1.2 Special Matrices. The definitions and relevant proper-
ties of selected special matrices are summarized. Hermitian and
unitary matrices are defined first (see Table 1), followed by a brief
treatment of two important permutation matrices: the cyclic for-
ward shift matrix and the flip matrix. The details of circulant mat-
rices and the Fourier matrix, which are employed extensively
throughout this work, are deferred to Secs. 2.2, 2.3, and 2.5.2.

DEFINITION 3 (Hermitian Matrix). A matrix H 2 C
N�N is Hermi-

tian if H ¼ HH. �

The elements of a Hermitian matrix H satisfy hik ¼ �hki for all
i; k ¼ 1; 2;…;N. Thus, the diagonal elements hii of a Hermitian
matrix must be real, while the off-diagonal elements may be com-
plex. If H ¼ HT then H is said to be symmetric.

DEFINITION 4 (Unitary Matrix). A matrix U 2 C
N�N is unitary if

UHU ¼ I, where I is the N�N identity matrix. �

Real unitary matrices are orthogonal matrices. If a matrix U is

unitary, then so too is UH. To see this, consider ðUHÞHðUHÞ
¼ UUH ¼ I, from which it follows that

UHU ¼ UUH ¼ I (8)

Finally, if U is unitary and nonsingular, then UH ¼ U�1.
A general permutation matrix is formed from the identity

matrix by reordering its columns or rows. Here, we introduce two
such matrices: the cyclic forward shift matrix and the flip matrix.

DEFINITION 5 (Cyclic Forward Shift Matrix). The N�N cyclic
forward shift matrix is given by

rN ¼

0 1 0 � � � 0 0

0 0 1 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � 1 0

0 0 0 � � � 0 1

1 0 0 � � � 0 0

2
6666664

3
7777775

N�N

which is populated with ones along the superdiagonal and in the
(N, 1) position, and zeros otherwise. �

The cyclic forward shift matrix plays a key role in the represen-
tation and diagonalization of circulant matrices, which are dis-
cussed in Secs. 2.4 and 2.5.

Example 2. Let a¼ (a, b, c) be a three-vector. Then the
operation

ar3 ¼ a b c½ �
0 1 0

0 0 1

1 0 0

2
64

3
75

¼ ðc; a; bÞ

Table 1 Selected special matrices

Type Condition

Symmetric A¼AT

Hermitian A ¼ AH

Orthogonal ATA ¼ I (or) AT ¼ A�1

Unitary AHA ¼ I (or) AH ¼ A�1

4



cyclically shifts the entries of a by one entry to the right. That is,
the ith entry of a is shifted to entry iþ 1, except for entry N¼ 3,
which is placed in position 1 of a.

DEFINITION 6 (Flip Matrix). The N�N flip matrix is given by

jN ¼

1 0 0 � � � 0 0

0 0 0 � � � 0 1

0 0 0 � � � 1 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 1 � � � 0 0

0 1 0 � � � 0 0

2
6666664

3
7777775

N�N

which is populated with ones in the (1, 1) position and along the
subantidiagonal, and zeros otherwise. �

COROLLARY 1. Let jN be the flip matrix. Then

j2N ¼ IN

jHN ¼ jTN ¼ jN ¼ j�1
N

)

where IN is the N�N identity matrix. �

2.1.3 Matrix Diagonalizability. Matrix diagonalization is the
process of taking a square matrix and transforming it into a diago-
nal matrix that shares the same fundamental properties of the
underlying matrix, such as its characteristic polynomial, trace, and
determinant. This section defines matrix diagonalizability in terms
of similarity, provides necessary conditions for a matrix to be
diagonalizable, and summarizes relevant properties of diagonaliz-
able matrices. Diagonalization of circulant matrices is deferred to
Sec. 2.5.

DEFINITION 7 (Similarity Transformation). Let Q be an arbitrary
nonsingular matrix. Then B ¼ Q�1AQ is a similarity transforma-
tion and B is said to be similar to A. �

If B is similar to A, then A ¼ Q�1
� ��1

B Q�1
� �

is similar to B.
It therefore suffices to say that A and B are similar. A summary of
selected additional linear transformations is provided in Table 2.
If B is orthogonally (resp. unitarily) similar to A, then we say that
A and B are orthogonally (resp. unitarily) similar matrices.

THEOREM 1. If A and B are similar matrices, then they have the
same characteristic equation and hence the same eigenvalues. �

Theorem 1 guarantees that the eigenvalues of a matrix are
preserved under a similarity transformation. A proof can be found
in any standard textbook on linear algebra [98,99]. Because
QT¼Q�1 for orthogonal Q and QH ¼ Q�1 for unitary Q, the
eigenvalues are also preserved under orthogonal and unitary
transformations.

THEOREM 2. Let the matrices A and B be similar. Then if

pðtÞ ¼
XN

k¼0

ckt
k

denotes a finite polynomial in t with arbitrary coefficients
ck ðk ¼ 1; 2;…;NÞ, the matrix polynomials p(A) and p(B) are
similar. �

Proof. Let Q be an arbitrary nonsingular matrix. Then

pðBÞ ¼ pðQ�1AQÞ

¼
XN

k¼0

ckðQ�1AQÞk

¼ c0Iþ c1Q
�1AQþ c2Q

�1AQQ�1AQþ � � �
þ cNQ

�1AQ � � �Q�1AQ

¼ c0Iþ c1Q
�1AQþ c2Q

�1A2Qþ � � � þ cNQ
�1ANQ

¼ Q�1 c0Iþ c1Aþ c2A
2 þ � � � þ cNA

N
� �

Q

¼ Q�1pðAÞQ

which completes the proof. �

If p(t)¼ tk with k> 0 in Theorem 2, then we have the following
result.

COROLLARY 2. If B¼Q�1 AQ, then Bk¼Q�1AkQ for any
k 2 Zþ. �

DEFINITION 8 (Diagonalizable Matrix). A square matrix A is
diagonalizable if there exists a nonsigular matrix Q and a diago-
nal matrix D such that Q�1AQ ¼ D. �

Thus, a matrix is diagonalizable if it is similar to a diagonal ma-
trix. If A is diagonalizable by Q, we say that Q diagonalizes A
and that Q is the diagonalizing matrix.

THEOREM 3. An N�N matrix A is diagonalizable if it has N lin-
early independent eigenvectors. �

Proof. Suppose A has N linearly independent eigenvectors and
denote them by q1; q2;…; qN . Let ki be the eigenvalue of A corre-
sponding to qi for each i ¼ 1;…;N. Then if Q is the matrix that
has as its ith column the vector qi, it follows that

AQ ¼ Aq1;Aq2;…;AqNð Þ
¼ q1k1;q2k2;…;qNkNð Þ
¼ q1; q2;…;qNð Þ diag

i¼1;…;N
ðkiÞ

� QD

Because Q is nonsingular by hypothesis, D¼Q�1AQ. �

2.2 Circulant Matrices

DEFINITION 9 (Circulant Matrix). A N�N circulant matrix (or
circulant, or ordinary circulant) is generated from the N-vector
fc1; c2;…; cNg by cyclically permuting its entries, and is of the
form

C ¼

c1 c2 � � � cN
cN c1 � � � cN�1

..

. ..
. . .

. ..
.

c2 c3 � � � c1

2
6664

3
7775 D

DEFINITION 10 (Generating Elements). Let the N�N circulant
matrix C be given by Definition 9. Then the elements of the
N-vector

fc1; c2;…; cNg

are said to be the generating elements of C. �

Thus, a circulant matrix is defined completely by the generating
elements in its first row, which are cyclically shifted to the right
by one position per row to form the subsequent rows. The set of
all such matrices of order N is denoted by CN . A matrix contained
in CN is said to be a circulant of type N.

It is convenient to define the circulant operator circð�Þ that
takes as its argument the generating elements c1; c2;…; cN and
results in the array given in Definition 9, that is,

Table 2 Selected types of linear transformations

Type Condition Transformation

Equivalence P and Q are nonsingular B¼PAQ
Congruence Q is nonsingular B ¼ QTAQ
Similarity Q is nonsingular B ¼ Q�1AQ
Orthogonal Q is nonsingular and orthogonal B ¼ QTAQ ¼ Q�1AQ
Unitary Q is nonsingular and unitary B ¼ QHAQ ¼ Q�1AQ
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C ¼ circðc1; c2;…; cNÞ (9)

An N�N circulant is also characterized in terms of its (i, k) entry
by ðCÞik ¼ ck�iþ1ðmodNÞ for i; k ¼ 1; 2;…;N.

Example 3. The circulant array formed by the generating ele-
ments a, b, c, d can be written as

circða; b; c; dÞ ¼
a b c d

d a b c

c d a b

b c d a

2
664

3
775 2 C4

which is a circulant matrix of type 4.
If a matrix is both circulant and symmetric, its generating ele-

ments are

c1;…; cN
2
; cNþ2

2
; cN

2
;…; c3; c2; N even

c1;…; cN�1
2
; cNþ1

2
; cNþ1

2
; cN�1

2
;…; c3; c2; N odd

(
(10)

which are necessarily repeated. Only (Nþ 2)/2 generating ele-
ments are distinct if N is even and (Nþ 1)/2 are distinct if N is
odd. The set of all N�N symmetric circulants is denoted by
SCN . A matrix contained inSCN is said to be a symmetric circu-
lant of type N.

Example 4. The 5� 5 matrix

circða; b; c; c; bÞ ¼

a b c c b

b a b c c

c b a b c

c c b a b

b c c b a

2
66664

3
77775
2 SC5

is both symmetric and circulant. Because N¼ 5 is odd, it has
(Nþ 1)/2¼ 3 distinct elements.

The matrix defined in Example 3 is not a symmetric circulant
because its generating elements are distinct. Next, we give a nec-
essary and sufficient condition for a square matrix to be circulant.

THEOREM 4. Let rN be the cyclic forward shift matrix. Then a
N�N matrix C is circulant if and only if CrN ¼ rNC. �

Proof. Let C be an N�N matrix with arbitrary elements cik for
i; k ¼ 1; 2;…;N. Then

CrN ¼

c1N c11 c12 � � � c1ðN�1Þ
c2N c21 c22 � � � c2ðN�1Þ

..

. ..
. ..

. . .
. ..

.

cNN cN1 cN2 � � � cNðN�1Þ

2
6664

3
7775

and

rNC ¼

c21 c22 c23 � � � c2N
c31 c32 c33 � � � c3N

..

. ..
. ..

. . .
. ..

.

c11 c12 c13 � � � c1N

2
6664

3
7775

These matrices are equal if and only if the equalities

c1N ¼ c21; c11 ¼ c22; � � � c1ðN�1Þ ¼ c2N
c2N ¼ c31; c21 ¼ c32; � � � c2ðN�1Þ ¼ c3N

..

. ..
. . .

. ..
.

cNN ¼ c11; cN1 ¼ c12; � � � cNðN�1Þ ¼ c1N

are satisfied. Then C can be written as

C ¼

c11 c12 � � � c1N
c21 c22 � � � c2N

..

. ..
. . .

. ..
.

cN1 cN2 � � � cNN

2
6664

3
7775 ¼

c11 c12 � � � c1N
c1N c11 � � � c1ðN�1Þ

..

. ..
. . .

. ..
.

c12 c13 � � � c11

2
6664

3
7775

which is a N�N circulant matrix with generating elements
c11; c12;…; c1N . �

Any matrix that commutes with the cyclic forward shift matrix
is, therefore, a circulant. Theorem 4 also says that circulant
matrices are invariant under similarity transformations involving
the cyclic forward shift matrix. That is, C is similar to itself for a
similarity transformation using rN .

Example 5. Consider the 3� 3 matrix

A ¼
a b c

c a b

b c a

2
4

3
5

Then

a b c

c a b

b c a

2
64

3
75

0 1 0

0 0 1

1 0 0

2
64

3
75 ¼

c a b

b c a

a b c

2
64

3
75

¼
0 1 0

0 0 1

1 0 0

2
64

3
75

a b c

c a b

b c a

2
64

3
75

which implies that Ar3 ¼ r3A. Thus, A ¼ circða; b; cÞ 2 C3 is a
circulant matrix of type N¼ 3.

Next we introduce block circulant matrices, which are natural
generalizations of ordinary circulants.

2.3 Block Circulant Matrices. A block circulant matrix
is obtained from a circulant matrix by replacing each entry ck in
Definition 9 by theM�M matrix Ci for i ¼ 1; 2;…;N.

DEFINITION 11 (Block Circulant Matrix). Let Ci be a M�M
matrix for each i ¼ 1; 2;…;N. Then a NM�NM block circulant
matrix (or block circulant) is generated from the ordered set
fC1;C2;…;CNg, and is of the form

C ¼

C1 C2 � � � CN

CN C1 � � � CN�1

..

. ..
. . .

. ..
.

C2 C3 � � � C1

2
6664

3
7775 D

DEFINITION 12 (Generating Matrices). Let the NM�NM block
circulant C be given by Definition 11. Then the elements of the
ordered set

fC1;C2; � � � ;CNg

are said to be the generating matrices of C. �

A block circulant is therefore defined completely by its generat-
ing matrices. The matrix array given by Definition 11 is said to be
a block circulant of type (M, N). The set of all such matrices is
denoted by BCM;N . A matrix C 2 BCM;N is not necessarily a cir-
culant, as the following example demonstrates.

Example 6. Let

A ¼ 2 �1

�1 2

� �
and B ¼ �1 0

0 �1

� �

Then
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C ¼

A B 0 B

B A B 0

0 B A B

B 0 B A

2
6664

3
7775

¼

2 �1 �1 0 0 0 �1 0

�1 2 0 �1 0 0 0 �1

�1 0 2 �1 �1 0 0 0

0 �1 �1 2 0 �1 0 0

0 0 �1 0 2 �1 �1 0

0 0 0 �1 �1 2 0 �1

�1 0 0 0 �1 0 2 �1

0 �1 0 0 0 �1 �1 2

�������������������

3
77777777777775

�������������������

�������������������

2
66666666666664

is a block circulant of type (2, 4), but it is not a circulant.
Next we give a necessary and sufficient condition for a matrix

to be block circulant.
THEOREM 5. Let rN be the cyclic forward shift matrix of dimen-

sion N and IM be the identity matrix of dimension M. Then a
NM�NM matrix C is a block circulant of type (M, N) if and only
if CðrN � IMÞ ¼ ðrN � IMÞC. �

The proof of Theorem 5 follows similarly to that of Theorem 4
by replacing the scalar elements cik with M�M matrices Cik

for i; k ¼ 1; 2;…;N. The reader can verify that the matrix C in
Example 6 satisfies the condition in Theorem 5, but not that in
Theorem 4.

A block circulant, block symmetric matrix of type (M, N) has
generating matrices of the same form as Eq. (10), and is obtained
by replacing each entry ck by the M�M matrix Ck for
k ¼ 1; 2;…;N. The set of all such matrices is denoted by
BCBSM;N . The matrix C in Example 6 is recognized to be a
block symmetric, block circulant matrix of type (2, 4), that is, it is
contained inBCBS2;4, which is a subset of BC2;4.

2.4 Representations of Circulants. It is clear from Defini-
tion 5 that the N�N cyclic forward shift matrix is a circulant with
N generating elements 0; 1; 0;…; 0; 0. The integer powers of rN
can be written as

r0N ¼ circð1; 0; 0; 0; 0;…; 0; 0Þ ¼ IN

r1N ¼ rN ¼ circð0; 1; 0; 0; 0;…; 0; 0Þ
r2N ¼ circð0; 0; 1; 0; 0;…; 0; 0Þ

..

.

rN�1
N ¼ circð0; 0; 0; 0; 0;…; 0; 1Þ
rNN ¼ circð1; 0; 0; 0; 0;…; 0; 0Þ ¼ r0N ¼ IN

9
>>>>>>>>>>>=
>>>>>>>>>>>;

(11)

where each successive power cyclically permutes the generating
elements. This enables the representation of a general circulant in
terms of a finite matrix polynomial involving the cyclic forward
shift matrix and its powers.

COROLLARY 3. Let C 2 CN be a circulant matrix of type N with
generating elements c1; c2;…; cN . Then C can be represented by
the matrix sum

C ¼ c1r
0
N þ c2r

1
N þ c3r

2
N þ � � � þ cNr

N�1
N

where rN is the N�N cyclic forward shift matrix. �

Example 7. The matrix A ¼ circða; b; cÞ from Example 5 can
be represented by the matrix sum

A ¼ ar03 þ br13 þ cr23

¼ aI3 þ br3 þ cr23

¼ a

1 0 0

0 1 0

0 0 1

2
64

3
75þ b

0 1 0

0 0 1

1 0 0

2
64

3
75þ c

0 0 1

1 0 0

0 1 0

2
64

3
75

¼
a b c

c a b

b c a

2
64

3
75

where I3 and r3 are the 3� 3 identity and cyclic forward shift
matrices.

Corollary 3 is exploited in Sec. 2.5.4 to diagonalize a general
circulant matrix, and can be generalized to represent a general
block circulant matrix in terms of the cyclic forward shift matrix
and its powers.

COROLLARY 4. Let C 2 BCM;N be a block circulant matrix of
type (M, N) with generating matrices C1;C2;…;CN . Then C can
be represented by the matrix sum

C ¼ r0N � C1 þ r1N � C2 þ � � � þ rN�1
N � CN

where rN is the cyclic forward shift matrix. �

Corollaries 3 and 4 motivate the following result, which cap-
tures the representation of circulant and block circulant matrices
in terms of the cyclic forward shift matrix, and facilitates their
diagonalization in Secs. 2.5.4 and 2.5.5.

DEFINITION 13. Let t and s be arbitrary square matrices. Then
the function

qðt; sÞ ¼
XN

k¼1

tk�1 � s

is a finite sum of direct products. �

COROLLARY 5. Let rN be the N�N cyclic forward shift matrix.
Then a circulant matrix with generating elements c1; c2;…; cN
and a block circulant matrix with generating elements
C1;C2;…;CN can be represented by the matrix sums

qðrN ; ckÞ ¼
XN

k¼1

rk�1
N ck ¼ circðc1; c2;…; cNÞ

qðrN ;CkÞ ¼
XN

k¼1

rk�1
N � Ck ¼ circðC1;C2;…;CNÞ

where the function qð�Þ is given by Definition 13. �

What is meant by the notation qðrN ; ckÞ, for example, is to sub-
stitute t with rN and s with ck in Definition 13 and then perform
the summation observing any indices k introduced by the
substitution.

2.5 Diagonalization of Circulants. Any circulant or block
circulant matrix can be represented in terms of the cyclic forward
shift matrix according to Corollary 5. The diagonalization of a
general circulant begins, therefore, by finding a matrix that diago-
nalizes rN . Together with some basic results from linear algebra
(these are summarized in Sec. 2.1), this leads naturally to the
diagonalization of an arbitrary circulant. Regarding a suitable
diagonalizing matrix, there are a number of candidates
[10–12,16,17,100], but all feature powers of the Nth roots of unity
or their real/imaginary parts. In this work, we employ an array
composed of the distinct Nth roots of unity (Sec. 2.5.1) and their
integer powers in the form of the complex Fourier matrix
(Sec. 2.5.2). A unitary transformation involving the Fourier matrix
is used to diagonalize the cyclic forward shift matrix (Sec. 2.5.3),
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general circulant matrices (Sec. 2.5.4), and general block circulant
matrices (Sec. 2.5.5).

2.5.1 Nth Roots of Unity. A root of unity is any complex num-
ber that results in 1 when raised to some integer N 2 Zþ [101].
More generally, the Nth roots of a complex number zo ¼ roe

jho are
given by a nonzero number z ¼ rejh such that

zN ¼ zo or rNejNh ¼ roe
jho (12)

where j ¼
ffiffiffiffiffiffiffi
�1

p
. Equation (12) holds if and only if rN¼ ro and

Nh ¼ ho þ 2pk with k 2 Z. Therefore,

r ¼ ffiffiffiffi
roN

p

h ¼ ho þ 2pk

N

9
=
;; k 2 Z (13)

and the Nth roots are

z ¼ ffiffiffiffi
roN

p
exp j

ho þ 2pk

N

� �
; k 2 Z (14)

Equation (14) shows that the roots all lie on a circle of radius
ffiffiffiffi
roN

p
centered at the origin in the complex plane, and that they are
equally distributed every 2p=N radians. Thus, all of the distinct
roots correspond to k ¼ 0; 1; 2;…;N � 1.

DEFINITION 14 (Distinct Nth Roots of Unity). The distinct Nth
roots of unity follow from Eq. (14) by setting ro¼ 1 and ho¼ 0
and are denoted by

w
ðkÞ
N ¼ e j 2pk

N

for integers k ¼ 0; 1; 2;…;N � 1. �

DEFINITION 15 (Primitive Nth Root of Unity). The primitive Nth
root of unity is denoted by

wN ¼ e j 2p
N

which corresponds to k¼ 1 in Definition 14. �

COROLLARY 6. The integer powers wk
N of the primitive Nth root

of unity are equivalent to the distinct Nth roots of unity w
ðkÞ
N for

k ¼ 1; 2;…;N. �

Proof. Consider wk
N ¼ ðe j 2pN Þk ¼ e j

2pk
N ¼ w

ðkÞ
N , which follows

from Definition 14. Thus, the powers

1;w1
N ;w

2
N ;…;wN�1

N

are equivalent to the distinct Nth roots of unity

1;w
ð1Þ
N ;w

ð2Þ
N ;…;w

ðN�1Þ
N

where w0
N ¼ w

ð0Þ
N ¼ 1. �

Example plots of the distinct Nth roots of unity are shown in

Fig. 2, where w
ðkÞ
N are arranged on the unit circle in the complex

plane (centered at the origin) for N ¼ 1; 2;…; 9. Note that

w
ð0Þ
N ¼ 1 is real, as is w

ðN=2Þ
N ¼ �1 if N is even. The remaining

roots appear in complex conjugate pairs. Thus, the distinct Nth
roots of unity are symmetric about the real axis in the complex
plane.

Example 8. Let N¼ 4. Then the distinct Nth roots of unity are
given by the set

fw0
4;w

1
4;w

2
4;w

3
4g ¼ fe j 2p

4
�0; e j

2p
4
�1; e j 2p

4
�2; e j

2p
4
�3g

¼ fe0; e j p
2; e j p; e j 3p

2 g
¼ f1; j;�1;�jg

These four distinct roots of unity can be visualized in Fig. 2 for
the case of N¼ 4.

DEFINITION 16. Let wN be the primitive Nth root of unity. Then

XN ¼

1 0

wN

w2
N

. .
.

0 wN�1
N

2
66666664

3
77777775

N�N

¼ diagð1;wN ;w
2
N ;…;wN�1

N Þ

is the N�N diagonal matrix formed by placing the distinct Nth
roots of unity 1;wN ;w

2
N ;…;wN�1

N along its diagonal. �

The matrix XN appears naturally in the diagonalization of cir-
culants, which is discussed in Secs. 2.5.3–2.5.5.

2.5.2 The Fourier Matrix. This section introduces the com-
plex Fourier matrix and its relevant properties, including the sym-
metric structure of the N-vectors that compose its columns. A key
result is that the Fourier matrix is unitary, which is systematically
developed and proved.

DEFINITION 17 (Fourier Matrix). The N�N Fourier matrix is
defined as

EN ¼ 1ffiffiffiffi
N

p

1 1 1 � � � 1

1 wN w2
N � � � wN�1

N

1 w2
N w4

N � � � w
2ðN�1Þ
N

..

. ..
. ..

. . .
. ..

.

