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Circulant type matrices have become an important tool in solving di	erential equations. In this paper, we consider circulant
type matrices, including the circulant and le
 circulant and �-circulant matrices with the sum and product of Fibonacci and
Lucas numbers. Firstly, we discuss the invertibility of the circulant matrix and present the determinant and the inverse matrix
by constructing the transformation matrices. Furthermore, the invertibility of the le
 circulant and �-circulant matrices is also
discussed.We obtain the determinants and the inversematrices of the le
 circulant and �-circulantmatrices by utilizing the relation
between le
 circulant, and �-circulant matrices and circulant matrix, respectively.

1. Introduction

Circulant matrices may play a crucial role for solving various
di	erential equations. In [1], Ruiz-Claeyssen and dos Santos
Leal introduced factor circulant matrices: matrices with the
structure of circulants, butwith the entries below the diagonal
being multiplied by the same factor. �e diagonalization
of a circulant matrix and the spectral decomposition are
conveniently generalized to block matrices with the structure
of factor circulants. Matrix and partial di	erential equations
involving factor circulants are considered. Wu and Zou in
[2] discussed the existence and approximation of solutions
of asymptotic or periodic boundary value problems of mixed
functional di	erential equations. �ey focused on (5.13) in
[2] with a circulant matrix, whose principal diagonal entries
are zeroes. In [3], some Routh-Hurwitz stability conditions
are generalized to the fractional order case. �e authors
considered the 1-system CML (10). �ey selected a circu-
lant matrix, which reads a tridiagonal matrix. Ahmed and
Elgazzar used coupled map lattices (CML) as an alternative
approach to include spatial e	ects in fractional order systems
(FOS). Consider the 1-system CML (10) in [4]. �ey claimed
that the system is stable if all the eigenvalues of the circulant
matrix satisfy (2) in [4]. Trench considered nonautonomous

systems of linear di	erential equations (1) in [5] with some
constraint on the coecientmatrix�(�). One case is that�(�)
is a variable block circulant matrix. Kloeden et al. adopted
the simplest approximation schemes for (1) in [6] with the
Euler method, which reads (5) in [6]. �ey exploited that
the covariance matrix of the increments can be embedded
in a circulant matrix. �e total loops can be done by fast
Fourier transformation, which leads to a total computational
cost of �(� log�) = �(� log �). Guo et al. concerned on
generic Dn-Hopf bifurcation to a delayed Hop�eld-Cohen-
Grossberg model of neural networks (5.17) in [7], where �
denoted an interconnection matrix. �ey especially assumed� is a symmetric circulant matrix. Lin and Yang discretized
the partial integrodi	erential equation (PIDE) in pricing
options with the preconditioned conjugate gradient (PCG)
method, which constructed the circulant preconditioners.
By using FFT, the cost for each linear system is �(� log �),
where � is the size of the system in [8]. Lee et al. investigated
a high-order compact (HOC) scheme for the general two-
dimensional (2D) linear partial di	erential equation (1.1) in
[9] with a mixed derivative. Meanwhile, in order to establish
the 2D combined compact di	erence (CCD2) scheme, they
rewrote (1.1) in [9] into (2.1) in [9]. Towrite theCCD2 system
in a concise style, they employed circulant matrix to obtain
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the corresponding whole CCD2 linear system (2.10) in [9],
whose entries are circulant block.

Circulant type matrices have important applications in
various disciplines including image processing, communica-
tions, signal processing, encoding, solving Toeplitz matrix
problems, and least squares problems.�ey have been put on
�rm basis with the work of Davis [10], Jiang and Zhou [11],
and Gray [12].

In [13], the authors pointed out the processes based on the
eigenvalue of circulant type matrices with i.i.d. entries. �ere
are discussions about the convergence in probability and in
distribution of the spectral norm of circulant typematrices in
[14]. �e �-circulant matrices play an important role in vari-
ous applications as well. For details, please refer to [15, 16] and
the references therein. Ngondiep et al. showed the singular
values of �-circulants in [17]. In [18, 19], the authors gave the
limiting spectral distributions of le
 circulant matrices.

�e Fibonacci and Lucas sequences are de�ned by the
following recurrence relations [20, 21], respectively:	�+2 = 	�+1 + 	� where 	0 = 0, 	1 = 1,
�+2 = 
�+1 + 
� where 
0 = 2, 
1 = 1. (1)

For � ≥ 0, the �rst few values of the sequences are given
by the following equation:� 0 1 2 3 4 5 6 7 8 ⋅ ⋅ ⋅	� 0 1 1 2 3 5 8 13 21 ⋅ ⋅ ⋅
� 2 1 3 4 7 11 18 29 47 ⋅ ⋅ ⋅ (2)

Let , � be the roots of characteristic equation �2−�−1 =0; then the Binet formulas of the sequences {	�} and {
�} have
the form 	� = � − �� − � , 
� = � + ��, = 1 + √52 , � = 1 − √52 . (3)

LetF� = 	� ⋅
� andL� = 	�+
�, so we can get two new
sequencesF� andL� [22].�e two sequences are de�ned by
the following recurrence relations, respectively:

