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ABSTRACT

Circulant weighing matrices are matrices with entries in {-1,0,1} 

where the rows are pairwise orthogonal and each successive row is obtained 

from the previous row by a fixed cyclic permutation. They are useful in 

solving problems where it is necessary to determine as accurately as 

possible, the "weight" of n "objects" in n "weighings". They have 

also been successfully used to improve the performance of certain optical 

instruments such as spectrometers and image scanners.

In this thesis I discuss the basic properties of circulant weighing 

matrices, prove most of the known existence results known to me at the time 

of writing this thesis and classify the circulant weighing matrices with 

precisely four nonzero entries in each row. The problem of classifying all 

circulant weighing matrices is related to the "cyclic projective plane 

problem". This relationship is established and I have devoted the final 

chapter of this thesis to cyclic projective planes and their relationship 

to circulant weighing matrices. The final theorem in this thesis yields

-2
information about equations of the kind .xy - a  in cyclic projective

planes.
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CHAPTER I

HISTORY AND APPLICATIONS

When I first learned that some mathematicians spend their time studying 

matrices with entries from (-1, 0,1} , my reaction was like that of a 

young upperclass lady to the local sanitary can collector!

Aren't matrices passe? What kind of mathematicians are these

that haven’t heard of linear transformations?

Why study matrices with entries in (-1, 0, 1} ? How does such a study 

relate to the total intrastructure of mathematics?

Specifically we are interested in weighing matrices; orthogonal 

integer matrices with entries 0,1 or -1 which have the same number of 

zeros in each row. Historically the study of such matrices began with the 

work of James Sylvester in 1876 and Jacques Hadamard in 1893. In 1893 

Hadamard [12] showed that the absolute value of an n x n determinant, all 

of whose entries were complex and lay within the unit disc, is no greater

than n . Hadamard then showed that if such a determinant attained the 

bound, then all the entries lie on the perimeter of the unit disc (that is, 

the unit circle) and the rows of the determinant are pairwise orthogonal. 

Thus in the case when all the entries of the determinant are real, the 

entries must all be either -1 or 1 and in this case Hadamard showed that 

either n - 2 or n is divisible by four. Sylvester [26] had already 

constructed a family of real n x n determinants with these properties when 

n was a power of two.

Real n x n matrices whose determinants have the above properties are 

called Hadamard matrices and are examples of weighing matrices.

Weighing matrices also arise naturally in a practical context. Suppose 

we have a balance which records the difference in weight between the right



and the left pans. How can we determine the weight of n objects as 

accurately as possible in n weighings?

As an example, suppose that we have two objects of weights and

x2 . Let e be the error made each time the balance is used. We suppose

2
that e is a random variable with zero mean and variance G . Make two 

measurements, the first with both the objects in the left pan and the second 

with one object in each pan. If and e2 are the errors made in the

first and second weighings respectively and if y and y  ̂ are the first

and second measurements respectively, then

(1.1) y± = x± + x2 + e1 ,

(1.2) y2 = x± - x2 + e2 .

Equations (1.1) and (1.2) can be solved easily to give us estimates of

and x2 . The distributions of the estimates obtained for and x2

2
using this procedure have variance ö /2 while the variance of the 

distributions of the estimates of x  ̂ and x2 obtained by weighing

each object separately have variance G

Equations (1.1) and (1.2) may be written

1—
1 -x i

1-
-

1

=  W +

<y 2 - -*2 -

C
M

0
)

where

fl 1\

- J

Notice that W is a 2 x 2  Hadamard matrix.

In general, given an n * n weighing matrix W whose ijth entry is

weighings as follows. If W . . = 1 , place object j on the left pan
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for the ith weighing; if w^. = -1 , place object j on the right pan

for the ith weighing; and if . = 0 , object j is not weighed in

weighing i .

If we suppose that the error made each time the balance is used is a

2
random variable e with zero mean and variance a and if W has 

precisely k nonzero entries in each row, then the variance of the

2
distribution of the estimates of the weights each have variance ö /k . The 

fact that W has pairwise orthogonal rows and the same number of zeros in 

each row means that the resulting equations are easy to solve for the 

individual estimates of the weights.

This same method can be applied to measuring lengths, voltages and 

resistances. Apparently the "best" n x n weighing matrices are those 

which have the least number of zeros in each row.

Weighing matrices have also been used to improve the performance of 

optical instruments such as spectrometers. Spectrometers measure the 

intensity of a dispersed spectrum at a finite number (n say) of wavelengths.

According to Ibbett, Aspinall and Grainger [15], these n measurements 

are either made by one detector which scans a screen, making the n 

measurements sequentially or else the n measurements are made 

simultaneously by a detector with spatial resolution. The first method has 

the disadvantage of not being able to compensate for variations in the 

intensity of the signal, while the second approach suffers the disadvantage 

of a lower signal to noise ratio (Ibbett et at [15]).

Both Decker and Harwitt [6], and Ibbett et at [15] proposed a 

modification of the second system which improves the signal to noise ratio. 

This method I will illustrate by the following example.

Suppose we wish to measure the intensities x and x^ of two light

beams with wavelengths A^ and A^ . As with weighing two objects the



best approach is to measure their combined intensities (x^+x ) and the 

difference between their intensities (x^-x ) . This can be achieved by

4

The bottom right hand quarter of the mask is a mirror and the other 

three quarters are transparent.

If the mask is positioned so that the light of wavelength X^ is

incident with the left hand side of the mask, while the light of wavelength 

X^ is incident with the right hand side of the mask, then the detectors 

can be arranged so that the measurements 

(1.4) y ± = x ± + x 2 + , y 2 = x ± - + e2

can be made (e and e2 are "the errors made when measuring x^ + x2 and

x i ~ x 2 resPectively)•

REFLECTED LIGHT

INCIDENT

BEAM

TRANSMITTED LIGHT

DETECTOR PROCESSOR

REFERENCE

DETECTOR

OPTICAL

SEPARATOR

MASK

FIGURE 1.5 (after Sloane and Harwitt [24])
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As in the case of the weighing problem, the variance of the 

distributions of the estimates of x^ and x̂  as measured above is half

the variance of the distribution of the estimates of x^ and x̂  when

measured separately.

In general, we can use an n x n weighing matrix W to define a 

proceedure for measuring the intensities or. (i = 1, ..., n) of n light

beams of wavelengths A^, A^, . .., A as follows. First make a square

n x n mask which is divided into n unit squares, each of whose edges are 

parallel to one of the edges of the mask and such that the ijth unit 

square is transparent, opaque or a mirror according to whether the ijth 

entry w. . of W is 1 , 0  or -1 (see Figure 1.6).

2
n

1{

FIGURE 1.6

Now arrange the mask so that the light of wavelength A .
3

is incident

with the jth column of subsquares of the mask. The intensity of the light 

beam incident with the ijth subsquare of the mask is thus multiplied by
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. By arranging the detectors as in Figure 1.5, the measurements

n

^  _ ’ * * * 5

can be made.

Another application of integer matrices is in modern communications 

theory. Student numbers, files stored in a computer and signals sent through 

space are all examples of information encoded into "words"; strings of 

symbols belonging to an "alphabet".

As an example, consider the code where the alphabet consists of the two 

letters 0 and 1 and all the words have length n . If we consider the 

set {0, 1} as the field GF(2) of two elements, our code is a vector 

space of dimension n over GF(2) .

In practical situations, codewords are subject to "noise"; a codeword 

may be altered while travelling from its source to its destination. To 

reduce the effect of noise, we can introduce a redundancy into a code. A 

primitive error check in the above example would be to place a 0 at the 

end of each word if 1 occurred an even number of times in the codeword and 

a 1 if 1 occurred an odd number of times. That is, multiply each code

word on the right by the matrix

r 1 0

i—
1 

•

o i—
1

• 
• 

i—
1

The resulting code is then an n dimensional subspace of the n t 1

Y l\ t
dimensional vector space GF(2) over GF(2) . If one error occurs during

the transmission of a codeword, then the resulting word is not a codeword. 

This code is an example of a 1-error detection code.

It is convenient to define a metric on the vector space GF(2)W . For

an element x of GF(2)W , define the weight of x to be the number of
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times 1 occurs in x . Define the distance between two elements a: and

y of GF(2)W as the weight of x - y .

Let r be a positive integer and suppose that we could find a subspace

Yl+y?
W of GF(2) of dimension n and an integer e such that no two

elements of W were closer than 2e t 1 . If fewer than e errors were 

made during the transmission of a codeword, then there would be no confusion as 

to the codeword sent. Such a code is called an e-error correcting code and 

r is called the redundancy of the code. The rate of the code is defined as 

the quotient n/(n+r) and when the redundancy is zero, we say that the 

rate of the code is at capacity.

What has this to do with integer matrices? If such a subspace as 

described above exists, then there is a linear injection

cp : GF(2)n + GF(2)n+P

where the image of cp is the subspace W . By choosing the appropriate

n n+r . .
bases for GF(2) and GF(2) , we may assume that cp has a matrix in

the form

Clp)

where I is the n x n identity matrix and A is an n x r integer 

matrix. The search for "good" codes then becomes a search for the right 

integer matrices A .

For example, if there is a Hadamard matrix of order n , then there is 

an nt4 error correcting code whose rate is % (see Berlekamp [4], 

pp. 316-317).

For a more detailed account of coding theory, consult either Berlekamp 

[4] or van Lint [16].

