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1. Introduction

A real circulant stochastic process of order T is one in which the autocovariance
matrix of a vector [y0, y1, . . . , yT−1], sampled from the process, is unchanged
when the elements of the vector are subjected to a cyclical permutation. Thus,
for any integers s, t ∈ [0, T − 1], we should have

(1) γ|t−s| = C(yt, ys) = C{y(t+τ mod T ), y(s+τ mod T )},

where τ is an arbitrary integer. Such a process is the finite equivalent of a
stationary stochastic process.

An ordinary stationary process is, by definition, distributed over the set of
all positive and negative integers, which corresponds to a set of equally spaced
points on the time axis. It is statistically invariant with respect to translations
along this axis. A circular process, in comparison, is invariant with respect of
translations around a closed circuit where the successive stations are indexed
by the integers 0, 1, . . . , T − 1.

One of the bugbears of time-series analysis is the need to cope with the
fact that all data series are finite with a definite beginning and an end. Often
we need to infer the values of elements that lie outside the sample. Also, in
attempting to determine the sampling properties of time-series estimates, we
have often to contend with the disjunctions at the beginning and the end of
the samples. Usually we can show that, as the sample size increases, the effect
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of these disjunctions upon our estimates vanishes; but it is often difficult or
laborious to demonstrate the fact.

A virtue of circular processes is that they suffer from none of these end
effects. They are often easier to analyse than are the corresponding finite seg-
ments sampled from stationary processes, and the results that are obtained are
usually perfect prototypes for the asymptotic results for stationary processes.

The theoretical importance of circular processes is reaffirmed once it is
recognised that all time-series methods that make use of the discrete Fourier
transform are effectively based upon the assumption that the data are from
circular processes.

The purpose of this paper is to set forth some of the salient results in
the algebra of circular processes which can be used in time-series analysis.
In the course of doing so, we shall provide easy proofs of some results that
are central to the analysis of statistical periodograms and empirical spectral
density functions. We shall also derive a statistical test for the stationarity or
homogeneity of an empirical process. Once the algebra of circulant matrices
has been digested, it should appear that the test is of a familiar classical nature.

Circulant matrices have represented a mathematical curiosity ever since
their first appearance in the literature in a paper by Catalan [2]. The literature
on circulant matrices, from their introduction until 1920, was summarised in
four papers by Muir [6]–[9]. A recent treatise on the subject, which contains a
useful bibliography, has been provided by Davis [4]; but his book does not deal
with problems in time-series analysis.

Circulant matrices have been used, in passing, in the analysis of time
series by several authors, notably by Anderson [1] and by Fuller [5], but their
usefulness in organising the material of statistical Fourier analysis, or of time-
series analysis in the frequency domain, has not been fully exploited. It is
hoped that the paper will help in changing this.

2. Circulant Matrices and Polynomials

A circulant matrix is a Toeplitz matrix which has the general form of

(2) A =




α0 αT−1 αT−2 . . . α1

α1 α0 αT−1 . . . α2

α2 α1 α0 . . . α3
...

...
...

. . .
...

αT−1 αT−2 αT−3 . . . α0


 .

The vectors of such a matrix are generated by applying a succession of cyclic
permutations to the leading vector, which therefore serves to specify the matrix
completely. The elements of the circulant matrix A = [αij ] fulfil the condition
that αij = α{(i−j) mod T}. Hence, the index for the supra-diagonal elements,
for which 1− T < (i− j) < 0, becomes (i− j) mod T = T + (i− j).

The operator which effects the cyclic permutation of the elements of any
(column) vector of order T is the matrix K = [e1, . . . , eT−1, e0]. This is formed
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from the identity matrix I = [e0, e1, . . . , eT−1] by moving the leading vector to
the back of the array. Thus

(3) K =




0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0



.

We should observe that the following conditions hold:

(4)

(i) K−q = KT−q,

(ii) K0 = KT = I,

(iii) K ′ = KT−1 = K−1.

Any circulant matrix A of order T can be expressed as a linear combination
of the set of basis matrices I,K, . . . ,KT−1; and thus A can be expressed as a
polynomial function

(5)
A = α0I + α1K + · · ·+ αT−1K

T−1

= α(K).

If {γi} is an absolutely convergent sequence obeying the condition that∑
|γi| < ∞, then the z-transform of the sequence, which is defined by γ(z) =∑
γjz

j , is an analytic function on the unit circle. In that case, replacing z
by K gives rise to a circulant matrix Γ = γ(K) with finite-valued elements.
Noting that K ↑ q = K ↑ (q mod T ), it is found that

(6)
Γ =

{ ∞∑
j=0

γjT

}
I +

{ ∞∑
j=0

γ(jT+1)

}
K + · · ·+

{ ∞∑
j=0

γ(jT+T−1)

}
KT−1

= ψ0I + ψ1K + · · ·+ ψT−1K
T−1.

Given that {γi} is a convergent sequence, it follows that the sequence of the
matrix coefficients {ψ0, ψ1, . . . , ψT−1} converges to {γ0, γ1, . . . , γT−1} as T in-
creases.

Notice that the matrix ψ(K) = ψ0I + ψ1K + · · · + ψT−1K
T−1, which is

derived from a polynomial ψ(z) of degree T − 1, is a synonym for the matrix
γ(K), which is derived from the z-transform of an infinite convergent sequence.

The polynomial representation is enough to establish that circulant matri-
ces commute in multiplication and that their product is also a polynomial in
K. That is to say

(7) If A = α(K) and B = β(K) are circulant matrices, then their
product Γ = AB = BA is also a circulant matrix.
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The peculiar feature of such polynomials is that the powers of the argument
K form a T -periodic sequence such that Kj+T = Kj ; and thus the degrees of
the polynomial products never exceed T − 1. This periodicity is analogous to
the periodicity of the argument z = exp{−i2π/T} which is to be found in the
Fourier transform of a sequence of order T .

Notice also that the characterisation of A = α(K) under (5) implies that

(8) KAK ′ = K ′AK = A.

A symmetric circulant matrix C = C ′ must have a representation in the
form of

(9)
C = γ0I + γ1(K +K−1) + · · ·+ γT−1(KT−1 +K1−T )

= γ0I + (γ1 + γT−1)K + · · ·+ (γT−1 + γ1)KT−1.