F�+2 = 3F�+1 +F�, where F0 = 0, F1 = 1,
L�+2 =L�+1 +L�, where L0 = 2, L1 = 2. (4)

For � ≥ 0, the �rst few values of the sequences are given
by the following equation:� 0 1 2 3 4 5 6 7 8 ⋅ ⋅ ⋅

F� 0 1 3 8 21 55 144 377 987 ⋅ ⋅ ⋅
L� 2 2 4 6 10 16 26 42 68 ⋅ ⋅ ⋅ (5)

�eF� is given by the formulaF� = (�1 −��1)/(1 −�1),
where 1, �1 are the roots of �2 − 3� + 1 = 0.L� is given by
the formula L� = 	� + 
� = (� − ��)/( − �) + (� + ��),
where , � are the roots of �2 − � − 1 = 0.

Besides, some scholars have given various algorithms
for the determinants and inverses of nonsingular circulant

matrices [10, 11]. Unfortunately, the computational com-
plexities of these algorithms are very amazing with the
order of matrix increasing. However, some authors gave the
explicit determinants and inverse of circulant and skew-
circulant involving Fibonacci and Lucas numbers. For exam-
ple, Dazheng gave the determinant of the Fibonacci-Lucas
quasicyclic matrices in [20]. Shen et al. considered circulant
matrices with Fibonacci and Lucas numbers and presented
their explicit determinants and inverses by constructing
the transformation matrices [21]. Jaiswal evaluated some
determinants of circulant whose elements are the generalized
Fibonacci numbers [23]. Lind presented the determinants of
circulant and skew-circulant involving Fibonacci numbers
[24]. Bozkurt and Tam gave determinants and inverses
of circulant matrices with Jacobsthal and Jacobsthal-Lucas
numbers [25].

In [22], the authors gave some determinantal and perma-
nental representations of F� and L� and complex factor-
ization formulas. �e purpose of this paper is to obtain the
explicit determinants and inverse of circulant type matrices
by some perfect properties ofF� andL�.

In this paper, we adopt the following two conventions00 = 1, and for any sequence {��}, ∑��=� �� = 0 in the case� > �.
De
nition 1 (see [10, 11]). In a circulant matrix (or right
circulant matrix [26])

Circ (�1, �2, . . . , ��) = [[[[[
�1 �2 ⋅ ⋅ ⋅ ���� �1 ⋅ ⋅ ⋅ ��−1
...

...
...�2 �3 ⋅ ⋅ ⋅ �1
]]]]] , (6)

each row is a cyclic shi
 of the row above to the right.

Circulant matrix is a special case of a Toeplitz matrix. It is
evidently determined by its �rst row (or column).

De
nition 2 (see [11, 26]). In a le
 circulantmatrix (or reverse
circulant matrix [13, 14, 18, 19])

LCirc (�1, �2, . . . , ��) = [[[[[
�1 �2 ⋅ ⋅ ⋅ ���2 �3 ⋅ ⋅ ⋅ �1
...

...
...�� �1 ⋅ ⋅ ⋅ ��−1
]]]]] , (7)

each row is a cyclic shi
 of the row above to the le
.

Le
 circulant matrix is a special Hankel matrix.

De
nition 3 (see [14, 27]). A �-circulant matrix is an � × �
complex matrix with the following form:

��,� =( �1 �2 ⋅ ⋅ ⋅ ����−�+1 ��−�+2 ⋅ ⋅ ⋅ ��−���−2�+1 ��−2�+2 ⋅ ⋅ ⋅ ��−2�
...

... d
...��+1 ��+2 ⋅ ⋅ ⋅ �� ), (8)
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where � is a nonnegative integer and each of the subscripts is
understood to be reduced modulo �.

�e �rst row of ��,� is (�1, �2, . . . , ��); its (� + 1)th row
is obtained by giving its �th row a right circular shi
 by �
positions (equivalently, � mod � positions). Note that � = 1
or � = � + 1 yields the standard circulant matrix. If � = � − 1,
then we obtain the le� circulant matrix.

Lemma4 (see [21]). Let� = Circ(�1, �2, . . . , ��) be a circulant
matrix; then one has

(i) � is invertible if and only if �( �) ̸= 0, (" = 0, 1,2, . . . , � − 1), where �(�) = ∑��=1 ����−1 and  =
exp(2#�/�);

(ii) If� is invertible, then the inverse�−1 of� is a circulant
matrix.

Lemma 5. De
ne

Δ :=((
(

1 0 0 ⋅ ⋅ ⋅ 0 00 0 0 ⋅ ⋅ ⋅ 0 10 0 0 ⋅ ⋅ ⋅ 1 0
...