Unfortunately we have not the time nor space to explore these 

applications more fully. We must away and begin the study of our abstract

nonsense.
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CHAPTER II

BASIC PROPERTIES

Here the mathematics begins. In this chapter much of the language and 

notation used in this thesis will be introduced. Hopefully sufficient 

motivation and examples will be provided to make the contents of this 

chapter palatable.

A weighing matrix of order n and weight k is an n x n matrix W 

with entries in {-1, 0, 1} such that

WWt = kl

where denotes the transpose of W and I denotes the n x n identity

matrix. Such a matrix has k non zero entries in each row.

If W is a non zero weighing matrix, then the weight k is a nonzero

integer and W is invertible with inverse k . Consequently, if J7

is a weighing matrix, then W W - kl and it is easy to see that each column 

of W contains precisely k nonzero entries. Furthermore, it is easy to 

see that the transpose of a weighing matrix of weight k is also a weighing 

matrix of weight k .

-ic

(2.1) EXAMPLE. The matrix

-1 1 0 1 1 o'

0 -1 1 0 1 1

1 0 -1 1 0 1

1 1 0 -1 1 0

0 1 1 0 -1 1

, 1
0 1 1 0 -1_

weighing matrix of order 6 and weight 4 .

An n x n matrix A whose ijth entry is

an . . for all i, 
o,j-t

3 E {1, 2, .• . , n] (re

is eireulant if

According to Muir [17], eireulant systems of linear equations were



first considered by E. Catalan in 1846. 

(2„2) EXAMPLE. The matrix

9

f
1 2 3'

3 1 2

2
V

3 lj

is a circulant matrix.

A circulant matrix is completely determined by its Oth row. Let (x) 

be a cyclic group of order n with distinguished generator x and let R 

be a ring with 1 . Regard each element of the group ring R( x > as 

function a from the group (x) to the ring R (a : x' i— *■ .

Consider the set of all circulant n x n matrices over R . There is 

a one to one correspondence between these matrices and the elements of the 

group ring R( x ) . The element of the group ring corresponding to the 

circulant matrix A is called the Halt polynomial of A and is defined as

i
the function from < x > to R whose value at a: is a:. . It is usual to

0 %

embed <x > in R( x > by identifying each element g of <x) with the 

characteristic function of the singleton {g} ; with that identification 

the Hall polynomial of A is

n-1

I
i-0

(2o3) EXAMPLE. The circulant matrix

1 2 3

3 1 2

[2 3 1

2
has Hall polynomial 1 + 2x + 3a;

Denote by M (R) the P-algebra of all n x n matrices over R .
J n

Denote by P the n x n circulant matrix with Hall polynomial x . That

is
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p =

0 1 0  

0 0 1 

0 0 0 1

0 1 

0

0

^ 1 0  0

PROPOSITION 1. An n x n matrix commutes with P if and only it is 

a circulant matrix.

Proof. Let A be an n x n matrix over R whose ijth entry is 

a^j . The ijth entry (AP)^. of AP is given by

Y a.1p1 . = a. . . . 
f tk̂ kj ,̂J-l

Similarly, the ijth entry (PA) . . of PA is a. . .
ty ^+l,j

If A is circulant, then

°i9j-1 a09j-i-l ~ ai+l,j

for all i, j € (1, 2, ..., ft} . That is (AP)^. - (PA) f o r  all i and 

j . Therefore AP = PA .

Conversely if AP = PA , then a. . = a. . for all ij . A simple
t j J -1 "1-+1, j

argument shows that a . . - a . . for all i, j ; that is A is

circulant. //

Thus the n x n circulant matrices form an P-algebra, namely the

centraliser of P in M (R) . Let C(P) denote the centraliser of P in
n

M (R) . 
n

PROPOSITION 2. There is an R-algebra isomorphism

cp : C(P) -* R( x ) .

Proof. Let cp : P(P) R( x) be the map taking a circulant matrix to 

its Hall polynomial. As previously remarked, cp is a bijection.

It is clear that (p is an P-module isomorphism. We need only show
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that <p(/L3) = cp(/4)ip(i5) (where A and B are elements of C(P) ) . That is

we have to show that the Hall polynomial of the product of two circulant

matrices is the product of their Hall polynomials.

Let A and B be circulant matrices whose ijth entries are a. .
I'd

and b. . respectively.
'id

n-1

The £th entry of the Oth row of AB is Y k^kj ' "the

k=0

Hall polynomial of AB is

n-1 m-1

A J-
^=o v<=o

Now

m-1 m-1

c p U ) c p ( B )  = I  a ,x  Z

tfc=0 K * lj = 0 UJ

n-1 m-1

= I I
k=o v = o  °K °C

n-1 m-1

- I

k=0 Kj=0

k+j

Y Y i -^ ^ ok k,k+o

k+d
(since AB is circulant, b .

bk,k+ß

n-1 m-1

^  £  a0kbkf'
k-o y=0

n-1 m-1

- Z Z Ook°kj xV
/=0 ^=0

= cp(i4ß) • //

One interesting consequence of this result is that every circulant 

matrix over R is a "polynomial" in p . If A is a circulant matrix,

then
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n-1

<p(>0 = X  Ci0'i 

i-0

n-1

- I  a0.<p(P̂
t=0

m-1

= <P Z aoiP
^=o

Since is a bijection, it follows that

n-1

A = S <*0£p
i=o ut

l

This result is also easily proved by direct computation. (See, for 

example, Newman [21], p. 184.)

(2.4) EXAMPLE. The circulant matrix

1 2 3'

3 1 2

2 3 1

is equal to I + 2P + 3 .

From this point, we will restrict our attention to the case when the 

ring R is the ring of integers Z .

A circulant weighing matrix is a weighing matrix which is circulant.

The following test is often useful when determining whether or not a 

circulant matrix is a weighing matrix.

(205). If A is a circulant matrix with Hall polynomial a , then

AA^ is a scalar matrix if and only if

Z Z a( g) a( h) gh 1 £ Z .
g,h€(x)

(2.6). The negative of a circulant weighing matrix is also a circulant 

weighing matrix. It is convenient to consider only one of each such pair, 

so we make the convention that in each row of a circulant weighing matrix}

1 occurs at least as often as -1 . The next lemma will imply among other 

things, that this convention achieves the desired selection.
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LEMMA 3 (Stanton and Mullin [25]). If k is the weight of a

2
circulant weighing matrix3 then k - s where s is a nonnegative integer 

and the number of times 1 occurs in each row is %s(s+l) .

Proof. Suppose that A is a circulant weighing matrix of order n

and weight k . Let J be the n x n matrix where each entry is 1 . Let

s be the row sum of A . It is easy to see that s is also the column sum

of A and that

AJ = AtJ = sJ .

Now

while

[AA*)j = (kl)J 

= kJ

a Ja V) = A(sJ)

Therefore

[k-s2)j = 0

which implies

k = s .

Let l be the number of times 1 occurs in each row of A . The

number of times -1 occurs in each row is then s - l and so the row sum

s is l - {s2-l) . That is

l - %s(s+1) . //

(2.7). Combining the result of Lemma 3 and the convention (2.5), it is 

easy to see that if A is a nonzero circulant weighing matrix, then -A is 

not a circulant weighing matrix.
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A Geometric Visualisation

Let us return to the cyclic group (a;) of order n with distinguished 

generator x . If we think of x as a rotation by 2tt/n of an oriented 

regular n-gon with a distinguished vertex £ , we can associate each 

element g of (x) with the vertex Z,g of the polygon. The elements of 

Z(x) are then in one to one correspondence with the integer weighted, 

oriented, regular n-gons with distinguished vertex, so that the polygon

'L'

with weight at vertex £x for each £ corresponds to the element

n-1

a .x 
z

of l(x) .

This is a useful visualisation of circulant weighing matrices which 

should be kept in mind when reading the proof of Theorem 8.

Equivalence of Circulant Matrices

When trying to determine all circulant weighing matrices of a given 

order, it is useful to introduce some notion of equivalence of circulant 

matrices. Roughly speaking, two circulant matrices are equivalent when one 

can be obtained from the other by the "obvious” constructions.

To make this more precise, consider the split extension Hol<x> of 

( x) by its automorphism group Aut (x) (defined by the natural action of 

Aut Cc) on (x) ). This is known as the holomorph of <x> and is usually
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considered as a subgroup of the symmetric group of all permutations of the 

set of elements of (x > , as follows. If g, h € (x) , t £ Aut< x >

\T : g - *  g J , and (t , h)  6 Hoi ( c c) , then (t , h)  : g -*■ g h . We may 

regard Hol(x> as acting on Kx) so that (x, h) takes each a in l(x)

to the composite map (t , h)  .

Thus for each a in 2(x) ,

aTh = h) Y~\g

g

= X  u(g)gT}i .

9

We see, using the test (2.5), that if i is a circulant weighing 

matrix with Hall polynomial a and if (t , h) is in Ho K jc ) , then the

circulant matrix with Hall polynomial a h is also a weighing matrix, with 

the same weight as A .

Let A and B be two n x n circulant matrices with Hall polynomials 

a and 3 respectively. We define A and B to be equivalent if and only

if a = $T/z for some (x, h) € Hoi (x > .

(2.8) EXAMPLE. It is straightforward if tedious to check that the 

circulant matrices of order 13 with Hall polynomials

and

2 4 5 6 7 8 10
x + x + x + x - x - x + x

11
X

12
+ x

2 4 5 6 7 8 10 11 12
X - X + X + X + £  + X - X + X - X

are inequivalent circulant weighing matrices.