1 wN�1
N w

2ðN�1Þ
N � � � w

ðN�1ÞðN�1Þ
N

2
66666664

3
77777775

N�N

where wN is the primitive Nth root of unity and N 2 Zþ. �

Fig. 2 Example plots of the distinct Nth roots of unity
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Example 9. For the special case of N¼ 4, the Fourier matrix is
given by

E4 ¼
1ffiffiffi
4

p

1 1 1 1

1 j �1 �j

1 �1 1 �1

1 �j �1 j

2
6664

3
7775

Clearly the Fourier matrix is symmetric, but generally it is not
Hermitian. It can be written element wise as

ðENÞik ¼
1ffiffiffiffi
N

p w
ði�1Þðk�1Þ
N

¼ 1ffiffiffiffi
N

p ejði�1Þuk

¼ 1ffiffiffiffi
N

p ejðk�1Þui ; i; k ¼ 1; 2;…;N (15)

where

ui ¼
2p

N
ði� 1Þ (16)

is the angle subtended from the positive real axis in the complex
plane to the ith power of wN, which is also the ðiþ 1Þth of the N
roots of unity according to Definition 14 and the numbering
scheme in Fig. 2.

COROLLARY 7. The matrix EH
N is obtained from EN by changing

the signs of the powers of each element. �

Proof. The Fourier matrix is unaffected by transposition
because it is symmetric. Thus, the (i, k) element of EH

N is

EH
N

� �
ik
¼ ðENÞik ¼

1ffiffiffiffi
N

p w
ði�1Þðk�1Þ
N ¼ 1ffiffiffiffi

N
p w

�ði�1Þðk�1Þ
N

where the identity

wk
N ¼ e j

2p
N
k ¼ e�j 2p

N
k ¼ e j

2p
N


 ��k

¼ w�k
N ; k 2 Z

is employed. It follows that EH
N can be obtained from EN by

changing the sign of the powers of the Nth roots of unity. �

It is shown in Sec. 2.8 that all circulant matrices contained in
CN share the same linearly independent eigenvectors, the ele-
ments of which compose the N columns (or rows) of EN.

DEFINITION 18. Let wN be the primitive Nth root of unity. Then
for i ¼ 1; 2;…;N the columns of the Fourier matrix EN are
defined by

ei ¼
1ffiffiffiffi
N

p 1;w
ði�1Þ
N ;w

2ði�1Þ
N ;…;w

ðN�1Þði�1Þ
N


 �T

¼ 1ffiffiffiffi
N

p 1; ejui ; ej2ui ;…; ejðN�1Þui


 �T

where ui is given by Eq. (16). �

Example 10. The third column of the Fourier matrix E4 is given by

e3 ¼
1ffiffiffi
4

p 1;w
ð3�1Þ
4 ;w

2ð3�1Þ
4 ;w

3ð3�1Þ
4


 �T

¼ 1

2
1;w2

4;w
4
4;w

6
4

� �T

¼ 1

2
1; e j 2p

4
�2; e j

2p
4
�4; e j 2p

4
�6


 �T

¼ 1

2
1; ejp; ej2p; ej3p
� �T

¼ 1

2
ð1;�1; 1;�1ÞT

for the special case of N¼ 4.

The columns ei of the Fourier matrix EN ¼ ðe1;…; eNÞ exhibit
a symmetric structure with respect to the index i¼ (Nþ 2)/2 for
even N. In Example 9, for instance, the vectors e1 and
eðNþ2Þ=2 ¼ e3 are real and distinct, and the vectors e2 and e4
appear in complex conjugate pairs. This same structure generally
holds for any EN with even N. To see this, consider

eNþ2
2
6q ¼

1ffiffiffiffi
N

p 1; w
ðN
2
6qÞ

N


 �1
;…; w

ðN
2
6qÞ

N


 �N�1
� �T

¼ 1ffiffiffiffi
N

p 1; �w
6q
N

� �1
;…; �w

6q
N

� �N�1

 �T

(17)

where the integers 6q correspond to vector pairs relative to the
index i ¼ ðN þ 2Þ=2 and the identity

w
N
2
6q

N ¼ w
N
2

Nw
6q
N ¼ �w

6q
N

is employed. The case of q¼ 0 corresponds to i ¼ ðN þ 2Þ=2 and
yields the real vector

eNþ2
2
¼ 1ffiffiffiffi

N
p ð1;�1; 1;…;�1; 1ÞT (18)

which has the same value for each element with alternating signs
from element to element. For q 6¼ 0 the terms w

6q
N are complex

conjugates according to the proof of Corollary 7 such that
e ðNþ2Þ=2ð Þþq and e ðNþ2Þ=2ð Þ�q are complex conjugate pairs. There are
(N� 2)/2 such pairs corresponding to q ¼ f1; 2;…; ðN � 2Þ=2g in
Eq. (17). Finally, the case of i¼ 1 always yields the real vector

e1 ¼
1ffiffiffiffi
N

p ð1; 1; 1;…; 1; 1ÞT (19)

for even and odd N. A similar formulation for odd N shows that e1
is real and distinct and the remaining (N – 1)/2 vectors appear in
complex conjugate pairs. This is shown by example in Sec. 3.3 in
the context of vibration modes for a cyclic structure with a single
DOF per sector.

A key feature of the Fourier matrix is that it is unitary. This is
essentially a statement of orthogonality of each column of EN and
is captured by the following lemmas.

LEMMA 1 (Finite Geometric Series Identity). Let N 2 Zþ and
q 2 C. Then

XsþN�1

r¼s

qr ¼ qsð1� qNÞ
1� q

for any s 2 Z and q 6¼ 1. �

Proof. Consider the finite geometric series

XsþN�1

r¼s

qr ¼ qs þ qsþ1 þ qsþ2 þ � � � qsþN�1

¼ qsð1þ qþ q2 þ � � � þ qN�1Þ

Multiplying from the left by q yields

q
XsþN�1

r¼s

qr ¼ qsðqþ q2 þ q3 þ � � � þ qNÞ

Subtraction of the second equation from the first results in

ð1� qÞ
XsþN�1

r¼s

qr ¼ qsð1� qNÞ
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from which the proof is established by division of the term (1 – q)
because q 6¼ 1 by restriction. �

Lemma 1 is used to establish the following result, which is
required to show that the Fourier matrix is unitary. The orthogon-
ality condition is fundamental to the diagonalization of circulants
in Secs. 2.5.3–2.5.5, and the relationship between the DFT and
IDFT in Sec. 2.7.

LEMMA 2. Let wN be the primitive Nth root of unity with
N 2 Zþ. Then

XsþN�1

r¼s

w
rði�kÞ
N ¼ N; i� k ¼ mN

0; otherwise

�

for i; k 2 Z and any s;m 2 Z. �

Proof. Let q ¼ w
ði�kÞ
N ¼ e j 2pN ði�kÞ and note that qN¼ 1. If

i�k¼mN, then q ¼ ej2pm ¼ 1 for any integerm, and it follows that

XsþN�1

r¼s

w
rði�kÞ
N ¼

XsþN�1

r¼s

qr

¼ ð1Þs þ ð1Þsþ1 þ � � � þ ð1ÞsþN�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N terms

¼ N

For the case of i� k 6¼ mN it follows from Lemma 1 that

XN�1

r¼0

w
rði�kÞ
N ¼

XN�1

r¼0

qr

¼ 1� qN

1� q

¼ 1� 1

1� q

¼ 0

(Lem. 1)

which completes the proof. �

Example 11. Consider the orthogonality condition given by
Lemma 2 for s¼ 0. Then if i� k ¼ N ¼ 5,

X5�1

r¼0

wr�5
5 ¼

X4

r¼0

e j
2p
5


 �5r

¼
X4

r¼0

e j
2p
5
�5r

¼ e0 þ ej2p þ ej4p þ ej6p þ ej8p

¼ 1þ 1þ 1þ 1þ 1

¼ 5

which is numerically equal to N, as expected. If instead we set
i� k ¼ 5 but N¼ 4, then

X4�1

r¼0

wr�5
4 ¼

X3

r¼0

e j
2p
4


 �5r

¼
X3

r¼0

e j
2p
4
�5r

¼
X3

r¼0

e j
5p
2
r

¼ e
5p
2
�0 þ e

5p
2
�1 þ e

5p
2
�2 þ e

5p
2
�3

¼ e0 þ e
5p
2 þ e5p þ e

15p
2

¼ 1þ j� 1� j

¼ 0

sums to zero.

Lemma 2 allows for representations of the N�N identity, flip,
and cyclic forward shift matrices in terms of certain conditions on
their indices relative to N.

COROLLARY 8. For i; k ¼ 1;…;N and any integer m, the (i, k)
elements of the N�N identity, flip, and cyclic forward shift matri-
ces can be represented by the summations

dik ¼ ðINÞik ¼
1

N

XN�1

r¼0

w
rði�kÞ
N ¼

1; i� k ¼ mN

0; otherwise

(

ðjNÞik ¼
1

N

XN�1

r¼0

w
rðiþk�2Þ
N ¼

1; iþ k � 2 ¼ mN

0; otherwise

(

ðrNÞik ¼
1

N

XN�1

r¼0

w
rði�kþ1Þ
N ¼

1; i� k þ 1 ¼ mN

0; otherwise

(

where dik is the Kronecker delta. �

The reader can verify Corollary 8 for the special case of N¼ 3
by inspection of the arrays in Fig. 3.

We are now ready to state the key result required to diagonalize
a general circulant matrix. Corollaries 7 and 8 are used to show
that the Fourier matrix is unitary.

THEOREM 6 (Unitary Fourier Matrix). The Fourier matrix EN is
unitary. �

Proof. For 1 	 i; k 	 N, the (i, k) entry of EH
NEN is given by

EH
NEN

� �
ik
¼
XN

r¼1

ðEH
N ÞirðENÞrk

¼
XN

r¼1

1ffiffiffiffi
N

p w
�ði�1Þðr�1Þ
N

� 1ffiffiffiffi
N

p w
ðr�1Þðk�1Þ
N

¼ 1

N

XN

r¼1

w
ðr�1Þði�kÞ
N

¼ 1

N

XN�1

r¼0

w
rði�kÞ
N

(Eq. 15 and Cor. 7)

¼ INð Þik (Cor. 8)

from which it follows that EH
NEN ¼ IN . �

Example 12. Consider the matrix E4 from Example 9. Because
the Fourier matrix is unitary, it follows that

Fig. 3 Arrays showing the (i, k) elements of the (a) identity, (b)
flip, and (c) cyclic forward shift matrices of dimension N5 3 for
i, k5 1, 2, 3
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EH
4 E4 ¼

1ffiffiffi
4

p

1 1 1 1

1 �j �1 j

1 �1 1 �1

1 j �1 �j

2
6666664

3
7777775

1ffiffiffi
4

p

1 1 1 1

1 j �1 �j

1 �1 1 �1

1 �j �1 j

2
6666664

3
7777775

¼ 1

4

4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4

2
6666664

3
7777775

¼ I4

where I4 is the 4� 4 identity matrix.
The following corollaries follow from Theorem 6.
COROLLARY 9. If EN is the unitary Fourier matrix, then �EN is

also unitary. �

Proof. Note that EH
N ¼ �ET

N ¼ �EN because EN ¼ ET
N is symmet-

ric. It follows that

�EH
N
�EN ¼ ET

N
�EN

¼ EN
�EN

¼ ENE
H
N

¼ EH
NEN (Eq. 8)

¼ IN (Thm. 6)

which implies that �EN is unitary. �

Example 13. Consider the unitary matrix E4 from Example 12.
Corollary 9 guarantees that E4 is also unitary. Thus,

�EH
4
�E4 ¼

1ffiffiffi
4

p

1 1 1 1

1 �j �1 j

1 �1 1 �1

1 j �1 �j

2
6666664

3
7777775

1ffiffiffi
4

p

1 1 1 1

1 j �1 �j

1 �1 1 �1

1 �j �1 j

2
6666664

3
7777775

¼ 1

4

4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4

2
6666664

3
7777775

¼ I4

as expected.
COROLLARY 10. Let ei denote the ith column of the Fourier

matrix EN and dik be the Kronecker delta. Then

eHi ek ¼ dik

for i; k ¼ 1; 2;…;N. �

Proof. For i; k ¼ 1; 2;…;N, the (i, k) entry of EH
NEN can be

written as

eHi ek
� �

ik
¼ EH

NEN

� �
ik

¼ INð Þik (Thm. 6)

where IN is the N�N identity matrix. Thus, eHi ek ¼ dik. �

Corollary 10 shows that the columns (and rows) of the Fourier
matrix are mutually orthogonal. The result can also be proved by

expanding the product eHi ek according to Eq. (15) and invoking
Lemma 2, as is done in the proof of Theorem 6. The same result
also follows by expanding

EH
NEN ¼

eH1

..

.

eHi

..

.

eHN

2
6666666666664

3
7777777777775

e1 � � � ek � � � eN½ �

¼

eH1 e1 � � � eH1 ek … eH1 eN

..

. . .
. ..

. ..
.

eHi e1 � � � eHi ek � � � eHi eN

..

. ..
. . .

. ..
.

eHN e1 … eHN ek … eHN eN

2
6666666666664

3
7777777777775

¼ IN

(20)

which is a statement of unitary EN. The matrix equality holds only
if each eHi ek ¼ dik for i; k ¼ 1; 2;…N.

Example 14. Consider the vector e3 ¼ 1
2
ð1;�1; 1;�1ÞT from

Example 10. Then the product

eH3 e3 ¼
1

2
1 �1 1 �1½ � 1

2

1

�1

1

�1

2
6666664

3
7777775

¼ 1

4
ð1þ 1þ 1þ 1Þ

¼ 1

corresponds to d33 ¼ 1 in Corollary 10. However, the product

eH3 e2 ¼
1

2
1 �1 1 �1½ � 1

2

1

j

�1

�j

2
6666664

3
7777775

¼ 1

4
ð1� j� 1þ jÞ

¼ 0

vanishes because e2 and e3 are mutually orthogonal.
COROLLARY 11. If EN is the N�N Fourier matrix and IM is the

identity matrix of dimension M, then the NM�NM matrix
EN � IM is unitary. �

Proof. Consider the matrix product

ðEN � IMÞHðEN � IMÞ

¼ ðEH
N � IHMÞðEN � IMÞ (Eq. 6b)

¼ ðEH
NENÞ � ðIHMIMÞ (Eq. 4)

11



¼ IN � IM

¼ INM (Thm. 6)

where IN and INM are identity matrices of dimension N and NM,
respectively. �

COROLLARY 12. If ei denotes the ith column of the Fourier matrix
EN, IM is the identity matrix of dimension M, and dik is the Kro-
necker delta, then the NM�M matrices ei � IM are such that

ðei � IMÞHðek � IMÞ ¼ dikIM

for i; k ¼ 1; 2;…;N. �

Proof. Consider the matrix product

ðei � IMÞHðek � IMÞ ¼ ðeHi � IHMÞðek � IMÞ (Eq. 6b)

¼ ðeHi ekÞ � ðIHMIMÞ (Eq. 4)

¼ dik � IM (Cor. 10)

¼ dikIM

which completes the proof. �

Corollary 12 can also be obtained directly from Corollary 11 by
writing

EH
N � IM ¼

eH1

eH2

..

.

eHN

2
66666664

3
77777775

� IM ¼

eH1 � IM

eH2 � IM

..

.

eHN � IM

2
66666664

3
77777775

and

EN � IM ¼ ðe1; e2;…; eNÞ � IM

¼ ðe1 � IM; e2 � IM;…; eN � IMÞ

expanding these matrices similarly to Eq. (20), and setting the
result equal to INM ¼ diagðIM; IM;…; IMÞ.

Next we derive a relationship between the Fourier and flip
matrices.

THEOREM 7. Let EN and jN denote the N�N Fourier and flip
matrices, respectively. Then

E2
N ¼ jN ¼ EH

N

� �2
: �

Proof. We first shown that E2
N ¼ ENEN ¼ jN . For any inte-

ger m and i; k ¼ 1; 2;…;N, the (i, k) entry of ENEN is given
by

ENENð Þik ¼
XN

r¼1

ðENÞirðENÞrk

¼
XN

r¼1

1ffiffiffiffi
N

p w
ði�1Þðr�1Þ
N

1ffiffiffiffi
N

p w
ðr�1Þðk�1Þ
N (Eq. 15)

¼ 1

N

XN�1

r¼0

w
rðiþk�2Þ
N

¼ jNð Þik (Cor. 8)

from which it follows that E2
N ¼ jN . The result jN ¼ EH

N

� �2

follows from complex conjugation and transposition of

jN ¼ ENEN , and by invoking the properties jHN ¼ jN and

E2
N

� �H¼ EH
N

� �2
. �

A number of properties follow directly from Theorem 7.
COROLLARY 13. Let EN and jN be the N�N Fourier and flip

matrices. Then

(a) ENjN ¼ jNEN ;
(b) j2N ¼ IN or jN ¼ ffiffiffiffiffi

IN
p

; and
(c) E4

N ¼ IN or EN ¼ ffiffiffiffiffi
IN

4
p

where IN is the N�N identity matrix. �

Property (a) of Corollary 13 says that the flip and Fourier matri-
ces commute or, since EN is unitary, that jN is invariant under a
unitary transformation with respect to EN. Thus, jN is not diago-
nalizable by EN. Properties (b) and (c) give alternative definitions
of the flip and Fourier matrices. Moreover, because the power of a
diagonal matrix is obtained by raising each diagonal element to
the power in question, if follows that the eigenvalues of jN are
61 and those of EN are 61 and 6j, each with the appropriate
multiplicities.

2.5.3 Diagonalization of the Cyclic Forward Shift Matrix. In
light of Corollary 5, diagonalization of a general circulant or
block circulant matrix begins by diagonalizing the cyclic forward
shift matrix.

THEOREM 8. Let EN be the N�N Fourier matrix and rN be the
N�N cyclic forward shift matrix. Then

EH
N rNEN ¼ XN

is a diagonal matrix, whereXN is given by Definition 16. �

Proof. For i; k ¼ 1; 2;…;N, the (i, k) entry of ENXNE
H
N is given

by

ENXNE
H
N

� �
ik
¼
XN

r¼1

XN

p¼1

ðENÞipðXNÞprðEH
N Þrk

¼
XN

r¼1

XN

p¼1

1ffiffiffiffi
N

p w
ði�1Þðp�1Þ
N dprw

ðr�1Þ
N

� 1ffiffiffiffi
N

p w
�ðr�1Þðk�1Þ
N (Eq. 15)

¼ 1

N

XN

r¼1

w
ði�1Þðr�1Þ
N w

ðr�1Þ
N w�ðr�1Þðk�1Þ

¼ 1

N

XN

r¼1

w
ðr�1Þði�kþ1Þ
N

¼ 1

N

XN�1

r¼0

w
rði�kþ1Þ
N

¼ rNð Þik (Cor. 8)

from which it follows that ENXNE
H
N ¼ rN . The desired result fol-

lows by multiplying from the left by EH
N , multiplying from the

right by EN, and invoking Theorem 6. �

Theorem 8 implies that rN is unitarily similar to a diagonal ma-
trix whose diagonal elements are the distinct Nth root of unity
(i.e., Definition 16). Because the eigenvalues of a matrix are pre-
served under such a transformation (this is guaranteed by Theo-
rem 1), it follows that

aðrNÞ ¼ aðXNÞ ¼ f1;wN ;w
2
N ;…;wN�1

N g

where að�Þ denotes the matrix spectrum. The eigenvectors of the
circulant matrix rN are the linearly independent columns of
EN ¼ ðe1; e2;…; eNÞ, which are given by Definition 18. In fact,
all circulant matrices contained in CN share the same eigenvectors

12



ei, which is shown in Sec. 2.8. In light of Corollary 2, we have the
following results.

COROLLARY 14. Let EN and rN be the N�N Fourier and cyclic
forward shift matrices. Then for any n 2 Zþ,

EH
N r

n
NEN ¼ X

n
N

where XN given by Definition 16. �

COROLLARY 15. Let ei be the ith column of the Fourier matrix
EN and rN be cyclic forward shift matrix. Then for any n 2 Zþ
and i; k ¼ 1; 2;…N,

eHi r
n
Nek ¼ ðwi�1

N Þndik
¼ w

nði�1Þ
N dik

where dik is the Kronecker delta. �

Corollary 15 shows that the columns of the Fourier matrix are
orthogonal with respect to the cyclic forward shift matrix and its
powers. It is shown in Sec. 2.5.4 that they are in fact orthogonal
with respect to any circulant matrix.

2.5.4 Diagonalization of a Circulant.
Corollary 16. Let the matrix XN be populated with the distinct

Nth roots of unity according to Definition 16 and s be an arbitrary
square matrix. Then

qðXN ; sÞ ¼ diag
i¼1;…;N

ðqðwi�1
N ; sÞÞ

where qð�Þ is given by Definition 13. �

Proof. Consider the representation

qðXN ; sÞ ¼ qðdiagð1;wN ;w
2
N ;…;wN�1

N Þ; sÞ

¼
XN

k¼1

diagðw0�ðk�1Þ
N ;w

1�ðk�1Þ
N ;…;w

ðN�1Þðk�1Þ
N Þ � s

¼
XN

k¼1

diagðsw0�ðk�1Þ
N ; sw

1�ðk�1Þ
N ;…; sw

ðN�1Þðk�1Þ
N Þ

¼ diag
i¼1;…;N

XN

k¼1

sw
ði�1Þðk�1Þ
N

!

¼ diag
i¼1;…;N

ðqðwi�1
N ; sÞÞ

which is diagonal when s is a scalar and block diagonal when s is
a matrix. �

THEOREM 9 (Diagonalization of a Circulant). Let C 2 CN have
generating elements c1; c2;…; cN . Then if EN is the N�N Fourier
matrix,

EH
NCEN ¼

k1 0

k2

. .
.

0 kN

2
666664

3
777775

is a diagonal matrix. For i ¼ 1; 2;…;N, the diagonal elements
are

ki ¼ qðwi�1
N ; ckÞ ¼

XN

k¼1

ckw
ðk�1Þði�1Þ
N (21)

where wN is the primitive Nth root of unity and the function qð�Þ is
given by Definition 13. �

Proof. Consider the representation

C ¼ qðrN ; ckÞ (Cor. 5)

¼ qðENXNE
H
N ; ckÞ (Thm. 8)

¼ ENqðXN ; ckÞEH
N (Thms. 2 and 6)

where the last step follows directly from the proof of Theorem 2
and the polynomial term

qðXN ; ckÞ ¼ diag
i¼1;…;N

XN

k¼1

ckw
ðk�1Þði�1Þ
N

!

¼ diag
i¼1;…;N

ðqwi�1
N ; ckÞÞ

follows from Corollary 16 and Definition 13. The desired result is
obtained by multiplying from the left by EH

N , multiplying from the
right by EN, and invoking Theorem 6. �

Theorem 9 shows that the Fourier matrix EN diagonalizes any
N�N circulant matrix. As discussed in Sec. 2.8, the columns
e1; e2;…; eN of EN are the eigenvectors of C. The scalars ki in
Theorem 9 are the eigenvalues of C. Unlike the eigenvectors, they
depend on the elements (i.e., generating elements) of C. In fact,
Eq. (21) has the same form as the DFT of a discrete time series,
which is clear by comparing it to Definition 20 of Sec. 2.7. In this
case, ck ðk ¼ 1; 2;…;NÞ and kiði ¼ 1; 2;…;NÞ are analogous to a
discrete signal and its DFT, and are related by

k1

k2

..

.

kN

2
666664

3
777775
¼

ffiffiffiffi
N

p
EN

c1

c2

..

.

cN

2
666664

3
777775

(22)

which has the same form as the matrix–vector representation of
the DFT defined by Eq. (27) of Sec. 2.7. Thus, the eigenvalues ki
can be calculated directly using Eq. (21) or Eq. (22), which are
equivalent.

If the circulant matrix in Theorem 9 is also symmetric, the
eigenvalues are real-valued and certain ones are repeated, as
shown in Corollary 17.