... d
...0 0 1 ⋅ ⋅ ⋅ 0 00 1 0 ⋅ ⋅ ⋅ 0 0

))
)

; (9)

the matrix Δ is an orthogonal cyclic shi� matrix (and a
le� circulant matrix). It holds that LCirc(�1, �2, . . . , ��) =ΔCirc(�1, �2, . . . , ��).
Lemma6 (see [27]). e �×�matrixQ� is unitary if and only
if (�, �) = 1, whereQ� is a �-circulant matrix with the 
rst row?∗ = [1, 0, . . . , 0].
Lemma 7 (see [27]). ��,� is a �-circulant matrix with the 
rst
row [�1, �2, . . . , ��] if and only if ��,� = Q�@, where @ =
Circ(�1, �2, . . . , ��).
2. Determinant and Inverse of a Circulant

Matrix with the Product of the Fibonacci
and Lucas Numbers

In this section, letA� = Circ(F1,F2, . . . ,F�) be a circulant
matrix. Firstly, we give the determinant equation of matrix
A�. A
erwards, we prove that A� is an invertible matrix for� > 2, and then we �nd the inverse of the matrixA�.

�eorem 8. Let A� = Circ(F1,F2, . . . ,F�) be a circulant
matrix; then one has

detA� = (1 −F�+1)�−1+ (−F�)�−2�−1∑
�=1

(−F�) (1 −F�+1−F� )�−1, (10)

whereF� is the �th 	� ⋅ 
� number.

Proof. Obviously, detA1 = 1 satis�es (10). In the case � > 1,
let

Γ =((((((
(

1−3 11 1 −30 0 1 −3 1
... c c c0 1 c c0 1 −3 c 00 1 −3 1

))))))
)�×�

,

Π1 =(((((((((
(

1 0 0 ⋅ ⋅ ⋅ 0 00 ( −F�
F1 −F�+1

)�−2 0 ⋅ ⋅ ⋅ 0 10 ( −F�
F1 −F�+1

)�−3 0 ⋅ ⋅ ⋅ 1 0
...

...
... d

...
...0 −F�

F1 −F�+1
1 ⋅ ⋅ ⋅ 0 00 1 0 ⋅ ⋅ ⋅ 0 0

)))))))))
)�×�

.
(11)

We can obtainΓA�Π1
=((
(

F1 ��� F�−1 F�−2 ⋅ ⋅ ⋅ F20 �� −F�−2 −F�−3 ⋅ ⋅ ⋅ −F10 0 F1 −F�+10 0 F� F1 −F�+1
...

... F�0 0 0 F1 −F�+1

))
)

,
(12)

where�� = F1 − 3F� + �−2∑
�=1

(−F�) ( −F�
F1 −F�+1

)�−(�+1),
��� = �−1∑
�=1

F�+1( −F�
F1 −F�+1

)�−(�+1). (13)

We obtain

det Γ detA� detΠ1= F1 [F1 − 3F� + �−2∑
�=1

(−F�) ( −F�
F1 −F�+1

)�−(�+1)]
× (F1 −F�+1)�−2= F1 [F1 −F�+1 + �−1∑

�=1
(−F�) ( −F�

F1 −F�+1
)�−(�+1)]
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�=1

(−F�) (1 −F�+1−F� )�−1,
(14)

while

det Γ = detΠ1 = (−1)(�−1)(�−2)/2, (15)

we have

detA� = (1 −F�+1)�−1+ (−F�)�−2�−1∑
�=1

(−F�) (1 −F�+1−F� )�−1. (16)

�us, the proof is completed.

�eorem 9. Let A� = Circ(F1,F2, . . . ,F�) be a circulant
matrix; if � > 2, thenA� is an invertible matrix.

Proof. When � = 3, in �eorem 8, we have detA3 = 468 ̸= 0;
henceA3 is invertible. In the case � > 3, sinceF� = (�1−��1)/(1 − �1), where 1 + �1 = 3, 1 ⋅ �1 = 1.We have

� ( �) = �∑
�=1

F�( �)�−1
= 11 − �1 �∑�=1 (�1 − ��1) ( �)�−1= 11 − �1 [1 (1 − �1)1 − 1 � − �1 (1 − ��1)1 − �1 � ]= 11 − �1 [ (1 − �1) − (�+11 − ��+11 )1 − (1 + �1)  � + 1�1 2�]+ 11 − �1 [ 1�1 (�1 − ��1)  �1 − (1 + �1)  � + 1�1 2�]= 1 −F�+1 +F� �1 − 3 � +  2� (" = 1, 2, . . . , � − 1) .

(17)

If there exists  	 (L = 1, 2, . . . , � − 1) such that �( 	) = 0,
we obtain 1−F�+1+F� 	 = 0 for 1−3 	+ 2	 ̸= 0; thus,  	 =(F�+1 − 1)/F� is a real number. While  	 = exp(2L#�/�) =
cos(2L#/�) + � sin(2L#/�), hence, sin(2L#/�) = 0, so we have 	 = −1 for 0 < 2L#/� < 2#. But � = −1 is not the root of
equation 1 −F�+1 +F�� = 0 (� > 3). We obtain �( �) ̸= 0
for any  � (" = 1, 2, . . . , � − 1), while �(1) = ∑��=1F� =
F�+1 −F� − 1 ̸= 0. By Lemma 4, the proof is completed.