The implication of the condition is that cτ = (γτ + γT−τ ) = cT−τ .
Observe that this condition of matrix symmetry can be obtained directly

from the defining conditions of a circulant matrix. For, if αij = α{(i− j) mod
T} is the element in the ith row and the jth column and if αij = αji, then
α{τ mod T} = α{−τ mod T} where τ = i− j, which is to say that ατ = αT−τ .

An example of a symmetric circulant matrix is provided by the matrix
of the autocovariances of a circular process. If the sequence {γ0, γ1, . . . , γT−1}
represents a sequence of ordinary autocovariances, and if γτ = 0 for τ ≥ T , then
{c0 = γ0, c1 = (γ1+γT−1), . . . , cT−1 = (γT−1+γ1)} would be the corresponding
sequence of circular autocovariances.

Example. Imagine that T observations, running from t = 0 to t = T − 1,
have been taken on a stationary and invertible ARMA(p, q) process y(t) which
is described by the equation

(10) (1 + α1L+ · · ·+ αpL
p)y(t) = (1 + µ1L+ · · ·+ µqL

q)ε(t),

wherein ε(t) is a white-noise sequence of independently and identically dis-
tributed random variables of zero mean, and L is the lag operator which has
the effect that Lε(t) = ε(t − 1). Corresponding to the observations, there is a
set of T equations which can be arrayed in a matrix format:

(11)




y0 y−1 . . . y−p
y1 y0 . . . y1−p
...

...
. . .

...
yp yp−1 . . . y0
...

...
. . .

...
yT−1 yT−2 . . . yT−p−1







1
α1
...
αp


 =




ε0 ε−1 . . . ε−q
ε1 ε0 . . . ε1−q
...

...
. . .

...
εq εq−1 . . . ε0
...

...
. . .

...
εT−1 εT−2 . . . εT−q−1







1
µ1
...
µq


 .

Here, the generic equation is

(12)
p∑
i=0

αiyt−i =
q∑
i=0

µiεt−i, where α0 = µ0 = 1.
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Apart from the elements y0, y1, . . . , yT−1 and ε0, ε1, . . . , εT−1 which fall within
the sample period, these equations comprise the presample values y−p, . . . , y−1

and ε−q, . . . , ε−1 which are to be found in the top-right corners of the matrices.
An alternative representation of the system of equations can be given which

is in terms of polynomials. Thus, if

(13)

y(z) = y−pz
−p + · · ·+ y0 + y1z + · · ·+ yT−1z

T−1,

ε(z) = ε−qz
−q + · · ·+ ε0 + ε1z + · · ·+ εT−1z

T−1,

α(z) = 1 + α1z + · · ·+ αpz
p and

µ(z) = 1 + µ1z + · · ·+ µqz
q,

then

(14) y(z)α(z) = ε(z)µ(z).

By performing the polynomial multiplication of both sides of (14) and by equat-
ing the coefficients of the same powers of z, it will be found that the equation
associated with zt is precisely the generic equation under (12).

To derive the circulant representation of order T of the ARMA equations,
we impose the conditions that yt = y(t mod T ) and that εt = ε(t mod T ). In
terms of equation (11), the effect of these conditions is to replace the presample
elements by elements from within the sample. Thus y−1 = yT−1, . . . , y−p =
yT−p and, likewise, ε−1 = εT−1, . . . , ε−q = εT−q.

With these provisos, the polynomials of equation (14) can be converted to
circulant matrices simply by replacing the complex argument z by the matrix
argument K.

3. Spectral Factorisation of Circulant Matrices

The matrix operator K has a spectral factorisation which is particularly useful
in analysing the properties of the discrete Fourier transform. To demonstrate
this factorisation, we must first define the so-called Fourier matrix. This is a
symmetric matrix U = T−1/2[W jt; t, j = 0, . . . , T − 1] whose generic element
in the jth row and tth column is

(15)
W jt = exp(−i2πtj/T ) = cos(ωjt)− sin(ωjt),

where ωj = 2πj/T.

On taking account of the T -periodicity of W q = exp(−i2πq/T ), the matrix can
be written explicitly as

(16) U =
1√
T




1 1 1 . . . 1
1 W W 2 . . . WT−1

1 W 2 W 4 . . . WT−2

...
...

...
...

1 WT−1 WT−2 . . . W


 .
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The second row and the second column of this matrix contain the T th roots of
unity. The conjugate matrix is defined as Ū = T−1/2[W−jt; t, j = 0, . . . , T −1];
and, by using W−q = WT−q, this can be written explicitly as

(17) Ū =
1√
T




1 1 1 . . . 1
1 WT−1 WT−2 . . . W
1 WT−2 WT−4 . . . W 2

...
...

...
...

1 W W 2 . . . WT−1


 .

It is readily confirmed that U is a unitary matrix fulfilling the condition

(18) ŪU = UŪ = I.

Now consider postmultiplying the unitary matrix U by the diagonal matrix

(19) D =




1 0 0 . . . 0
0 WT−1 0 . . . 0
0 0 WT−2 . . . 0
...

...
...

. . .
...

0 0 0 . . . W


 .

Then it is easy to see that

(20) UD = KU,

whereK is the circulant operator from (3). From this, it follows thatK = UDŪ
and, more generally, that

(21) Kq = UDqŪ = ŪD̄qU,

where

(22) D̄ = diag{1,W,W 2, . . . ,WT−1}

is both the conjugate and the inverse of D. The second equality of (21) fol-
lows from the fact that Kq is a real-valued matrix which must equal its own
conjugate. By similar means, it can be shown that

(23) K ′ = K−1 = UD̄Ū = ŪDU,

The following conclusions can be reached in a straightforward manner:

(24) If A = α(K) is a circulant matrix then

(i) A = α(K) = Uα(D)Ū = Ūα(D̄)U,
(ii) A′ = α(K ′) = Uα(D̄)Ū = Ūα(D)U,

(iii) A−1 = α−1(K) = Uα−1(D)Ū .
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We may describe the elements of the diagonal matrix α(D̄) as the spectral
ordinates of the circulant matrix A = α(K). The jth diagonal element of the
matrix α(D̄) is given by

(25) δj =
∑
t

αtW
jt =

∑
t

(αret + iαimt )
{

cos(ωjt)− i sin(ωjt)
}
,

where ωj = 2πj/T .
In fact, the sequence {δ0, δ1, . . . , δT−1} of the diagonal elements of α(D̄) is

nothing but the discrete Fourier transform of the sequence {α0, α1, . . . , αT−1}
of the elements in the leading vector of A = α(K). The reciprocal relationship
of the two sequences is entailed in the following definition.