COROLLARY 17. If C 2 SCN is a symmetric circulant, Eq. (21)
reduces to

ki ¼

c1 þ 2
XN=2

k¼2

ck cos
2pðk � 1Þði� 1Þ

N

� �

þ ð�1Þi�1
cNþ2

2
; N even

c1 þ 2
XðNþ1Þ=2

k¼2

ck cos
2pðk � 1Þði� 1Þ

N

� �
; N odd

8
>>>>>>>>><
>>>>>>>>>:

where the generating elements are given by Eq. (10). �

Proof. If N is even, the generating elements of C are given by

c1; c2;…; cN
2
; cNþ2

2
; cN

2
;…; c3; c2

and Eq. (21) reduces to

13



ki ¼
XN

k¼1

ckw
ðk�1Þði�1Þ
N

¼ c1w
0�ði�1Þ
N þ c2w

1�ði�1Þ
N þ c3w

2�ði�1Þ
N þ � � �

þ cN
2
w

N
2
�1ð Þði�1Þ

N þ cNþ2
2
w

Nþ2
2
�1ð Þði�1Þ

N

þ cN
2
w

Nþ4
2
�1ð Þði�1Þ

N þ � � �

þ c3w
ðN�1�1Þði�1Þ
N þ c2w

ðN�1Þði�1Þ
N

¼ c1 þ c2 w
ði�1Þ
N þ w

ðN�1Þði�1Þ
N


 �

þ c3 w
2ði�1Þ
N þ w

ðN�2Þði�1Þ
N


 �
þ � � �

þ cN
2

w
N�2
2
ði�1Þ

N þ w
N�N�2

2ð Þði�1Þ
N

� �
þ cNþ2

2
w

N
2
ði�1Þ

N

¼ c1 þ 2
XN=2

k¼2

ck cos
2pðk � 1Þði� 1Þ

N

� �
þ cNþ2

2
ð�1Þi�1

where the identity

w
kði�1Þ
N þ w

ðN�kÞði�1Þ
N ¼ 2 cos

2pk

N
ði� 1Þ

� �

is employed. If N is odd, the generating elements of C are given by

c1; c2;…; cN�1
2
; cNþ1

2
; cNþ1

2
; cN�1

2
;…; c3; c2

and Eq. (21) reduces similarly to the case for even N, which is left
as an exercise for the reader. �

The cosinusoidal nature of ki in Corollary 17 implies that k1 is
distinct for a symmetric circulant matrix C 2 SCN , but the
remaining elements ki ¼ kNþ2�i appear in repeated pairs. How-
ever, k Nþ2=2ð Þ is also distinct if N is even.

Example 15. Let C ¼ circð4;�1; 0;�1Þ 2 SC4 be a symmetric
circulant matrix. Then the product

EH
4 CE4 ¼

1ffiffiffi
4

p

1 1 1 1

1 �j �1 j

1 �1 1 �1

1 j �1 �j

2
6666664

3
7777775

4 �1 0 �1

�1 4 �1 0

0 �1 4 �1

�1 0 �1 4

2
6666664

3
7777775

� 1ffiffiffi
4

p

1 1 1 1

1 j �1 �j

1 �1 1 �1

1 �j �1 j

2
6666664

3
7777775

¼ 1

4

1 1 1 1

1 �j �1 j

1 �1 1 �1

1 j �1 �j

2
6666664

3
7777775

2 4 6 4

2 4j �6 �4j

2 �4 6 �4

2 �4j �6 4j

2
6666664

3
7777775

¼

2 0 0 0

0 4 0 0

0 0 6 0

0 0 0 4

2
6666664

3
7777775

¼ diagð2; 4; 6; 4Þ

is a diagonal matrix. The diagonal elements can be computed
directly using Eq. (21) for N¼ 4. For example,

k3 ¼
X4

k¼1

ckw
ðk�1Þð3�1Þ
4

¼ 4w
ð1�1Þð3�1Þ
4 þ ð�1Þwð2�1Þð3�1Þ

4

þ 0 � wð3�1Þð3�1Þ
4 þ ð�1Þwð4�1Þð3�1Þ

4

¼ 4ð1Þ � e j
2p
4
�2 þ 0� e j

2p
4
�6

¼ 4� ejp þ 0� ej�3p

¼ 4� ð�1Þ þ 0� ð�1Þ ¼ 6

which is recognized to be the third diagonal element of the matrix
product EH

4 CE4. Because C is a symmetric circulant matrix, Corol-
lary 17 can also be used. Observing that N¼ 4 is even, it follows that

k3 ¼ c1 þ 2
X4=2

k¼2

ck cos
2pðk � 1Þð3� 1Þ

4

� �
þ ð�1Þð3�1Þ

c4þ2
2

¼ 4þ 2 � ð�1Þ cos 2pð2� 1Þð3� 1Þ
4

� �
þ ð�1Þ2 � 0

¼ 4� 2 cos pþ 0

¼ 4� 2ð�1Þ þ 0 ¼ 6

as before. The eigenvalues and eigenvectors of C are discussed in
Example 24 of Sec. 2.8.
Example 16. Let C ¼ circð4;�1; 0; 1Þ 2 C4 be a nonsymmetric

circulant matrix. Then the product

EH
4 CE4 ¼

1ffiffiffi
4

p

1 1 1 1

1 �j �1 j

1 �1 1 �1

1 j �1 �j

2
666664

3
777775

4 �1 0 1

1 4 �1 0

0 1 4 �1

�1 0 1 4

2
666664

3
777775

� 1ffiffiffi
4

p

1 1 1 1

1 j �1 �j

1 �1 1 �1

1 �j �1 j

2
666664

3
777775

¼ 1

4

1 1 1 1

1 �j �1 j

1 �1 1 �1

1 j �1 �j

2
666664

3
777775

4 4� 2j 4 4þ 2j

4 2þ 4j �4 2� 4j

4 �4þ 2j 4 �4� 2j

4 �2� 4j �4 �2þ 4j

2
666664

3
777775

¼

4 0 0 0

0 4� 2j 0 0

0 0 4 0

0 0 0 4þ 2j

2
666664

3
777775

is a diagonal matrix. The diagonal elements are the eigenvalues of C,
which is stated explicitly for generalC in the following corollary. They
may be computed directly using Eq. (21), as it is done in Example 15,
but Corollary 17 cannot be used becauseC is not symmetric.

The eigenvalue magnitudes of the nonsymmetric matrix C in
Example 16 are observed to exhibit the same multiplicity (and
symmetry) as the eigenvalues in Example 15 for a symmetric cir-
culant. It is shown in Sec. 2.8.3 that the eigenvalues of any circu-
lant matrix C 2 CN with real-valued generating elements exhibit
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a certain symmetry about the so-called “Nyquist” component,
which is analogous to the DFT of a real-valued sequence. This is
because Eq. (22) represents the DFT of the generating elements
c1; c2;…; cN .

COROLLARY 18. Let ei be the ith column of the Fourier matrix
EN and C be a N�N circulant matrix. Then for i; k ¼ 1; 2;…;N,

eHi Cek ¼ kidik

where dik is the Kronecker delta and ki is defined by Eq. (21) for
C 2 CN or Corollary 17 if C 2 SCN . �

Thus, the columns of the Fourier matrix are mutually orthogo-
nal (Corollary 10) and orthogonal with respect to any circulant
matrix (Corollary 18), not just the cyclic forward shift matrix and
its integer powers (Corollary 15).

Example 17. Consider the circulant C ¼ circð4;�1; 0;�1Þ
from Example 15. Then

eH3 Ce3 ¼
1ffiffiffi
4

p 1 �1 1 �1½ �

4 �1 0 �1

�1 4 �1 0

0 �1 4 �1

�1 0 �1 4

2
6664

3
7775

1ffiffiffi
4

p

1

�1

1

�1

2
6664

3
7775

¼ 1

4
1 �1 1 �1½ �

6

�6

6

�6

2
6664

3
7775

¼ 1

4
� 24 ¼ 6

which is recognized to be the third diagonal element k3 of the ma-
trix EH

4 CE4 in Example 15. However, the scalar

eH3 Ce1 ¼
1ffiffiffi
4

p 1 �1 1 �1½ �

4 �1 0 �1

�1 4 �1 0

0 �1 4 �1

�1 0 �1 4

2
666664

3
777775

1ffiffiffi
4

p

1

1

1

1

2
666664

3
777775

¼ 1

4
1 �1 1 �1½ �

2

2

2

2

2
666664

3
777775

¼ 1

4
� 0 ¼ 0

vanishes, as expected, because i 6¼ k in Corollary 18 such that
dik ¼ 0.

2.5.5 Block Diagonalization of a Block Circulant. Theorem 9
is generalized to handle block circulants using the Fourier and
identity matrices together with the Kronecker product. The choice
of diagonalizing matrix EH

N � IM is discussed in Sec. 2.6, where
generalizations of Theorem 10 are considered.

THEOREM 10 (Block Diagonalization of a Block Circulant). Let
C 2 BCM;N and denote its M�M generating matrices by
C1;C2;…;CN . Then if EN is the N�N Fourier matrix and IM is
the identity matrix of dimension M,

ðEH
N � IMÞCðEN � IMÞ ¼

K1 0

K2

. .
.

0 KN

2
66664

3
77775

is a NM�NM block diagonal matrix. For i ¼ 1; 2;…;N, the
M�M diagonal blocks are

Ki ¼ qðwi�1
N ;CkÞ ¼

XN

k¼1

Ckw
ðk�1Þði�1Þ
N (23)

where wN is the primitive Nth root of unity and the function qð�Þ is
given by Definition 13. �

Proof. Consider the representation

C ¼
XN

k¼1

rk�1
N � Ck (Cor. 5)

¼
XN

k¼1

ðENX
k�1
N EH

N Þ � Ck (Cor. 14)

¼
XN

k¼1

ðEN � IMÞ X
k�1
N � Ck

� �
ðEH

N � IMÞ (Eq. 4)

¼ ðEN � IMÞqðXN ;CkÞðEH
N � IMÞ (Def. 13)

where

qðXN ;CkÞ ¼ diag
i¼1;…;N

XN

k¼1

Ckw
ðk�1Þði�1Þ
N

!

¼ diag
i¼1;…;N

ðqðwi�1
N ;CkÞÞ

follows from Corollary 16 and Definition 13. The desired result
follows by multiplying from the left by

ðEH
N � IMÞ ¼ ðEN � IMÞH

multiplying from the right by ðEN � IMÞ, and invoking Corollary
11. �

Thus, the unitary matrix EN � IM reduces any NM�NM block
circulant matrix with M�M blocks to a block diagonal matrix
with M�M diagonal blocks.

Example 18. Consider C ¼ circðA;B; 0;BÞ 2 BC2;4 from
Example 6. It can be block diagonalized via the transformation
ðEH

4 � I2ÞCðE4 � I2Þ. That is,

1ffiffiffi
4

p

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 �j 0 �1 0 j 0

0 1 0 �j 0 �1 0 j

1 0 �1 0 1 0 �1 0

0 1 0 �1 0 1 0 �1

1 0 j 0 �1 0 �j 0

0 1 0 j 0 �1 0 �j

�������������������������

3
77777777777777777775

C

�������������������������

�������������������������

2
66666666666666666664

� 1ffiffiffi
4

p

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 j 0 �1 0 �j 0

0 1 0 j 0 �1 0 �j

1 0 �1 0 1 0 �1 0

0 1 0 �1 0 1 0 �1

1 0 �j 0 �1 0 j 0

0 1 0 �j 0 �1 0 j

�������������������������

3
77777777777777777775

�������������������������

�������������������������

2
66666666666666666664

¼ diag
0 �1

�1 0

" #
;

2 �1

�1 2

" #
;

4 �1

�1 4

" #
;

2 �1

�1 2

" #!
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which is a block diagonal matrix with 2� 2 diagonal blocks. The
eigenvalues and eigenvectors of C are discussed in Example 25 of
Sec. 2.8.

COROLLARY 19. Let C 2 BCM;N have M�M generating matri-
ces C1;C2;…;CN and Ki be defined by Eq. (23). Then if each Ci

is symmetric, it follows that Ki is symmetric for i ¼ 1; 2;…;N. �
Proof. If each Ck is symmetric for k ¼ 1; 2;…;N, then so too

are the matrices Ckw
ðk�1Þði�1Þ
N for each i because w

ðk�1Þði�1Þ
N is a

scalar. Moreover, the sum and difference of two symmetric matri-
ces is again symmetric. If follows that

Ki ¼
XN

k¼1

Ckw
ðk�1Þði�1Þ
N

is symmetric for i ¼ 1; 2;…;N. �

COROLLARY 20. Let C 2 BCM;N be a NM�NM block circulant
matrix. Then for i; k ¼ 1; 2;…;N,

ðeHi � IMÞCðek � IMÞ ¼ Kidik

where Ki is defined by Eq. (23). �

Example 19. Consider C ¼ circðA;B; 0;BÞ 2 BC2;4 from
Examples 6 and 18. Then

ðeH3 � I2ÞCðe3 � I2Þ ¼
1ffiffiffi
4

p 1 �1 1 �1½ � � 1 0

0 1

� �� �
C

� 1ffiffiffi
4

p

1

�1

1

�1

2
6664

3
7775� 1 0

0 1

� �
0
BBB@

1
CCCA

¼ 4 �1

�1 4

� �

is the third 2� 2 block of the block diagonal matrix obtained in
Example 18.

2.6 Generalizations. Let ð�Þ
 denote an arbitrary operation
that takes a square matrix as its argument and returns another
square matrix with the same dimension. For example, the opera-
tion could denote a matrix inverse such that ð�Þ
 ¼ ð�Þ�1

. Let ð�Þ#
be another arbitrary matrix operation with the same restrictions
(i.e., returns another square matrix with the same dimension).
Then if C 2 BCM;N has generating matrices C1;C2;…;CN , it fol-
lows that

ðA
 � B#ÞCðA� BÞ

¼ ðA
 � B#Þ
XN

k¼1

rk�1
N � Ck

!
ðA� BÞ (Cor. 5)

¼
XN

k¼1

ððA
rk�1
N Þ � ðB#CkÞÞðA� BÞ (Eq. 4)

¼
XN

k¼1

ðA
rk�1
N AÞ � ðB#CkBÞ (Eq. 4)

for any matrices A 2 C
N�N

and B 2 C
M�M

. The importance of
this result is that C can be decomposed into a summation of direct
products of two separate equivalence transformations, one that
operates on the cyclic forward shift matrix and the other on the
generating matrices of C. This decomposition justifies the diago-
nalizing matrix used in Sec. 2.5, motivates some generalizations

of Theorem 10, and aids in proving orthogonality relationships for
the cyclic eigenvalue problems described in Sec. 2.8.

In light of Corollary 14, it is clear that the choice of A ¼ EN

and ð�Þ
 ¼ ð�ÞH accomplishes block diagonalization of a matrix
C 2 BCM;N . Then if B ¼ IM, the appropriate diagonalizing matrix

to block decouple C without operating on its generating matrices

is EN � IM (see Theorem 10). However, if B and ð�Þ# are kept
general, we have the following result.

THEOREM 11. Let C 2 BCM;N have M�M generating matrices
C1;C2;…;CN and EN be the N�N Fourier matrix. Then for an
arbitrary matrix B 2 C

M�M and operator ð�Þ#,

ðEH
N � B#ÞCðEN � BÞ ¼

W1 0
W2

. .
.

0 WN

2
6664

3
7775

is a block diagonal matrix, where

Wi ¼ qðwi�1
N ;B#CkBÞ ¼

XN

k¼1

B#CkBw
ðk�1Þði�1Þ
N (24)

is the ith M�M diagonal block for i ¼ 1; 2;…;N. �

COROLLARY 21. Let C 2 BCM;N be a NM�NM block circulant
matrix, B 2 C

M�M be an arbitrary square matrix, and ð�Þ# denote
an arbitrary operation that takes a square matrix as its argument
and returns another square matrix with the same dimension. Then
for i; k ¼ 1; 2;…;N,

ðeHi � B#ÞCðek � BÞ ¼ Widik

where Wi is defined by Eq. (24). �

Theorem 11 is useful if there exists an equivalence transforma-
tion B#CkB that simplifies each of the generating matrices. For
example, if each Ck is a circulant of type M, then the additional
choice of B ¼ EM and ð�Þ# ¼ ð�ÞH fully diagonalizes a block cir-
culant matrix C 2 BCN;M with circulant blocks.

COROLLARY 22. Let C 2 BCM;N have generating matrices
C1;C2;…;CN 2 CM and denote the generating elements of each

Ci by c
ð1Þ
i ; c

ð2Þ
i ;…; c

ðMÞ
i . Then

ðEH
N � EH

MÞCðEN � EMÞ ¼ diag
i¼1;…;N

k
ð1Þ
i 0

k
ð2Þ
i

. .
.

0 k
ðMÞ
i

2
6666664

3
7777775

is a NM�NM diagonal matrix, where

k
ðpÞ
i ¼

XN

k¼1

XM

l¼1

c
ðlÞ
k w

ðl�1Þðp�1Þ
M w

ðk�1Þði�1Þ
N (25)

is the pth diagonal element of the ith M�M block for
i ¼ 1; 2;…;N and p ¼ 1; 2;…;M. �

Corollary 22 shows that the NM-dimensional eigenvectors q
ðpÞ
i

of C are the columns of EN � EM. This is in contrast to rotation-
ally periodic structures, where q is partitioned into N M-vectors
corresponding to each sector and decomposed into a set of N
reduced-order eigenvalue problems described in Sec. 2.8.

Example 20. Consider C ¼ circðA;B; 0;BÞ 2 BC2;4 from
Examples 6, 18, and 19. Because each of its generating matrices is
a circulant, that is, ðA;B; 0Þ 2 C2, the block circulant C is diagon-
alized via the transformation
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ðEH
4 �EH

2 ÞCðE4�E2Þ ¼
1ffiffiffi
4

p

1 1 1 1

1 �j �1 j

1 �1 1 �1

1 j �1 �j

2
666664

3
777775
�

1 1

1 j

" #
0
BBBBB@

1
CCCCCA
C

� 1ffiffiffi
4

p

1 1 1 1

1 j �1 �j

1 �1 1 �1

1 �j �1 j

2
666664

3
777775
�

1 1

1 �j

" #
0
BBBBB@

1
CCCCCA

¼

�1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 3 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 5 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 3

�����������������������

3
777777777777777775

�����������������������

�����������������������

2
666666666666666664

from which is follows that aðCÞ ¼ f�1; 1; 1; 3; 3; 5; 1; 3g. Observ-
ing that

c
ð1Þ
1 ¼ 2; c

ð1Þ
2 ¼ �1; c

ð1Þ
3 ¼ 0; c

ð1Þ
4 ¼ �1

c
ð2Þ
1 ¼ �1; c

ð2Þ
2 ¼ 0; c

ð2Þ
3 ¼ 0; c

ð2Þ
4 ¼ 0

9
=
;

are the generating elements of C, the NM ¼ 4 � 2 ¼ 8 diagonal
elements can be calculated directly using Eq. (25). For example,
the second diagonal element (p¼ 2) of the third 4� 4 diagonal
block (i¼ 3) is given by

k
ð2Þ
3 ¼ c

ð1Þ
1 w

ð1�1Þð2�1Þ
2 w

ð1�1Þð3�1Þ
4 þ c

ð2Þ
1 w

ð2�1Þð2�1Þ
2 w

ð1�1Þð3�1Þ
4

þ c
ð1Þ
2 w

ð1�1Þð2�1Þ
2 w

ð2�1Þð3�1Þ
4 þ c

ð2Þ
2 w

ð2�1Þð2�1Þ
2 w

ð2�1Þð3�1Þ
4

þ c
ð1Þ
3 w

ð1�1Þð2�1Þ
2 w

ð3�1Þð3�1Þ
4 þ c

ð2Þ
3 w

ð2�1Þð2�1Þ
2 w

ð3�1Þð3�1Þ
4

þ c
ð1Þ
4 w

ð1�1Þð2�1Þ
2 w

ð4�1Þð3�1Þ
4 þ c

ð2Þ
4 w

ð2�1Þð2�1Þ
2 w

ð4�1Þð3�1Þ
4

¼ ð2Þð1Þð1Þ þ ð�1Þð�1Þð1Þ
þ ð�1Þð1Þð�1Þ þ ð0Þð�1Þð�1Þ
þ ð0Þð1Þð1Þ þ ð0Þð�1Þð1Þ
þ ð�1Þð1Þð�1Þ þ ð0Þð�1Þð�1Þ

¼ 5

The reader can compare this matrix decomposition to the results
in Example 25 of Sec. 2.8.1. Finally, the eigenvectors q

ðpÞ
i are the

columns of E4 � E2 and are stated explicitly in Example 25.

2.7 Relationship to the Discrete Fourier Transform.
Before turning to the circulant eigenvalue problem, we consider a
somewhat tangential but relevant subject on the DFT and its
inverse, which are central to the analysis of experimental data in a
wide range of fields, including mechanical vibrations. In this
detour we show that computation of the DFT is, in fact, a multipli-
cation of an N-vector of discrete signal samples by the Fourier
matrix and a constant cf. The IDFT is similarly defined using the
Hermitian of the Fourier matrix and a constant ci, where
cf ci ¼ 1=N. More importantly, it is shown that the DFT

computation is exactly analogous to the determination of the
eigenvalues of a circulant matrix given its generating elements.
We begin by defining the DFT sinusoids, which provide a conven-
ient means of representing the DFT of a discretized signal, and
then develop the relationships of interest for the DFT and the
IDFT. We present only the basic results as they relate to the
theory and mathematics of circulants. The reader can find a vast
literature on related topics [89–91,102–110].

DEFINITION 19 (DFT Sinusoids). Let wk
N denote the distinct Nth

roots of unity, where wN ¼ e j 2p
N is the primitive root. Then the

DFT sinusoids are

SkðrÞ ¼ ðwk
NÞr ¼ wkr

N ¼ e j 2p
N
kr

for k; r ¼ 0; 1;…;N � 1. �

COROLLARY 23. The DFT sinusoids are orthogonal. �

Proof. Consider the DFT sinusoids

SiðrÞ ¼ e j
2p
N
ir

SkðrÞ ¼ e j
2p
N
kr

)
; i; k; r ¼ 0; 1;…;N � 1

The inner product of Si(r) and Sk(r) is given by

hSiðrÞ; SkðrÞi ¼
XN�1

r¼0

SiðrÞSkðrÞ

¼
XN�1

r¼0

wir
Nw

kr
N (Def. 19)

¼
XN�1

r¼0

wir
Nw

�kr
N (Cor. 7)

¼
XN�1

r¼0

w
rði�kÞ
N

¼
N; i ¼ k

0; otherwise

(
(Lem. 2)

which shows that the DFT sinusoids are orthogonal. �

The Fourier matrix in Definition 17 can be written element
wise as

ðENÞik ¼
1ffiffiffiffi
N

p w
ðk�1Þði�1Þ
N

¼ 1ffiffiffiffi
N

p e j 2pN ðk�1Þði�1Þ

¼ 1ffiffiffiffi
N

p Si�1ðk � 1Þ ¼ 1ffiffiffiffi
N

p Sk�1ði� 1Þ

for each i; k ¼ 1; 2;…;N. It follows that

EN ¼ 1ffiffiffiffi
N

p

S0ð0Þ S0ð1Þ … S0ðN � 1Þ
S1ð0Þ S1ð1Þ … S1ðN � 1Þ
S2ð0Þ S2ð1Þ … S2ðN � 1Þ

..

. ..
. . .

. ..
.

SN�1ð0Þ SN�1ð1Þ … SN�1ðN � 1Þ

2
6666666664

3
7777777775

¼ 1ffiffiffiffi
N

p WN (26)

is a representation of the Fourier matrix in terms of the DFT sinu-
soids, where WN is the DFT sinusoid matrix. The DFT is formally
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defined next and subsequently reformulated in terms of a matrix
multiplication involvingWN.

