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Circular and noncircular nearly horizon-skimming orbits in Kerr spacetimes
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We have performed a detailed analysis of orbital motion in the vicinity of a nearly extremal Kerr black
hole. For very rapidly rotating black holes—spin parameter a = J/M > 0.9524M —we have found a
class of very strong-field eccentric orbits whose orbital angular momentum L, increases with the orbit’s
inclination with respect to the equatorial plane, while keeping latus rectum and eccentricity fixed. This
behavior is in contrast with Newtonian intuition, and is in fact opposite to the normal behavior of black
hole orbits. Such behavior was noted previously for circular orbits; since it only applies to orbits very
close to the black hole, they were named “nearly horizon-skimming orbits.” Our current analysis
generalizes this result, mapping out the full generic (inclined and eccentric) family of nearly horizon-
skimming orbits. The earlier work on circular orbits reported that, under gravitational radiation emission,
nearly horizon-skimming orbits exhibit unusual inspiral, tending to evolve to smaller orbit inclination,
toward prograde equatorial configuration. Normal orbits, by contrast, always demonstrate slowly growing
orbit inclination—orbits evolve toward the retrograde equatorial configuration. Using up-to-date
Teukolsky-based fluxes, we have concluded that the earlier result was incorrect—all circular orbits,
including nearly horizon-skimming ones, exhibit growing orbit inclination under radiative backreaction.
Using kludge fluxes based on a Post-Newtonian expansion corrected with fits to circular and to equatorial
Teukolsky-based fluxes, we argue that the inclination grows also for eccentric nearly horizon-skimming
orbits. We also find that the inclination change is, in any case, very small. As such, we conclude that these
orbits are not likely to have a clear and peculiar imprint on the gravitational waveforms expected to be

measured by the space-based detector LISA.
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I. INTRODUCTION

The space-based gravitational-wave detector LISA [1]
will be a unique tool to probe the nature of supermassive
black holes (SMBHs), making it possible to map in de-
tail their spacetimes. This goal is expected to be achieved
by observing gravitational waves emitted by compact stars
or black holes with masses u = 1 — 100M, spiraling into
the SMBHs which reside in the center of galaxies [2]
(particularly the low end of the galactic center black hole
mass function, M = 10° — 10’M,). Such events are
known as extreme mass ratio inspirals (EMRIs). Current
wisdom suggests that several tens to perhaps of order a
thousand such events could be measured per year by LISA
[3].

Though the distribution of spins for observed astrophys-
ical black holes is not very well understood at present, very
rapid spin is certainly plausible, as accretion tends to spin-
up SMBHs [4]. Most models for quasi-periodic oscillations
(QPOs) suggest this is indeed the case in all low-mass x-
ray binaries for which data is available [5]. On the other
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hand, continuum spectral fitting of some high-mass x-ray
binaries indicates that modest spins (spin parameter
a/M=J/M?>~0.6—0.8) are likewise plausible [6]. The
continuum-fit technique does find an extremely high spin
of a/M =098 for the galactic “microquasar”
GRS1915 + 105 [7]. This argues for a wide variety of
possible spins, depending on the detailed birth and growth
history of a given black hole.

In the mass range corresponding to black holes in galac-
tic centers, measurements of the broad iron K« emission
line in active galactic nuclei suggest that SMBHs can be
very rapidly rotating (see Ref. [8] for a recent review). For
instance, in the case of MCG-6-30-15, for which highly
accurate observations are available, a has been found to be
larger than 0.987M at 90% confidence [9]. Because gravi-
tational waves from EMRIs are expected to yield a very
precise determination of the spins of SMBHs [10], it is
interesting to investigate whether EMRIs around very rap-
idly rotating black holes may possess peculiar features
which would be observable by LISA. Should such features
exist, they would provide unambiguous information on the
spin of SMBHs and thus on the mechanisms leading to
their formation [11].
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For extremal Kerr black holes (¢ = M), the existence of
a special class of “circular’” orbits was pointed out long
ago by Wilkins [12], who named them ‘horizon-
skimming” orbits. (Circular here means that the orbits
are of constant Boyer-Lindquist coordinate radius r.)
These orbits have varying inclination angle with respect
to the equatorial plane and have the same coordinate radius
as the horizon, r = M. Despite this seemingly hazardous
location, it can be shown that all these r = M orbits have
finite separation from one another and from the event
horizon [13]. Their somewhat pathological description is
due to a singularity in the Boyer-Lindquist coordinates,
which collapses a finite span of the spacetime into r = M.

Besides being circular and “‘horizon-skimming,” these
orbits also show peculiar behavior in their relation of
angular momentum to inclination. In Newtonian gravity,
a generic orbit has L, = |L| cost, where ¢ is the inclination
angle relative to the equatorial plane (going from ¢ = O for
equatorial prograde orbits to ¢ = 7 for equatorial retro-
grade orbits, passing through ¢ = 7r/2 for polar orbits),
and L is the orbital angular momentum vector. As a result,
dL.(r,t)/9t <0, and the angular momentum in the
z-direction always decreases with increasing inclination
if the orbit’s radius is kept constant. This intuitively rea-
sonable decrease of L, with ¢ is seen for almost all black
hole orbits as well. Horizon-skimming orbits, by contrast,
exhibit exactly the opposite behavior: L, increases with
inclination angle.

Reference [14] asked whether the behavior dL,/d¢ >0
could be extended to a broader class of circular orbits than
just those at the radius »r = M for the spin value a = M. It
was found that this condition is indeed more general, and
extended over a range of radius from the ‘“‘innermost stable
circular orbit” to r=1.8M for black holes with a >
0.9524M. Orbits that show this property have been named
“nearly horizon-skimming.” The Newtonian behavior
dL.(r,v)/dt <0 is recovered for all orbits at r = 1.8M
[14].