Lemma 10. Let the matrixG = [��,�]�−2�,�=1 be of the form
��� = {{{{{F1 −F�+1, � = �,

F�, � = � + 1,0, otherwise, (18)

and then the inverse G−1 = [���,�]�−2�,�=1 of the matrix G is equal

to

���,� = {{{{{ (−F�)�−�(F1 −F�+1)�−�+1 , � ≥ �,0, � < �. (19)

Proof. Let R�� = ∑�−2�=1 �������. Obviously, R�,� = 0 for � < �. In
the case � = �, we obtain R�� = ������� = (F1 −F�+1) ⋅ (1/(F1 −
F�+1)) = 1. For � ≥ � + 1, we obtain

R�� = �−2∑
�=1
������� = ��,�−1���−1,� + ��,����,�

= F� ⋅ (−F�)�−�−1(F1 −F�+1)�−�+ (F1 −F�+1) ⋅ (−F�)�−�(F1 −F�+1)�−�+1 = 0.
(20)

We verify GG
−1 = S�−2, where S�−2 is the (� − 2) × (� − 2)

identity matrix. Similarly, we can verify G−1G = S�−2. �us,
the proof is completed.

�eorem 11. Let A� = Circ(F1,F2, . . . ,F�) (� > 2) be a
circulant matrix; then one has

A
−1
� = 1��Circ(1 − �−2∑�=1F�−�(−F�)�−1(F1 −F�+1)� ,− 3 + �−2∑

�=1

F�−1−�(−F�)�−1(F1 −F�+1)� , 1
F1 −F�+1

,
−F�(F1 −F�+1)2 , (−F�)2(F1 −F�+1)3 , . . . ,(−F�)�−3(F1 −F�+1)�−2) ,

(21)

where

�� = F1 − 3F� + �−2∑
�=1

(−F�) ( −F�
F1 −F�+1

)�−(�+1). (22)
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Proof. Let

Π2 =(((((
(

1 −��� −�����F�−2 −F�−1 ⋅ ⋅ ⋅ −�����F10 1 F�−2�� ⋅ ⋅ ⋅ F1��0 0 1 ⋅ ⋅ ⋅ 0
...

...
... d

...0 0 0 ⋅ ⋅ ⋅ 1
)))))
)

,
(23)

where�� = F1 − 3F� + �−2∑
�=1

(−F�) ( −F�
F1 −F�+1

)�−(�+1),
��� = �−1∑
�=1

F�+1( −F�
F1 −F�+1

)�−(�+1). (24)

We have ΓA�Π1Π2 = D1 ⊕G, (25)

whereD1 = diag(F1, ��) is a diagonal matrix andD1 ⊕G is
the direct sum ofD1 andG. If we denoteΠ = Π1Π2, then we
obtain

A
−1
� = Π (D−11 ⊕G

−1) Γ. (26)

Since the last row elements of the matrix Π are0, 1, F�−2�� , F�−3�� , . . . , F2�� , F1�� . (27)

By Lemma 10, if we letA−1� = Circ(�1, �2, . . . , ��), its last
row elements are given by the following equations:

�2 = − 3�� + 1�� �−2∑�=1F�−1−�(−F�)�−1(F1 −F�+1)� ,�3 = F1�� (F1 −F�+1) ,�4 = 1�� 2∑�=1F3−�(−F�)�−1(F1 −F�+1)� − 3F1�� (F1 −F�+1) ,�5 = 1�� 3∑�=1F4−�(−F�)�−1(F1 −F�+1)� − 3�� 2∑�=1F3−�(−F�)�−1(F1 −F�+1)�+ F1�� (F1 −F�+1) ,
...

�� = 1�� �−2∑�=1F�−1−�(−F�)�−1(F1 −F�+1)� − 3�� �−3∑�=1F�−2−�(−F�)�−1(F1 −F�+1)�+ 1�� �−4∑�=1F�−3−�(−F�)�−1(F1 −F�+1)� ,�1 = 1�� − 3�� �−2∑�=1F�−1−�(−F�)�−1(F1 −F�+1)�+ 1�� �−3∑�=1F�−2−�(−F�)�−1(F1 −F�+1)� .
(28)

Let @(�)� = ∑��=1(F�+1−�(−F�)�−1/(F1 −F�+1)�) (� = 1,2, . . . , � − 2); we have@(2)� − 3@(1)�= − 3F1
F1 −F�+1

+ 2∑
�=1

F3−�(−F�)�−1(F1 −F�+1)�= −F�(F1 −F�+1)2 ,− 3@(�−2)� + @(�−3)�= −3�−2∑
�=1

F�−1−�(−F�)�−1(F1 −F�+1)� + �−3∑�=1F�−�−2(−F�)�−1(F1 −F�+1)�= (−3F1) (−F�)�−3(F1 −F�+1)�−2 + �−3∑
�=1

−F�−�(−F�)�−1(F1 −F�+1)�= �−2∑
�=1

−F�−�(−F�)�−1(F1 −F�+1)� ,@(�+2)� − 3@(�+1)� + @(�)�
= �+2∑
�=1

F�+3−�(−F�)�−1(F1 −F�+1)� − 3�+1∑�=1F�+2−�(−F�)�−1(F1 −F�+1)�
+ �∑
�=1

F�+1−�(−F�)�−1(F1 −F�+1)�= F2(−F�)�(F1 −F�+1)�+1 + F1(−F�)�+1(F1 −F�+1)�+2− 3F1(−F�)�(F1 −F�+1)�+1
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+ �∑
�=1