(26) If A = Uα(D)Ū and ∆ = Uδ(D)Ū are circulant matrices such
that ∆ = UA and A = Ū∆, then they are described as Fourier re-
ciprocals. The conditions relating the matrices imply that α(D̄) =
Ūδ(D̄) and δ(D) = Uα(D).

The restrictions of realness and symmetry, which may be imposed on the
matrix A = α(K), have direct implications for the elements of the matrix α(D).
If A = α(K) is a real-valued matrix, which is to say that αimt = 0 for all t,
then the sequence of complex numbers {δ0, δ1, . . . , δT−1}, defined according to
(25), which are the diagonal elements of α(D̄), consists of a real part which is
an even or symmetric function of the index t and an imaginary part which is
an odd or anti-symmetric function.

(27) If A = A′ is a real-valued symmetric circulant matrix, such that
αj = αT−j then α(D) = α(D̄), which is to say that the diagonal
elements of α(D̄) constitute a real even sequence such that δj =
δT−j .

Of course, the condition of matrix symmetry, which is that ατ = αT−τ , ensures
that the terms in the sine function cancel within the sum defining δj in (25).
Thus, when A is a real symmetric circulant matrix, its spectral ordinates δj =∑
t αt cos(ωjt) are the products of a cosine Fourier transform which therefore

constitute a real-valued even sequence.
Since the sequences {α0, α1, . . . , αT−1} and {δ0, δ1, . . . , δT−1} bear a re-

ciprocal relationship to each other, it follows that, if one of them is real-
valued and even, then so must be the other. Thus, according to (26), there
are α(D̄) = Ūδ(D̄) and α(D) = Ūδ(D). But, if α(D̄) = α(D), as in (27), then
δ(D̄) = δ(D). Therefore, the converse of (27) is true:

(28) If the diagonal elements of α(D̄) constitute a sequence which is
real and even such that δj = δT−j , then A = Ūα(D̄)U is a real
symmetric circulant matrix, such that αj = αT−j .
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Example. Consider an ARMA process represented, in the form of an infinite-
order moving-average, by y(t) = φ(L)ε(t), where φ(L) = µ(L)/α(L) is a ratio
of polynomials in the lag operator. The autocovariance generating function of
the process is

(29) γ(z) = σ2φ(z)φ(z−1) =
∞∑
τ=0

γτ (zτ + z−τ ),

where γτ = σ2
∑∞
j=0 φjφj+τ is the autocovariance of lag τ .

Setting z = exp{iωj} and recognising that exp{iωjτ} + exp{−iωjτ} =
2 cos(ωjτ) gives an ordinate of the spectral density function in the form of

(30) f(ωj) =
1
2π
γ(eiωj ) =

1
2π

{
γ0 + 2

∞∑
τ=1

γτ cos(ωjτ)
}
,

which represents the cosine Fourier transform of the sequence of ordinary au-
tocovariances. The spectral ordinates, which are indexed by j = 0, . . . , T − 1,
constitute an even real-valued sequence.

The same spectral ordinates can be obtained from the elements of the
diagonal matrix

(31) γ(D) = Ūγ(K)U = Ūφ(K ′)φ(K)U,

where γ(K) = Γ and φ(K) = Φ are the circulant matrices which are obtained
when z is replaced by K in γ(z) and φ(z) respectively.

Observe that, whereas, in general, the coefficients of γ(z) constitute an
infinite sequence, the coefficients of γ(D) form only a finite sequence (or a
periodic sequence) of order T which is real and even. The relationship between
the coefficients of γ(z) and those of γ(D) = ψ(D) is expressed in equation (6).

4. The Fourier Transform of a Stationary Process

Let y = [y0, y1, . . . , yT−1]′ be a vector of observations on a stationary stochastic
process of zero mean, and consider the equation

(32) Y = y(K) = Uy(D)Ū = Ūy(D̄)U,

which defines a real-valued circulant matrix Y equal to its own conjugate.
Observe that, if e0 = [1, 0, . . . , 0]′ is the leading vector of the identity matrix of
order T , then

(33)

Y e0 = y = [y0, y1, . . . , yT−1]′,

T 1/2Ue0 = T 1/2Ūe0 = i = [1, 1, . . . , 1]′,

y(D)i = Tζ∗ = T [ζT−1, ζT−2, . . . , ζ0]′ and

y(D̄)i = Tζ = T [ζ0, ζ1, . . . , ζT−1]′.
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Here, ζ is the statistical form of the discrete Fourier transform (DFT) of the
vector y. Its elements are the values {ζk = T−1y(zk); k = 0, . . . , T − 1} which
come from setting z = zk = exp(−2πk/T ) in y(z) which is the z-transform of
the data sequence. It differs from the DFT defined in the previous section by
a scalar factor, which is T−1.

Premultiplying the equation Y = Ūy(D̄)U by U and postmultiplying it by
e0 gives

(34) Uy = T 1/2ζ,

which represents the direct DFT of the vector y. Premultiplying the latter
equation by Ū gives

(35) Ūζ = T−1/2y;

and this represents the inverse transform by which y is recovered from ζ.
Since y is a real-valued vector, its complex-valued transform ζ is subject

to the condition that its real part forms an even or symmetric sequence whilst
its imaginary part forms an odd or antisymmetric sequence. Thus, if ζj =
ζre + iζim, then ζT−j = ζre − iζim = ζ∗j is the complex conjugate of ζj .