DEFINITION 20 (DFT). Let x(i) denote a finite sequence with indi-
ces i ¼ 1; 2;…;N. Then for k ¼ 1; 2;…;N, the DFT of x(i) is the
sequence

XðkÞ ¼
XN

i¼1

xðiÞe j 2pN ði�1Þðk�1Þ

¼
XN

i¼1

xðiÞwði�1Þðk�1Þ
N

¼
XN

i¼1

xðiÞSi�1ðk � 1Þ

where wN is the primitive Nth root of unity and SiðkÞ ¼ wik
N is a

DFT sinusoid. �

The DFT preserves the units of x(i). That is, if x(i) has engineer-
ing units EU, then the units of X(k) are also EU. This is clear from
Definition 20, where the exponential function is dimensionless.

Expanding each X(k) in Definition 20 yields

Xð1Þ ¼ xð1ÞS0ð0Þ þ � � � þ xðNÞS0ðN � 1Þ
Xð2Þ ¼ xð1ÞS1ð0Þ þ � � � þ xðNÞS1ðN � 1Þ

..

.

XðkÞ ¼ xð1ÞSi�1ð0Þ þ � � � þ xðNÞSi�1ðN � 1Þ

..

.

XðNÞ ¼ xð1ÞSN�1ð0Þ þ � � � þ xðNÞSN�1ðN � 1Þ

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

If the discrete samples x(i) and corresponding sequence of DFTs
X(k) are assembled into the configuration vectors

xN ¼ ðxð1Þ; xð2Þ;…; xðNÞÞT

XN ¼ ðXð1Þ;Xð2Þ;…;XðNÞÞT

)

then the DFT of xN can be represented in the matrix–vector form

XN ¼ WNxN (27)

where WN ¼
ffiffiffiffi
N

p
EN follows from Eq. (26). Thus, the DFT com-

putation is simply a multiplication of the configuration vector xN
with the DFT sinusoid matrix WN and constant cf¼ 1. Equation
(27) has exactly the same form as Eq. (22), where the generating
elements of a circulant matrix are analogous to the sequence of
signals x(i) and the resulting eigenvalues are analogous to the
sequence of DFTs X(k).

Example 21. Consider the configuration vector of samples
x4 ¼ ð0; 1; 2; 3ÞT. The DFT of x4 follows from Eq. (27) with
N¼ 4 and is given by

X4 ¼ W4x4

¼

S0ð0Þ S0ð1Þ S0ð2Þ S0ð3Þ
S1ð0Þ S1ð1Þ S1ð2Þ S1ð3Þ
S2ð0Þ S2ð1Þ S2ð2Þ S2ð3Þ
S3ð0Þ S3ð1Þ S3ð2Þ S3ð3Þ

2
66664

3
77775

xð1Þ
xð2Þ
xð3Þ
xð4Þ

2
66664

3
77775

¼

1 1 1 1

1 �j �1 j

1 �1 1 �1

1 j �1 �j

2
66664

3
77775

0

1

2

3

2
66664

3
77775

¼ ð6;�2þ 2j;�2;�2� 2jÞT

where W4 ¼
ffiffiffi
4

p
E4 follows from Example 9 or by elementwise

direct computation according to Definition 19. Alternatively, each
element X(k) of X4 can be computed using the summation given
in Definition 20. If k¼ 3, for example,

Xð3Þ ¼
X4

i¼1

xðiÞe j 2p
4
ði�1Þð3�1Þ

¼
X4

i¼1

xðiÞejpði�1Þ

¼ xð1Þejp�0 þ xð2Þejp�1 þ xð3Þejp�2 þ xð4Þejp�3

¼ ð0Þð1Þ þ ð1Þð�1Þ þ ð2Þð1Þ þ ð3Þð�1Þ

¼ 0� 1þ 2� 3

¼ �2

which is the third element of X4, as expected. Results for k¼ 1, 2,
4 follow similarly.

If XN is known, the N-vector xN is recovered from Eq. (27) by
multiplying from the left by EH

N and invoking Theorem 6. Then

EH
NXN ¼ EH

NWNxN (Eq. 27)

¼ EH
N

ffiffiffiffi
N

p
EN


 �
xN (Eq. 26)

¼
ffiffiffiffi
N

p
EH
NENxN

¼
ffiffiffiffi
N

p
INxN (Thm. 6)

¼
ffiffiffiffi
N

p
xN

and it follows that

xN ¼ 1ffiffiffiffi
N

p EH
NXN ¼ 1

N
WH

NXN (28)

is a matrix–vector representation of the IDFT of XN. That is, the
IDFT computation is simply a matrix multiplication of XN with
the Hermitian of WN and constant ci ¼ 1=N such that cf ci ¼ 1=N.
In light of Corollary 7, Eq. (28) can be written as

xð1Þ
xð2Þ

..

.

xðNÞ

2
6666664

3
7777775
¼ 1

N

S0ð0Þ S0ð1Þ … S0ðN � 1Þ
S1ð0Þ S1ð1Þ … S1ðN � 1Þ

..

. ..
. . .

. ..
.

SN�1ð0Þ SN�1ð1Þ … SN�1ðN � 1Þ

2
66666664

3
77777775

Xð1Þ
Xð2Þ

..

.

XðNÞ

2
6666664

3
7777775

Expanding each row yields

xð1Þ ¼ 1

N
ðXð1ÞS0ð0Þ þ � � � þ XðNÞS0ðN � 1ÞÞ

xð2Þ ¼ 1

N
ðXð1ÞS1ð0Þ þ � � � þ XðNÞS1ðN � 1ÞÞ

..

.

xðiÞ ¼ 1

N
ðXð1ÞSk�1ð0Þ þ � � � þ XðNÞSk�1ðN � 1ÞÞ

..

.

xðNÞ ¼ 1

N
ðXð1ÞSN�1ð0Þ þ � � � þ XðNÞSN�1ðN � 1ÞÞ

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

which provides an alternative representation of the IDFT.
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DEFINITION 21 (IDFT). Let the sequence X(k) be defined accord-
ing to Definition 20. Then for each i ¼ 1; 2;…;N, the IDFT of
X(k) is the sequence

xðiÞ ¼ 1

N

XN

k¼1

XðkÞSk�1ði� 1Þ

¼ 1

N

XN

k¼1

XðkÞw�ði�1Þðk�1Þ
N

¼ 1

N

XN

k¼1

XðkÞe�j 2pN ði�1Þðk�1Þ

where wN is the primitive Nth root of unity and SiðkÞ ¼ wik
N is a

DFT sinusoid. �

The IDFT preserves the units of X(k). If X(k) has engineering
units EU, then the units of x(i) are also EU. This is clear from Def-
inition 21, where the exponential function is dimensionless, as is
the number N.

Example 22. Reconsider Example 21, where it is shown that the

DFT of x4 ¼ ð0; 1; 2; 3ÞT is the four-vector X4 ¼ ð6;�2þ 2j;

�2;�2� 2jÞT. The IDFT of X4 follows from Eq. (28) with N¼ 4
and is given by

x4 ¼
1

N
WH

4 X4

¼ 1

N

S0ð0Þ S0ð1Þ S0ð2Þ S0ð3Þ

S1ð0Þ S1ð1Þ S1ð2Þ S1ð3Þ

S2ð0Þ S2ð1Þ S2ð2Þ S2ð3Þ

S3ð0Þ S3ð1Þ S3ð2Þ S3ð3Þ

2
6666664

3
7777775

Xð1Þ

Xð2Þ

Xð3Þ

Xð4Þ

2
6666664

3
7777775

¼ 1

4

1 1 1 1

1 j �1 �j

1 �1 1 �1

1 �j �1 j

2
6666664

3
7777775

6

�2þ 2j

�2

�2� 2j

2
6666664

3
7777775

¼ 1

4
ð0; 4; 8; 12ÞT

¼ ð0; 1; 2; 3ÞT

which is the same four-vector from Example 21. Alternatively,
each element x(i) of x4 can be computed using the summation
given in Definition 21. If i¼ 3, for example,

xð3Þ ¼ 1

4

X4

k¼1

XðkÞe�j 2p
4
ð3�1Þðk�1Þ

¼ 1

4
Xð1Þe�jp�0 þ Xð2Þe�jp�1 þ Xð3Þe�jp�2 þ Xð4Þe�jp�3� �

¼ 1

4
ð6Þð1Þ þ ð�2� 2jÞð�1Þ þ ð�2Þð1Þ þ ð�2þ 2jÞð�1Þð Þ

¼ 2

which is the third element of x4, as expected. Results for k¼ 1, 2,
4 follow similarly.

There are other suitable definitions of the DFT/IDFT pair. For
example, the signs of the exponents are irrelevant as long as they
are opposite in the DFT and IDFT. To see this, suppose that the
sign of the exponential in Definition 20 is negative instead of

positive. Then each entry Sk(r) in WN is replaced with �SkðrÞ to
produce WN (see Corollary 7), and the DFT is instead given by

XN ¼ WNxN (29)

The corresponding IDFT takes the form

xN ¼ 1

N
W

H
NXN (30)

which follows in the same way as Eq. (28) by replacing EN with
EN and invoking Corollary 9. Similarly, the multiplicative con-
stants that define the DFT/IDFT pair are arbitrary as long as the
product of the constants is equal to 1/N. This is important for
applications involving a transformation of data to the frequency
domain for analysis and then back to the time domain for results.
However, the multiplicative constant is irrelevant if the analysis
goal is only to identify periodicities in a data set (e.g., frequencies
that correspond to amplification of a structural response).

Thus, Definitions 20 and 21 form a representation of the DFT/
IDFT pair, where Eqs. (27) and (28) are the corresponding
matrix–vector forms. The DFT and IDFT pair can be written in
the general form

XðkÞ ¼ cf
XN

i¼1

xðiÞe6j 2pN ði�1Þðk�1Þ (31a)

xðiÞ ¼ ci
XN

k¼1

XðkÞe�j 2p
N
ði�1Þðk�1Þ (31b)

where ci and cf are such that cf ci ¼ 1=N but are otherwise arbi-
trary. Common choices are fcf ; cig ¼ f1=

ffiffiffiffi
N

p
; 1=

ffiffiffiffi
N

p
g or

fcf ; cig ¼ f1; 1=Ng, where the multiplicative constants in the
matrix–vector formulation (i.e., Eqs. (27) and (28) or Eqs. (29)
and (30)) are adjusted accordingly.

If the generally complex sequences x(i) and X(k) are dissected
into their real and imaginary parts, the DFT/IDFT pair is repre-
sented by

xðiÞ ¼ xRðiÞ þ jxIðiÞ (32a)

XðkÞ ¼ XRðkÞ þ jXIðkÞ (32b)

where the subscripts R and I denote the real and imaginary parts
and each sequence pair ðxRðiÞ; xIðiÞÞ and ðXRðkÞ;XIðkÞÞ is real for
i; k ¼ 1; 2;…;N. An alternative representation of the DFT and
IDFT is obtained by substituting Eq. (32) in Definition 20, writing
the complex exponential in terms of sines and cosines, and col-
lecting the real and imaginary terms. The result is

XRðkÞ ¼
XN

i¼1

xRðiÞ cos
2pði� 1Þðk � 1Þ

N

� ��

� xIðiÞ sin
2pði� 1Þðk � 1Þ

N

� ��
(33a)

XIðkÞ ¼
XN

i¼1

xRðiÞ sin
2pði� 1Þðk � 1Þ

N

� ��

þ xIðiÞ cos
2pði� 1Þðk � 1Þ

N

� ��
(33b)

which together form the DFT of x(i) according to Eq. (32b). A
similar relationship for the IDFT is obtained by substituting
Eq. (32) into Definition 21 and collecting the real and imaginary
terms. Then
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xRðiÞ ¼ þ 1

N

XN

i¼1

XRðkÞ cos
2pði� 1Þðk � 1Þ

N

� ��

þ XIðkÞ sin
2pði� 1Þðk � 1Þ

N

� ��
(34a)

xIðiÞ ¼ � 1

N

XN

i¼1

XRðkÞ sin
2pði� 1Þðk � 1Þ

N

� ��

�XIðkÞ cos
2pði� 1Þðk � 1Þ

N

� ��
(34b)

together form the IDFT of X(k) according to Eq. (32a). The DFT/
IDFT pair defined by Eqs. (32)–(34) are equivalent to Definitions
20 and 21.

Example 23. Reconsider Example 21, where it is shown that the
DFT of x4 ¼ ð0; 1; 2; 3ÞT is the four-vector X4 ¼ ð6;�2� 2j;
�2;�2þ 2jÞT. Because x4 is real, Eq. (33) can be used to com-
pute each XðkÞ ¼ XRðkÞ þ jXIðkÞ for k¼ 1, 2, 3, 4. If k¼ 2, for
example, the real and imaginary DFT components are given by

XRð2Þ ¼
X4

i¼1

xRðiÞcos
2pði� 1Þð2� 1Þ

4

� �

¼ 0 � cos 2pð1� 1Þð1Þ
4

� �
þ 1 � cos 2pð2� 1Þð1Þ

4

� �

þ 2 � cos 2pð3� 1Þð1Þ
4

� �
þ 3 � cos 2pð4� 1Þð1Þ

4

� �

¼ 0 � cos 0p

2

� �
þ 1 � cos 1p

2

� �
þ 2 � cos 2p

2

� �
þ 3 � cos 3p

2

� �

¼ ð0Þð1Þþ ð1Þð0Þþ ð2Þð�1Þþ ð3Þð0Þ
¼ �2

XIð2Þ ¼
X4

i¼1

xRðiÞ sin
2pði� 1Þð2� 1Þ

4

� �

¼ 0 � sin 0p

2

� �
þ 1 � sin 1p

2

� �
þ 2 � sin 2p

2

� �
þ 3 � sin 3p

2

� �

¼ ð0Þð0Þ þ ð1Þð1Þ þ ð2Þð0Þ þ ð3Þð�1Þ
¼ �2

such that Xð2Þ ¼ �2� 2j, as expected. Results for k¼ 1, 3, 4 fol-
low similarly.

2.8 The Circulant Eigenvalue Problem. The eigenvalues
and eigenvectors of circulants and block circulants with circulant
blocks have thus far been inferred from Theorem 9 (circulant matrix)
and Corollary 22 (block circulant matrix with circulant blocks),
where these matrices are fully diagonalized. Determination of the
eigenvalues and eigenvectors of a block circulant matrix with gener-
ally noncirculant and nonsymmetric blocks is systematically
described here, which reinforces the results already obtained for the
special cases of C 2 CN and C 2 BCM;N with circulant generating
matrices. The standard cEVP is discussed in Sec. 2.8.1, where an
eigensolution is obtained for a general matrix C 2 BCM;N . Section
2.8.2 generalizes these results to handle (M,K) systems with system
matrices contained inBCM;N , which arise naturally in vibration stud-
ies of rotationally periodic structures. The structure of the eigenval-
ues and eigenvectors is discussed in Sec. 2.8.3, which builds upon
the relationship to the DFT described in Sec. 2.7. Section 2.8.4 intro-
duces fundamental orthogonality conditions for the special case of
block circulants with symmetric generating matrices.

2.8.1 Standard Circulant Eigenvalue Problem. Consider the
block circulant matrix C 2 BCM;N with arbitrary generating mat-
rices C1;C2;…;CN . The standard cEVP involves determination

of the scalar eigenvalues k and NM� 1 eigenvectors q of C such
that

0NM ¼ C� kINMð Þq (35)

where 0NM is a NM� 1 vector of zeros and INM is the identity ma-
trix of dimension NM. The problem can be simplified consider-
ably by exploiting the block circulant nature of C. To this end,
partition q ¼ q1;q2;…; qNð ÞT into M� 1 vectors qi ði ¼ 1;…;NÞ
and introduce the change of coordinates

q ¼ ðEN � IMÞu (36)

where IM is theM�M identity matrix (same dimension as the gener-
ating matrices of C) and u ¼ u1; u2;…;uNð ÞT is composed of N M-
vectors ui. Substituting Eq. (36) into Eq. (35) and multiplying from
the left by the unitary matrix ðEN � IMÞH ¼ ðEH

N � IMÞ yields

0NM ¼ ðEH
N � IMÞ C� kINMð ÞðEN � IMÞu

¼ ðEH
N � IMÞCðEN � IMÞ

�

�kðEH
N � IMÞINMðEN � IMÞ

�
u

¼

K1 0

K2

. .
.

0 KN

2
6666664

3
7777775
� k

IM 0

IM

. .
.

0 IM

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

u1

u2

..

.

uN

2
6666664

3
7777775

which follows from Theorem 10, and from

ðEH
N � IMÞINMðEN � IMÞ ¼ ðEN � IMÞHðEN � IMÞ

¼ INM

¼ diag ðIM; IM;…; IMÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
N terms

in light of Corollary 11. Thus, the single eigenvalue problem
defined by Eq. (35) is decomposed into the N reduced-order stand-
ard EVPs

0M ¼ Ki � kIMð Þui; i ¼ 1; 2;…;N (37)

where 0M is a M� 1 vector of zeros and each Ki is defined by Eq.
(23) in terms of the generating matrices of C. Because the transforma-
tion defined by Eq. (36) is unitary, it preserves the eigenvalues of C.
Thus, the NM eigenvalues of C are the eigenvalues of the N M�M
matrices Ki, which follow from the characteristic polynomials

detðKi � kIMÞ ¼ 0; i ¼ 1; 2;…;N (38)

If k ¼ k
ðpÞ
i denotes the pth eigenvalue of the ith matrix Ki for

p ¼ 1; 2;…;M, then the attendant M� 1 eigenvector u
ðpÞ
i is

obtained from Eq. (37). The corresponding NM� 1 eigenvector of
C follows from Eq. (36) and is given by

q
ðpÞ
i ¼ ðEN � IMÞ 0M;…; u

ðpÞ
i ;…; 0M


 �T

¼ e1;…; ei;…; eNð Þ � IMð Þ 0M;…;u
ðpÞ
i ;…; 0M


 �T

¼ e1 � IM;…; ei � IM;…eN � IMð Þ

� 0M;…; u
ðpÞ
i ;…; 0M


 �T

¼ ðei � IMÞuðpÞi

¼ ei � u
ðpÞ
i

(39)

20



for i ¼ 1; 2;…;N and p ¼ 1; 2;…;M. If the scalars a
ðpÞ
i are such

that each

~u
ðpÞ
i ¼ a

ðpÞ
i u

ðpÞ
i (40)

is orthonormal with respect to Ki, then the corresponding ortho-
normal eigenvectors of C are given by

~q
ðpÞ
i ¼ ei � ~u

ðpÞ
i

¼ ei � a
ðpÞ
i u

ðpÞ
i


 �

¼ a
ðpÞ
i ei � u

ðpÞ
i


 �

¼ a
ðpÞ
i q

ðpÞ
i

(41)

for i ¼ 1; 2;…;N and p ¼ 1; 2;…;M.
If C is an ordinary (not block) circulant with M¼ 1, Eq. (41)

reduces to

~q
ð1Þ
i ¼ q

ð1Þ
i ¼ ei � 1 ¼ ei; ðM ¼ 1Þ (42)

which confirms that all circulants contained in CN share the same
N� 1 eigenvectors e1; e2;…; eN , and each ei is orthonormal with
respect to C. The eigenvalues of a matrix C 2 CN with generating
elements c1; c2;…; cN are given by Eq. (21), or equivalently by
Eq. (22). If C 2 SCN , the eigenvalues follow from Corollary 17.

Example 24. Consider C ¼ circð4;�1; 0;�1Þ 2 C4 from
Examples 15 and 17, where it is shown that

EH
4 CE4 ¼ diagð2; 4; 6; 4Þ

Thus, the eigenvalues of C are 2, 4, 6, and 4. Because N¼ 4 is
even, k1 ¼ 2 and kðNþ2Þ=2 ¼ k3 ¼ 6 are distinct and k2 ¼ k4 ¼ 4
are repeated. The reason for this eigenvalue symmetry is dis-
cussed in Sec. 2.8.3. The eigenvalues can be verified using

ki ¼ 4� 2 cos
p

2
ði� 1Þ; i ¼ 1; 2; 3; 4

which follows from Corollary 17 for the case of even N because C
is also contained in SC4. Because C is an ordinary circulant, its
orthonormal eigenvectors are simply the columns of the Fourier
matrix E4, and are given by Definition 18 according to Eq. (42).
For example,

e2 ¼
1ffiffiffi
4

p 1;w1
4;w

2
4;w

3
4

� �T

¼ 1

2
1; e j

2p
4
�1; e j 2p

4
�2; e j

2p
4
�3


 �T

¼ 1

2
1; e j

p
2; e j p; e j

3p
2


 �T

¼ 1

2
ð1; j;�1;�jÞT

which can be visualized in Fig. 2 for the case of N¼ 4. The com-
plete set of eigenvectors is given by

e1 ¼
1

2

1

1

1

1

2
66664

3
77775
; e2 ¼

1

2

1

j

�1

�j

2
66664

3
77775
; e3 ¼

1

2

1

�1

1

�1

2
66664

3
77775
; e4 ¼

1

2

1

�j

�1

j

2
66664

3
77775

The eigenvectors e1 and e3 are real and correspond to the distinct
eigenvalues k1¼ 2 and k3¼ 6. The eigenvectors e2 and e4 are
complex conjugates according to Eq. (17) and correspond to the
repeated eigenvalue k2 ¼ k4 ¼ 4. Example 29 of Sec. 2.8.4 dis-
cusses orthogonality of the orthonormal eigenvectors 1=2ð Þei with
respect to the matrix C.

The same basic results also hold for the nonsymmetric circulant
C ¼ circð4;�1; 0; 1Þ 2 C4 in Example 16, where it is shown that
EH
4 CE4 ¼ diagð4; 4� 2j; 4; 4þ 2jÞ. In this case, the eigenvalues

are given by

aðCÞ ¼ f4; 4� 2j; 4; 4þ 2jg

and the corresponding eigenvectors are the same as those in
Example 24 because all circulants contained in CN share the same
linearly independent eigenvectors.

Example 25. Consider C ¼ circðA;B; 0;BÞ 2 BC2;4 from
Examples 6, 18, 19, and 20, where it is shown that

ðEH
4 � I2ÞCðE4 � I2Þ

¼ diag
0 �1

�1 0

" #
;

2 �1

�1 2

" #
;

4 �1

�1 4

" #
;

2 �1

�1 2

" # !