(This notion of equivalence of circulant matrices was suggested to me

by L .G . Kovacs.)
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E x t e n d i n g  C i r c u l a n t  M a t r i c e s

As before, let (x) be a cyclic group of order n with distinguished 

generator x , and A a circulant matrix of order n with Hall polynomial 

a in Z( x ) . Let <y>, m, y, B and 3 be defined similarly. If m and 

n are coprime, the direct product of ( x ) and < y ) is cyclic of order run 

and xy may be taken as a convenient generator for it: thus ( x ) and < y > 

are embedded in < xy > and Z<£>, Z<y> in Kxy) . It is easily seen that 

the Kronecker product A ®  B may be considered as a circulant matrix with 

Hall polynomial a(3 (in Z(xy) ).

Moreover, if both A and B are weighing matrices, then so is 

A ®  B , and its weight is the product of the weights of A and B 

(Geramita, Geramita and Wallis [10]).

Another useful construction suggested to me by Peter Eades is the 

following. If t is any positive integer, the cyclic group <2 ) of order

nt has a unique (cyclic subgroup of order n , namely ( 2 ^> : we may

t
identify this with <x> so that x = 2 Construct a circulant matrix A

of order nt by replacing each entry a. . of A by the t x t scalar
T'J

matrix a . .1 . The Hall polynomial of A is a regarded as an element of
I'd t

Z<2 > after substituting 2^ for x .

( 2 09) EXAMPLE. The 4 x 4  circulant weighing matrix

A =

-1 1 1 1

1 -1 1 1

1 1 -1 1

1 1 1 -1

can be extended to an 8 x 8  circulant weighing matrix
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-1 0 1 0 1 0 1 o '

0 -1 0 1 0 1 0 1

1 0 -1 0 1 0 1 0

0 1 0 -1 0 1 0 1

1 0 1 0 -1 0 1 0

0 1 0 1 0 -1 0 1

1 0 1 0 1 0 -1 0

0 1 0 1 0 1 0 -1

If A is a circulant weighing matrix, then A  ̂ is also a circulant 

weighing matrix.

If A and A ' are inequivalent circulant weighing matrices of order 

n , then A, and A* are inequivalent circulant matrices and if B is a

circulant weighing matrix whose order is prime to n , then A 0  B and 

A ' ®  B are inequivalent.circulant matrices. The first assertion is easy to 

check, while the second is a special case of the following lemma.

LEMMA 4. Suppose that A, A' are nonzero circulant weighing matrices 

of order n and that B, B' are nonzero circulant weighing matrices of 

order m . Suppose that m and n are coprime.

If A ®  B is equivalent to A' 0  B ' i then A is equivalent to A ' 

and B is equivalent to B ' .

Proof. As above, let ( x), (y) be cyclic groups of orders n, m 

respectively with distinguished generators #, y respectively.

If

a  = I

g

a' - Y u'(g)g

G

g € < x ) ,

ß = X

h

ß' = I  8'(h)h 

h

h t ( y )

are the Hall polynomials of A, A', B, B r respectively, then A ®  B and
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A ' ® B' have Hall polynomials 0,3 and otf3 f respectively where

»3 = XZ a(g)$(h)gh and a'3' = ZZ a’(g)&’(h)gh . 
g,h£(x) g ,h£( x)

If A ®  B and A r ®  B' are equivalent, then there is an automorphism

T of (ocy > and a € < x > and b 6 (y > such that

a3 = (a'3')Xab .

Since < as/ > is the direct product of its unique subgroup < x > of 

order n and its unique subgroup < y ) of order m , it follows that if 

and cp are the restrictions of x to < x ) and (y) respectively, then

T llj
(gh) = g g for all g £ (x ) and h € (y) .

Therefore

(2.10) a'(g)e,'(h) =

for all g £ < x ) and fa 6 < y > .

Since yl f  ̂0 , we can choose g in < a: ) such that a r(g)  ̂0 .

Since CLr(g) = 1 or -1 and a f(<̂ a) = -1, 0 or 1 , we have either

(1) a(g^a) = a r(g) , or

(2) a[ĝ a) = -a’(g) , or

( 3) a - 0 .

Case 1. Using equation (2.10), we see that if a(g^a) = a f(g) , then

3 [ĥ b] - 3 r(h) for all h 6 < y > and so 3 ^  = 3 ' • Thus B is equivalent 

to S' .

Since B* ^ 0 , we can find h € (y ) such that 3 '(h)  ̂0 and it

follows that a[ĝ a] = CLr(g) for all g £ < a; > ; that is ô a = a' and ;4

is equivalent to i4' .

Case 2. Using equation (2.10), we see that if a [ĝ a] = -af(^) then

3<P2? = -3f , that is, B is equivalent to -B' and so -B is a circulant

weighing matrix. But by (2.7), the negative of a nonzero circulant weighing
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matrix cannot be a circulant weighing matrix. This contradiction shows this 

case is vacuous.

Case 3. Again by Equation (2.10), if a [ĝ a] - 0 and CL'(g) t 0 , 

then B ' - 0 , contrary to our assumptions. //
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CHAPTER III 

EXISTENCE

So far we have not worried too much about whether our principal objects 

of study (circulant weighing matrices) exist in any abundance. The time has 

now come to rectify this situation.

The material in the following section should be familiar, but is 

included because projective planes become the principal object of study in 

Chapter IV.

Projective Planes

An -Incidence structure is a triple (P, B, I) where P and B are 

sets and 1 is a subset of P x B . The elements of P are called 

points, the elements of B are called blocks and the elements of I are 

called flags. Usually we shall write pIB instead of (p, B) for an 

element of I and we shall say that the point p is incident with the 

block B .

A square is an example of an incidence structure:

1«

d

4<
c

P = (1, 2, 3, 4} ,

B = {a, b, c 9 d] ,

1 = {(1, a), (2, a), (2, b), (3, b), (3, c), (4, c), (4, d), (1, d)} .

The vertices of the square are the points, the edges are the blocks and the 

incidence relation is containment; that is pIB if and only if p £ B . 

Often we shall "bastardise" our definition and identify each block
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with the set of points incident with it. In the cases we are interested in 

this should not lead to any confusion.

A projective plane is an incidence structure (P, 6, I) which satisfies 

the following three axioms.

(I) For each pair of distinct points, there is a unique block 

which is incident with both points.

(II) For each pair of distinct blocks, there is a unique point 

which is incident with both blocks.

(Ill) There is at least one set of four distinct points such that 

no three of these points are incident with the same block.

The blocks of a projective plane are usually called lines.

(3.1). The most common examples of projective planes arise in the 

following way. Let F be a field and V a three dimensional vector space 

over F . Consider the one dimensional subspaces of V as points and the 

two dimensional subspaces of V as lines. If we interpret the point p 

being incident with the line l as meaning that p is a subspace of l , 

then the resulting incidence structure is a projective plane. Note however 

that not all projective planes arise in the above manner. For examples of 

such planes see either Dembowski [7] or Hughes and Piper [14].

It is convenient to introduce a notion of isomorphism of incidence 

structures. Define the incidence structures (P^, B , I ) and (P^, B^, 1

to be isomorphic if there are bijections <p : P^ ?2 and \|j : 8^ B^

such that pIB if and only if (cpp)J(ijjß) for all p € P^ and B € 8^ .

It is easy to show that all projective planes which can be constructed 

from a three dimensional vector space over a given field are isomorphic.

Such a projective plane is called a Desarguesian projective plane and we 

denote the Desarguesian projective plane constructed from the vector space 

V by PV .

For a set Y , denote the cardinality of Y by |y | . It is not hard



22

to show that if (P, B, I) is a projective plane, then the number of points 

incident with each line is fixed and equals the number of lines incident 

with each point. (Axiom III is needed to prove this fact.) It is easy to 

deduce from this fact that |P| = |S| .

When IPI is finite, we say that the projective plane is finite and 

we define the order of a finite projective plane to be the integer one less 

than the number of points incident with each line.

The following self explanatory diagram represents a projective plane of 

order two:

If F is a finite field and V a three dimensional vector space over

F , then the Desarguesian projective plane constructed from V has order

kl •
It is well known that the order of a finite field is always a prime 

power and conversely, given a prime power q , we can construct a field of 

order q . (See, for example, Birkfr.ott and Mac Lane [5].) Thus for each 

prime power q , there is a Desarguesian projective plane of order q .

We now have to justify the introduction of this seemingly unrelated 

material. First a definition.

A cyclic projective plane is a finite projective plane (P, B, I) 

which admits a cyclic group C of automorphisms which acts sharply 

transitively on P . That is, given two distinct, elements a and b of 

P , there is precisely one element of C which takes a to b .

LEMMA 5 (Singer 1938, [23]). Every finite Desarguesian projective
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plane is cyclic.

Proof. Let F be a finite field and F the cubic extension of F .
O

The field F is a three dimensional vector space V over F .
v j

ft
The elements of the multiplicative group F' of F may be thought of

O  O

as a subgroup of the group of linear automorphisms of V by identifying the 

element f of F with the linear transformation which takes the element 

e of F  ̂ to ef .

It is easy to see that each linear automorphism of V induces an

automorphism of the projective plane PV . Thus there is a homomorphism

ft
from the multiplicative group F" of F into the automorphism group of

v j  O

4L

PV . It is easy to show that the element f of F" acts trivially on PV
O

4L

if and only if f is an element of the multiplicative group Fn of F .