(F�+3−� − 3F�+2−� +F�+1−�) (−F�)�−1(F1 −F�+1)�+1= (−F�)�+1(F1 −F�+1)�+2 (� = 1, 2, . . . , � − 4) .
(29)

We obtain

A
−1
� = Circ(1 − 3@(�−2)� + @(�−3)��� , @(�−2)� − 3�� ,

@(1)��� , @(2)� − 3@(1)��� , @(3)� − 3@(2)� + @(1)��� , . . . ,
@(�−2)� − 3@(�−3)� + @(�−4)��� )

= 1��Circ(1 − �−2∑�=1F�−�(−F�)�−1(F1 −F�+1)� ,− 3 + �−2∑
�=1

F�−1−�(−F�)�−1(F1 −F�+1)� , 1
F1 −F�+1

,
−F�(F1 −F�+1)2 , (−F�)2(F1 −F�+1)3 , . . . ,(−F�)�−3(F1 −F�+1)�−2) .

(30)

3. Determinant and Inverse of a Circulant
Matrix with the Sum of the Fibonacci and
Lucas Numbers

In this section, let B� = Circ(L1,L2, . . . ,L�) be a circulant
matrix. Firstly, we give an explicit determinant formula of
matrix B�. A
erwards, we prove that B� is an invertible
matrix for any positive integer �, and then we �nd its inverse.
�eorem 12. Let B� = Circ(L1,L2, . . . ,L�) be a circulant
matrix; then one has

detB� = 2[(2 −L�+1)�−1 + (L� − 2)�−2
× �−1∑
�=1

(L�+2 − 2L�+1) (2 −L�+1
L� − 2 )�−1] , (31)

whereL� is the �th 	� + 
� number.

Proof. Obviously,B1 = 2 satis�es (31), when � > 1. Let
Σ =((((((

(

1−2 1−1 1 −10 0 1 −1 −1
... c c c0 1 c c0 1 −1 c 00 1 −1 −1

))))))
)�×�

,

Ω1 =(((((((((
(

1 0 0 ⋅ ⋅ ⋅ 0 00 ( L� − 2
L1 −L�+1

)�−2 0 ⋅ ⋅ ⋅ 0 10 ( L� − 2
L1 −L�+1

)�−3 0 ⋅ ⋅ ⋅ 1 0
...

...
... d

...
...0 L� − 2

L1 −L�+1
1 ⋅ ⋅ ⋅ 0 00 1 0 ⋅ ⋅ ⋅ 0 0

)))))))))
)�×�

.
(32)

�enΣB�Ω1
=((
(

L1 L�� L�−1 ⋅ ⋅ ⋅ L3 L20 L� −2L�−1 +L� ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2L2 +L30 0 L1 −L�+10 0 2 −L�
...

... d0 0 2 −L� L1 −L�+1

))
)

,
(33)

where

L� =L1 − 2L� + �−2∑
�=1

(L�+2 − 2L�+1) ( L� − 2
L1 −L�+1

)�−(�+1),
(34)L�� = �−1∑

�=1
L�+1( L� − 2

L1 −L�+1
)�−(�+1). (35)

We can obtain

detΣ detB� detΩ1=L1 [L1 − 2L�
+ �−2∑
�=1

(L�+2 − 2L�+1) ( L� − 2
L1 −L�+1

)�−(�+1)]× (L1 −L�+1)�−2
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=L1 [L1 −L�+1

+ �−1∑
�=1

(L�+2 − 2L�+1) ( L� − 2
L1 −L�+1

)�−(�+1)]
× (L1 −L�+1)�−2= 2[(2 −L�+1)�−1 + (L� − 2)�−2

× �−1∑
�=1

(L�+2 − 2L�+1) (2 −L�+1
L� − 2 )�−1] ,

(36)

while

detΣ = detΩ1 = (−1)(�−1)(�−2)/2. (37)

We have

detB�= 2[(2 −L�+1)�−1 + (L� − 2)�−2
×�−1∑
�=1

(L�+2 − 2L�+1) (2 −L�+1
L� − 2 )�−1] . (38)

�eorem 13. Let B� = Circ(L1,L2, . . . ,L�) be a circulant
matrix; thenB� is invertible for any positive integer �.
Proof. SinceL� = (�−��)/(−�)+ � + ��, where+� = 1, ⋅ � = −1. We have� ( �) = �∑

�=1
L�( �)�−1

= �∑
�=1
(� − �� − � + � + ��)( �)�−1

= �∑
�=1
(� − �� − � ) ( �)�−1 + �∑

�=1
(� + ��) ( �)�−1

= 1 − � [ (1 − �)1 −  � − � (1 − ��)1 − � � ]+  (1 − �)1 −  � + � (1 − ��)1 − � �= 1 − 	�+1 − 	� �1 −  � −  2� + 1 − 
�+1 + (2 − 
�)  �1 −  � −  2�

= 2 − (	�+1 + 
�+1) − (	� + 
� − 2)  �1 −  � −  2�= 2 −L�+1 − (L� − 2)  �1 −  � −  2� (" = 1, 2, . . . , � − 1) .
(39)

If there exist  	 (L = 1, 2, . . . , � − 1) such that �( 	) = 0,
we obtain 2 −L�+1 − (L� − 2) 	 = 0 for 1 − 	 − 2	 ̸= 0;  	 =(2−L�+1)/(L�−2) is a real number, while 	 = exp(2L#�/�) =
cos(2L#/�) + � sin(2L#/�).