� diagðK1;K2;K3;K4Þ

The eigenvalues of C are obtained from the reduced-order matri-
ces Ki ði ¼ 1; 2; 3; 4Þ. For example, the eigenvalues of K3 follow
from the characteristic polynomial

detðK3 � kI2Þ ¼
4 �1

�1 4

" #
� k

1 0

0 1

" #�����

�����

¼ k2 � 8kþ 15

¼ ðk� 3Þðk� 5Þ ¼ 0

and are given by aðK3Þ ¼ f3; 5g. Similarly, aðK1Þ ¼ f�1; 1g and
aðK2Þ ¼ aðK4Þ ¼ f1; 3g. Because N¼ 4 is even, aðK1Þ and aðK3Þ
are distinct sets of eigenvalues and aðK2Þ ¼ aðK4Þ are repeated
sets. Section 2.8.3 discusses the symmetry characteristics and
multiplicities of these groups of eigenvalues. The eigenvectors of
C follow from the eigenvectors of each Ki according to Eq. (39).
For example, for the eigenvector u

ð1Þ
3 ¼ ð1; 1ÞT of K3 with eigen-

value k
ð1Þ
3 ¼ 3, the corresponding eigenvector of C is

q
ð1Þ
3 ¼ e3 � u

ð1Þ
3

¼ 1ffiffiffiffi
N

p ð1;w2
4;w

4
4;w

6
4ÞT �

1

1

" #

¼ 1ffiffiffi
4

p ð1;�1; 1;�1ÞT �
1

1

" #

¼ 1

2

1

1

" #
;

�1

�1

" #
;

1

1

" #
;

�1

�1

" # !T

¼ 1

2
ð1; 1;�1;�1; 1; 1;�1;�1ÞT

The entire set of NM¼ 8 reduced-order eigenvectors and eigen-
values is given by

u
ð1Þ
1 ¼ ð1; 1ÞT; k

ð1Þ
1 ¼ �1

u
ð2Þ
1 ¼ ð�1; 1ÞT; k

ð2Þ
1 ¼ 1

u
ð1Þ
2 ¼ ð1; 1ÞT; k

ð1Þ
2 ¼ 1

u
ð2Þ
2 ¼ ð�1; 1ÞT; k

ð2Þ
2 ¼ 3

u
ð1Þ
3 ¼ ð1; 1ÞT; k

ð1Þ
3 ¼ 3

u
ð2Þ
3 ¼ ð�1; 1ÞT; k

ð2Þ
3 ¼ 5

u
ð1Þ
4 ¼ ð1; 1ÞT; k

ð1Þ
4 ¼ 1

u
ð2Þ
4 ¼ ð�1; 1ÞT; k

ð2Þ
4 ¼ 3

9
>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;
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where each pair satisfies Eq. (37). The corresponding eigenvectors
of C are

q
ð1Þ
1 ¼ 1

2
ð1; 1; 1; 1; 1; 1; 1; 1ÞT

q
ð2Þ
1 ¼ 1

2
ð�1; 1;�1; 1;�1; 1;�1; 1ÞT

q
ð1Þ
2 ¼ 1

2
ð�1;�1;�j;�j; 1; 1; j; jÞT

q
ð2Þ
2 ¼ 1

2
ð�1; 1;�j; j; 1;�1; j;�jÞT

q
ð1Þ
3 ¼ 1

2
ð�1;�1; 1; 1;�1;�1; 1; 1ÞT

q
ð2Þ
3 ¼ 1

2
ð�1; 1; 1;�1;�1; 1; 1;�1ÞT

q
ð1Þ
4 ¼ 1

2
ð�1;�1; j; j; 1; 1;�j;�jÞT

q
ð2Þ
4 ¼ 1

2
ð�1; 1; j;�j; 1;�1;�j; jÞT

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

The eigenvectors are made orthonormal according to Eqs. (40)
and (41) by setting each a

ðpÞ
i ¼ 1=

ffiffiffi
2

p
for i ¼ 1; 2;…;N and

p ¼ 1; 2;…;M. Orthogonality of the eigenvectors ~q
ðpÞ
i with

respect to C is discussed in Example 30 of Sec. 2.8.4.
The determinant of any matrix is the product of its eigenvalues,

which yields the following result.
COROLLARY 24. Let C 2 BCM;N be a block circulant matrix.

Then the determinant of C is given by

detC ¼
YNM

i¼1

ki

where ki is the ith eigenvalue of C. �

The determinant of C 2 CN follows from Corollary 24 by set-
ting M¼ 1. In light of Eq. (21),

detC ¼
YN

i¼1

XN

k¼1

ckw
ðk�1Þði�1Þ
N ðC 2 CNÞ (43)

for an ordinary circulant matrix with generating elements
c1; c2;…; cN . For the special case of C 2 SCN , the ith eigenvalue
ki in Corollary 24 can be replaced by the result given in Corollary
17. Similarly, ki can be replaced with Eq. (25) if C 2 BCM;N has
circulant generating matrices.

Example 26. Consider C ¼ circðA;B; 0;BÞ 2 BC2;4 from
Example 25, where it is shown that the eigenvalues are given by
the set aðCÞ ¼ f�1; 1; 1; 3; 3; 5; 1; 3g. The determinant of C fol-
lows from Corollary (24) and is given by

detC ¼ �1� 1� 1� 3� 3� 5� 1� 3 ¼ �135

which is simply the product of the eigenvalues of C.

2.8.2 Generalized Circulant Eigenvalue Problem. The gener-
alized cEVP involves determination of the scalar eigenvalues k
and NM� 1 eigenvectors q of a cyclic system (M,K) such that

0NM ¼ K� kMð Þq (44)

where

M ¼ circðM1;M2;…;MNÞ
K ¼ circðK1;K2;…;KNÞ

)

are block circulant matrices contained in BCM;N . This type of
problem arises in the study of cyclic vibratory mechanical systems

composed of N sectors with M DOFs per sector, where M and K
are NM�NM block circulant mass and stiffness matrices. Several
examples are discussed in Sec. 3, where the eigenvectors q are the
system mode shapes and the eigenvalues k correspond to the sys-
tem natural frequencies. The generalized cEVP defined by Eq.
(44) is handled in the same way as the standard cEVP of Sec.
2.8.1. To this end, partition q ¼ q1;q2;…;qNð ÞT into M� 1 vec-
tors qi ði ¼ 1; 2;…;NÞ, transform to a new set of coordinates
u ¼ u1; u2;…;uNð ÞT by substituting Eq. (36) into Eq. (44), and
left-multiply the result by the unitary matrix EH

N � IM. It follows
that

0NM ¼ ðEH
N � IMÞ K� kMð ÞðEN � IMÞu

¼ ðEH
N � IMÞKðEN � IMÞ

�
�kðEH

N � IMÞMðEN � IMÞ
�
u

¼

eK1 0

eK2

. .
.

0 eKN

2
66664

3
77775
� k

eM1 0

eM2

. .
.

0 eMN

2
66664

3
77775

0
BBBB@

1
CCCCA

�

u1

u2

..

.

uN

2
66664

3
77775

(45)

where the decomposedM�M matrices

eMi ¼
XN

k¼1

Mkw
ðk�1Þði�1Þ
N

eKi ¼
XN

k¼1

Kkw
ðk�1Þði�1Þ
N

9
>>>>>=
>>>>>;

; i ¼ 1; 2;…;N (46)

follow from Theorem 10. Equation (45) represents a set of N
reduced-order generalized EVPs

0M ¼ eKi � k eMi


 �
ui; i ¼ 1; 2;…;N (47)

which are analogous to the reduced-order standard EVPs defined
by Eq. (37). The eigenvalues are determined from the characteris-
tic polynomials

detðeKi � k eMiÞ ¼ 0; i ¼ 1; 2;…;N (48)

and are denoted by k ¼ k
ðpÞ
i for p ¼ 1; 2;…;M. Each k

ðpÞ
i also

satisfies Eq. (44) because the transformation to new coordi-
nates via Eq. (36) is unitary, and hence preserves the system
eigenvalues. The reduced-order eigenvectors ui ¼ u

ðpÞ
i are

obtained from Eq. (47) for each k
ðpÞ
i . The eigenvectors of the

full system (M,K) are given by q
ðpÞ
i ¼ ei � u

ðpÞ
i , which is the

same as Eq. (39). The relationships defined by Eqs. (40) and
(41) also hold for the generalized cEVP to make the eigen-
vectors orthonormal.

IfM and K are ordinary circulants (i.e.,M¼ 1), then the system
eigenvectors reduce to ~q

ð1Þ
i ¼ q

ð1Þ
i ¼ ei � 1 ¼ ei, which is the

same as Eq. (42) and shows that e1; e2;…; eN are the orthonormal
eigenvectors of all generalized eigensystems defined by
M;K 2 CN . If M1;M2;…;MN and K1;K2;…;KN are the generat-
ing elements of M and K, respectively, the corresponding eigen-
values are

ki ¼

XN

k¼1

Kkw
ðk�1Þði�1Þ
N

XN

k¼1

Mkw
ðk�1Þði�1Þ
N

; i ¼ 1; 2;…;N (49)
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which follows from Eq. (45) by replacing each eMk with Mk andeKk with Kk. For the special case of M ¼ IN with generating ele-
ments 1; 0;…; 0 (i.e., for the standard cEVP), Eq. (49) reduces to
the form shown in Theorem 9, as expected.

It is clear from this formulation that the same basic steps are
followed to solve the standard and generalized cEVPs. For the
standard cEVP, we say that k

ðpÞ
i and q

ðpÞ
i are the eigenvalues and

eigenvectors of the matrix C. For the generalized cEVP, the
eigenvalues and eigenvectors correspond to the system (M,K), not
the individual matrices M and K.

Example 27. Consider the generalized cEVP defined by Eq.
(44). Let the generating elements of M 2 C2 be M1¼ 2 and
M2¼�1 and the generating elements of K 2 C2 be K1¼ 5 and
K2¼�1 such that

M ¼ 2 �1

�1 2

� �
and K ¼ 5 �1

�1 5

� �

Then the eigenvalues of the system (M, K) follow from Eq. (49)
with N¼ 2 and are given by

ki ¼

X2

p¼1

Kpw
ðp�1Þði�1Þ
N

X2

p¼1

Mpw
ðp�1Þði�1Þ
N

¼ 5w0
2 þ ð�1Þwi�1

2

2w0
2 þ ð�1Þwi�1

2

¼ 5� ejpði�1Þ

2� ejpði�1Þ

for i¼ 1, 2. It follows that k1¼ 4 and k2¼ 2. The corresponding
orthonormal eigenvectors are given by

~q
ð1Þ
1 ¼ e1 ¼

1ffiffiffi
2

p
1

1

" #

~q
ð1Þ
2 ¼ e2 ¼

1ffiffiffi
2

p
1

w2

" #
¼ 1ffiffiffi

2
p

1

�1

" #

which follow from Definition 18 according to Eq. (42).

2.8.3 Eigenvalue and Eigenvector Structure. For real-valued
generating elements, such as those that arise in models of physical
systems with cyclic symmetry, the eigenvalues of a circulant ma-
trix C 2 CN are endowed with certain symmetry characteristics,
and the same is true for the eigenvalues of systems M;K 2 CN .
However, we do not require the circulants to be symmetric, as it is
assumed in Corollary 17. We begin by systematically describing
the eigenvalue structure of an ordinary circulant with real generat-
ing elements. The results are generalized by inspection to handle
block circulants and (M,K) systems composed of circulant or
block circulant matrices.

The eigenvalues ki of a circulant matrix C 2 CN with generat-
ing elements c1; c2;…; cN are given by Eq. (21), or the equivalent
matrix–vector form in Eq. (22). It is convenient to re-index each
ck and ki such that

yðpÞjp¼0;1;2;…;N�1 ¼ ckjk¼1;2;3;…;N

YðrÞjr¼0;1;2;…;N�1 ¼ kiji¼1;2;3;…;N

)
(50)

which facilitates the results for real generating elements and clari-
fies their interpretation. If the eigenvalues are dissected according
to YðrÞ ¼ YRðrÞ þ jYIðrÞ, then the real and imaginary components

YRðrÞ ¼
XN�1

p¼0

yðpÞ cos 2ppr

N

� �
(51a)

YIðrÞ ¼
XN�1

p¼0

yðpÞ sin 2ppr

N

� �
(51b)

follow from the formulation of Eq. (33) in Sec. 2.7 for a real-
valued signal where, recall, the eigenvalue expression defined by
Eq. (21) has exactly the same form as the DFT in Definition 20.
That is, Eq. (51) also represents the real and imaginary parts of
the DFT of a real-valued signal, where the sequence of generating
elements y(p) is analogous to a real signal and the eigenvalues
Y(r) are analogous to its DFT. It is shown that the symmetry of
the DFT about the so-called Nyquist component also exists for the
eigenvalues of a circulant matrix with real generating elements.
As is customary in signal processing, we restrict the formulation
to even N. The case of odd N also yields symmetric eigenvalues,
but with multiplicity of the Nyquist component. This is handled
by example in Sec. 3 (for instance, see Fig. 9).

For even N, the zeroth eigenvalue Y(0) and “Nyquist” eigen-
value Y N=2ð Þ are always real because

Y0 � YRð0Þ ¼
XN�1

p¼0

yðpÞ cosð0Þ ¼
XN�1

p¼0

yðpÞ

YIð0Þ ¼
XN�1

p¼0

yðpÞ sinð0Þ ¼ 0

(52a)

YN=2 � YR
N

2

� �
¼
XN�1

p¼0

yðpÞ cosðppÞ ¼
XN�1

p¼0

yðpÞð�1Þp

YI
N

2

� �
¼
XN�1

p¼0

yðpÞ sinðppÞ ¼ 0

(52b)

are such that the imaginary parts vanish.2 The remaining eigenval-
ues appear in complex conjugate pairs, as the following corolla-
ries show.

COROLLARY 25. Let y(p) be the real-valued generating elements
of a circulant matrix for p ¼ 0; 1; 2…;N � 1 and Y(r) denote its
eigenvalues according to Eq. (21). Then

YðN � rÞ ¼ YðrÞ ¼ Yð�rÞ

for r ¼ 0; 1; 2…;N � 1. �

Proof. The eigenvalues of y(p) are given by
YðrÞ ¼ YRðrÞ þ jYIðrÞ, where

YRðrÞ ¼
XN�1

p¼0

yðpÞ cos 2ppr

N

� �

¼
XN�1

p¼0

yðpÞ cos 2ppð�rÞ
N

� �

¼ YRð�rÞ

(Eq. 51a)

and the property cosð�hÞ ¼ cosðhÞ is employed. Similarly,

�YIðrÞ ¼ �
XN�1

p¼0

yðpÞ sin 2ppr

N

� �

¼
XN�1

p¼0

yðpÞ sin 2ppð�rÞ
N

� �

¼ YIð�rÞ

(Eq. 51b)

2Equation (52a) also holds if N is odd, but the Nyquist component is repeated

with multiplicity of two.
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where the property sinð�hÞ ¼ � sinðhÞ is employed. It follows that

YðrÞ ¼ YRðrÞ � jYIðrÞ
¼ YRð�rÞ þ jYIð�rÞ
¼ Yð�rÞ

which completes the right-hand side of the proof. To prove the
left-hand side, consider

YRðN � rÞ ¼
XN�1

p¼0

yðpÞ cos 2ppðN � rÞ
N

� �

¼
XN�1

p¼0

yðpÞ cos 2pp� 2ppr

N

� �

¼
XN�1

p¼0

yðpÞ
�
cosð2ppÞ cos

�
� 2ppr

N

�

� sinð2ppÞ sin
�
� 2ppr

N

��

¼
XN�1

p¼0

yðpÞ
�
1 � cos

�
� 2ppr

N

�
� 0 � sin

�
� 2ppr

N

��

¼
XN�1

p¼0

yðpÞ cos
�
2ppð�rÞ

N

�

¼ YRð�rÞ (Eq. 51a)

and a similar expansion shows that YIðN � rÞ ¼ �YIðrÞ. It follows
that

YðN � rÞ ¼ YRðN � rÞ � jYIðN � rÞ
¼ YRðrÞ � jYIðrÞ

¼ YðrÞ

which completes the proof. �

Corollary 25 establishes the following result.
COROLLARY 26. Let y(p) be the real-valued generating elements

of a circulant matrix for p ¼ 0; 1; 2…;N � 1 and Y(r) denote its
eigenvalues according to Eq. (21). Then

jYðN � rÞj ¼ jYðrÞj
ffYðN � rÞ ¼ �ffYðrÞ

for integers r ¼ 0; 1; 2…;N � 1. �

The magnitudes jYðrÞj and arguments ffYðrÞ of the eigenvalues
Y(r) are listed in Table 3 for the special case of even N¼ 8, where
YðrÞ ¼ YðN � rÞ follows from complex conjugation of the left-
hand equality given by Corollary 25. The zeroth eigenvalue
Y(0)¼ Y0 is real and generally distinct, as is Y N=2ð Þ ¼ YN=2 for
even N, but the remaining eigenvalues generally appear in com-
plex conjugate pairs. It follows that the eigenvalue magnitudes

(frequencies) are symmetric about the Nyquist component YN=2,
as are the arguments (phase angles) but with the opposite sign for
indices r > N=2.

The eigenvalue symmetries can be observed in the examples of
Sec. 2.5.4. The eigenvalues of the matrix C ¼ circð4;�1; 0;�1Þ
in Example 15 are aðCÞ ¼ f2; 4; 6; 4g, where Y(0)¼ 2 and
YN=2 ¼ Yð2Þ ¼ 6 are real and distinct and Y(1)¼ Y(3)¼ 4 are real
and repeated. Similarly, for the matrix C ¼ circð4;�1; 0; 1Þ in
Example 16, the eigenvalues are aðCÞ ¼ f4; 4� 2j; 4; 4þ 2jg,
where Yð1Þ ¼ 4� 2j and Yð3Þ ¼ 4þ 2j are complex conjugates
and Yð0Þ ¼ YN=2 ¼ Yð2Þ ¼ 4 are real-valued. As expected, these
same symmetries are also observed in Example 21 for the DFT of
a real-valued signal.

A similar formulation shows that the eigenvalues of real-valued
(M,K) systems exhibit the same symmetry characteristics because
the numerator and denominator of Eq. (49) have exactly the same
form as Eq. (21). If the scalars Mk and Kk in Eq. (49) are re-
indexed and restricted to be real-valued, then Corollaries 25 and
26 are generalized accordingly.

For signal processing applications, the symmetry characteristics
summarized in Table 3 have practical significance because the
subset of ðN þ 2Þ=2 frequency-domain components 0 	 r 	 N=2
is endowed with the same basic “information” contained in all N
time-domain signal samples for 0 	 p 	 N � 1. That is, when
transformed to the frequency domain by the DFT process, any
real-valued signal has a zero-frequency or dc component (r¼ 0),
distinct magnitude and phase information for 0 	 r 	 N=2, and
repeated magnitude and phase information for r > N=2. For circu-
lant matrices that describe physical systems with cyclic symmetry,
Y0 and YN=2 correspond to standing wave vibration modes and the
remaining eigenvalues are associated with traveling wave modes.
This is discussed in Sec. 3.

Equation (42) shows that e1; e2;…; eN are the eigenvectors of
any circulant matrix C, and the same is true for (M,K) systems com-
posed of circulant matrices. Each eigenvector ei is associated with an
eigenvalue Y(r) (i.e., ki) according to the indices defined by Eq. (50).
For the special case of real generating elements, the eigenvalues
summarized in Table 3 have exactly the same symmetry characteris-
tics as the vectors e1; e2;…; eN , which are discussed in Sec. 2.5.2.
For example, if N is even, the real eigenvalues YN/2 (i.e., k(N+2)/2) and
Y(0) (i.e., k1) correspond to the real eigenvectors e Nþ2=2ð Þ and e1
defined by Eqs. (18) and (19), respectively. The remaining eigenval-
ues appear in complex conjugate pairs and are associated with the
complex conjugate eigenvectors according to Eq. (17).

If the scalar sequences y(p) and Y(r) for a circulant matrix are
replaced by a sequence of matrices y(p) and Y(r), it is clear that
the formulation given above also holds for Eq. (23), which defines
the eigenvalues for block circulant matrices. In this case, the
groups of eigenvalues associated with each Ki are endowed with
the symmetry properties given in Table 3. This is confirmed by
Example 25 where, using the indexing scheme of that section,
aðK1Þ ¼ f�1; 1g and aðK3Þ ¼ f3; 5g are distinct sets of eigenval-
ues and aðK2Þ ¼ aðK4Þ ¼ f1; 3g are repeated.

2.8.4 Eigenvector Orthogonality. Here, we consider eigen-
vector orthogonality relationships for block circulant matrices C
and systems (M,K) contained in BCM;N for the special case of
symmetric generating matrices. However, we do not restrict either
C or (M,K) to be symmetric or block symmetric. We require only
that the generating matrices C1;C2;…;CN of C are symmetric for
the standard cEVP, which guarantees that each Ki is symmetric
according to Corollary 19. Similarly, we require that the generat-
ing matrices M1;M2;…;MN and K1;K2;…;KN of (M,K) are
symmetric for the generalized cEVP, which implies that ðeKi; eMiÞ
are symmetric. Symmetric generating matrices commonly arise in
models of rotating flexible structures, including the ones consid-
ered in Sec. 3, where the sector models and intersector coupling
are described by symmetric matrices. Then the usual orthogonal-
ity relationships hold for the reduced-order eigenvectors defined
in Secs. 2.8.1 and 2.8.2. It is first shown that each ~u

ðpÞ
i is

Table 3 Magnitudes and arguments of Y(r) for even N5 8

Index Eigenvalue Magnitude Argument
r Y(r) YðN � rÞ jYðrÞj ffYðrÞ

0 Yð0Þ ¼ Y0 Yð8Þ jYð0Þj ¼ Y0 ffYð0Þ
1 Y(1) Yð7Þ jYð1Þj ffYð1Þ
2 Y(2) Yð6Þ jYð2Þj ffYð2Þ
3 Y(3) Yð5Þ jYð3Þj ffYð3Þ
4 ¼ N=2ð Þ Yð4Þ ¼ Yð4Þ ¼ YN=2 Yð4Þ jYð4Þj ¼ YN=2 ffYð4Þ
5 Yð5Þ ¼ Yð3Þ Yð3Þ jYð3Þj �ffYð3Þ
6 Yð6Þ ¼ Yð2Þ Yð2Þ jYð2Þj �ffYð2Þ
7 Yð7Þ ¼ Yð1Þ Yð1Þ jYð1Þj �ffYð1Þ
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orthogonal with respect to Ki for the standard cEVP. Proofs can
be found in any standard textbook on linear algebra [98,99]. To-
gether with generic orthogonality conditions on the basic circulant
structure of a matrix C 2 BCM;N , this gives rise to an orthogonal-
ity condition on the eigenvector ~q

ðpÞ
i ¼ ei � ~u

ðpÞ
i with respect to C.

Orthogonality of ~q
ðpÞ
i with respect to the system M;K 2 BCM;N is

handled similarly.
The results of this section, and the requirement of symmetric gener-

ating matrices, are meant to highlight how orthogonality of an eigen-
vector ~q

ðpÞ
i ¼ ei � ~u

ðpÞ
i is essentially dissected into the orthogonality

of ei with respect to the circulant structure of C 2 BCM;N and ortho-
gonality of ~u

ðpÞ
i with respect to the generating matrices (e.g., Ki),

where the latter requires symmetric C1;C2;…;CN . It should be
noted that none of the results in Sec. 2, aside from this section, require
symmetric generating matrices. In particular, Theorems 9 and 10,
upon which block reduction of the cEVPs in Secs. 2.8.1 and 2.8.2 are
based, are valid for arbitrary M�M generating matrices.

COROLLARY 27. Suppose each Ki defined by Eq. (23) is symmetric.

Let ~u
ðpÞ
i be the pth orthonormal eigenvector of Ki and k

ðpÞ
i be the

corresponding eigenvalue. Then if eUi ¼ ð~uð1Þi ; ~u
ð2Þ
i ;…; ~u

ðMÞ
i Þ is the

M�M orthonormal modal matrix associated with Ki, it follows that

eUT
i Ki
eUi ¼

k
ð1Þ
i 0

k
ð2Þ
i

. .
.

0 k
ðMÞ
i

2
6664

3
7775; i ¼ 1; 2;…;N

is a diagonal matrix with eigenvalues k
ðpÞ
i along its diagonal for

p ¼ 1; 2;…;M and

~u
ðpÞT
i Ki~u

ðqÞ
i ¼ k

ðpÞ
i dpq

where dpq is the Kronecker delta. �

Example 28. Consider the eigensolutions

~u
ð1Þ
3 ¼ 1ffiffiffi

2
p ð1; 1ÞT; k

ð1Þ
3 ¼ 3

~u
ð2Þ
3 ¼ 1ffiffiffi

2
p ð�1; 1ÞT; k

ð2Þ
3 ¼ 5

9
>>=
>>;

corresponding to the symmetric matrix

K3 ¼ 4 �1

�1 4

� �

from Example 25, where the reduced-order eigenvectors are in
orthonormal form. The corresponding reduced-order modal matrix
is denoted by

eU3 ¼ ð~uð1Þ3 ; ~u
ð2Þ
3 Þ

¼ 1ffiffiffi
2

p
1 �1

1 1

" #

It follows from Corollary 27 that the diagonal matrix

eUT
3K3

eU3 ¼
1ffiffiffi
2

p
1 �1

1 1

" #T
4 �1

�1 4

" #
1ffiffiffi
2

p
1 �1

1 1

" #

¼ 1

2

1 1

�1 1

" #
3 �5

3 5

" #

¼ 1

2

6 0

0 10

" #

¼
3 0

0 5

" #

has eigenvalues k
ð1Þ
3 ¼ 3 and k

ð2Þ
3 ¼ 5 as its diagonal elements.