Since the multiplicative group of a finite field is cyclic, it follows 

that the automorphism group of PV contains a cyclic subgroup isomorphic

ft ft
to the factor group F IF

O

It is not hard to show that this cyclic group acts sharply transitively 

on PV . Since all Desarguesian projective planes of a given order are 

isomorphic, we have proved the lemma. //

An Inequality

We are now at the watershed of projective geometry and the study of 

circulant weighing matrices. In their paper [10], Geramita, Geramita and 

Wallis prove that if n is odd and if there is a weighing matrix of order 

n and weight k , then

(n-A)2 - (n-k) > n - 1

2
and if {n-k) - {n-k) - n - 1 , then there is a projective plane of order
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n - k  - 1 .

Here I prove a slight variation; namely, if n is odd and if there is

a circulant weighing matrix of order n and weight k , then

(n-/c)2 - (n-k) > n - 1

2
and if (n-k) - {n-k) - n - 1 , then there is a cyclic projective plane of

order n - k  - 1 .

In a later paper [28], Wallis and Whiteman prove the converse; given

a cyclic projective plane of order q , we can construct a circulant

2 2
weighing matrix of order q + q + 1 and weight q

The proof of the Geramita, Geramita and Wallis inequality will be given

immediately while L.G. Kovacs’ elegant proof of the Wallis-Whiteman theorem

will be given in the next chapter.

First a lemma.

LEMMA 6. Suppose that C is a cyclic group of order n .

If Z is a subset of C which meets each of its translates Zg 

(g £ C) in at least one point3 then

|Z|2 - |z| > n - 1 .

2
If IZI - IZI - n - 1 j then C is a cyclic protective plane whose lines 

are the translates Zg {g £ C) of Z .

Proof. Observe that the group C acts sharply transitively on itself 

(by left multiplication). It follows that for each element z of Z there 

are precisely |z| elements g of C such that z € Z n Zg .

Consider the set of ordered pairs (z, g) where g € C and 

z £ Z n Zg . By counting this set along "horizontal slices" then "vertical 

slices", we have

(3.2) I  |Z n Zg\ = |z|2 .

9

Mow when g - 1 , we have |Z n Zg\ = \z\ while jZ n Zg\ > 1 when 

g t 1 . Therefore
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IZ12 > |Z| + n - 1 .

That is \Z\2 - \z\ > n - 1 .

2
If IZI = IZI + n - 1 , then it is easy (using (3.2)) to see that for 

all nontrivial elements g of C , |Z n Zg\ - 1 . By counting the 

ordered pairs ({a, b], gO where g £ C and where (a, £>} is a two 

element subset of C contained in Zg , it is easy to show that each pair 

of distinct elements of C lie in a unique translate of Z . That is C 

is a cyclic projective plane whose lines are the translates Zg of Z . //

THEOREM 7. If there is a eirculant weighing matrix of order n and 

if n is odd then

2
(n-k) - {n-k) > n - 1 .

2
If {n-k) - {n-k) - n - 1 then there is a cyclic projective plane of

order n - k  - 1 .

Proof. Suppose that A is a eirculant weighing matrix of order n 

and weight k with Hall polynomial a . Let

Z = {g € < x > I a{g) - 0} 

and notice that |z| - n - k  .

If n is odd, then using test (2.5) it is not hard to show that Z 

meets each of its distinct translates Zg (that is g is a nontrivial 

element of <x > ) in an odd number of points. In particular, |z n Zg\ > 1 

for all elements g of (x) .

Applying Lemma 6, we have

|z|Z- |Z| > n 1 ;

that is (n-k) - (n-k) > n - 1 .

2
If {n-k) - {n-k) - n - 1 , then by Lemma 6, the cyclic group ( x)

admits a cyclic projective plane structure where the lines are the 

translates Zg of Z {g £ ( x)) . The order of this projective plane is 

|z| - 1 which is equal to n - k  - 1 . //
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The Geramita, Geramita, Wallis inequality is not valid when n is 

even. The matrix in Example (2.1) is a circulant weighing matrix for which

(n - k - (n-k) = 2 while n - 1 is 5 .

Circulant Weighing Matrices of Weight 4

As we have seen, the weight of a circulant weighing matrix is always a 

square. It is easy to see that all circulant weighing matrices of weight 1 

are equivalent to the identity matrix of the same order. Recall from 

Chapter 2 that the integer circulant matrices of order n are in a one to 

one correspondence with the integer weighted, oriented, regular n-gons with 

distinguished vertex. The following theorem shows that all circulant 

weighing matrices of weight 4 correspond to weighted polygons where all 

the weight lies either on an inscribed rectangle or on an inscribed regular 

heptagon. This implies that the order of a circulant weighing matrix of 

weight 4 must be divisible by 2 or 7 .

The converse is also true. Given n > 4 , if n is divisible by either 

2 or 7 , then there is a circulant weighing matrix of order n and weight

4 .
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T H E O R E M  8 (Eades  and Hain [ 9 ] ) .  Suppose th a t ( x )  i s  a c y c l ic  group 

o f  o rder n w ith  genera tor x .

I f  n i s  d iv i s ib le  by 7 3 then the  c ir c u la n t  m a tr ix  o f  order n w ith  

yl  /  *1 / 7  \̂y\* /  *~!
Hall polynom ial -1  + x  + x  + x  i s  a weighing m a trix .

I f  n i s  even3 i f  d i s  a p o s i t iv e  d iv is o r  o f  and d ± %n 3 then

the c ir c u la n t  m a tr ix  w ith  Hall polynom ial - 1  + x ^  + x ^ 1 + x ^ ^ 1 i s  a 

weighing m a trix .

Each c ir c u la n t weighing m a tr ix  o f  o rder n and w eigh t 4 i s  

eq u iva len t to  one and only one o f  the m a trices mentioned above.

C O R O L L A R Y  9  (Eades and Hain [ 9 ] ) .  For a p o s i t iv e  in te g e r  m 3 d e fin e  

A(m) to  be the  number o f  (p o s i t i v e ) d iv is o r s  o f  m (in c lu d in g  1 but 

exc lud ing  m ) .

The number o f  equ iva lence  c la sse s  o f  c ir c u la n t  weighing m atrices o f  

order n and w eigh t 4 i s

0 i f  n i s  odd and l \n  3

1 i f  n i s  odd and l \ n  3

A(%ft) i f  n i s  even and l \ n  3

A(%n) + 1 i f  n i s  even and l \n  .

P roo f  o f  Theorem 8. Us ing  t e s t  ( 2 . 5 ) ,  i t  i s  s t r a i g h t f o r w a r d  t o  check

t h a t  t h e  c i r c u l a n t  m a t r i c e s  w i t h  H a l l  p o l y n om ia l s  - 1  + x + x 2 + x 2

(when n i s  even and d\%n , d i- %ft ) and  - 1  + x + x^n^  + x ' 71̂  

(when n |7 ) a r e  w e igh ing  m a t r i c e s  o f  w e i g h t  4 .

For  a p o s i t i v e  i n t e g e r  m , d e f i n e  D{m) t o  be t h e  s e t  o f  p o s i t i v e  

d i v i s o r s  d o f  m where d £ m .

Put

a  - -1 +
n i  7 
x t  x

2 n jl 4 n / 7
+ x (7 |ft)

= -i +
d
x  + x + x

%n+d

and



28

(ft is even and d £ D(kn) ).

Given an integer n , define S to be the set of those polynomials 

a, 3^ which "make sense" for that n . That is, S = 0 when n is odd

and l\n , 5 = {a} when n is odd and 7 |n , S' = {ß̂ , | S £ when

n is even but l\n and S = {a} u {ß^ | d € D(%n)} when n is even and

71 n .

For each n we have to show that if the circulant matrices with Hall 

polynomials y , 6 in S are equivalent, then y = 6 •

Since each row of a circulant weighing matrix of weight 4 contains 

precisely one -1 and since y(l) = -1 for all y 6 S , the circulant 

matrices with Hall polynomials y, 6 (£ S) are equivalent if and only if

there is an automorphism T of ( x) such that y = 6

We shall exploit the trivial fact that if G is a group and t an

automorphism of G , then each element g of G has the same order as its

image g under T .

If n is divisible by 14 and d £ D(%n) , then the circulant 

matrices with Hall polynomials a, ß^ cannot be equivalent because ß^

takes the value 1 on the element of order 2 in < x) , while a takes 

the value 1 only on elements of order 7 in < x) .

d
If n is even and d € D(%n) , then x is congruent to

x 2 modulo < x2 ) and these elements have order n/2d 1) modulo < x > ,

while the other two elements, 1 and x , have order 1 modulo ( x ) . 

Consequently, if d9 dr € D(%n) and x is an automorphism of < x)

such that (ß J T = ß^, , then x^ and x^ have the same order modulo

< x'*n) ; that is n/2d - n/2d’ . Therefore d - d ’ and ß^ = ß^f .

Thus we have shown that a circulant weighing matrix of order n and



weight 4 can be equivalent to at most one of the circulant matrices with 

Hall polynomial in S .

29

From the following lemma we will deduce that all circulant weighing 

matrices of weight 4 are either "rectangular" or "heptagonal".

LEMMA 10 (Eades and Hain [9]). Suppose that C is a cyclic group of 

order n and that Z is a subset of C containing exactly four elements.

If the size of the intersection of Z with each of its translates Zg 

(g 6 C) is even3 then

EITHER n is even and some translate of Z is of the form 

{l, y, t>, yv} where y, v £ C and v has order 2 

(and we say that Z is a rectangle)3 

OR n is divisible hy 7 and some translate of Z is of

2 4
the form {1, u , u , u } where u has order 7 in C 

(and we say that Z is heptagonal).