Example. To reveal the nature of these transforms in more detail, we may
examine the generic elements of the expressions. In the case of equation (34),
which represents the direct DFT, there is

(36)

ζj =
1
T

T−1∑
t=0

yte
−iωjt

=
1
T

T−1∑
t=0

{
yt cos(ωjt)− iyt sin(ωjt)

}
,

where we have used the identity exp(−iωjt) = cos(ωjt) − i sin(ωjt). Observe
that, with ωj = 2πj/T , there are cos(ω0t) = 1 and sin(ω0t) = 0. Also, if
T = 2n is even, then ωn = π, so that cos(ωnt) = (−1)t and sin(ωnt) = 0.
Therefore, equation (36) is amenable to various specialisations. First, there is

(37) ζ0 = α0 =
1
T

T−1∑
t=0

yt = ȳ.

Next, there are

(38) ζj =
αj − iβj

2
and ζT−j = ζ∗j =

αj + iβj
2

,

with

(39) αj =
2
T

T−1∑
t=0

yt cos(ωjt) and βj =
2
T

T−1∑
t=0

yt(sinωjt),
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where j = 1, . . . , n = (T − 1)/2 if T = 2n + 1 is odd and j = 1, . . . , n − 1 =
(T/2)− 1 if T = 2n is even. Finally, there is

(40) ζn = αn =
1
T

T−1∑
t=0

(−1)tyt if T = 2n is even.

Observe that we have, in effect, defined the integer

(41) n = [T/2] =

{
T/2, if T is even;

(T − 1)/2, if T is odd.

Here, [T/2] = trunc(T/2) represents the integer truncation of the rational num-
ber T/2 which comes from discarding its decimal part, if any. There is also

(42) [(T − 1)/2] =

{
n = (T − 1)/2, if T is odd;

n− 1 = (T/2)− 1, if T is even.

In the case of equation (35), which represents the inverse DFT, there is

(43)

yt =
T−1∑
j=0

ζje
iωjt

=
T−1∑
j=0

{
ζj cos(ωjt) + iζj sin(ωjt)

}
.

Equation (38) implies that

(44) αj = ζj + ζ∗j and βj = −i(ζj − ζ∗j ),

where j = 1, . . . , n if T is odd and j = 1, . . . , n− 1 if T is even, which is to say
that j = 1, . . . , [(T − 1)/2]. Therefore, on the understanding that β0 = 0 and
that βn = 0 if T is odd, equation (43) can be written as

(45)

yt =
n∑
j=0

{
αj cos(ωjt) + βj sin(ωjt)

}

=
n∑
j=0

ρj cos(ωjt− θj),

where

(46) ρ2
j = α2

j + β2
j and θj = tan−1(βj/αj).
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Equation (45) indicates that the data sequence can be expressed uniquely
in terms of a sum of cosine functions of rising frequency, each with a particu-
lar amplitude ρj and a particular phase displacement θj . The sequence of the
squared amplitudes, weighted by the variances of the accompanying trigono-
metrical functions, constitutes the periodogram of the data, whilst the sequence
of phase angles constitutes its phase spectrum.

Whereas our intuition might be served better by expressing the Fourier
transform in terms of ordinary trigonometrical functions, it greatly eases the
burden of notation if we use complex exponentials instead. The use of matrix
notation results in a further economy of expression. Nevertheless, one should
be aware of the basis of the complex expressions. In particular, the unitary
nature of the Fourier matrix stems for the orthogonality of the sequences of
sine and cosine ordinates.

Example. The vectors ci = [cos(ωit); t = 0, . . . , n]′ and sj = [sin(ωjt); t =
0, . . . , n]′ are subject to some conditions of orthogonality provided that ωi and
ωj belong to the set of Fourier frequencies {ωj = 2πj/T ; j = 1, . . . , n}. In that
case, the following conditions prevail:

(47)
c′icj = 0 if i �= j,

s′isj = 0 if i �= j,

c′isj = 0 for all i, j.

In addition, there are some sums of squares which can be taken into account
in computing the coefficients of the Fourier decomposition:

(48)

c′0c0 = T,

s′0s0 = 0,

c′jcj = 1
2T,

s′jsj = 1
2T.

}
for j = 1, . . . , n− 1.

For j = n, there are

(49)

s′nsn = 1
2T,

c′ncn = 1
2T,

}
if 2n = T − 1,

s′nsn = 0,

c′ncn = T.

}
if 2n = T ;

which correspond, respectively, to the cases where T is odd and T is even.
The latter relationships enable us to rewrite the expressions for αj and βj ,

where j = 1, . . . , [(T − 1)/2], which are found under (39), as

(50) αj =
2
T
c′jy = (c′jcj)

−1c′jy and βj =
2
T
s′jy = (s′jsj)

−1s′jy.
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The orthogonality conditions indicate that αi and αj are uncorrelated when
i �= j as are βi and βj . Moreover, αi and βj are uncorrelated for all i, j. Thus

(51)
C(αi, αj) = C(βi, βj) = 0 when i �= j

and C(αi, βj) = 0 for all i, j.

5. The Periodogram and the Circular Autocovariances

The periodogram can be expressed in terms of the circulant matrix G =
T−1Y ′Y which contains the so-called circular autocovariances of the data.
These values g0, g1, . . . , gT−1 are given by the formula

(52)

gτ =
1
T

T−1∑
t=0

ytyt+τ ; where yt = y(t mod T )

or, equivalently,

gτ =
1
T

T−1−τ∑
t=0

ytyt+τ +
1
T

τ−1∑
t=0

ytyt+T−τ .

They differ from the ordinary autocovariances which are obtained from the first
formula by setting yt = 0 when t > T −1 or from the second formula by taking
only the leading sum.

The matrix of circular autocovariances can be expressed variously as

(53)
G = Ūg(D)U

= T−1Y ′Y = T−1Ūy(D̄)y(D)U.

The core of this expression is the real-valued diagonal matrix

(54) g(D) = T−1y(D̄)y(D) = TDiag{|ζ0|2, |ζ1|2, . . . , |ζT−1|2}.

Consider premultiplying equation (53) by e′0 and postmultiplying it by e0.
Since e′0Ge0 = g0 and Ue0 = Ūe0 = T−1/2i, we get the following expression for
the variance:

(55) g0 = T−2i′y(D̄)y(D)i =
T−1∑
j=0

|ζj |2.

The terms in the sum on RHS can be specialised in various ways. When j = 0,
there is

(56) |ζ0|2 = α2
0 = ȳ2.