Hence, sin(2L#/�) = 0, so we have  	 = −1 for 0 <2L#/� < 2#. But � = −1 is not the root of the equation2 − L�+1 − (L� − 2)� = 0 for any positive integer �. We

obtain �( �) ̸= 0 for any  � (" = 1, 2, . . . , � − 1), while �(1) =∑��=1L� = L�+1 + L� − 4 ̸= 0. By Lemma 4, the proof is

completed.

Lemma 14. Let matrixH = [ℎ��]�−2�,�=1 be of the form
ℎ�� = {{{{{L1 −L�+1, � = �,2 −L�, � = � + 1,0, otherwise, (40)

and then inverseH−1 = [ℎ��,�]�−2�,�=1 of the matrixH is equal to

ℎ��� = {{{{{ (L� − 2)�−�(L1 −L�+1)�−�+1 , � ≥ �,0, � < �. (41)

Proof. Let �̂� = ∑�−2�=1 ℎ��ℎ���. Obviously, �̂� = 0 for � < �. In the
case � = �, we obtain

�̂� = ℎ��ℎ��� = (L1 −L�+1) ⋅ 1
L1 −L�+1

= 1. (42)

For � ≥ � + 1, we obtain
�̂� = �−2∑
�=1
ℎ��ℎ��� = ℎ�,�−1ℎ��−1,� + ℎ��ℎ���

= (2 −L�) ⋅ (L� − 2)�−�−1(L1 −L�+1)�−�+ (L1 −L�+1) ⋅ (L� − 2)�−�(L1 −L�+1)�−�+1= 0.
(43)

We verify HH
−1 = S�−2, where S�−2 is the (� − 2) × (� − 2)

identity matrix. Similarly, we can verifyH−1H = S�−2. �us,
the proof is completed.
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�eorem 15. Let B� = Circ(L1,L2, . . . ,L�) be a circulant
matrix; then one has

B
−1
� = 1L�Circ(1 − �−2∑�=1L�−�−1(L� − 2)�−1(L1 −L�+1)� ,

− 2 − �−2∑
�=1

(2L�−� −L�−�+1) (L� − 2)�−1(L1 −L�+1)� ,
2

L1 −L�+1
, 2 (L� − 2)(L1 −L�+1)2 ,2(L� − 2)2(L1 −L�+1)3 , . . . , 2(L� − 2)�−3(L1 −L�+1)�−2) ,

(44)

whereL� = L1 − 2L�+ �−2∑
�=1

(L�+2 − 2L�+1) ( L� − 2
L1 −L�+1

)�−(�+1). (45)

Proof. Let

Ω2 =(((((
(

1 −L��2  13  14 ⋅ ⋅ ⋅  1�0 1  23  24 ⋅ ⋅ ⋅  2�0 0 1 0 ⋅ ⋅ ⋅ 00 0 0 1 ⋅ ⋅ ⋅ 0
...

...
...

... d
...0 0 0 0 ⋅ ⋅ ⋅ 1
)))))
)

, (46)

where 1� = 12 [L�� (L�+3−� − 2L�+2−�)L� −L�+2−�] ,
 2� = 2L�+2−� −L�+3−�L� , � = 3, 4, . . . , �,L� = L1 − 2L�+ �−2∑

�=1
(L�+2 − 2L�+1) ( L� − 2

L1 −L�+1
)�−(�+1),

L�� = �−1∑
�=1

L�+1( L� − 2
L1 −L�+1

)�−(�+1).
(47)

We have ΣB�Ω1Ω2 = D2 ⊕H, (48)

whereD2 = diag(L1, L�) is a diagonal matrix andD2 ⊕H is
the direct sum of D2 and H. If we denote Ω = Ω1Ω2, then
we obtain

B
−1
� = Ω(D−12 ⊕H

−1) Σ. (49)

Since the last row elements of the matrix Ω are0, 1, 2L�−1 −L�L� , 2L�−2 −L�−1L� , . . . , 2L2 −L3L� . (50)

By Lemma 14, if we letB−1� = Circ(_1, _2, . . . , _�), then its
last row elements are given by the following equations:

_2 = − 2L� − 1L� �−2∑�=1 (2L�−� −L�−�+1) (L� − 2)�−1(L1 −L�+1)� ,
_3 = 1L� 2L2 −L3(L1 −L�+1) ,_4 = − 1L� 2L2 −L3(L1 −L�+1)+ 1L� 2∑�=1 (2L4−� −L5−�) (L� − 2)�−1(L1 −L�+1)� ,
_5 = − 1L� 2L2 −L3(L1 −L�+1)− 1L� 2∑�=1 (2L4−� −L5−�) (L� − 2)�−1(L1 −L�+1)�+ 1L� 3∑�=1 (2L5−� −L6−�) (L� − 2)�−1(L1 −L�+1)� ,

..._� = 1L� �−2∑�=1 (2L�−� −L�−�+1) (L� − 2)�−1(L1 −L�+1)�− 1L� �−3∑�=1 (2L�−�−1 −L�−�) (L� − 2)�−1(L1 −L�+1)�− 1L� �−4∑�=1 (2L�−�−2 −L�−�−1) (L� − 2)�−1(L1 −L�+1)� ,
_1 = 1L� [1 − �−2∑�=1 (2L�−� −L�−�+1) (L� − 2)�−1(L1 −L�+1)�−�−3∑

�=1

(2L�−�−1 −L�−�) (L� − 2)�−1(L1 −L�+1)� ] .