Proof. Since we are only determining Z up to a translation, we can 

without loss of generality assume that Z contains 1 . There are two 

possible cases; namely

(1) there is a nontrivial element y of G such that Z = Zy ;

(2) for all nontrivial elements g of C we have Z t Zg .

For a set X , denote the cardinality of X by |̂ | .

Case 1. Let y be the nontrivial element of C such that Z = Zy .

-1 . 2
Since 1 £ Z , it follows that y € Z and y £ Z . Either y - 1

(y = y'1) or y t y 1 .

Let Z = {l 9 y, z, w} . If y = y 1 , then since Z = Zy , W - zy .

2
That is Z = {l, y, 2 , yz} where y = 1 . Now Z is a rectangle.

If y t y"1 , then Z = {l, y, y"1 9 z] . Since Z = Zy and y ± 1 ,

2 - 1  2 - 2  
it follows that z - y and y - zy . That is z - y - y • Thus
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2 3 i_|.
Z = {l, y, y , y } and y - 1 , so Z is a rectangle (in fact a 

"square"!).

Case 2. In this case |Z n Zg\ = 0 or 2 for all nontrivial 

elements g of C . We divide this case into the following subcases;

2
(2a) there is an element y of Z such that y  ̂1 and 

l 1 e Z ;

(2b) for all elements y of Z such that g  ̂1 , the element 

<7  ̂ is not in Z .

Case 2a.

(2a.l) Let Z = {1, y, y \  w} . Since Z n Z z / ^ 0 ,  |Z n Zy| = 2 .

But 1, y € Z n Zy , therefore y 1  ̂y^ (i/^^l} , w  ^ y Z and

- 1  / - 2 %

2/ * uy [w t y ) .

Now Z n Zy ± 0 , thus | Z n Zy | = 2 . By (2a.l), 1 £ y , 1  ̂Wy

2 2
and by assumption, 1 f y . Thus 1 j; Z n Zy

4 I I

Suppose y = 1 . Then, by (2a.l), Z n Zw ^ 0 ; so |Z n Zw| = 2 .

2 2 3 - 3 -
Thus either w  - y , or w  - y . But then |Z n Zw | = 1  *, hence

'4
y t 1 •

2 2 2 
Since y i- 1 , W  ^ wy and by (2a.l), w  £ y . The only remaining

3 ~ 1 2 3
possibilities are that either W  - y and y = wy (that is w  = y

and y&  ̂1 ) , or wy^ = y 1 and w - y^ (that is W  - y ^ and y^ ± 1 ) . 

Because of the symmetry of the situation, we need only consider the

3
first of these cases. Since Z n Zy j- 0 , it follows by a straightforward 

V ~ 1 3
argument that y = 1  and Z = { l , y  , y, y } . Thus Z is heptagonal. 

Case 2b.

Here if g £ Z and y^  ̂1 , then g  ̂6 Z . Since Z n Zy  ̂0 , it
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follows that |Z n Zg | = 2 . As ( x ) has at most one element of order 2 ,

there is an element, say y t in
2

Z such that y  ̂ 1 .

If
2

y € Z
, , -1 
then 1, y , y 6 Zy  ̂ so the translate Zy  ̂ of Z has

2
been dealt with under'case 2a. Thus we may assume y £ Z . Of course we

also have y  ̂  ̂Z , and as Z n Zy A 0 , it follows that |Z n Zy| = 2 .

Thus one may derive that Z = {l, y, u, uy} for some w .

A similar straightforward but tedious argument concerning Z n Zwy ^

and Z n Zu ŷ  ̂ now leads to a contradiction, showing that his case is 

vacuous.

This completes the proof of the lemma, j/

It is clear that every circulant weighing matrix of weight 4 is 

equivalent to a circulant matrix whose Hall polynomial takes the value -1 

on 1 ( € < x >) .

Suppose that y is the Hall polynomial of a circulant weighing matrix

A of weight 4 and that y(l) = -1 . Using test (2.5) it is easy to show

that £ y(g)y(gh) is 0 when h A 1 and 4 when h - 1 .

9

Let Z = {g 6 <x > : y(y) t 0} . If is also easy to show that Z meets 

each of its translates Zg (g £ <£>) in an even number of points and that 

Z contains exactly 4 elements. Thus Z satisfies the conditions of 

Lemma 10. Therefore either the order of <x > is congruent to 0 mod 7 and

r 2 4-1
Z is a translate of [1, y, y , y \ where y is an element of order 7 

in (x) or the order of <x ) is even and Z is a translate of 

{l, 2 , u, zu} where u is an element of order 2 in <x > .

It is straightforward to show that, as y(l) = -1 , in the first case 

2 4
y = -1 + y + y + y (and we say that n is heptagonal ) and in the second 

case y = -1 + z + u + zu (and we say that u is rectangular).

It is worth pointing out that there is a slightly more direct proof of
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t h i s  f a c t ,  b u t  t h e  f u l l  s t r e n g t h  o f  Lemma 10 i s  r e q u i r e d  t o  p rove  Theorem

11.

Our f i n a l  t a s k  in  t h e  p r o o f  o f  Theorem 8 i s  to  show t h a t  eve ry  

c i r c u l a n t  w e igh ing  m a t r ix  o f  w e ig h t  4 i s  e q u i v a l e n t  t o  a t  l e a s t  one a t  th e  

c i r c u l a n t  w e ig h in g  m a t r i c e s  whose H a l l  p o ly n om ia l  l i e s  in  S .

R e c a l l  t h a t  i f  C i s  a c y c l i c  g ro u p ,  th e n  t h e  au tomorph ism  group o f  C 

a c t s  t r a n s i t i v e l y  on th e  e lem en ts  o f  any g iv en  o r d e r  in  C .

I f  A i s  a h e p ta g o n a l  c i r c u l a n t  w e ig h in g  m a t r ix  w i th  H a l l  p o ly nom ia l  

2 4
- 1  + y + y + y where y h a s  o r d e r  7 in  ( x  > and i f  t  i s  t h e

n /7
au tomorph ism  a t  < x ) t a k i n g  y t o  x  , t h e n

r , 2 4^ t  , n/ 7  2n /7  4n /7  , .
[ - l+y+y +y j = - 1  + x  t o :  + a; ( = a )

and t h e r e f o r e  e v e ry  h e p ta g o n a l  c i r c u l a n t  w e igh ing  m a t r ix  o f  o r d e r  n i s

e q u i v a l e n t  t o  th e  c i r c u l a n t  m a t r i x  w i th  H a l l  p o ly n om ia l  a  .

When A i s  a r e c t a n g u l a r  c i r c u l a n t  w e igh ing  m a t r i x ,  t h e  o r d e r  n o f

<x> i s  ev en .  L e t  y be  an e lem en t  o f  <x ) which i s n o t cong ru en t t o

1 modulo < x ^ 1) . Let n / 2d  be t h e  (common) o r d e r o f y and

j  , hn v
yx  modulo < x  ) . I t  i s  e a sy  to  s e e  t h a t e i t h e r y or

kn
yx  has o r d e r

n / d  i n  ( x ) . S in c e  x  h a s  o r d e r  n / d  i n  ( x )  , t h e r e  i s  an au tomorph ism

T o f  ( x )  such  t h a t  e i t h e r  T i s  y x p71' o r  y . That i s

[-1+a; +x to: J = - 1  + y  + x  + yx

Thus i f  A i s  a  r e c t a n g u l a r  c i r c u l a n t  w e igh ing  m a t r i x ,  t h e n  A i s  

e q u i v a l e n t  t o  one o f  t h e  c i r c u l a n t  m a t r i c e s  w i th  H a l l  p o ly n om ia l  3^, where

d € D(%n) . Th is  com p le te s  t h e  p r o o f  o f  Theorem 8. //

Reduction Theorems

In  C h ap te r  2 we u sed  t h e  f a c t  t h a t  a  c y c l i c  group  o f  o r d e r  n can be 

embedded i n  a  c y c l i c  group o f  o r d e r  n t  t o  show t h a t  i f  t h e r e  i s  a
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circulant weighing matrix of order n and weight k , then there is a 

circulant weighing matrix of order nt and weight k . In this section we 

essentially do the opposite.

Let <x > be a cyclic group of order nt with distinguished generator 

x . The subgroup <x "> of (x) is cyclic of order n . We may choose x̂

as a convenient generator for <x ) . The homomorphism from ( x) to

(x') which takes x to x' induces a map ^  from the circulant (but not 

necessarily weighing) matrices of order nt to the circulant matrices of 

order n in the following way: the map q>̂  takes the circulant matrix of

order nt with Hall polynomial

nt-1

X  aix

i

i=0

to the circulant matrix of order n with the Hall polynomial

nt~1 H  +
Y v..x Z<art >) •

£=0

~ts 7 • •

Notice that x = x ° if and only if i = j modulo n Thus

nt-1
ti

n-1 f

I <vx - X . X a7
i=0 =̂0 yE^(n) J

ti

It is easy to verify that if A is a circulant matrix such that AA

is a scalar matrix, then (cp^Hcp^i)7" is also a scalar matrix.

(3.3) Of interest here is the case when A is a circulant weighing 

matrix of order 2n with Hall polynomial

27-2-1

X
i

i=0

where the subset o( . i- oy of < x) is a union of cosets of the

subgroup ( x 1) of < x) . In this case it is easy to see that #A is a 

circulant weighing matrix with Hall polynomial
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Thus

2ft-l

% I cl.x 

i =0 *

2 i

If A has weight k , then

-2n-l ■2n-±

I «■* I
i=0 i=0

a .x = k

2n-1

% I a.x 

i=0

2i
• 2ft-1

% I a.®

■ i = 0

■2i
= hk

and %(pvl has weight %/c .