12
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When j = 1, . . . , [(T − 1)/2], there are

(57) |ζj |2 = |ζT−j |2 =
α2
j + β2

j

4
=
ρ2
j

4
.

Finally, there is

(58) |ζn|2 = α2
n if T = 2n is even.

The terms |ζj |2 and |ζT−j |2 can be combined within the sum of equation (55).
It follows that, when T is even, the equation can be rewritten as

(59) g0 = α2
0 +

n−1∑
j=0

ρ2
j

2
+ α2

n.

When T is odd, the summation is extended to include the nth term which
becomes ρ2

n/2 = (α2
n + β2

n)/2. Observe that g0 − α2
0 = T−1

∑
t(yt − ȳ)2 is the

variance calculated from the mean-adjusted data.
The sequence {Tρ2

1/2, Tρ
2
1/2, . . . , Tρ

2
n−1/2, Tα

2
n}, which applies when T is

even, together with the alternative sequence {Tρ2
1/2, Tρ

2
1/2, . . . , Tρ

2
n/2}, which

applies when T is odd, constitute the periodogram of the data. Equation (59)
represents an analysis of variance in terms of the periodogram.

Consider premultiplying equation (53) by U and postmultiplying it by e0
to give

(60)
UGe0 = g(D)Ue0

= T−1y(D̄)y(D)Ue0.

From (33), we have the identity T 1/2Ue0 = i. Therefore, T 1/2g(D)Ue0 =
g(D)i = ν is the vector of the rescaled periodogram ordinates. Moreover Ge0 =
g is the vector of circular autocovariances. It follows that

(61) T 1/2ν = Ug and g = T 1/2Ūν,

which is to say that the vector ν = [|ζ0|2, |ζ1|2, . . . , |ζT−1|2]′ of rescaled peri-
odogram ordinates and the vector g of circular autocovariances are related to
each other via a discrete Fourier transform.

It is clear, from equation (60), that there are two strategies that can be
pursued in calculating the ordinates of the periodogram. The first strategy
entails finding the vector g of autocovariances and then subjecting it to a Fourier
transform. The second strategy is to find vector y(D̄)i = T 1/2ζ by applying
the Fourier transform of equation (34) to the data vector y and then to use the
elements of Uy = T 1/2ζ in finding the ordinates of the periodogram according
to equations (56)–(58).

13
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Example. In equation (53), the matrix U represents a set of complex eigen-
vectors of the matrix G. The diagonal matrix g(D) contains the corresponding
set of real-valued eigenvalues. A set of real-valued eigenvectors can be found to
replace the complex ones. Given that G is a real-valued matrix, it follow from
(53) that

(62) GU = Ug(D) and GŪ = Ūg(D).

By combining these equations in two ways, we can write

(63) GC = g(D)C and GS = g(D)S,

where

(64) C =
(
U + Ū

2

)
and S =

(
U − Ū

2i

)

are, respectively, a matrix of cosines and a matrix of sines.
To reveal the structure of these matrices, we may use the notation of the

example following equation (46) whereby ci = [cos(ωit); t = 0, . . . , n]′ and sj =
[sin(ωjt); t = 0, . . . , n]′. Also, let i = [1, 1, . . . , 1]′ and j = [1,−1, . . . , (−1)T−1]′.
Then

(65) C =

{
[i, c1, . . . , cn−1, j, cn−1, . . . , c1], if T is even;

[i, c1, . . . , cn−1, cn, cn, . . . , c1], if T is odd.

Likewise,

(66) S =

{
[0, s1, . . . , sn−1, 0,−sn−1, . . . ,−s1], if T is even;

[0, s1, . . . , sn−1, sn,−sn, . . . ,−s1], if T is odd.

Now define the matrix which comprises the distinct elements of C and S ordered
by rising frequency. This is

(67) V =

{
[i, c1, s1, . . . , cn−1, sn−1, j], if T is even;

[i, c1, s1, . . . , sn−1, cn, sn], if T is odd.

The matrix V is square and of full rank, and it satisfies the equation

(68) GV = g(D)V.

Therefore, we can describe the vectors of sines and cosines within V as the
characteristic vectors of the matrix of circular autocovariances.

When the characteristic vectors are ordered according to the decreasing
sizes of their associated eigenvalues, they constitute the so-called principal

14
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components of the matrix Y . The concept of principal components supplies
additional meaning to the analysis of the periodogram.

An analysis of the principal components of the data has been the basis of
a number of recent papers in climatology which purport to reveal the presence
in meteorological phenomena of hidden cycles. (See, for example, Schlesinger
and Ramankutty [12] and Vautard and Ghil [13].)

The procedure of uncovering the cycles, which is known as singular spectral
analysis, is not based upon circulant matrices. Instead, it is based, typically,
upon a data matrix which can be obtained from the matrix of equation (11) by
replacing the presample elements by zeros and by appending an upper trian-
gular matrix at the bottom whose nonzero elements are the remainder of the
sample values.

The reality of the climatological cycles has been disputed; and those who
claim to have uncovered them seem to be unable to provide convincing proof. If
the analysis were conducted using circulant matrices, then it should be straight-
forward to employ standard techniques to assess whether the periodogram or-
dinates are significantly different from those which might be generated from a
white-noise process.

6. Complex Normal Distributions

In this section, we shall develop the statistical properties of a complex normal
vector which is obtained by applying a Fourier transform to a spherical normal
vector y ∼ N(0, σ2I), with a zero mean vector E(y) = 0 and with dispersion
matrix D(y) = σ2I, which represents a segment of a white-noise process. The
results will be used in the following section in analysing the statistical properties
of the periodogram of a normal vector y ∼ N(0, σ2Q) obtained by sampling an
arbitrary stationary stochastic process.

The basic results, which are exact, are obtained under the assumption
that y is from a circular process and that, accordingly, Q is a circulant matrix.
These results provide asymptotically valid approximations for the more general
and realistic cases where y is generated by a linear stochastic process which is
not necessarily a normal process.

In order to develop the statistical theory of a complex normal vector, we
need to generalise some of the familiar operations of multivariate statistical
analysis.

First we define the expectation of a complex random vector:

(69) If ζ is a complex vector with a generic element of ζj = γj + iδj ,
then E(ζ) is a vector whose generic element is E(γj) + iE(δj).