The reader can verify that ~u
ð1ÞT
3 K3~u

ð1Þ
3 ¼ 3 and ~u

ð2ÞT
3 K3~u

ð2Þ
3 ¼ 5

according to Corollary 27.
Orthogonality of an eigenvector ~q

ðpÞ
i ¼ ei � ~u

ðpÞ
i with respect to

C 2 BCM;N is essentially decomposed into orthogonality of ei
with respect to the circulant structure of C and orthogonality of
each ~u

ðpÞ
i with respect to the symmetric matrices Ki. These indi-

vidual orthogonality conditions are captured by Corollaries 18 and
27, which lead to the following fundamental result.

COROLLARY 28. Let C 2 BCM;N be a block circulant matrix with
symmetric generating matrices, ei be the ith column of the N�N
Fourier matrix EN, and ~u

ðpÞ
i be the pth reduced-order orthonormal

eigenvector corresponding to Ki defined by Eq. (23). Then

ðeHi � ð~uðpÞi ÞTÞCðek � ~u
ðqÞ
i Þ ¼ k

ðpÞ
i dikdpq

for i; k ¼ 1; 2;…;N and p; q ¼ 1; 2;…;M, where k
ðpÞ
i is the eigen-

value associated with ~u
ðpÞ
i and dik is the Kronecker delta. �

Proof. Let eUi ¼ ð~uð1Þi ; ~u
ð2Þ
i ;…; ~u

ðMÞ
i Þ be the orthonormal modal

matrix associated with Ki and C1;C2;…;CN be the symmetric
generating matrices of C. Corollary 19 guarantees that Ki is sym-
metric because the generating matrices are symmetric. By setting

B ¼ eUi and ð�Þ# ¼ ð�ÞT in Corollary 21, it follows that

ðeHi � eUT
i ÞCðek � eUiÞ ¼ Widik

¼
Wi; i ¼ k

0; otherwise

(

where

Wi ¼
XN

n¼1

B#CnBw
ðn�1Þði�1Þ
N (Eq. 24)

¼
XN

n¼1

eUT
i Cn

eUiw
ðn�1Þði�1Þ
N (by substitution)

¼ eUT
i

XN

n¼1

Cnw
ðn�1Þði�1Þ
N

!
eUi

¼ eUT
i Ki
eUi (Eq. 23)

¼
k
ð1Þ
i 0

k
ð2Þ
i

. .
.

0 k
ðMÞ
i

2
6664

3
7775 (Cor. 27)

for i ¼ 1; 2;…;N. Expanding the M�M matrix product
ðeHi � eUT

i ÞCðek � eUiÞ yields

eHi �

ð~uð1Þi ÞT

..

.

ð~uðpÞi ÞT

..

.

ð~uðMÞ
i ÞT

2
66666666664

3
77777777775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

C ek � ð~uð1Þi ;…; ~u
ðqÞ
i ;…; ~u

ðMÞ
i Þ


 �

¼

eHi � ð~uð1Þi ÞT

..

.

eHi � ð~uðpÞi ÞT

..

.

eHi � ð~uðMÞ
i ÞT

2
66666666664

3
77777777775

Cðek � ~u
ð1Þ
i ;…; ek � ~u

ðqÞ
i ;…; ek � ~u

ðMÞ
i Þ

which produces anM�M array with scalar elements
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ðeHi � ð~uðpÞi ÞTÞCðek � ~u
ðqÞ
i Þ

in the (p, q) position for p; q ¼ 1; 2;…;M. However, in light of
the diagonal structure of each Wi, only the diagonal elements sur-
vive in this expansion. That is,

ðeHi � ð~uðpÞi ÞTÞCðek � ~u
ðqÞ
i Þ ¼ k

ðpÞ
i dik; p ¼ q

0; otherwise

(

¼ k
ðpÞ
i dikdpq

which completes the proof. �

If i¼ k in Corollary 28, the orthogonality condition can be
stated in terms of the eigenvectors ~q

ðpÞ
i ¼ ei � ~u

ðpÞ
i . That is,

ð~qðpÞi ÞHC~qðqÞi ¼ k
ðpÞ
i dpq; i ¼ 1; 2;…;N (53)

For an ordinary circulant, each ~u
ðpÞ
i ¼ 1 and Corollary 28 reduces to

eHi Cek ¼ kidik; i ¼ 1; 2;…;N (54)

which is the same result given by Corollary 18.
Example 29. Consider C ¼ circð4;�1; 0;�1Þ 2 C4 from

Examples 15, 17, and 24, where it is shown that

e2 ¼ 1
2
ð1; j;�1;�jÞT is an eigenvector of C corresponding to the

eigenvalue k2¼ 4. Thus, the product

eH2 Ce2 ¼
1

2
1 �j �1 j½ �

4 �1 0 �1

�1 4 �1 0

0 �1 4 �1

�1 0 �1 4

2
6666664

3
7777775

1

2

1

j

�1

�j

2
6666664

3
7777775

¼ 1

4
1 �j �1 j½ �ð4; 4j;�4;�4jÞT

¼ 1

4
ð4þ 4þ 4þ 4Þ

¼ 4

is numerically equal to k2 according to Eq. (54). However, the
product

eH4 Ce2 ¼
1

4
1 j �1 �j½ �ð4; 4j;�4;�4jÞT

¼ 1

4
ð4� 4þ 4� 4Þ

¼ 0

vanishes because i 6¼ k.
Example 30. Consider C ¼ circðA;B; 0;BÞ 2 BC2;4 from

Examples 6, 18, 19, 20, and 25, where it is shown that

~q
ð2Þ
3 ¼ 1ffiffiffi

2
p q

ð2Þ
3

¼ 1

2
ffiffiffi
2

p ð�1; 1; 1;�1;�1; 1; 1;�1ÞT

is an orthonormal eigenvector of C corresponding to the eigen-
value k

ð2Þ
3 ¼ 5. Because the generating matrices A, B, 0, B are

symmetric (see Example 6), Corollary 28 guarantees that each
~q
ðpÞ
i ¼ ei � ~u

ðpÞ
i is mutually orthogonal with respect to C. For

example, it follows from Eq. (53) that

q
ð2ÞH
3 Cq

ð2Þ
3 ¼ 1

2
ffiffiffi
2

p �1 1 1 �1 �1 1 1 �1½ �

�

2 �1 �1 0 0 0 �1 0

�1 2 0 �1 0 0 0 �1

�1 0 2 �1 �1 0 0 0

0 �1 �1 2 0 �1 0 0

0 0 �1 0 2 �1 �1 0

0 0 0 �1 �1 2 0 �1

�1 0 0 0 �1 0 2 �1

0 �1 0 0 0 �1 �1 2

����������������������

3
77777777777777775

����������������������

����������������������

2
66666666666666664

� 1

2
ffiffiffi
2

p

�1

1

1

�1

�1

1

1

�1

2
66666666666666664

3
77777777777777775

¼ 1

8
�1 1 1 �1 �1 1 1 �1½ �

� ð�5; 5; 5;�5;�5; 5; 5;�5ÞT

¼ 5

which is numerically equal to the eigenvalue k
ð2Þ
3 . However, the

matrix product

ðe3 � u
ð1Þ
3 ÞHCðe3 � u

ð2Þ
3 Þ

¼ ðeH3 � ðuð1Þ3 ÞHÞCðe3 � u
ð2Þ
3 Þ

¼ ðeH3 � ðuð1Þ3 ÞTÞCðe3 � u
ð2Þ
3 Þ

¼ 1

2
ffiffiffi
2

p 1 1 �1 �1 1 1 �1 �1½ �C

� 1

2
ffiffiffi
2

p ð�1; 1; 1;�1;�1; 1; 1;�1ÞT

¼ 1

8
1 1 �1 �1 1 1 �1 �1½ �

� ð�5; 5; 5;�5;�5; 5; 5;�5ÞT

¼ 0

vanishes because dpq ¼ 0 ðp 6¼ qÞ in Corollary 28. Similarly,

ðe2 � u
ð2Þ
3 ÞHCðe3 � u

ð2Þ
3 Þ

¼ 1

2
ffiffiffi
2

p �1 1 �j j 1 �1 j �j½ �C

� 1

2
ffiffiffi
2

p ð�1; 1; 1;�1;�1; 1; 1;�1ÞT

¼ 1

8
�1 1 �j j 1 �1 j �j½ �

� ð�5; 5; 5;�5;�5; 5; 5;�5ÞT

¼ 0

because dik ¼ 0 ði 6¼ kÞ.
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If instead we set A¼ 4 and B¼�1 such that C 2 C4 is an ordi-
nary circulant, we recover the orthogonality condition in Example
15 for i¼ 3.

The orthogonality conditions used in Example 30 for the special
case of an ordinary circulant does not require that the circulant
structure is symmetric (i.e., C need not be contained in SCN).
The reader can verify that Eq. (54) also holds for nonsymmetric
matrices C 2 CN by inspection of Example 16.

The fundamental orthogonality relationship given by Corollary
28 also holds for M;K 2 BCM;N systems with symmetric generat-
ing matrices, as the following corollary shows.

Corollary 29. Let M;K 2 BCM;N be block circulant with
symmetric generating matrices, ei be the ith column of the N�N
Fourier matrix EN, and ~u

ðpÞ
i be the pth M� 1 reduced-order

orthonormal eigenvector corresponding to the ith system ð eMi; eKiÞ
defined by Eq. (46). Then

ðeHi � ð~uðpÞi ÞTÞMðei � u
ðpÞ
i Þ ¼ dikdpq

ðeHi � ð~uðpÞi ÞTÞKðei � u
ðpÞ
i Þ ¼ k

ðpÞ
i dikdpq

9
=
;

for i; k ¼ 1; 2;…;N and p; q ¼ 1; 2;…;M, where k
ðpÞ
i is the eigen-

value associated with ~u
ðpÞ
i and dik is the Kronecker delta. �

In practice, of course, the M� 1 reduced-order eigenvectors
~u
ðpÞ
i are not known a priori. Instead, Theorem 10 is used in Sec. 3

to decouple the NM-DOF system equations into a set of N
reduced-order M-DOF standard vibratory problems, from which
the system eigenvalues (natural frequencies) and eigenvectors
(normal modes) are extracted.

3 Example Applications

In this section we apply the results developed in Sec. 2 to vibra-
tion models of systems with cyclic symmetry. For each model
considered, we begin by formulating the equations of motion
(EOM) and then use the theory of circulants to diagonalize or
block diagonalize the governing equations. This is achieved by a
coordinate transformation that exploits the special relationship
between circulant matrices and the Fourier matrix. The process
also shows how external forces are projected on the resulting
block diagonal EOM. The special case of traveling wave engine
order excitation is also presented in some detail because it appears
in many relevant applications of rotating machinery.

Three examples are presented. The first example (Sec. 3.1) con-
siders the structure of the EOM for a general cyclic system with N
sectors, M DOFs per sector, and arbitrary excitation. It is shown
how to block diagonalize the system equations via a modal trans-
formation involving the Fourier matrix, which results in NM-DOF
reduced-order vibratory systems. If engine order excitation is
assumed (Sec. 3.2), it is shown that the steady-state forced
response of the NM-DOF system can be obtained from a single M-
DOF harmonically forced, reduced-order system in modal space.
The mathematical and physical details of engine order excitation
are discussed, including its temporal and spatial duality. The sec-
ond example (Sec. 3.3) considers a cyclic system with one DOF
per sector under engine order excitation. This system is fully dia-
gonalized by the Fourier matrix. The example is presented in
detail, showing the nature of the natural modes and frequencies,
and the resonant response to excitation of various engine orders.
The third example (Sec. 3.4) has two DOFs per sector and demon-
strates the block diagonalization process for a perfectly cyclic sys-
tem with specified sector models, as opposed to the general sector
models in the first example. In each sector, one DOF is due to
flexure, and thus has a constant frequency, while the other DOF is
a centrifugally driven pendulum whose frequency is proportional
to the rotor speed. The coupling between these DOFs leads to
some interesting behavior in both the free and forced vibration of
the system, which is discussed in Refs. [21,22] and [92–95]. More
importantly, this example shows the process of handling multiple

DOFs per sector, which easily extends from two to M DOFs per
sector using the theory presented in Sec. 2.

3.1 General Cyclic System

3.1.1 Equations of Motion. Consider the general cyclic vibra-
tory system shown schematically in Fig. 4, which consists of N
sectors with coupling (elastic and damping) to adjacent neighbors.
The topology diagram only indicates nearest-neighbor coupling,
but more general coupling is admissible as long as the cyclic sym-
metry is preserved. If there are M DOFs per sector, each M� 1
vector qi describes the dynamics of the ith sector for
i 2 f1; 2;…;Ng � N . Then the linear EOM takes the form

M€qþ C _qþKq ¼ bf (55)

where q ¼ ðq1;q2;…; qNÞT is a NM� 1 configuration vector, the
system matrices are block circulant with M�M blocks, and over-
dots denote differentiation with respect to time. If the M� 1 vec-
tor fi denotes the component of forcing on the ith sector, then
bf ¼ ðf1; f2;…; fNÞT is a NM� 1 general forcing vector. The
NM�NM system mass, damping, and stiffness matrices are of the
form

M ¼ circðM1;M2;…;MNÞ 2 BCM;N

C ¼ circðC1;C2;…;CNÞ 2 BCM;N

K ¼ circðK1;K2;…;KNÞ 2 BCM;N

9
>=
>;

(56)

where the generating matrices Mi, Ci, and Ki depend on the
M�M sector mass, damping, and stiffness matrices and the inter-
sector coupling (stiffness and damping). Equation (55) is a general
model for any linear, lumped-parameter, conservative, nongyro-
scipic, cyclic vibratory system with N sectors and M DOFs per
sector. For example, a linearized lumped-parameter model of a
bladed disk assembly under engine order excitation is captured by
Eq. (55), where N is the number of blades, M is the number of
DOFs per blade, f has the special properties described in Sec. 3.2,
and the system matrices depend on the structural details of each
blade (i.e., sector) and its connectivity to adjacent blades and
rotating hub.

3.1.2 Modal Transformation. Of course, one can apply stand-
ard techniques [99] to investigate the free and forced response of
the model given by Eq. (55). However, this requires solving an
NM�NM eigenvalue problem to determine the modal properties,
or inversion of an NM�NM impedance matrix to determine the
response to harmonic excitation. Such an approach may be pro-
hibitive or computationally expensive for practical models with

Fig. 4 Topology diagram of a general cyclic system
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many sectors and many DOFs per sector, nor does it highlight or
exploit the underlying features of the cyclic system. It is precisely
these special features that are brought to light by the properties of
the circulants or block circulants that describe the system.

Solving for the system response is significantly facilitated by a
modal transformation that exploits the cyclic symmetry among
the N sectors. Specifically, it is straightforward to block decouple
the EOM into a set of N systems, each with M DOFs. To this end,
we introduce the change of coordinates

q ¼ ðEN � IMÞu (57)

where u ¼ ðu1; u2;…;uNÞT is a NM� 1 vector of modal coordi-
nates. Each ui is M� 1 and describes the sector dynamics in
modal space, where the EOM are block decoupled (as described
below). In this formulation the physical coordinates q are
expressed in terms of the modal coordinates ui and the Fourier
elements of length N, which accounts for the overall cyclic nature
of the EOM. Substituting Eq. (57) into Eq. (55) and multiplying
from the left by ðEN � IMÞH ¼ ðEH

N � IMÞ yields
ðEH

N � IMÞMðEN � IMÞ€uþ ðEH
N � IMÞCðEN � IMÞ _u

þ ðEH
N � IMÞKðEN � IMÞu

¼ ðEH
N � IMÞbf

or

eM1 0

eM2

. .
.

0 eMN

2
6666664

3
7777775

€u1

€u2

..

.

€uN

2
666664

3
777775
þ

eC1 0

eC2

. .
.

0 eCN

2
6666664

3
7777775

_u1

_u2

..

.

_uN

2
666664

3
777775

þ

eK1 0

eK2

. .
.

0 eKN

2
6666664

3
7777775

u1

u2

..

.

uN

2
666664

3
777775
¼

ðeH1 � IMÞbf

ðeH2 � IMÞbf

..

.

ðeHN � IMÞbf

2
6666664

3
7777775

(58)

The block diagonal structure on the left-hand side of Eq. (58) fol-
lows from Theorem 10, where the M�M modal mass, damping,
and stiffness matrices associated with the pth mode follow from
Eq. (23) and are given by

eMp ¼
XN

k¼1

Mkw
ðk�1Þðp�1Þ
N

eCp ¼
XN

k¼1

Ckw
ðk�1Þðp�1Þ
N

eKp ¼
XN

k¼1

Kkw
ðk�1Þðp�1Þ
N

9
>>>>>>>>>=
>>>>>>>>>;

; p 2 N (59)

The forcing terms on the right-hand side of Eq. (58) follow from
the decomposition

ðEH
N � IMÞbf ¼ ðeH1 ; eH2 ;…; eHN ÞT � IM


 �
bf

¼ eH1 � IM; e
H
2 � IM;…; eHN � IM

� �Tbf

¼

ðeH1 � IMÞbf
ðeH2 � IMÞbf

..

.

ðeHN � IMÞbf

2
6666664

3
7777775

(60)

and make no assumptions on the nature of the applied forcing.
Thus, the solution to the NM-DOF matrix EOM given by Eq. (58)
reduces to solving NM-DOF uncoupled systems

eMp€up þ eCp _up þ eKpup ¼ ðeHp � IMÞbf; p 2 N (61)

for the modal solutions up. These N reduced-order EOMs of order
M offer a substantial computational savings compared to the full
NM-DOF system defined by Eq. (55). The reduced equations can
be solved directly or with standard modal analysis by solving a set
of N generalized eigenvalue problems, each of order M, from
which one can form the global eigenvectors of the system. Specifi-
cally, solving the N eigenvalue problems associated with Eq. (61)
yields a set of normalizedM�M modal matrices Up, which define
a change to reduced modal coordinates via up¼Upsp. The sp are
modes that define the behavior of the internal sector dynamics and
account for the manner in which these are coupled to each other
in a given Fourier mode of the overall system. The EOM for the si
form a set of M uncoupled equations, and these are related to the
physical coordinates of the original system by q ¼ ðEN � IMÞu
where u ¼ ðU1s1;U2s2;…;UNsNÞT. This process is general, and it
allows one to decouple the full EOM in two steps, one which
accounts for the global cyclic nature of the system, and the other
which accounts for the details of the sector model.

Equation (61) can be simplified even further if the system is
subjected to the so-called engine order excitation. The mathemat-
ics and physics of this type of excitation are developed in the next
section, which closes with a treatment of the general cyclic system
governed by Eq. (61) under engine order excitation.

3.2 Engine Order Excitation. Traveling wave engine order
excitation arises in rotating machinery and is a primary source of
forced vibration response in bladed disk assemblies [11,111]. A
mathematical model of this common form of excitation is devel-
oped in Sec. 3.2.1 and its traveling wave characteristics are
described in Sec. 3.2.2. While this material is known, the discus-
sion that follows is unique because it provides physical insights
and a systematic explanation of the temporal and spatial duality of
engine order excitation. The general cyclic system of Sec. 3.1 is
reconsidered in Sec. 3.2.3 under engine order excitation, where it
is shown that the steady-state forced response of the NM-DOF
system reduces to that of a single sector in modal space.

3.2.1 Mathematical Model. Ideally, the steady axial gas pres-
sure in a jet engine might vary with radius but is otherwise uni-
form in the circumferential direction, thus resulting in an identical
force field on each blade in a particular fan, compressor, or turbine
within the engine. In practice, however, flow entering an engine
inlet invariably meets static obstructions, such as struts, stator
vanes, etc., in addition to rotating bladed disk assemblies in its
path to the exhaust. Even in steady operation, therefore, the flow
slightly upstream of these bladed assemblies is nonuniform in
pressure, temperature, and so on. This results in a static pressure
(effective force) field on the blades that vary circumferentially, a
notional example of which is shown in Fig. 5.

Consider, for example, an engine in steady operation with n
evenly spaced struts slightly upstream (or downstream) of a bladed
assembly. As explained in Ref. [3], these obstructions produce a
circumferential variation upon the mean axial gas pressure that
is essentially proportional to cos nh, where h is an angular posi-
tion. Thus, a blade rotating through this static pressure field expe-
riences a force proportional to cos nXt, where X is the constant
angular speed of the bladed disk assembly and t is time. An
adjacent blade experiences the same force, but at a constant frac-
tion of time later. This type of excitation is defined as engine order
(e.o.) excitation and n is said to be the order of the excitation.

To be more precise, the axial gas pressure of a steady flow
through a jet engine may be described by the function
pðhÞ ¼ pðhþ 2pÞ, where h is an angular coordinate measured
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relative to a fixed origin on the machine. That is, the pressure field
is rotationally periodic and can therefore be expanded in a Fourier
series with terms of the form po cos nh. If the angular position of
the ith blade relative to the same origin is defined by

hiðtÞ ¼ Xtþ 2p

N
ði� 1Þ; i 2 N

where N is the total number of blades and N ¼ f1; 2;…;Ng is the
set of blade, or sector numbers, it follows that the total effective
force exerted on blade i due to the nth harmonic of the pressure
field pðhÞ is captured by

F cos nXtþ 2p
n

N
ði� 1Þ


 �
; i 2 N (62)

Upon complexifying,

FiðtÞ ¼ Fej/iejnXt; i 2 N (63)

is a model for the nth predominant component of the excitation.
Eq. (63) has period T ¼ 2p=nX, strength F, and is said to have
angular speed X. The so-called interblade phase angle is defined
by

/i ¼ /
ðnÞ
i ¼ 2p

n

N
ði� 1Þ ¼ nui; i 2 N (64)

where n 2 Zþ and ui is the angle subtended from blade 1 to blade
i and is defined by Eq. (16). Equation (63) is defined as nth engine
order, or traveling wave excitation. The traveling wave character-
istics of this type of excitation are considered next.

3.2.2 Traveling Wave Characteristics. The function defined
by Eq. (63) is continuous in time and discretized in space via the
index i. This gives rise to two interpretations of engine order exci-
tation relative to the rotating hub, one discrete and the other con-
tinuous. These can be visualized in Fig. 6, which shows a
dissection of the excitation amplitudes along time and sector axes.
In the first and usual sense, Eq. (63) is a discrete temporal varia-
tion of the dynamic loading applied to individual blades. That is,
under an engine order n excitation, each sector is harmonically
forced with strength F and frequency nX, but with a fixed phase
difference relative to its nearest neighbors. Physically, one can
think of this as placing N different observers at the discrete sectors
and having the ith observer record the excitation strength applied
to sector i as a function of time. Their recorded time traces would
resemble those shown in Fig. 6(a). In the second and more general
sense, Eq. (63) can be viewed as a continuous spatial variation of
the excitation strength relative to the rotating hub (along the sector
axis) that evolves with increasing time, i.e., it is a propagating

waveform, or traveling wave. If a single observer was placed on
the rotating hub and recorded the strength of this traveling wave
as a function of i (taken here to be continuous), it would resemble
the curve shown in Fig. 6(b). In this context, the instantaneous
loading applied to individual blades is obtained by essentially
“sampling” the continuous traveling wave at each sector i 2 N
and, as time evolves, these sampled points define N time profiles
of the force amplitudes, which is equivalent to the discrete tempo-
ral interpretation described above. However, the latter interpreta-
tion illuminates some important traveling wave characteristics of
the engine order excitation that are otherwise difficult to explain,
and in what follows these are systematically described.