THEOREM 11 [9], (a) If there is a oiroulant Hadamcird matrix of

order n then n = 0 modulo 4 and there is a oiroulant weighing matrix 

of order %ft and weight ft/4 .

(b) If there is a oiroulant weighing matrix of order n and weight 

ft - 2 } then either n - 3 or n = 2 modulo 4 and there is a oiroulant 

weighing matrix of order and weight (ft-2)/4 .

(o) If there is a oiroulant weighing matrix of order n and weight 

ft - 4 then either n - 5 or n = 12 } or n = 0 modulo 4 and there is a 

oiroulant weighing matrix of order %n and weight (ft-4)/4 .

Proof. (a) It is well known that the order of a Hadamard matrix is 

congruent to 0 modulo 4 (Paley, [22]). If A is a Hadamard matrix of 

order n , then there are no zeros in any row of A . Using (3.3) we see 

that %cp̂ A is a circulant weighing matrix of order and weight ft/4 .

(o) If A is a circulant weighing matrix of order n and weight 

ft - 4 and if ft is odd, then by Theorem 7 we have

4
2

4 > ft - 1 .

That is ft < 13 .' By Lemma 3, ft - 4 is a square, so n is either 5 or 

13 .

If A is a circulant weighing matrix of order n and weight ft - 4 

and if ft is even then ft - 4 is an even square and is thus congruent to
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0 modulo 4 . That is n = 0 modulo 4 .

If also n = 0 modulo 7 , then n = 0 modulo 28 and there is an

integer l such that n - 4 = 2Ql - 4 and so (rc-4)/4 E 6 modulo 7 . But

(n-4)/4 is a square while 6 is not a quadratic residue modulo 7 ,

therefore n \ 0 modulo 7 .

If a is the Hall polynomial of A and Z - {g i { x) | a(g) = 0} , 

then it is easy to check that Z satisfies the conditions of Lemma 10.

Since n \ 0 modulo 7 , it follows that Z is a translate of {l, y , y, vy}

where y \ 1 modulo < x^1) . That is Z is a union of cosets of < x^1 > in

(a:) . Therefore, by (3.3), % c p i s  a circulant weighing matrix of order 

and weight (n-4)/4 .

(b) The proof of (b) is similar to the proof of (c) but is much 

simpler. The proof will not be given. //

There is one more result regarding the existence of circulant weighing 

matrices. I state this theorem without proof.

THEOREM (Stanton and Mullin [25]). If W is a olvoutant weighing 

matrix of order n and weight n - 1 then either n - 1 and W Is the

1 x i zero matrix, or n - 2 and W Is equivalent to the 2 * 2  Identity

matrix.
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CHAPTER IV

OVALS IN CYCLIC PROJECTIVE PLANES

Welcome to Chapter IV. In this chapter I develop the interconnection 

between cyclic projective planes and circulant weighing matrices and give 

L.G. Kovacs’ proof of the Wallis-Whiteman theorem. Later in the chapter I 

exploit certain geometric facts about ovals in finite projective planes to

_2
establish results about equations of the kind xy - a  "in" cyclic 

projective planes.

Ovals in Finite Projective Planes

Let II be a finite projective plane of order q . An oval 0 in the 

finite projective plane II is a set of q + 1 points of II such that each 

line l of II is incident with at most two points of 0 . A line l of 

II is called a secant, tangent or exterior line (to 0 ) according to 

whether l is incident with 2,1 or 0 points of 0 .

exterior line

secant

tangent

If l is a tangent to the oval 0 and l meets 0 and the point 

x , then we say that l is a tangent to 0 at x . The following well
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known lemma shows that ovals in finite projective planes possess some of the 

properties of circles in the Euclidean plane.

LEMMA 12. Every oval in a finite projective plane has a unique tangent 

at each of its points.

Proof. Let 0 be an oval in a finite projective plane of order q 

and let x be an element of 0 . Since 0 contains q + 1 elements and 

since no three points of 0 are collinear, it follows that there are q 

secants of 0 which are incident with x . But in a projective plane of 

order q . there are precisely q + 1 lines incident with each point.

Therefore there is a unique line incident with x which is not a secant to 

0 ; that is, there is a unique tangent to 0 at x . //

The next lemma is well known (see Dembowski [7], p. 148). It 

demonstrates that the analogy between ovals in finite projective planes and 

circles in the Euclidean plane breaks down in the case when the projective 

plane has even order but remains intact when the projective plane is of 

odd order.

LEMMA 13. (a) No three tangents of an oval in a finite projective

plane of odd order are concurrent.

(b) All the tangents of an oval in a finite projective plane of even 

order are coincident at one point. (This point is called the knot of the 

oval.)

Proof. Let 0 be an oval in a projective plane of order q where q 

is odd. Let x be a point which does not lie on 0 .

Since 0 is the disjoint union of the sets 0 n m where m ranges 

through the lines incident with x , and since 0 contains an even number 

of points, it follows that x is incident with an even number of tangents 

of 0 . Consequently, if l is the tangent to 0 at the point 2 (z € 0) , 

then each point y on l distinct from z lies on at least one other 

tangent to 0 . There are q such points and q tangents to 0 distinct
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from t . Therefore each point on i not on 0 lies on precisely two 

tangents of 0 and thus no three tangents of 0 are coincident.

(b) Let 0 be an oval in a projective plane of order q where q is 

even. Since there are precisely q + 1 tangents of 0 (Lemma 12) and 

since each point in the projective plane is incident with precisely q + 1 

lines, to show that all the tangents of Ö are coincident, it suffices to 

show that each point incident with a secant of 0 is incident with at most 

one tangent to 0 .

Let x be a point not on 0 which lies on a secant l of 0 . Since 

0 contains an odd number of points and since 0 may be written as the 

disjoint union of the sets 0 n m where m ranges through the lines 

containing x , it follows that x lies on at least one tangent of 0 .

If x is an element of 0 n Z- , then by Lemma 12, x lies on precisely one 

tangent of 0 . But since there are q + 1 tangents to 0 and q + 1 

points on the secant l , it follows that each point on l is incident with 

precisely one tangent of 0 . Thus each point which is incident with a 

secant of 0 is incident with precisely one tangent of 0 . //

It is absurd discussing the properties of ovals any further without 

knowing whether examples of such creatures exist. In the next theorem I 

will prove that each finite cyclic projective plane possesses an "abundance" 

of ovals. Preceding this theorem is a discussion of "coordinatising" cyclic 

projective planes.

(4.1) Let IT be a cyclic projective plane and C a cyclic sharply 

transitive group of automorphisms of II . We can identify the points of II 

with the elements of C by choosing a point p of II and then associating 

the element g of C with the point pg of II . Since C acts sharply 

transitively on II , this is a well defined one to one correspondence between 

the elements of C and the points of II . Each line I of II can be 

identified with the subset $(£) of C defined by



39

<£(£) = {g I g € C and pg is incident with 1} .

Observe that if x is an element of C , then the line lx corresponds to 

the subset §(lx) of C .

It is now easy to see that we have defined a projective plane structure 

on C ; the points are the elements of C , the lines are the subsets 

'f(Z-) of C where 1 is a line of II , and where "the point x is 

incident with the line L " is interpreted as "x is an element of L 

In fact the group C acting by right multiplication on itself (g : x i— *- xg) 

is a cyclic sharply transitive automorphism group of the projective plane 

C . Thus C is a cyclic projective plane. Let $ be the map from the 

projective plane II to the projective plane C defined by

$ : P9 |-> 9 > 9 * C »

and

$  : l I— ► HI)

where 1 is a line of IT . It is clear that $ is a projective plane 

isomorphism and further, the diagram

n
x

n

$

c — *

. $  

c
x

commutes for all elements x of C .

One final observation before moving on to Theorem 13. Notice that if 

H is a finite cyclic projective plane, then C must act transitively on 

the set of lines of II . To see this, let 1 be a line and let H be the 

stabiliser of 1 in C (that is, H - {g : g € G and Ig = g] ). Recall 

that if K is a group acting on a set Q , then for each element u) of

,

(4.2) hi = |i/ihj

K
where a) is the orbit of u in 1] under K and K is the stabiliser of
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Let a be a point incident with l . Since C acts sharply
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transitively on II , it follows from (4.2) that the stabiliser of a in H

is trivial and that the length of each orbit of H on l is |#| . Thus

IH I divides |l| , but |tf| divides |c| and therefore |tf| divides

the greatest common divisor of \l\ and |f| . If n is the order of

2
II , then it is well known that |ll| - n + n + 1 and since C acts sharply

2
transitively on II it follows from (4.2) that \c\ - n + n + 1 . But 

\l\ = n + 1 and therefore the greatest common divisor of \l\ and |c| 

is 1 . Therefore |#| = 1  , so the stabiliser of a line in C is trivial

and using (4.2) it is easy to see that C must act transitively on the

lines of II .

(4.3) „ Consequently we may specify the cyclic projective plane 

structure on C by specifying just one line L of C . The other lines 

are then the translates Lg of L where g € C . It is easy to check that 

if a is a nontrivial element of C , then there is a unique ordered pair

(x , y) of elements of L such that xy  ̂= a . (indeed, {x} = L n La

and {y} = L n La  ̂ .)