Next we define the dispersion matrix of a complex vector:

(70) If ζ is a complex vector of zero mean with a generic element of
ζj = γj + iδj , then its variance–covariance matrix or dispersion
matrix D(ζ) = E(ζζ̄ ′) = Q has E(ζiζ∗j ) = E{(γi + iδi)(γj − iδj)}
as the element in the i, jth position.
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In general, the dispersion matrix of a complex vector is a Hermitian matrix
Q = Q̄′ which is equal to its own conjugate transpose. However, if the real and
imaginary parts of the complex vector ζ = γ + iδ are uncorrelated, then its
dispersion matrix Q = Q′ is real and symmetric. Of particular interest is
the dispersion matrix of a complex vector ζ = T−1/2Uy which represents the
Fourier transform of a real-valued normal vector y. In that case, since the
elements of γ and δ are mutually uncorrelated, the dispersion matrix is real
and symmetric.

We are interested, particularly, in the statistical properties of the Fourier
transform of a real-valued normal vector. The simplest case is that of a vector
of independently and identically distributed elements:

(71) If y ∼ N(0, σ2IT ) is a real-valued vector with a spherical normal
distribution and if U is a unitary transformation, then T 1/2ζ =
Uy ∼ NC(0, σ2IT ) has a complex spherical normal distribution.

Here the subscripted C onNC indicates that this is the distribution of a complex
vector.

Notice that the elements of ζ are not statistically independent in the or-
dinary sense since, if it is the transform of a real-valued vector y, then ζ will
comprise both ζj = γj + iδj and its conjugate ζT−j = γj − iδj . However the
complex coordinates γj , δj ; j = 0, . . . , n = [T/2] will be mutually uncorrelated,
as will be the corresponding complex moduli ρ2

j = γ2
j + δ2j .

It is straightforward to associate a chi-square distribution with the modulus
of a complex normal vector with a spherical distribution.

(72) Let T 1/2ζ = Uy ∼ NC(0, σ2IT ) be a complex spherical normal
vector which represents the Fourier transform of a real-valued
spherical normal vector y ∼ N(0, σ2IT ). Then T ζ̄ ′ζ/σ2 =
y′y/σ2 ∼ χ2(T ).

According to Cochrane’s theorem, if y ∼ N(0, σ2IT ) and if P = P ′ = P 2 is
a real-valued symmetric matrix of order T with rank(P ) = r, then y′Py/σ2 ∼
χ2(r) and y′(I − P )y/σ2 ∼ χ2(T − r) are statistically independent chi-square
variates. The following is a specialisation of the result which is appropriate to
complex spherical normal vectors:

(73) Let T 1/2ζ = Uy ∼ NC(0, σ2IT ) be a complex spherical nor-
mal vector obtained from the real-valued vector y via the uni-
tary Fourier matrix U of (16). Let S = S′ = S2 be a real-
valued selection matrix of order T with r units and T − r zeros
on the diagonal, which form an even sequence, and with zeros
elsewhere. Then ŪSU = P = P ′ = P 2 is a real-valued sym-
metric idempotent circulant matrix with rank(P ) = r; and it fol-
lows that T ζ̄Sζ/σ2 = y′ŪSUy/σ2 ∼ χ2(r) and T ζ̄ ′(I − S)ζ/σ2 =
y′Ū(I − S)Uy/σ2 ∼ χ2(T − r) are statistically independent.

Here, we should recall that, according to (28), the condition that the di-
agonal elements of S constitute an even sequence is sufficient to ensure that
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P = ŪSU is a real-valued matrix. We should also recall that, in general, a real-
valued symmetric idempotent matrix can be expressed P = QDQ′, where Q,
which is a normalised version of the matrix V of (67), is a real-valued orthonor-
mal matrix such that QQ′ = Q′Q = I, and where D is a matrix with units
and zeros on the diagonal and with zeros elsewhere. Therefore, it is possible to
circumvent the complex notation.

Example. Let ζ = T−1/2Uy be the Fourier transform of a real-valued vector
y ∼ N(0, σ2IT ). Let ζj = (αj + iβj)/2 and let Sj = eje

′
j + eT−je′T−j , where

0 < j ≤ [(T − 1)/2]. Then Sj is a diagonal matrix of rank 2 with units on the
diagonal in the positions j and T − j and with zeros elsewhere. The diagonal
elements of Sj constitute a real and even sequence. Therefore, it follows from
(28) that ŪSjU is a real-valued symmetric idempotent circulant matrix. Hence

(74)

T

σ2
ζ̄ ′Sjζ =

T

σ2
(ζjζ∗j + ζT−jζ

∗
T−j)

=
T

2σ2
(α2
j + β2

j ) =
T

2σ2
ρ2
j ∼ χ(2).

If T = 2n is even, then both S0 = e0e
′
0 and Sn = ene

′
n are symmetric idem-

potent matrices of rank 1 whose diagonal elements constitute even sequences.
In that case, both ŪS0U and ŪSnU are real-valued symmetric idempotent
circulant matrices of rank 1 and, therefore,

(75)

T

σ2
ζ0ζ
∗
0 = T

α2
0

σ2
= T

ȳ2

σ2
∼ χ2(1)

and
T

σ2
ζnζ
∗
n = T

α2
n

σ2
∼ χ2(1).

If T = 2n + 1 is odd, then βn �= 0 and there are ζn = (αn + iβn)/2 and
ζT−n = (αn − iβn)/2, which are adjacent values within the vector ζ. These
give rise to a χ2(2) variate in the manner of (74).

7. Statistical Properties of the Periodogram

To see the significance for the analysis of the periodogram of the results of
the foregoing section, let us consider the ARMA process of (10), which can be
written in the form of y(t) = φ(L)ε(t), where φ(L) = µ(L)/α(L) represents the
series expansion of the rational operator. The process can also be represented,
in terms of the z-transform polynomials of (13), by putting y(z) = φ(z)ε(z).

The analysis proceeds by using the circulant version of the ARMA process.
By putting εt mod T in place of εt, which replaces the elements outside the
sample by elements from within the sample, and by replacing the complex
argument z by the matrix argument K, we derive the matrix equation Y = ΦE ,
where Y = y(K), Φ = φ(K) and E = ε(K). The equation of the circulant
process, together with that of its Fourier transform, can therefore be expressed
as

(76) y = Φε = Eφ and T−1/2Uy = ζy = φ(D)ζε,
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where y = Y e0, φ = Φe0 and ε = Ee0 are the leading vectors of their respective
matrices.