(51)

Let `(�)� = ∑��=1((2L�+2−� − L�+3−�)(L� − 2)�−1/(L1 −L�+1)�) (� = 1, 2, . . . , � − 2); we have`(2)� − `(1)�= − 2L2 −L3
L1 −L�+1

+ 2∑
�=1

(2L4−� −L5−�) (L� − 2)�−1(L1 −L�+1)�



Abstract and Applied Analysis 9

= 2 (L� − 2)(L1 −L�+1)2 ,`(�−3)� + `(�−2)�= �−3∑
�=1

(2L�−�−1 −L�−�) (L� − 2)�−1(L1 −L�+1)�+ �−2∑
�=1

(2L�−� −L�−�+1) (L� − 2)�−1(L1 −L�+1)�= (2L2 −L3) (L� − 2)�−3(L1 −L�+1)�−2 + �−3∑
�=1

L�−�−1(L� − 2)�−1(L1 −L�+1)�= �−2∑
�=1

L�−�−1(L� − 2)�−1(L1 −L�+1)� ,
`(�+2)� − `(�+1)� − `(�)�= �+2∑
�=1

(2L�−�+4 −L�−�+5) (L� − 2)�−1(L1 −L�+1)�
− �+1∑
�=1

(2L�−�+3 −L�−�+4) (L� − 2)�−1(L1 −L�+1)�
− �∑
�=1

(2L�−�+2 −L�−�+3) (L� − 2)�−1(L1 −L�+1)�= (2L2 −L3) (L� − 2)�+1(L1 −L�+1)�+2+ (2L3 −L4) (L� − 2)�(L1 −L�+1)�+1 − (2L2 −L3) (L� − 2)�(L1 −L�+1)�+1= 2(L� − 2)�+1(L1 −L�+1)�+2 (� = 1, 2, . . . , � − 4) .
(52)

We obtain

B
−1
�= Circ(1 − `(�−2)� − `(�−3)�L� , −2 − `(�−2)�L� ,

`(1)�L� , `(2)� − `(1)�L� , `(3)� − `(2)� − `(1)�L� , . . . ,
`(�−2)� − `(�−3)� − `(�−4)�L� )

= 1L�Circ(1 − �−2∑�=1L�−�−1(L� − 2)�−1(L1 −L�+1)� ,
− 2 − �−2∑

�=1

(2L�−� −L�−�+1) (L� − 2)�−1(L1 −L�+1)� ,
2

L1 −L�+1
, 2 (L� − 2)(L1 −L�+1)2 , 2(L� − 2)2(L1 −L�+1)3 , . . . ,2(L� − 2)�−3(L1 −L�+1)�−2) .

(53)

4. Determinant and Inverse of a Left Circulant
Matrix with F� and L� Numbers

In this section, let A�� = LCirc(F1,F2, . . . ,F�) and B
�
� =

LCirc(L1,L2, . . . ,L�) be le
 circulant matrices. By using the
obtained conclusions, we give a determinant formula for
the matrix A

�
� and B

�
�. A
erwards, we prove that A

�
� is an

invertible matrix for � > 2 andB
�
� is an invertible matrix for

any positive integer �.�e inverses of thematricesA�� andB
�
�

are also presented.

According to Lemma 5 and�eorems 8, 9, and 11, we can
obtain the following theorems.

�eorem 16. Let A
�
� = LCirc(F1,F2, . . . ,F�) be a le�

circulant matrix; then one has

detA�� = (−1)(�−1)(�−2)/2× [(1 +F�+1)�−1
+ (−F�)�−2�−1∑

�=1
(−F�) (1 +F�+1−F� )�−1] ,

(54)

whereF� is the �th 	� ⋅ 
� number.

�eorem 17. LetA�� = LCirc(F1,F2, . . . ,F�) be a le� circu-

lant matrix; if � > 2, thenA
�
� is an invertible matrix.

�eorem 18. Let A�� = LCirc(F1,F2, . . . ,F�) (� > 2) be a
le� circulant matrix; then one has

A
�−1
� = 1�� LCirc(1 − �−2∑�=1F�−�(−F�)�−1(F1 −F�+1)� ,(−F�)�−3(F1 −F�+1)�−2 , . . . , (−F�)2(F1 −F�+1)3 ,
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F1 −F�+1

,
− 3 + �−2∑

�=1

F�−1−�(−F�)�−1(F1 −F�+1)� ) ,
(55)

where�� = F1 − 3F� + �−2∑
�=1

(−F�) ( −F�
F1 −F�+1

)�−(�+1). (56)

By Lemma 5 and �eorems 12, 13, and 15, the following
conclusions can be attained.