(4.4) o Conversely, if C is any cyclic group and L is any subset 

C with the property that for each nontrivial element a of C , there is a

unique ordered pair (x, y) of elements of L such that xy ^ = a , then 

C admits a cyclic projective plane structure; the points are the elements 

of C and the lines are the translates Lg of L (g d C) . Such a pair 

(C, L) is called a planar cyclic difference set.

THEOREM 14. If n is a finite cyclic projective plane and if C is 

a cyclic sharply transitive group of automorphisms of IT , then there is an 

oval 0 in II such that 0 meets each of its translates Og (g ± 1 3 

g i C) in precisely one point.

Proof. In view of (4.3) and (4.4), we need only show that if (C, L)
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i s  a  c y c l i c  p l a n a r  d i f f e r e n c e  s e t ,  t h e n  C c o n t a i n s  a s u b s e t  0 such t h a t  

\0 n Lg\  < 2  f o r  a l l  e l e m e n t s  g o f  C and J 0 n 0 ^ | = 1 f o r  a l l  non

t r i v i a l  e l e m e n t s  g o f  C .

Denote  t h e  s e t  \ g ^ : g £ L]  by L . I c l a i m  t h a t  L i s  such  a

s u b s e t .  I f  t h e r e  i s  an e l e m en t  g o f  C such  t h a t  \L ^ n Lg\  > 3  , t h e n  

t h e r e  a r e  d i s t i n c t  e l e m e n t s  x ,  y ,  z o f  L such  t h a t

yg  9 zg}  c L  1 n Lg .

S in c e  { x g , y g ,  zg}  c L  1 and { x , y , z ]  c: L , i t  f o l l o w s  t h a t  t h e  s e t

{ x 9 y ,  z ,  x 1g 1 , y 1 , z g 1 } i s  c o n t a i n e d  i n  L . Now

[y (x ^g 1 = xy  1 1 s i n c e  x t  y)

and s i n c e  (C ,  L) i s  a  p l a n a r  c y c l i c  d i f f e r e n c e  s e t ,  i t  f o l l o w s  t h a t

- 1  - 1
x  = y g T h a t  i s

( 4 . 5 ) xy = g
- l

But

[y 1g ( s  1g 1 ) 1 = zy  1 (*  I  s i n c e  x f  y)  

and s i n c e  (C,  L) i s  a c y c l i c  d i f f e r e n c e ,  s e t ,  i t  f o l l o w s  t h a t  z
- 1  - 1

y g

That  i s  

( 4 . 6 )
- 1

yz  = g

T o g e t h e r  ( 4 . 5 )  and ( 4 . 6 )  imply  x -  z  , c o n t r a r y  t o  o u r  a s s u m p t i o n ,  

t h a t  x ,  y ,  z a r e  d i s t i n c t  e l e m e n t s  o f  L . T h e r e f o r e  \L ^ n Lg\  < 2  f o r  

a l l  e l e m e n t s  g o f  C . From ( 4 . 3 )  and ( 4 . 4 )  i t  f o l l o w s  t h a t  i f  g i s  a

n o n t r i v i a l  e l e m en t  o f  C , t h e n  \L n Lg\ -  1 . Now

I ' 1 n L Xg = (L n »

t h u s  \L 1 n L ^g\ = 1  f o r  a l l  n o n t r i v i a l  e l e m e n t s  g o f  C . / /
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The Wal 1is-Whiteman Theorem

H e r e  a t  l a s t  i s  t h e  e l u s i v e  W a l l i s - W h i t e m a n  T h e o r e m .  I t  f o l l o w s  a  

t e c h n i c a l  l e m m a .

LEMMA  1 5  ( L . G .  K o v a c s ,  p r i v a t e  c o m m u n i c a t i o n ,  1 9 7 6 ) .  I f  I I  i s  a

f i n i t e  p r o je c t iv e  p lane o f  order q and 0 and O' are ova ls  in  I I  then

X  ( \ 0  n  Z | - 1 ) ( | 0 '  n  1 1 - 1 )  =  q ( \ 0  n  0 ' | - 1 )  .

I

[The summation  X  i s  taken  over a l l  l in e s  l  in  IT . }

I

P r o o f .

( 4 . 7 )  £  ( \0  n  Z | - 1 ) ( | 0 '  n  l \ - l )  

l

=  X | 0 n Z | | ( ) , n Z |  -  £  | 0  n  l \  -  £  | Ü '  n  l\  +  £  1  .

I I I I

L e t  S, T, E b e  t h e  s e t  o f  s e c a n t s  o f  0 ,  t a n g e n t s  o f  0 a n d  e x t e r i o r  l i n e

o f  0 r e s p e c t i v e l y .  S i n c e  S, T a n d  E a r e  d i s j o i n t  a n d  t o g e t h e r

c o n t a i n  a l l  t h e  l i n e s  o f  I I  ,  i t  f o l l o w s  t h a t

I  \0 n  l \  =  £  \0 n  l\  +  £  \0 n  l \  +  £  | 0  n  f |

Z- US  UT  UE

2|S| + ITI .

B y  L e m m a  1 2 ,  |T| =  q +  1  a n d  s i n c e  e a c h  s e c a n t  o f  0 i s  d e t e r m i n e d

b y  a  u n i q u e  p a i r  o f  d i s t i n c t  e l e m e n t s  o f  0 ,  i t  f o l l o w s  t h a t  

IS I =  %q(q+±)  .

T h u s

( 4 . 8 )  l \ 0  n l \  - q + 1 + q(q+l)

l

= ( q + l ) 2  .

S i m i l a r l y  £  | Ö '  n  l \  - (q+l ) 2  .

I

T h e  k e y  t o  t h e  l e m m a  i s  t o  n o t i c e  t h a t  b e c a u s e  f o r  e a c h  l i n e  Z i n  II  

t h e r e  a r e  [ 0 '  n  l\  p o i n t s  p  i n  O'  s u c h  t h a t  p  (  Z  ,  t h e n
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(4.9) £ |0 " l\|0' n l\ = X £ n
I pdO' V$p

( Y denotes the summation over all lines l of II which contain p ) .
Z3p

Next, since each point p of 0 is incident with q secants of 0 

and 1 tangent of 0 , it follows that

(4.10) for all p ( Ö ,

X \0 n l\ = 2q + 1 . 
l̂ p

If p is a point not in 0 , then Ü is the disjoint union of the 

sets 0 n l where I ranges through the lines containing p . Therefore

(4.11) Y \0 m l\ - q + 1 for all points p not in 0 .
Z3p

Let 0'\0 = {p : p 6 O' and p  ̂0} .

£ |0 n l\|0' n l\ = £ £ |0 n l\ (4.9)
l piO' fop

= Y I |0 n z| + Y 1 \0 n l\
ptQ'\0 lip ptOnO' lip

= |0'\0|(<7+1) + \0 n G>'|(2p+1) (4.10) and (4.11)

= (q+l-\0 n Ü'|)(p+1) + I O n  0'\(2q+±)

= (p+1)2 + |0 n 0'|p .

That is

(4.12) X \° n 2.| 10 r n ZI = (p+1)2 + I O n  0'|p .
I

Finally we return to (4.7).

X (|0 n ^I-1)(10 f n Z|-l) = (p+1)2 + I O n  0'|p - 2(p+l)2 + q2 + q + 1
l

(4.7), (4.8), (4.12)

= q(|0 n 0 fI-1) . //

THEOREM 16 (Wallis-Whiteman [28]). If there is a finite cyclic 

protective plane of order q > then there is a circulant weighing matrix of 

order q + q + 1 and weight q
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P ro o f  (L .G.  Kovac s , p r i v a t e  commun ica t ion ,  1976 ) .  I f  II i s  a c y c l i c  

p r o j e c t i v e  p l a n e  o f  o r d e r  q and C a c y c l i c  s h a r p l y  t r a n s i t i v e  group  o f  

au tomorph isms  o f  II , t h e n  by Theorem 14 ,  II c o n t a i n s  an o v a l  0 such  t h a t  

10 n 0g\ = 1  f o r  a l l  n o n t r i v i a l  e l em en t s  g o f  C . Le t  L be a l i n e  in

2
H . De f in e  an n by n  m a t r i x  A , where n = q + q + 1 , by d e f i n i n g

i t s  i j t h  e n t r y  . t o  be | OaP n LoP | -  1 .

Now

= I OxP n LoP | -  1

= I [0 n LaP~Z)P '  I -  1

= I O n  LxP~'i  I -  1

= an . . .
0 sj- 'k

Tha t  i s ,  A i s  a c i r c u l a n t  m a t r i x .  S in c e  0 i s  an o v a l ,  i t  f o l l ow s  t h a t  

A i s  a c i r c u l a n t  m a t r i x  w i t h  e n t r i e s  i n  { - 1 ,  0 ,  l}  . I t  r ema in s  t o  show

t h a t  AAv' -  q ~ I  .

t  . n ~1
The f j t h  e n t r y  o f  Ad i s  2̂  a ‘i a -y • App ly ing  Lemma 15 we have

k= 0 %K JK

n- 1

s
k=o

n - 1

Z = Zq {\°*'  n Lxk \ - l ) { \ 0 x J' n Lxk \ - l )

= Z (I Oap n Z-1 -l) (I OxP n l | - l )  
l

i
- q ( I Ox n Oaf | - 1) 

= q[ \0a f  ^ n 0 | - l )

when i - j

when i, f j .