We shall assume that y ∼ N(0, σ2Q), where Q = Φ′Φ, which implies that
ε = Φ−1y ∼ N(0, σ2I). The results of the previous section can be applied
directly to the Fourier transform of ε which is ζε = φ−1(D)ζy.

Let Sk = eke
′
k be the selection matrix with a unit in the kth diagonal

position and with zeros elsewhere. Then

(77)

ζ ′εkζεk = ζ̄εSkζ
∗
ε

= ζ̄ ′yφ
−1(D̄)Skφ−1(D)ζy

=
ζykζ

∗
yk

qk
,

where qk is the kth diagonal element of the matrix ŪQU = q(D) = φ(D̄)φ(D).
Therefore, by putting ζykζ∗yk/qj in place of ζjζ∗j in equation (74), we get

(78)
T

σ2qj
{ζyjζ∗yj + ζy(T−j)ζ

∗
y(T−j)} =

T

2σ2qj
ρ2
yj ∼ χ(2).

where j = 1, . . . , [(T − 1)/2]. If T = 2n is even, then, in addition,

(79)

T

σ2q0
ζ0ζ
∗
0 = T

α2
0

σ2q0
= T

ȳ2

σ2q0
∼ χ2(1)

and
T

σ2qn
ζnζ
∗
n = T

α2
n

σ2qn
∼ χ2(1).

If T = 2n + 1 is odd, then ζn and ζT−n are adjacent values within the vector
ζ. These give rise to a χ2(2) variate in the manner of (78).

Now recall that the expected value of a χ2(r) variate is r whilst its variance
is 2r. Also recall that, according to (30), the value of the spectral density
function at the frequency ωj is f(ωj) = γ(exp{−iωj})/(2π) = σ2qj/(2π). It
follows that
(80)

E

(
T

2
ρ2
yj

)
= 2πf(ωj) and V

(
T

2
ρ2
yj

)
= (4π)2f2(ωj) if 0 < ωj < π.

Also, at zero frequency there is

(81) E(T ȳ2) = 2πf(0) and V (T ȳ2) = 2(2π)2f2(0),

whereas, if T = 2n is even, then, at the highest observable frequency, there is

(82) E(Tα2
n) = 2πf(ωn) and V (Tα2

n) = 2(2π)2f2(ωn) where ωn = π.

There remains the question of the validity of approximating a linear ARMA
process by a circular process. In the case of a white noise process, there is no
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effective distinction between a linear process and a circular process—the results
for the periodogram analysis are identical.

In the case of an ordinary linear ARMA process, the generic element is
yt =

∑
j φjεt−j , whereas, for a circular process, it is yt =

∑
j φjε(t−j mod T ).

The difference lies entirely in the replacement of the presample elements in the
sequence {εt; t = 0,±1,±2, . . .} by elements from within the sample.

It is clear that, if the sequence {φj ; j = 1, 2, . . .} of ARMA parameters is
absolutely convergent, then the presample values of {εt} will be of diminishing
significance in the formation of yt as they recede in time. On this basis, it is to
be expected that, as the sample index t increases, the corresponding elements
of the two processes will converge. Therefore, as the sample size T increases,
the preponderance of the sample elements from the two process will converge,
and this should lead to the convergence of their periodograms.

The formal proposition which expresses these notions is as follows:

(83) Let y(t) = φ(L)ε(t), where ε(t) is a white-noise process such that
E(εt) = 0, V (εt) = σ2 for all t, and where the coefficients of the
operator φ(L) are absolutely summable such that

∑∞
j=0 |φj | <∞.

Let qj = |φ(z)|2 with z = exp{−iωj}. Then the periodogram of
y(t), based on T observations, can be represented, at the Fourier
frequency ωj , by

T

2
ρ2
yj =

T

2
|qj |2ρ2

εj +Rj ,

where E(Rj)→ 0 and V (Rj)→ 0 as T →∞.

Proofs of the proposition can be found, inter alia, in the texts of Priestley
[11], Brockwell and Davies [3] and Fuller [5]. However, these proofs make no
explicit reference to the circulant process.

It appears from (80) that, when they are scaled by a factor of 1/(2π), the
ordinates of the periodogram of a circular process are unbiased estimates of the
corresponding ordinates of the spectral density function. It also appears that
the variances of these estimates do not diminish as the sample size T increases.
The same is roughly true of the ordinates of the periodogram of a linear process
for which the results of (80) are asymptotically valid. The upshot is that the
raw periodogram is not a consistent estimator of the spectral density function.

Nevertheless, as the sample size increases, the points at which the peri-
odogram is defined become increasingly dense in every fixed frequency interval.
Therefore, one can generate ever-improving estimates of the underlying spectral
density function by averaging an increasing number of adjacent periodogram
ordinates from within an ever-decreasing frequency interval.

Let M = Uµ(D)Ū be a circulant smoothing matrix which serves as an
averaging operator in respect of the periodogram, and let g(D) = UCŪ be the
diagonal matrix of (54) whose elements give rise to the periodogram ordinates.
Then s = Mg(D)i is a vector whose elements are the ordinates of an estimated
spectral density function based on local averages of the periodogram.
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An alternative expression for the vector of spectral estimates is
s = Uµ(D)Ge0. This indicates that the estimated spectrum may be obtained
by applying the relevant weights, contained within the diagonal matrix µ(D),
to the vector g = Ge0 of the circular autocovariances and then applying a
Fourier transform to the product.

The equivalence of the two expressions is demonstrated by confirming the
following identities:

(84)

Mg(D)i = Uµ(D)Ūg(D)i
= Uµ(D)ŪUGŪi

= T 1/2Uµ(D)Ge0.

8. Testing the Homogeneity of a Time Series

The purpose of this final section is to show how the results of the foregoing
sections can be used in a simple way to construct statistical tests of hypotheses
relating to the periodogram which are of a strictly classical nature.