To explain the traveling wave mathematically, it is convenient
to define the function

UkðvÞ ¼ cos
2pðk � 1Þ

N
v

� �
¼ cosðukvÞ (65)

which is a harmonic waveform with wavelength 2p=uk. Then for
i 2 N and noting that /i ¼ unþ1ði� 1Þ, Eq. (63) can be written
in real form as

FiðtÞ ¼ F cosðunþ1ði� 1Þ þ nXtÞ

¼ F cos unþ1 i� 1þ nX

unþ1

t

� �� �

¼ FUnþ1ði� 1þ CtÞ

(66)

which is a harmonic function with a wavelength of
2p=unþ1 ¼ N=n (unþ1 is the wave number) and angular frequency
nX. Equation (66) shows that engine order excitation is a TW in
the negative i-direction (descending blade number) with speed
C ¼ nX=unþ1 ¼ NX=2p, measured in sectors per second. An
example plot of this continuous BTW is shown in Fig. 6(b) and,
as described above, the applied loads can be obtained from this
figure by continuously “sampling” the waveform at the discrete
sector numbers as time evolves. Then the engine order excitation
applied to the individual blades consists of a wave composed
of these N discrete points, examples of which are shown in
Figs. 7(a)–7(d). Interestingly, this gives rise to discrete SW or
even FTW applied dynamic loads (depending on the value of n
relative to N), even though Eq. (66) is strictly a BTW relative to
the rotating hub. These additional possibilities arise due to alias-
ing of the “sampled points” just as it occurs in elementary signal
processing theory [112,113]. Before characterizing the traveling
and standing waveforms, it is shown that one need only consider
engine orders n 2 N .

The traveling wave nature of the discrete applied loads (i.e.,
SW, BTW, or FTW) depends only on the value of n relative to N.
To see this, let

�n ¼ nmod N 2 N ; n 2 Zþ (67)

and assume n ¼ �nþ mN for some integer m. Then

U�nþmNþ1ðvÞ ¼ U�nþ1ðvÞ

That is, if n ¼ �n corresponds to a SW, BTW, or FTW, then so
does �nþ mN for any m 2 Zþ. In this sense, the traveling wave na-
ture of the applied dynamic loads is seen to alias relative to N.
These features are characterized for engine orders

n 2 N ¼ N O;E
BTW [N O;E

FTW [N O;E
SW

where it is understood that the results apply to any n>N simply

by taking n modulo N, as appropriate. The subsets N O;E
BTW, N O;E

FTW,

and N O;E
SW are defined in Table 4 and discussed below.

For the special case of n¼N the rotating blades become
entrained with the excitation because /

ðNÞ
i ¼ 2pnði� 1Þ with

Fig. 5 The axial gas pressure pðhÞ: ideal and (notional) actual
conditions
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i; n 2 Zþ, and hence each is forced with the same strength and
phase. As illustrated in Fig. 7(d), this is a SW excitation where
each blade is harmonically forced according to FiðtÞ ¼ F cos nXt.
Entrainment also occurs when n¼N/2 if N is even, in which case
/
ðN=2Þ
i ¼ pnði� 1Þ, where (i� 1) is odd (resp. even) for even

(resp. odd) sector numbers i 2 N . Accordingly, all blades with
odd sector numbers are driven by FiðtÞ ¼ F cos nXt, as are the
blades with even sector numbers, but with a 180-deg phase shift.
As shown in Fig. 7(b), this amounts to the same standing wave ex-
citation as the n¼N case, except for a phase reversal in the excita-
tion among adjacent blades. The engine orders corresponding to
SW excitations for odd and even N are denoted by the sets
N O;E

SW  N , and all other values of n 2 N correspond to traveling
waves. Engine orders n 2 N O;E

BTW (resp. n 2 N O;E
FTW) correspond to

BTW (resp. FTW) excitation, an example of which is shown in
Fig. 7(a) (resp. Fig. 7(c)), where N O;E

BTW and N O;E
FTW are also

defined in Table 4. These sets can be visualized in Figs. 7(i) and
7(ii) for odd and even N, respectively.

The manner in which cyclic systems respond to this type of
excitation is considered in the examples that follow. In Sec. 3.2.3,
we prove the most important result related to the forced response
of cyclic systems, namely, that in the case of perfect symmetry
each engine order excites only a single mode. This is clear mathe-
matically and will be explored with more physical insight in the
examples presented in Secs. 3.3 and 3.4.

3.2.3 Forced Response of a General Cyclic System Under
Engine Order Excitation. The general cyclic system governed by
Eq. (55) is reconsidered here under engine order excitation. Using
the notation of Sec. 3.1, a model for the nth engine order excita-
tion is

f i ¼ fejnuiejnXt; i 2 N (68)

where f is a constant M�M vector of sector force amplitudes, t is
time, ui is the angle subtended from sector 1 to sector i and is
defined by Eq. (16), n is the order of the excitation, nX is the
angular frequency of the excitation, and X is the angular speed of
the system relative to the excitation. Under this type of excitation,
the system forcing vector becomes

bf ¼

f1

f2

..

.

fN

2
666666664

3
777777775

¼

fejnu1ejnXt

fejnu2ejnXt

..

.

fejnuNejnXt

2
666666664

3
777777775

¼ f0 � fejnXt

where

Fig. 6 Example illustration of the discrete temporal and continuous spatial variations of
the traveling wave excitation defined by Eq. (63) in real form: (a) the discrete dynamic loads
with amplitude F and period T 52p=nX applied to each sector; and (b) the continuous BTW
excitation with wavelength N/n and speed C5NX=2p relative to the rotating hub
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f0 ¼ ðejnu1 ; ejnu2 ;…; ejnuN ÞT

¼ ðej/1 ; ej/2 ;…; ej/N ÞT
(69)

is a vector of constant intersector phase angles /i ¼ nui. Thus,
the pth modal forcing term on the right-hand side of Eq. (61)
reduces to

ðeHp � IMÞbf ¼ ðeHp � IMÞðf0 � fÞejnXt

¼ ðeHp f0Þ � ðIMfÞejnXt

¼ ðeHp f0Þ � fejnXt; p 2 N

(70)

which is a direct product of the scalar product eHp f0 with the nth
order harmonic excitation fejnXt imparted to each sector. This dis-
section of the modal forcing term highlights an orthogonality con-
dition that is shared by all cyclic systems under engine order
excitation. In particular,

eHp f0 ¼
1ffiffiffiffi
N

p e�j�0�up ; e�j�1�up ;…; e�jðN�1Þup


 �

� ejnu1 ; ejnu2 ;…; ejnuN
� �T

¼ 1ffiffiffiffi
N

p
XN

k¼1

e�jðk�1Þupejnuk

¼ 1ffiffiffiffi
N

p
XN

k¼1

e�jðk�1Þ2p
N
ðp�1Þejn

2p
N
ðk�1Þ

¼ 1ffiffiffiffi
N

p
XN

k¼1

w
�ðk�1Þðp�1Þ
N w

nðk�1Þ
N

¼ 1ffiffiffiffi
N

p
XN

k¼1

w
ðk�1Þðnþ1�pÞ
N

¼
ffiffiffiffi
N

p
; p ¼ nþ 1

0; otherwise

(

(71)

which follows from Lemma 2 and shows that the force vector f0 is
mutually orthogonal to all but one of the modal vectors ep. This
result is obtained more directly from Corollary 10 by observing
that

f0 ¼ ejnu1 ; ejnu2 ;…; ejnuN
� �T

¼ ej�0�unþ1 ; ej�1�unþ1 ;…; ejðN�1Þunþ1


 �T

¼
ffiffiffiffi
N

p
enþ1

where enþ1 is the ðnþ 1Þth column of the Fourier matrix. It fol-
lows that

eHp f0 ¼ eHp
ffiffiffiffi
N

p
enþ1

¼
ffiffiffiffi
N

p
eHp enþ1

¼
ffiffiffiffi
N

p
dpðnþ1Þ

(72)

which is the same orthogonality condition given by Eq. (71).
Thus, for p 2 N , the only excited mode is

p ¼ nmod N þ 1 (73)

for an engine order n 2 Zþ excitation. Then Eq. (70) becomes

ðeHp � IMÞbf ¼
ffiffiffiffi
N

p
fejnXt; p ¼ nþ 1

0; otherwise

(
(74)

and the forced response of the NM-DOF matrix EOM given by
Eq. (58) reduces to solving a single,M-DOF system

eMnþ1€unþ1 þ eCnþ1 _unþ1 þ eKnþ1unþ1 ¼
ffiffiffiffi
N

p
fejnXt (75)

in modal space. Assuming harmonic motion, the steady-state
modal response is given by

ussnþ1ðtÞ ¼
ffiffiffiffi
N

p eZnþ1fe
jnXt (76)

where

Fig. 7 Engine orders nmodN corresponding to BTW, FTW and
SW applied dynamic loading for (i) odd N and (ii) even N (see also
Table 4); example plots of applied dynamic loading (represented
by the dots) for a model with N5 10 sectors and with (a) n5 1
(BTW), (b) n55 (SW), (c) n5 9 (FTW), and (d) n510 (SW). The
BTW engine order excitation is represented by the solid lines.

Table 4 Sets of engine orders nðmodNÞ ‰N corresponding to
BTW, FTW, SW dynamics loads applied to the blades for odd
and even N. These can be visualized in Figs. 7(i) and 7(ii).

N Type Set

Odd BTW N O
BTW ¼ n 2 Zþ : 1 	 n 	 N � 1

2

� �

FTW N O
FTW ¼ n 2 Zþ :

N þ 1

2
	 n 	 N � 1

� �

SW N O
SW ¼ Nf g

Even BTW N E
BTW ¼ n 2 Zþ : 1 	 n 	 N � 2

2

� �

FTW N E
FTW ¼ n 2 Zþ :

N þ 2

2
	 n 	 N � 1

� �

SW N E
SW ¼ N

2
;N

� �
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eZnþ1 ¼ eKnþ1 þ jnXeCnþ1 � ðnXÞ2 eMnþ1

is the ðnþ 1Þth modal impedance matrix. All other steady-state
modal responses are zero because only mode p¼ nþ 1 is excited.
In light of the decomposition shown in Eq. (39), the forced response
in physical coordinates follows from Eq. (57) and is given by

qssðtÞ ¼ enþ1 � ussnþ1ðtÞ (77)

where enþ1 is the ðnþ 1Þth column of the Fourier matrix and
ussnþ1ðtÞ is given by Eq. (76). Expanding Eq. (77) into its sector
components yields

qss1 ðtÞ
qss2 ðtÞ
..
.

qssi ðtÞ
..
.

qssN ðtÞ

2
66666666664

3
77777777775

¼ 1ffiffiffiffi
N

p

ej�0�unþ1

ej�1�unþ1

..

.

ej�ði�1Þ�unþ1

..

.

ej�ðN�1Þ�unþ1

2
66666666664

3
77777777775

�
ffiffiffiffi
N

p eZnþ1fe
jnXt (78)

Thus, the steady-state forced response of the ith sector in physical
coordinates is given by

qssi ðtÞ ¼
1ffiffiffiffi
N

p ej�ði�1Þ�unþ1

ffiffiffiffi
N

p eZnþ1fe
jnXt

¼ eZnþ1fe
jn/iejnXt; i 2 N

(79)

where /i ¼ 2pðn=NÞði� 1Þ. The response of each sector is identi-
cal but simply shifted in time by a constant phase relative to its
nearest neighbors.

3.3 Cyclic System With One DOF Per Sector. This exam-
ple considers the simplest prototypical model for vibrations of a
bladed disk with only one DOF per sector, nearest-neighbor cou-
pling, and perfect symmetry. Despite the simplicity of the model,
we show that the resonant response can be quite complicated
when the system is subjected to engine order excitation with mul-
tiple orders. We begin by formulating the EOM, and then consider
a direct (traditional) approach to deriving the response to traveling
wave excitation. The forced response is then derived using the
modal analysis based on the Fourier matrix, which decouples the
EOM. The nature of the natural frequencies and modes is consid-
ered next, which sets the stage for examining the resonance
behavior of the system when subjected to engine order excitation.
This provides a quite general view of the forced response of these
models.

3.3.1 Equations of Motion. The undamped cyclic system to
be considered is shown in Fig. 8 in dimensionless form. It consists
of a cyclic chain of N identical and identically coupled single-
DOF oscillators with unit mass, the dynamics of which are cap-
tured by the dimensionless transverse displacements qi for i 2 N .
The oscillators are uniformly attached around the circumference
of a stationary rigid hub via linear elastic elements with unit stiff-
ness and unit effective length. Adjacent masses are elastically
coupled via linear springs, each with nondimensional stiffness �.
It is assumed that the elastic elements are unstressed when the
oscillators are in a purely radial configuration, that is, when qi¼ 0
for each i 2 N . An individual oscillator, together with the for-
ward-nearest-neighbor elastic coupling, forms one fundamental
sector and there are N such sectors in the overall system. The os-
cillator chain has cyclic boundary conditions such that q0¼ qN
and qNþ1¼ q1. Finally, the system is subjected to engine order ex-
citation (Sec. 3.2) according to

fiðtÞ ¼ fej/iejnrs; i 2 N (80)

where f is the strength of the excitation, the interphase blade angle
/i is defined by Eq. (64), n 2 Zþ is the excitation order, r is the
angular speed, and s is time (all dimensionless).

The linear dynamics of the ith sector are obtained using New-
ton’s laws and are governed by

€qi þ qi þ t2ð�qi�1 þ 2qi � qiþ1Þ ¼ fej/iejnrs; i 2 N (81)

where overdots denote differentiation with respect to dimension-
less time s. In Eq. (81), the qi61 terms arise from the left-nearest-
neighbor (i� 1) and right-nearest-neighbor (iþ 1) elastic cou-
pling. By stacking the N coordinates qi into the configuration
vector q ¼ ðq1; q2;…; qNÞT, the governing EOM for the overall
N-DOF system takes the form

€qþK11q ¼ f11e
jnrs; i 2 N (82)

where f11 ¼ ðfej/1 ; fej/2 ;…; fej/N ÞT is the system forcing vector,
which accounts for the constant phase difference in the dynamic
loading from one sector to the next. The N�N matrix

K11 ¼

1þ 2t2 �t2 0 … 0 �t2

�t2 1þ 2t2 �t2 … 0 0

0 �t2 1þ 2t2 … 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 … 1þ 2t2 �t2

�t2 0 0 … �t2 1þ 2t2

2
6666666664

3
7777777775

(83)

captures the nondimensional stiffness of each sector relative to the
hub (additive unity along its diagonal) and the intersector cou-
pling (t2 along the super-diagonal and subdiagonal). The elements
�t2 appearing in the (1, N) and (N, 1) positions of K11 are due to
the cyclic boundary conditions q0¼ qN and qNþ1¼ q1. In the ab-
sence of these cyclic coupling terms, the system represents a finite
chain of N oscillators. Thus, in addition to being symmetric, Eq.
(83) is also a circulant and can be written as

K11 ¼ circð1þ 2t2;�t2; 0;…; 0;�t2Þ 2 SCN (84)

where 1þ 2t2;�t2; 0;…; 0;�t2 are the N generating elements.
In the absence of coupling (that is, if t ¼ 0) K11 is diagonal and
Eq. (82) represents a decoupled set of N harmonically forced,
single-DOF oscillators.

The forced response of Eq. (82) is considered next with empha-
sis on a modal analysis whereby the fully coupled system (that is,
one in which t 6¼ 0) is reduced to a set of N single-DOF oscilla-
tors, only one of which is harmonically excited. The approach
taken here, and a generalization in which each sector has multiple
DOFs, is applied to the linear system in Sec. 3.4 to block decouple
the system matrices as it is done in Sec. 3.1.

3.3.2 Forced Response. The steady-state forced response of
Eq. (82) can be obtained using standard techniques [99] and, for
nonresonant forcing, is given by

Fig. 8 Linear cyclic vibratory system with N sectors and one
DOF per sector
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qssðsÞ ¼ ðK11 � n2r2IÞ�1f11e
jnrs (85)

where I is the N�N identity matrix. However, this requires inver-
sion of the impedance matrix K11 � n2r2I, which is computation-
ally expensive for a large number of sectors, and it offers little
insight into the basic vibration characteristics. In what follows, a
transformation based on the cyclic symmetry of the system is
exploited to fully decouple the single N-DOF system to a set of N
single-DOF oscillators from which the steady-state response is
easily obtained. The procedure is similar to the usual modal analy-
sis from elementary vibration theory. However, a key difference
is that the transformation matrix (and hence the system mode
shapes) is known a priori and, because the transformation is uni-
tary (thus preserving the system eigenvalues), the natural frequen-
cies are obtained after the transformation is carried out.
Moreover, due to orthogonality conditions between the normal
modes and forcing vector, the steady-state response of the overall
system reduces to finding the forced response of a single harmoni-
cally forced, single-DOF oscillator in modal space, which offers a
clear advantage over the direct computation of Eq. (85).

As described in Sec. 3.2.2, engine order excitation can be
regarded as traveling wave dynamic loading. It is therefore rea-
sonable to expect steady-state solutions of the same type. We
begin with a simple way to show the existence of such a response,
and then systematically describe it using the modal analysis tech-
niques described in Secs. 3.1.2 and 3.2.3.

Existence of a Traveling Wave Response. It is natural to search
for steady-state solutions of the form

qssi ðsÞ ¼ Aej/iejnrs; i 2 N (86)

which has the same traveling wave characteristics as the engine
order excitation described in Sec. 3.2.2. Equation (86) assumes
that each sector responds with the same amplitude A, but with a
constant phase difference relative to its nearest neighbors, and to-
gether all N such solutions form a traveling wave response among
the sectors. By mapping this trial solution into Eq. (81) and divid-
ing through by the common term ej/iejnrs, it follows that

� ðnrÞ2Aþ Aþ t2 �Ae�junþ1 þ 2A� Aejunþ1
� �

¼ f (87)

where the identity /i61 � /i ¼ 6unþ1 is employed. Solving for
the amplitude A yields

A ¼ f

1þ 2t2ð1� cosunþ1Þ � ðnrÞ2
(88)

from which it follows that

�xnþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2t2ð1� cosunþ1Þ

q

is one of the N natural frequencies of the coupled system corre-
sponding to mode p ¼ nmod N þ 1. Equation (88) shows that
mode nþ 1 is excited, but the reason is not clear from this
approach. A modal analysis that considers the fully coupled sys-
tem is required to systematically describe the response character-
istics of the cyclic system under engine order excitation.

Modal Analysis. Theorem 9 guarantees that circulant matrices,
such as the stiffness matrix defined by Eq. (84), are diagonalizable
via a unitary transformation involving the Fourier matrix, and in
what follows this property is exploited to fully decouple the matrix
EOM defined by Eq. (82). To this end, the change of coordinates

qðsÞ ¼ EuðsÞ or qiðsÞ ¼ eTi uðsÞ; i 2 N (89)

is introduced, where E is the N�N complex Fourier matrix (Defini-
tion 17), ei is its ith column (Definition 18), and u ¼ ðu1; u2;…; uNÞT
is a vector of modal, or cyclic coordinates. Substituting Eq. (89) in Eq.
(82) and multiplying from the left by EH yields

EHE€uþ EHK11Eu ¼ EHf11e
jnrs (90)

where EHE ¼ I because E is unitary (Theorem 6). In light of
Theorem 9, it follows that

€u1

€u2

..

.

€uN

2
666664

3
777775
þ

�x2
1 0

�x2
2

. .
.

0 �x2
N

2
666664

3
777775

u1

u2

..

.

uN

2
666664

3
777775
¼

eH1 f11

eH2 f11

..

.

eHN f11

2
666664

3
777775
ejnrs (91)

where the pth scalar element of the N� 1 modal forcing vector
EHf11 is eHp f11. Decomposition of EHf11 follows from Eq. (60) by
replacing the identity matrix IM with unity and the vector bf with
f11. Equation (89) is a unitary (similarity) transformation and
hence the system natural frequencies are preserved, which is guar-
anteed by Theorem 1. For each p 2 N , the dimensionless natural
frequencies follow from Eq. (21) and are given by

�x2
p ¼ 1þ 2t2 � t2w

ðp�1Þ
N þ 0þ � � � þ 0� t2w

ðN�1Þðp�1Þ
N

¼ 1þ 2t2 � t2 w
ðp�1Þ
N þ w

ðN�1Þðp�1Þ
N


 �

¼ 1þ 2t2ð1� cosupÞ

(92)

where wN is the primitive Nth root of unity and the identity

w
ðp�1Þ
N þ w

ðN�1Þðp�1Þ
N ¼ 2 cosup is employed. Equation (91) is a

decoupled set of N single-DOF harmonically forced modal oscil-
lators of the form

€up þ �x2
pup ¼ eHp f11e

jnrs; p 2 N (93)

Thus, the single N-DOF system given by Eq. (82) is transformed to
a system of N decoupled single-DOF systems defined by Eq. (93).

The steady-state, nonresonant modal response of the pth
decoupled system follows from Eq. (93) using standard techniques
[99]. Assuming harmonic motion, the solution is

ussp ðsÞ ¼
eHp f11

�x2
p � ðnrÞ2

ejnrs; p 2 N (94)

from which the steady-state modal response vector

ussðsÞ ¼ uss1 ðsÞ; uss2 ðsÞ;…; ussN ðsÞ
� �T

is constructed. In physical

coordinates, the steady-state response of sector i follows from Eq.
(89) and is given by

qssi ðsÞ ¼ eTi u
ssðsÞ

¼ 1ffiffiffiffi
N

p ej�0�ui ; ej�1�ui ;…; ejðN�1Þui


 �

� uss1 ðsÞ; uss2 ðsÞ;…; ussN ðsÞ
� �T

¼
XN

p¼1

1ffiffiffiffi
N

p ejðp�1Þuiussp ðsÞ

¼
XN

p¼1

1ffiffiffiffi
N

p ejupði�1Þ eHp f11

�x2
p � ðnrÞ2

ejnrs

¼ 1ffiffiffiffi
N

p
XN

p¼1

eHp f11

�x2
p � ðnrÞ2

ejði�1Þupejnrs; i 2 N

(95)

where the identity ðp� 1Þui ¼ upði� 1Þ is employed. Equation
(95) shows that there are N possible resonances, depending on the
details of the modal forcing terms eHp f11. However, only a single
mode survives under an engine order excitation of order n, which
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is clear from the orthogonality condition described in Sec. 3.2.3.
Noting that f11 ¼ f � f0 ¼

ffiffiffiffi
N

p
f enþ1, it follows from Eq. (72) that

eHp f11 ¼
ffiffiffiffi
N

p
f eHp enþ1

¼
ffiffiffiffi
N

p
fdpðnþ1Þ

¼
ffiffiffiffi
N

p
f ; p ¼ nþ 1

0; otherwise

( (96)

which shows that the force vector f11 is mutually orthogonal to all
but one of the modal vectors ep. That is, for p 2 N , the only
excited mode is

p ¼ nmod N þ 1 (97)

for an engine order n 2 Zþ excitation. Thus, Eq. (95) reduces to

qssi ðsÞ ¼
f

�x2
nþ1 � ðnrÞ2

ej/iejnrs; i 2 N (98)

where the identity ði� 1Þunþ1 ¼ /i is employed and

�x2
nþ1 ¼ 1þ 2t2ð1� cosunþ1Þ

from Eq. (92). Equation (98) is the same result as that obtained
from Eq. (88). Indeed, the process described here is significantly
more laborious than the direct approach, but many general fea-
tures can be gleaned from the analysis. The eigenfrequency char-
acteristics (Sec. 3.3.3), normal modes of vibration (Sec. 3.3.4),
and resonance structure (Sec. 3.3.5) are systematically described
based on the modal decomposition results of this section.