AA0 = q2I

Thus
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2
and A i s  a c i r c u l a n t  w e ig h in g  m a t r ix  o f  o r d e r  q + q + 1 and w e ig h t

q 2 . / /

REMARK. I f  in  t h e  p r o o f  o f  t h e  p r e c e d in g  theo rem  we i d e n t i f y  t h e  

p r o j e c t i v e  p l a n e  II w i th  t h e  c y c l i c  d i f f e r e n c e  s e t  (C , L) and l e t

0 be t h e  o v a l  L ( a s  in  t h e  p r o o f  o f  Theorem 1 4 ) ,  th e n

2
A = B -  J

where B i s  t h e  m a t r i x  whose i j t h  e n t r y  b .  . i s  g iv e n  by
t  J

1 i f  J '  £ Lx^

b . . -

0̂ i f  x t  {: Lx?

and w here J  i s  t h e  m a t r i x  whose e v e ry  e n t r y  i s  1 . The m a t r i x  B i s  an 

i n c i d e n c e  m a t r i x  o f  t h e  p r o j e c t i v e  p la n e  II .

2
To s e e  t h a t  A -  B -  J  , n o t i c e  t h a t  b ^ b ^  . = 1  i f  and o n ly  i f

^  Js 'i ”■£, -1

x '  € Lx  ' and x  “ (: Lxr , t h a t  i s  when x"  € L x  n Lxr . Thus

n - 1 .

y  . = IL ~ x  n Laf'l

and i t  f o l lo w s  t h a t

a . . = IL ^x? n Lx^I - 1 .
1

T h a t  i s  4 = 5 2 -  J  . / /

POSTSCRIPT. In  a d r a f t  o f  a t h e s i s  w hich  he i n t e n d s  t o  su b m it  f o r  a 

PhD a t  t h e  U n i v e r s i t y  o f  A d e la id e ,  David Glynn has  g iv en  a p r o o f  o f  a more 

g e n e r a l  th eo re m . Roughly s p e a k in g  i t  a s s e r t s  t h a t  i f  II and II1 a r e  two 

c y c l i c  p r o j e c t i v e  p l a n e s  o f  o r d e r  q , th e n  we can  f i n d  an i n c i d e n c e  m a t r ix  

A o f  n and an i n c i d e n c e  m a t r ix  B o f  IT' such  t h a t  AB -  J  i s  a

2 2
c i r c u l a n t  w e ig h in g  m a t r i x  o f  o r d e r  q + q + 1 and w e ig h t  q . The p r o o f  

o f  t h i s  theo rem  u s e s  s i m i l a r  t e c h n i q u e s  t o  Kovacs p r o o f  o f  t h e  W a l l i s -
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Whiteman Theorem.

Equations in Finite Cyclic Projective Planes

By now i t  s h o u ld  be a p p a r e n t  t h a t  t h e  p rob lem  o f  f i n d i n g  a l l  c i r c u l a n t  

w e igh ing  m a t r i c e s  and t h e  p rob lem  o f  f i n d i n g  a l l  f i n i t e  c y c l i c  p r o j e c t i v e  

p l a n e s  a r e  i n t im a t e l y  r e l a t e d  ( v i a  Theorems 7 and 1 6 ) .  A cco rd ing  t o  

Dembowski [ 7 ] ,  t h e r e  i s  good e v id e n c e  t o  s u g g e s t  t h a t  t h e  o r d e r  o f  a f i n i t e  

c y c l i c  p r o j e c t i v e  p l a n e  i s  a lw ays  a p rim e power.

In  t h i s  s e c t i o n  o f  t h e  t h e s i s ,  I s h a l l  i n t e n t i o n a l l y  b l u r  t h e  

d i s t i n c t i o n  be tw een  a c y c l i c  p r o j e c t i v e  p l a n e  and t h e  a s s o c i a t e d  p l a n a r  

c y c l i c  d i f f e r e n c e  s e t  g iv en  by (4 . 3 )  and ( 4 . 4 ) .  Thus I can r e f e r  t o  o v a ls  

and l i n e s  e t c .  in  p l a n a r  d i f f e r e n c e  s e t s .  By an e q u a t i o n  i n  a c y c l i c  

p r o j e c t i v e  p l a n e ,  I s h a l l  mean an e q u a t i o n  in  t h e  a s s o c i a t e d  c y c l i c  

d i f f e r e n c e  s e t .  Fo r  ex am p le ,  i f  IT i s  a c y c l i c  p r o j e c t i v e  p la n e  and 

(C , L) i s  t h e  a s s o c i a t e d  p l a n a r  c y c l i c  d i f f e r e n c e  s e t  ( g iv e n  by ( 4 . 3 ) ) ,  

t h e n  f o r  a  n o n t r i v i a l  e lem en t  a o f  C , t h e  e q u a t i o n

-1
xy - a

has  a u n iq u e  s o l u t i o n  (a;, y )  w i th  x  and y e lem en ts  o f  L ( s e e  ( 4 . 3 )  

and ( 4 . 4 ) ) .

LEMMA 17. I f  (C,  L) i s  a p la n a r c y c l ic  d i f fe r e n c e  s e t  where 

1 £ L } then L 1 i s  an ova l and fo r  each p o in t x  in  L , the  tangen t to

L ^ a t  the p o in t  x  ^ i s  th e  l in e  Lx 2 .

P r o o f .  The f a c t  t h a t  L ^ i s  an o v a l  f o l low s  imm ed ia te ly  from 

Theorem 14. We have t o  show t h a t  f o r  each  p o i n t  x  i n  L ,

i f 1 n Lx~2 = { o f1 } .

-1  -2  - 1  -1
S in ce  x  (: L , i t  f o l l o w s  t h a t  x  d Lx  and  x  £ L . T h a t  i s  

- 1  - 1  -2
x  € L n Lx . I f  t h e r e  i s  a  p o i n t  y i n  L such  t h a t
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f - 1  - 2 1 - 1  r -2
[x  ,  yx  \ cz L n Lx  ,

2 -1
th e n  x  y £ L and so

r 2 - 1 - 1
\ x ,  y ,  x  y \ c  L .

But (x2y ^ ) x  1  = xy  ^  and s i n c e  (C ,  L) i s  a p l a n a r  c y c l i c

- 1  2 - 1
d i f f e r e n c e  s e t ,  e i t h e r  xy  = 1 o r  x  y - x  . In  e i t h e r  c a se  

{x 1 ,  yx  2 } =  {x 1 } . / /

The f o l l o w in g  th eo rem  now g iv e s  us i n f o r m a t io n  abou t  e q u a t i o n s  o f  t h e  

k in d  xy  2  = a .

T H E O R E M  1 8 .  ( i )  I f  ( C ,  L) i s  a p lanar  c y c l i c  d i f f e r e n c e  s e t  o f  

odd order  i f  1 £ L and i f  a i s  a n o n t r i v i a l  element o f  L 3 then the

equation

- 2
xy - a

has a unique s o lu t i o n  ( x ,  y) w i th  x  and y elements  o f  L and y f  1 .

( i i )  I f  (C, L) i s  a p lanar  c y c l i c  d i f f e r en c e  s e t  o f  even order  and 

i f  1 € L j  then

I {xy : x ,  y  (  L and y t  ±} c\ L\ =  1  .
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( i )  I f  a i s  a n o n t r i v i a l  e lem en t  o f  L , th e n  by Lemma 13 fa)  t h e r e

i s  a p o i n t  y 1 in  L 1 , y t  1 , such  t h a t  t h e  t a n g e n t  t o  L 1 a t  y ~1

_2
mee ts  L a t  a . By Lemma 17 ,  t h i s  t a n g e n t  i s  Ly 

T h e r e fo r e

r r " 2a - L n Ly

__ 2
S in ce  y ± 1 and s in c e  | c |  = 1 mod 2 , i t  f o l l ow s  t h a t  y ^ 1 and th u s

-2
L t  Ly . T h e r e f o r e  t h e r e  i s  a  u n ique  e lem en t  x  o f  L such  t h a t

{a } = {xy 2 } = L n Ly 2 .

( i i )  By Lemma 13 (b ) , a l l  t h e  t a n g e n t s  o f  L 1 i n t e r s e c t  a t  a  s i n g l e

p o i n t . Le t t h i s  p o i n t  be a . I f  £C and y a r e  e lem en ts  o f  L and

y  t  i th e n
-2  -2  

xy  £ Ly
-2

The l i n e  Ly i s
, - 1  

t h e  t a n g e n t  t o  L a t

- 1  - 2  - 2  
y , so  i f  xy  6 L , th e n  ccy - a  . Thus

— 2
{jcj/ : x ,  y £ L and y f  l}  n L = {a} . / /

Postscript

I do n o t  know w he th e r  Theorem 18 p ro v id e s  any n o n t r i v i a l  i n f o rm a t io n  

abou t  c y c l i c  p r o j e c t i v e  p l a n e s .  So f a r  I have n o t  been  a b le  t o  p roduce  

a s t r o n g e r  r e s u l t .  However i t  a p p e a r s  p l a u s i b l e  t h a t  combined w i th  t h e  

H a l l  M u l t i p l i e r  Theorem ( s e e  Baumert [ 3 ] ) ,  Theorem 18 may p r o v id e  some new 

in f o rm a t io n  abou t  t h e  number o f  p r im es  which may d i v id e  t h e  o r d e r  o f  a 

c y c l i c  d i f f e r e n c e  s e t .  (H o p e fu l ly  one can show t h e r e  i s  o n ly  one p rime 

d i v i d i n g  t h e  o r d e r  o f  t h e  d i f f e r e n c e  s e t ! )

Thank you f o r  read ing  my t h e s i s .
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