Our specific object is to determine whether two adjacent segments of a
time series have been generated by the same invariant process. Under the null
hypothesis that the process is invariant, we may estimate a time-series model
which can be used in constructing a filter for the purpose of reducing the series
to white noise. Thereafter, we can test the null hypothesis that the two adjacent
segments are generated by the same white-noise process.

An alternative to filtering the data is to divide the ordinates of the peri-
odogram of the data by (estimates of) the corresponding spectral ordinates, in
the manner of (77). The estimates of the spectral ordinates may be based upon
the parameters of a fitted ARMA model. In that case, we should be taking
the route to the spectrum which has been pursued in the example following
(28). Alternatively, the spectral ordinates may be estimated by taking local
averages of the periodogram ordinates in the manner indicated at the end of
the previous section.

We shall avoid the unnecessary encumbrance of a notation which indicates
explicitly that the vectors y1 and y2, which are from a putative white-noise pro-
cess, have been obtained by filtering the data. Therefore, according to the null
hypothesis, y1 ∼ N(0, σ2IN ) and y2 ∼ N(0, σ2IN ) are two adjacent segments
both comprising N elements, which are generated by a white-noise process
which has a variance of σ2. Then the corresponding Fourier transforms can be
calculated for both segments independently via a scheme which is represented
by the equation

(85)
[
ζ1
ζ2

]
=

[
U 0
0 U

] [
y1
y2

]
.

According to the hypothesis, ζ̄ ′1ζ1/σ
2 ∼ χ2(N) and ζ̄ ′2ζ2/σ

2 ∼ χ2(N) are mutu-
ally independent chi-square variates and their sum (ζ̄ ′1ζ1 + ζ̄ ′2ζ2)/σ

2 ∼ χ2(2N)
is also a chi-square variate.
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Now consider forming the vector

(86) ξ =
1√
2

[U U ]
[
y1
y2

]
.

We can show easily that ξ̄′ξ/σ2 ∼ χ2(N) is a chi-square variate. Moreover, By
invoking Cochrane’s theorem, it can be show that, under the null hypothesis,

(87)
ξ̄′ξ

σ2
∼ χ2(N) and

ζ̄ ′1ζ1 + ζ̄ ′2ζ2 − ξ̄′ξ
σ2

∼ χ2(N)

are mutually independent chi-square variates. Their ratio is therefore an
F (N,N) variate; and this statistic provides the means of testing the hypothesis
that y1 and y2 have been generated by the same process.

The relevant version of Cochrane’s theorem is as follows:

(88) Let y ∼ N(0, σ2I2N ), and let P1 + P2 = I2N be a sum of two
matrices which are symmetric and idempotent with rank(P1) =
rank(P2) = N such that Pi = P 2

i and PiPj = 0 when i �= j. Then
y′Piy ∼ χ2(N); i = 1, 2 are independent chi-square variates such
that (y′P1y + y′P2y)/σ2 = y′y/σ2 ∼ χ2(2N).

To confirm that these conditions are fulfilled, we note that U is a unitary
matrix such that ŪU = I, where Ū is the conjugate transpose of U , and we
note that

(89) P1 =
1
2

[
Ū
Ū

]
[U U ] =

1
2

[
I I
I I

]

is a symmetric idempotent matrix. We define P2 = I − P1 and we note that
P1P2 = 0. It is easy to see in reference to (85) that

(90)

1
σ2

(ζ̄ ′1ζ1 + ζ̄ ′2ζ2) =
1
σ2

(y′1ŪUy1 + y′2ŪUy2)

=
1
σ2
y′y ∼ χ2(2N).

Now we see, in view of the properties of P1 and P2, that

(91)
ξ̄′ξ

σ2
=
y′P1y

σ2
and

ζ̄ ′1ζ1 + ζ̄ ′2ζ2 − ξ̄′ξ
σ2

=
y′P2y

σ2

are mutually independent chi-square variates of N degrees of freedom each.
The F statistic, which is formed from the ratio of the chi-square variates of

(87), provides an overall test of the hypothesis of homogeneity. It will serve to
detect cases where the power or variance differs between the two data segments.
However, the statistic will not detect changes in the spectral structure of the
process that do not affect the overall power.
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Changes in the distribution of the power can be detected by making com-
parisons of the periodograms of the adjacent data segments in a number of
disjoint frequency bands. The relevant statistics may be obtained from the
existing F statistic by breaking the sum in the numerator into parts which
constitute mutually independent chi-square variates.

Let S be a selection matrix of order T × T with zeros and units on the
principal diagonal and with zeros elsewhere. Let the matrix be subject to the
condition that, if it contains a unit in the jth position, then it also has a unit in
the position T − j. If, in addition, the units are contiguous within two separate
blocks, then the matrix will serve to select from the vectors ζ1, ζ2 and ξ all of
the periodogram ordinates which fall in a specific frequency band.

By applying the selection matrix to equations (85) we get

(92)
[
Sζ1
Sζ2

]
=

[
SU 0
0 SU

] [
y1
y2

]
.

By applying the selection matrix to equations (86), we get

(93) Sξ =
1√
2

[SU SU ]
[
y1
y2

]
.

Let Sζ1 = ζS1, Sζ2 = ζS2 and Sξ = ξS . Then, under the hypothesis that there
are no changes in the spectral density function within the selected range of
frequencies, we should have

(94)
ζ̄ ′S1ζS1 + ζ̄ ′S2ζS2 − ξ̄′SξS

ξ̄′ξ
∼ F (q,N), where q = rank(S).

To establish this result, it is enough to show that the numerator and the
denominator of the statistic are quadratic forms in the same spherical normal
vector which are based on mutually orthogonal symmetric idempotent matrices
with ranks that correspond to the degrees of freedom of the F distribution.

The quadratic form of the denominator, which can be expressed as y′P1y
where y ∼ N(0, σ2IN ), is based on the symmetric idempotent matrix P1 = P ′1 =
P 2

1 of (89) which has rank(P1) = N . The quadratic form of the numerator,
which can be expressed as y′PSy, is based on the matrix

(95) PS =
1
2

[
ŪSU −ŪSU
−ŪSU ŪSU

]
.

It can be seen that PS = P ′S = P 2
S and that P1PS = 0. Moreover, rank(PS) =

rank(S) = q. Thus the conditions in question are fulfilled.
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