�eorem 19. LetB�� = LCirc(L1,L2, . . . ,L�) be a le� circu-
lant matrix; then one has

detB�� = 2(−1)(�−1)(�−2)/2× [(2 −L�+1)�−1 + (L� − 2)�−2
×�−1∑
�=1

(L�+2 − 2L�+1) (2 −L�+1
L� − 2 )�−1] , (57)

whereL� is the �th 	� + 
� number.

�eorem20. LetB�� = LCirc(L1,L2, . . . ,L�) be a le� circu-
lant matrix; thenB

�
� is invertible for any positive integer �.

�eorem 21. LetB�� = LCirc(L1,L2, . . . ,L�) be a le� circu-
lant matrix; then one can obtain

B
�−1
�= 1L� LCirc(1 − �−2∑�=1L�−�−1(L� − 2)�−1(L1 −L�+1)� ,

2(L� − 2)�−3(L1 −L�+1)�−2 , . . . , 2(L� − 2)2(L1 −L�+1)3 ,2 (L� − 2)(L1 −L�+1)2 , 2
L1 −L�+1

,
− 2 − �−2∑

�=1

(2L�−� −L�−�+1) (L� − 2)�−1(L1 −L�+1)� ) ,
(58)

whereL� = L1 − 2L�+ �−2∑
�=1

(L�+2 − 2L�+1) ( L� − 2
L1 −L�+1

)�−(�+1). (59)

5. Determinant and Inverse of �-Circulant
Matrix with F� and L� Numbers

In this section, let A�,� = �-Circ(F1,F2, . . . ,F�) and
B�,� = �-Circ(L1,L2, . . . ,L�) be �-circulant matrices.
By using the obtained conclusions, we give a determinant
formula for thematricesA�,� andB�,�. A
erwards, we prove
that A�,� is an invertible matrix for � > 2 and B�,� is an
invertible matrix if (�, �) = 1. �e inverse of the matrices
A�,� andB�,� are also presented.

From Lemmas 6 and 7 and �eorems 8, 9, and 11, we
deduce the following results.

�eorem 22. LetA�,� = �-Circ(F1,F2, . . . ,F�) be a �-cir-
culant matrix; then one has

detA�,� = detQ� [(1 +F�+1)�−1 + (−F�)�−2
× �−1∑
�=1

(−F�) (1 +F�+1−F� )�−1] , (60)

whereF� is the �th 	� ⋅ 
� number.

�eorem 23. Let A�,� = �-Circ(F1,F2, . . . ,F�) be a �-cir-
culantmatrix and (�, �) = 1; if � > 2, thenA�,� is an invertible
matrix.

�eorem 24. LetA�,� = �-Circ(F1,F2, . . . ,F�) (� > 2) be
a �-circulant matrix and (�, �) = 1; then
A
−1
�,�= [ 1��Circ(1 − �−2∑�=1F�−�(−F�)�−1(F1 −F�+1)� ,− 3 + �−2∑

�=1

F�−1−�(−F�)�−1(F1 −F�+1)� ,1
F1 −F�+1

, −F�(F1 −F�+1)2 ,(−F�)2(F1 −F�+1)3 , . . . , (−F�)�−3(F1 −F�+1)�−2)]Q
� ,
(61)

where

�� = F1 − 3F� + �−2∑
�=1

(−F�) ( −F�
F1 −F�+1

)�−(�+1). (62)

Taking Lemmas 6 and 7 and�eorems 12, 13, and 15 into
account, one has the following theorems.
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�eorem 25. Let B�,� = �-Circ(L1,L2, . . . ,L�) be a �-
circulant matrix; then one has

detB�,� = 2 detQ�× [(2 −L�+1)�−1 + (L� − 2)�−2
× �−1∑
�=1

(L�+2 − 2L�+1) (2 −L�+1
L� − 2 )�−1] ,

(63)

whereL� is the � 	� + 
� number.

�eorem 26. LetB�,� = �-Circ(L1,L2, . . . ,L�) be a �-cir-
culant matrix and (�, �) = 1; then B�,� is invertible for any
positive integer �.
�eorem 27. LetB�,� = �-Circ(L1,L2, . . . ,L�) be a �-cir-
culant matrix and (�, �) = 1; then
B
−1
�,�= [ 1L�Circ(1 − �−2∑�=1L�−�−1(L� − 2)�−1(L1 −L�+1)� ,

− 2 − �−2∑
�=1

(2L�−� −L�−�+1) (L� − 2)�−1(L1 −L�+1)� ,
2

L1 −L�+1
, 2 (L� − 2)(L1 −L�+1)2 ,2(L� − 2)2(L1 −L�+1)3 , . . . , 2(L� − 2)�−3(L1 −L�+1)�−2)]Q
� ,

(64)

whereL� = L1 − 2L�+ �−2∑
�=1

(L�+2 − 2L�+1) ( L� − 2
L1 −L�+1

)�−(�+1). (65)
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