3.3.3 Eigenfrequency Characteristics. The dimensionless nat-
ural frequencies follow from Eq. (92) and are given by

�xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2t2ð1� cosupÞ

q
; p 2 N (99)

which clearly exhibit the effect of cyclic coupling. For the special
case of t ¼ 0, the sectors are dynamically isolated and each has
the same natural frequency �xp ¼ 1. There are repeated natural fre-
quencies for nonzero coupling ðt 6¼ 0Þ, a degeneracy that is due to
the circulant structure of K. This is captured by the cyclic term

cosup ¼ cos
2pðp� 1Þ

N

� �
¼ Re w

p�1
N


 �
(100)

which is obtained by projecting the powers of the Nth roots of
unity onto the real axis (see Fig. 2). Multiplicity of the eigenfre-
quencies can also be visualized in Fig. 9, which shows the dimen-
sionless natural frequencies in terms of the number of nodal
diameters (n.d.) in their attendant mode shapes versus: the mode
number p for the special case of N¼ 10 sectors; the wave type
(i.e., BTW, FTW, or SW); the number of n.d.; and the sector num-
ber i.3 Results are shown for weak coupling (WC), strong cou-
pling (SC), odd N (Fig. 9(a)), and even N (Fig. 9(b)). These cyclic
features are described in terms of mode numbers

p 2 N ¼ PO;E
SW [ PO;E

BTW [ PO;E
FTW

where each subset is defined in Table 5. A description of the
BTW, FTW, and SW designations of these sets is deferred to
Sec 3.3.4.

The natural frequency corresponding to mode p ¼ 1 2 PO;E
SW

(zero harmonic of Eq. (100)) is distinct, but the remaining natural
frequencies appear in repeated pairs, except for the case of even

N, in which case the p ¼ ðN þ 2Þ=2 2 PE
SW frequency (N/2 har-

monic) is also distinct. There are (N� 1)/2 such pairs if N is odd,

and these correspond to mode numbers in PO
BTW and PO

FTW,

respectively. For even N there are (N� 2)/2 repeated natural fre-

quencies corresponding to mode numbers in PE
BTW and PE

FTW.

Finally, if k 2 PO;E
BTW then the mode number of the corresponding

repeated eigenfrequency is N þ 2� k 2 PO;E
FTW. The normal modes

Table 5 Sets of mode numbers p ‰N corresponding to
BTW, FTW, and SW normal modes of free vibration for odd and
even N

N Type Set

Odd BTW PO
BTW ¼ p 2 Zþ : 2 	 n 	 N þ 1

2

� �

FTW PO
FTW ¼ p 2 Zþ :

N þ 3

2
	 n 	 N

� �

SW PO
SW ¼ 1f g

Even BTW PE
BTW ¼ p 2 Zþ : 2 	 n 	 N

2

� �

FTW PE
FTW ¼ p 2 Zþ :

N þ 4

2
	 n 	 N

� �

SW PE
SW ¼ 1;

N þ 2

2

� �

Fig. 9 Dimensionless natural frequencies �xp in terms of the
number of n.d. versus mode number p for WC and SC: (a)
N5 11 (odd) and (b) N5 10 (even). Also indicated below each
figure is, for general N, the number of n.d. at each value of p
and also the mode numbers corresponding to SW, BTW, and
FTW.

3A mode shape nodal diameter refers to a line of zero sector responses across

which adjacent sectors respond out of phase. For example, in Fig. 11 of Sec. 3.3.4,

mode 1 has 0 n.d., modes 2 and 100 have 1 n.d., modes 3 and 99 have 2 n.d., and so

on.
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of vibration are described next, where it is shown that each can be
categorized as a SW, BTW, or FTW.

3.3.4 Normal Modes of Vibration. It was shown that Eq. (82)
can be decoupled via a unitary transformation involving the Fou-
rier matrix E ¼ ðe1; e2;…; eNÞ. As a consequence, ep is the pth
normal mode of vibration corresponding to the natural frequency
�xp. In what follows these mode shapes are characterized by inves-
tigating the free response of the system, and it is shown that they
are of the SW, BTW, or FTW variety.

The free response of the system in its pth mode of vibration can
be described by

qðpÞðsÞ ¼ apepe
j �xps

where ap is a modal amplitude and the natural frequency �xp is defined
by Eq. (99). There is generally a phase angle as well, which is omitted
because its presence does not affect the arguments that follow. Noting
that element i of ep can be written as w

ðp�1Þði�1Þ
N ¼ ejupði�1Þ, the free

response of sector i can be written in real form as

q
ðpÞ
i ðsÞ ¼ ap cos ðupði� 1Þ þ �xpsÞ

¼ ap cos up i� 1þ �xp

up

s

!!

¼ apUpði� 1þ CpsÞ; i; p 2 N

(101)

where Cp ¼ �xp=up and the function UpðvÞ is defined by Eq. (65).
Equation (101) is a function of continuous time s and it is discre-
tized according to the sector number i. In this way, it is endowed
with the same discrete temporal and continuous spatial duality
that is described in Sec. 3.2.2 in the context of traveling wave
engine order excitation. That is, it can be regarded as the time–res-
ponse of individual (discrete) sectors, or a continuous spatial vari-
ation of displacements among the sectors that evolves with
increasing time (i.e., a traveling wave). The propagating wave-
form is strictly a BTW in the negative i-direction (descending sec-
tor number) with wavelength 2p=up ¼ N=ðp� 1Þ and speed Cp,
an illustration of which is shown in Fig. 10. However, depending
on the value of p, this gives rise to SW, BTW, or FTW mode
shapes, a property that follows analogously from the features
described in Sec. 3.2.2, where it is seen that Eq. (101) has the
same form as Eq. (66).

For the special case of p¼ 1 it is clear from Eq. (101) that each
sector behaves identically with the same amplitude and the same
phase because u1 ¼ 0. An additional special case occurs when
p¼ (Nþ 2)/2 if N is even. Then uðNþ2Þ=2 ¼ p and each sector has
the same amplitude but adjacent sectors oscillate with a 180-deg

phase difference. In this case, the vibration modes p 2 PO;E
SW corre-

spond to SW mode shapes whose characteristics can be visualized
in Figs. 7(b) and 7(d) by replacing the amplitude F with ap. The
remaining mode shapes correspond to repeated natural frequen-
cies and are either BTWs or FTWs. In particular, the normal
modes p 2 PO;E

BTW (resp. p 2 PO;E
FTW) are backward (resp. forward)

traveling waves and can be visualized in Fig. 7(a) (resp. Fig 7(c)).
If mode k 2 PO;E

BTW is a BTW corresponding to a natural frequency
�xk, then the attendant FTW mode is N þ 2� k 2 PO;E

FTW with the
same natural frequency �xNþ2�k ¼ �xk.

Figure 11 illustrates the normal modes of free vibration for a
model with N¼ 100 sectors. In this figure, the extent of the radial
lines represents sector displacements. Those appearing outside the
hub are to be interpreted as being positively displaced relative to their
zero positions, and the opposite is true for lines inside the hub. Modes
1 and 51 are SWs, modes 2–50 are BTWs, and modes 52–100 are
FTWs. Finally, the number of nodal diameters can be clearly identi-
fied in Fig. 11. For example, modes 4 and 98 have 3n.d.

3.3.5 Resonance Structure. In general, there may be a system
resonance if the excitation frequency matches a natural frequency,
that is, if nr ¼ �xp. These possible resonances are conveniently
identified in a Campbell diagram, an example of which is shown
in Fig. 12(a) for engine orders n 2 N (the general case of n 2 Zþ
is considered below), N¼ 10, and � ¼ 0:5. The natural frequen-
cies are plotted in terms of the dimensionless rotor speed and sev-
eral engine order lines nr are superimposed. Possible resonances
correspond to intersections of the order lines and eigenfrequency
loci. There are ðN þ 2Þ=2 such possibilities for each engine order
if N is odd and ðN þ 1Þ=2 possible resonances if N is even. In light
of Eq. (96), however, there is only a single resonance associated
with each n under the traveling wave dynamic loading of Sec. 3.2,
which corresponds to mode p ¼ nmod N þ 1. The set of N
resonances for a system excited by N engine orders
ðn ¼ 1; 2;…;NÞ are indicated by the black dots in Fig. 12(a) and
the corresponding frequency response curves jqssi ðsÞj (for each n)
are shown in Fig. 12(b) for a model with f¼ 0.01. For example, a
3 e.o. excitation resonates mode 4 (p¼ 4), which is a BTW with
3 n.d. Mode 8 (p¼ 4) also has 3 n.d. and is excited by a 7 e.o. exci-
tation. The TW and n.d. designations can be verified in Fig. 9.

The basic resonance structure shown in Fig. 12(a) for n 2 N
essentially aliases relative to the total number of sectors, in the
sense that the excited modes for n ¼ mN þ 1;…; ðmþ 1ÞN with
m 2 Zþ are the same as those for n 2 N . This follows from the
orthogonality condition given by Eq. (96) and is manifested in
Eq. (97), which gives a relationship for the excited mode in terms
of the engine order n and total number of sectors N. Because
n> 0 by assumption (see Sec. 3.2) the first mode (p¼ 1) is excited
when n ¼ mN ¼ 10; 20; 30;…, the second mode (p¼ 2) is excited
when n ¼ 1þ mN ¼ 1; 11; 21;…, and so on. Table 6 summarizes
these conditions for a model with N¼ 10 sectors and the
corresponding resonance structure for n ¼ N � 1;…; 20N is
shown in Fig. 13(a). Each collection of resonance points
n ¼ mN þ 1;…; ðmþ 1ÞN is qualitatively the same in structure.
However, for m> 1 the resonances become increasingly clustered,
which is shown in Fig. 13(b) for n ¼ N;…; 2N. In terms of the
sets defined in Tables 4 and 5, an engine order nmod N 2 N O;E

SW

excites a SW mode p 2 PO;E
SW . Similarly, an engine order

nmod N 2 N O;E
FTW (resp. nmod N 2 N O;E

BTW) excites a FTW (resp.
BTW) mode p 2 PO;E

FTW (resp. p 2 PO;E
BTW).

While each engine order excites only a single mode, realistic
excitation it composed of multiple harmonics (that is, orders), so
that many modes can be excited. The nature of the natural fre-
quencies and the order excitation lines leads to nontrivial reso-
nance behavior even in the case of perfect symmetry. Of course,
as noted elsewhere in this paper, imperfections that disturb the
symmetry lead to even more complicated responses, in which ev-
ery intersection between e.o. and natural frequency lines can lead
to a resonance. These are especially important when the intersec-
tor coupling is small.

Fig. 10 A backward traveling wave apUpði � 11CpsÞ
5 apcosðupði 2 1Þ1 �xpsÞ with amplitude ap, wavelength 2p=up

5N=ðp21Þ, and speed Cp 5 �xp=up
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3.4 Cyclic System With Two DOFs Per Sector. This exam-
ple generalizes the one DOF per sector model of Sec. 3.3 to a sim-
ple system with two DOFs per sector, which demonstrates the
process of block diagonalizing the EOM when there are multiple
DOFs per sector. The mathematics of the decoupling process
described here applies equally as well to models with two or N
DOFs per sector. Of course, the nature of the natural frequencies
and mode shapes depend on the details of each sector model which,
for the cyclic system considered here, is discussed in Refs. [92–94].
There is much more to the topic of multiple DOFs per sector; the
reader is referred to the works of �Ottarsson [97,114] and Bladh
[29,115–117] for more details and more complex examples.

3.4.1 Equations of Motion. The nondimensional bladed disk
model shown in Fig. 14(a) consists of a rotationally periodic array
of N identical, identically coupled sector models (Fig. 14(b)). The

disk has radius d and rotates with a fixed speed r about an axis
through C. Each blade is modeled by a simple pendulum with unit
mass and length, the dynamics of which are captured by the nor-
malized angles xi with i 2 N . The blades are attached to the rotat-
ing disk via linear torsional springs with unit stiffness, and
adjacent blades are elastically coupled by linear springs with stiff-
ness �. It is assumed that the springs are unstretched when the
blades are in a purely radial configuration, that is, when each
xi¼ 0. As shown in the inset of Fig. 14(b), each blade is fitted
with a pendulum like, circular-path vibration absorber with radius
c and mass l at an effective distance a along the blade length. The
absorber dynamics are captured by the normalized pendulum
angles yi, which are physically limited to jyij 	 1 by stops that
represent the rattling space limits imposed by the blade geometry.
This feature is included for generality, but in all of what follows it
is assumed that jyij < 1, i.e., that impacts do not occur. Linear

Fig. 11 Normal modes of free vibration for a model with N5100 sectors. Mode 1 consists of a SW, in which
each sector oscillates with the same amplitude and phase. Mode 51 also corresponds to a SW, but neighboring
oscillators oscillate exactly 180deg out of phase. Modes 2–50 (resp. 52–100) consist of BTWs (resp. FTWs).
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viscous damping is also included at the spring locations, but is not
indicated in Fig. 14. Blade and interblade damping is captured by
linear torsional and translational dampers with constants nb and nc,
respectively, and the absorber damping is captured by a torsional
damper with constant na. Finally, the system is subjected to the
traveling wave dynamic loading defined by Eq. (80), as shown in
Fig. 14(b).

Sector Model. The EOM for each two-DOF sector are derived
using Lagrange’s method and linearized for small motions of the
primary and absorber systems, that is, for small xi and yi. Then for
each i 2 N , the dynamics of the ith sector are governed by [92,93]

lc2ð€xi þ €yiÞ þ na _yi þ lcdr2ðxi þ yiÞ
þ lcað€xi þ r2yiÞ ¼ 0 (102a)

€xi þ nb _xi � na _yi þ xi þ dr2xi

þ l
a2€xi þc2ð€xi þ €yiÞ þ acð€yi þ 2€xiÞ

þadr2xi þ cdr2ðxi þ yiÞ

" #

þ ncð� _xi�1 þ 2 _xi � _xiþ1Þ

þ �2ð�xi�1 þ 2xi � xiþ1Þ ¼ fej/iejnrs (102b)

where Eq. (102a) describes the absorber dynamics and Eq. (102b)
describes the blade dynamics. The indices i are taken modN
such that xNþ1 ¼ x1 and x0 ¼ xN , which are cyclic boundary con-
ditions implying that the Nth blade is coupled to the first. In
matrix–vector form, and for each i 2 N , Eq. (102) becomes

M€zi þ C _zi þKziþCcð� _zi�1 þ 2 _zi � _ziþ1Þ
þ Kcð�zi�1 þ 2zi � ziþ1Þ
¼ fej/iejnrs

9
>=
>;

(103)

where zi ¼ xi; yið ÞT captures the sector dynamics, f ¼ f ; 0ð ÞT is a
sector forcing vector, and the elements of the sector mass, damp-
ing, and stiffness matrices are defined in Table 7. The matrices

Cc ¼
nc 0

0 0

" #
; Kc ¼

�2 0

0 0

" #
(104)

capture the interblade coupling and vanish if nc ¼ � ¼ 0, in which
case Eq. (103) describes the forced motion of N isolated blade/
absorber systems.

System Model. By stacking each zi into the configuration vector
q ¼ z1; z2;…; zNð ÞT, the governing matrix EOM for the overall
2N-DOF system takes the form

bM€qþ bC _qþ bKq ¼ bfejnrs (105)

where bM 2 BCBS2;N is block diagonal with diagonal blocks M

and bK 2 BCBS2;N has generating matrices Kþ 2Kc;�Kc;

0;…; 0;�Kc. The matrix bC 2 BCBS2;N is similarly defined by

replacing K with C and Kc with Cc in bK. In terms of the circulant

Fig. 12 (a) Campbell diagram and (b) corresponding frequency
response curves jqss

i ðsÞj for N510, m5 0:5, f5 0.01, and each
n5 1;2; . . . ;N

Table 6 Condition on the engine order n ‰Zþ to excite mode
p ‰N for N510

Excited mode Conditions on engine order n

1 mN ¼ 10; 20; 30;…
2 1þ mN ¼ 1; 11; 21;…
3 2þ mN ¼ 2; 12; 22;…
..
. ..

.

N� 1 N � 2þmN ¼ 8; 18; 28;…
N N � 1þmN ¼ 9; 19; 29;…

Fig. 13 (a) Campbell diagram for N510, m5 0:5, f5 0.01, and
n5 1; . . . ; 20N and (b) the corresponding frequency response
curves jqss

i ðsÞj corresponding to n5N ; . . . ; 2N . Engine order
lines are not shown for n5N 1 1;N 1 2; . . . ; 2N 2 1, and so on.
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operator, the system mass, damping, and stiffness matrices are
defined by

bM ¼ circðM; 0; 0;…; 0; 0Þ
bC ¼ circðCþ 2Cc;�Cc; 0;…; 0;�CcÞ
bK ¼ circðKþ 2Kc;�Kc; 0;…; 0;�KcÞ

9
>>=
>>;

(106)

The 2N� 1 system forcing vector is

bf ¼ fej/1 ; fej/2 ;…; fej/N
� �T

¼ f0 � f
(107)

where the N� 1 vector f0 is defined by Eq. (69) and the interblade
phase angle /i is given by Eq. (64).

3.4.2 Forced Response. The forced response of the overall
system defined by Eq. (105) can be handled directly using stand-
ard techniques [99]. Its nonresonant solution in the steady-state
follows in the usual way and is given by

qssðsÞ ¼ bZ�1bfejnrs (108)

where bZ ¼ bK� n2r2 bMþ jnrbC is the system impedance matrix
of dimension 2N� 2N. However, Eq. (108) does not offer any
insight into the system’s modal characteristics and it requires
computation of bZ�1, which can be prohibitive for practical bladed
disk models with many sectors and many DOFs per sector. We
thus turn to a decoupling strategy that exploits the system symme-
try and the theory developed in Sec. 2. The analysis follows simi-
larly to that presented in Sec. 3.1, except in this case the single
coupled 2N-DOF system is transformed into a set of N block
decoupled two-DOF systems. To this end, we introduce the
change of coordinates

q ¼ ðE� IÞu; or zi ¼ ðeTi � IÞu; i 2 N (109)

where E is the N�N complex Fourier matrix and ei is its ith col-
umn, � is the Kronecker product, I is the 2� 2 identity matrix
(the dimension of I corresponds to the number of DOFs per sec-
tor), and u ¼ u1;u2;…;uNð ÞT is a vector of modal, or cyclic coor-
dinates. Each up is 2� 1 and describes the sector dynamics in
modal space. Substituting Eq. (109) into Eq. (105), multiplying
from the left by the unitary matrix ðE� IÞH ¼ ðEH � IÞ, and
invoking Theorem 10 yields a system of N block decoupled equa-
tions, each with two DOFs. They are

eMp€up þ eCp _up þ eKpup ¼ ðeHp � IÞbfejnrs; p 2 N (110)

where ðeHp � IÞbf is the pth 2� 1 block of ðEH � IÞbf. Equation
(110) is analogous to the N M-DOF systems given by Eq. (61) for
the general formulation in Sec. 3.1, but in this case M¼ 2 and
engine order excitation is assumed from the onset. Figure 15 illus-
trates the transformation of the single 2N-DOF system given by
Eq. (105) to a system of N block decoupled two-DOF forced oscil-
lators defined by Eq. (110).

The 2� 2 mass, damping, and stiffness matrices associated
with the pth mode follow from Theorem 10 and are given by

eMp ¼ M

eCp ¼ Cþ 2Ccð1� cosupÞ
eKp ¼ Kþ 2Kcð1� cosupÞ

9
>>=
>>;
; p 2 N (111)

where up is defined by Eq. (16), the elements of M, C, and K are
defined in Table 7 and the coupling matrices Cc and Kc are
defined by Eq. (104). In light of Eqs. (70) and (71), the pth modal
forcing vector takes the form

ðeHp � IÞbf ¼ ðeHp � IÞðf0 � fÞ
¼ eHp f0 � f

(112)

¼
ffiffiffiffi
N

p
f; p ¼ nþ 1

0; otherwise

(

Fig. 14 (a) Model of bladed disk assembly and (b) sector
model

Table 7 Elements of the sector mass, damping, and stiffness
matrices M, C, and K

Matrix Notation Elements

Mass M M11 ¼ 1þ lðaþ cÞ2
M12 ¼ lcðaþ cÞ
M21 ¼ M12

M22 ¼ lc2

Damping C C11 ¼ nb
C12 ¼ �na
C21 ¼ 0
C22 ¼ na

Stiffness K K11 ¼ 1þ 1þ lðaþ cÞð Þdr2
K12 ¼ lcdr2

K21 ¼ K12

K22 ¼ lc aþ dð Þr2
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where 0¼ (0,0)T and the scalar product eHp f0 vanishes except for
p¼ nþ 1. Because only mode p¼ nþ 1 is excited, unþ1ðsÞ is the
only nonzero modal response in the steady-state.

Assuming harmonic motion, and in light of Eq. (112), the pth
steady-state modal response follows easily from Eq. (110) and is
given by

ussp ðsÞ ¼
ffiffiffiffi
N

p eZ�1
nþ1fe

jnrs; p ¼ nþ 1

0; otherwise

(
(113)

where

eZp ¼ eKp � n2r2 eMp þ jnreCp; p 2 N (114)

is the pth modal impedance matrix. The response of sector i (in
physical coordinates) follows from the transformation given by
Eq. (109) with

ussðsÞ ¼ ð0;…; 0;ussnþ1ðsÞ; 0;…; 0ÞT

and is given by

zssi ðsÞ ¼ eZ�1
nþ1fe

j/iejnrs; i 2 N (115)

where wnði�1Þ ¼ ej/i is employed. From Eq. (115) it is clear that
each blade/absorber combination behaves identically except for a
constant phase shift from one sector to another, which is captured
by the interblade phase angle /i. This approach offers a signifi-
cant computational advantage over the direct solution to the full
2N-DOF system, as given by Eq. (108).

4 Conclusions

The goal of this paper is to provide the mathematical tools for
handling circulant matrices as they apply to the free and forced
vibration analysis of structures with cyclic symmetry. As demon-
strated by past work in this area and the review provided here, the
theory of circulants provides a useful description of the fundamen-
tal structure of the mode shapes and spectrum of systems with
cyclic symmetry, including those of large scale. The theory also
provides a convenient means for computing the vibration response
of these systems, even when the idealized symmetry is broken by
mistuning or by nonlinear effects. As with any mathematical tool,
the overhead in learning it must provide appropriate benefit,

whether in terms of fundamental understanding, insight, or ease of
computation. We trust that the results presented here offer such
benefits to readers interested in vibration analysis of cyclic
systems.

It must be noted that no physical system has perfect symmetry,
as assumed herein. This assumption must be examined in light of
the system under consideration. One key to the suitability of a
cyclically symmetric model is the intersector coupling. If the cou-
pling is strong, so that the pairs of modes have well separated fre-
quencies, then small imperfections will not alter the picture
substantially, and one can consider each mode pair as robust
against coupling to other modes. However, if the coupling is
weak, so that the system frequencies are clustered near those of
the isolated sector model, the possibility of localization is signifi-
cantly increased. This topic has been investigated quite thor-
oughly, primarily in the context of the vibration of bladed disk
assemblies with small blade mistuning; see, for example, [72–88].
Also, nonlinear effects can couple linear modes under certain res-
onance conditions, even at small amplitudes [118]. In cyclic sys-
tems this can occur for the pairs of modes with equal frequencies
[119], and this possibility expands to groups of modes for the case
of weak coupling, leading to extremely complicated behavior
[82,84,88]. In such cases, the tools from group theory can be
applied to categorize the possible modes and forced response in
terms of their symmetries [65]. This topic, while interesting, is
outside the scope of the present paper.
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