A qualitative understanding of this behavior comes from
recalling that very close to the black hole all physical
processes become ‘“‘locked” to the hole’s event horizon
[15], with the orbital motion of point particles coupling to
the horizon’s spin. This locking dominates the
“Keplerian” tendency of an orbit to move more quickly
at smaller radii, forcing an orbiting particle to slow down in
the innermost orbits. Locking is particularly strong for the
most-bound (equatorial) orbits; the least-bound orbits
(which have the largest inclination) do not strongly lock
to the black hole’s spin until they have very nearly reached
the innermost orbit [14]. The property dL.(r, ¢)/dt >0
reflects the different efficiency of nearly horizon-skimming
orbits to lock with the horizon.

Reference [14] argued that this behavior could have
observational consequences. It is well-known that the in-
clination angle of an inspiraling body generally increases
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due to gravitational-wave emission [16,17]. Since
dL,/dt <0 because of the positive angular momentum
carried away by the gravitational waves, and since ‘‘nor-
mal” orbits have 9L,/ < 0, one would expect dv/dt >
0. However, if during an evolution dL_./d¢ switches sign,
then dv/dt might switch sign as well: An inspiraling body
could evolve towards an equatorial orbit, signaling the
presence of an “‘almost-extremal”” Kerr black hole.

It should be emphasized that this argument is not rig-
orous. In particular, one needs to consider the joint evolu-
tion of orbital radius and inclination angle; and, one must
include the dependence of these two quantities on orbital
energy as well as angular momentum.' As such, duv/dt
depends not only on dL./dt and dL./d¢, but also on
dE/dt, 0E/di, dE/dr and OL_/dr.

In this sense, the argument made in Ref. [14] should be
seen as claiming that the contribution coming from dL./dt
and 9L_/dc are simply the dominant ones. Using the
numerical code described in [17] to compute the fluxes
dL./dt and dE/dt, it was then found that a test particle on
a circular orbit passing through the nearly horizon-
skimming region of a Kerr black hole with a = 0.998M
(the value at which a hole’s spin tends to be buffered due to
photon capture from thin disk accretion [19]) had its in-
clination angle decreased by 6t =~ 1° —2° [14] in the
adiabatic approximation [20]. It should be noted at this
point that the rate of change of inclination angle, d¢/dr,
appears as the difference of two relatively small and ex-
pensive to compute rates of change (cf. Eq. (3.8) of
Ref. [17]). As such, small relative errors in those rates of
change can lead to large relative errors in di/dt. Finally, in
Ref. [14] it was speculated that the decrease could be even
larger for eccentric orbits satisfying the condition
dL./dut > 0, possibly leading to an observable imprint on
EMRI gravitational waveforms.

The main purpose of this paper is to extend Ref. [14]’s
analysis of nearly horizon-skimming orbits to include the
effect of orbital eccentricity, and to thereby test the specu-
lation that there may be an observable imprint on EMRI
waveforms of nearly horizon-skimming behavior. In doing
so, we have revisited all the calculations of Ref. [14] using
a more accurate Teukolsky solver which serves as the
engine for the analysis presented in Ref. [21].

We have found that the critical spin value for circular
nearly horizon-skimming orbits, a > 0.9524M, also delin-
eates a family of eccentric orbits for which the condition
dL.(p, e,1)/dt >0 holds. (More precisely, we consider
variation with respect to an angle 6;,. that is easier to
work with in the extreme strong field, but that is easily
related to ¢.) The parameters p and e are the orbit’s latus
rectum and eccentricity, defined precisely in Sec. II. These

'In the general case, one must also include the dependence on
“Carter’s constant” Q [18], the third integral of black hole orbits
(described more carefully in Sec. II). For circular orbits, Q =
QO(E, L,): Knowledge of E and L_ completely determines Q.
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generic nearly horizon-skimming orbits all have p < 2M,
deep in the black hole’s extreme strong field.

We next study the evolution of these orbits under
gravitational-wave emission in the adiabatic approxima-
tion. We first revisited the evolution of circular, nearly
horizon-skimming orbits using the improved Teukolsky
solver which was used for the analysis of Ref. [21]. The
results of this analysis were somewhat surprising: Just as
for normal orbits, we found that orbital inclination always
increases during inspiral, even in the nearly horizon-
skimming regime. This is in stark contrast to the claims
of Ref. [14]. As noted above, the inclination’s rate of
change depends on the difference of two expensive and
difficult to compute numbers, and thus can be strongly
impacted by small relative errors in those numbers. A
primary result of this paper is thus to retract the claim of
Ref. [14] that an important dynamic signature of the nearly
horizon-skimming region is a reversal in the sign of incli-
nation angle evolution: The inclination always grows under
gravitational radiation emission.

We next extended this analysis to study the evolution of
generic nearly horizon-skimming orbits. The Teukolsky
code to which we have direct access can, at this point,
only compute the radiated fluxes of energy E and angular
momentum L_; results for the evolution of the Carter
constant Q are just now beginning to be understood [22],
and have not yet been incorporated into this code. We
instead use “kludge” expressions for dE/dt, dL./dt, and
dQ/dr which were inspired by Refs. [23,24]. These ex-
pressions are based on post-Newtonian flux formulas,
modified in such a way that they fit strong-field radiation
reaction results obtained from a Teukolsky integrator; see
Ref. [24] for further discussion. Our analysis indicates that,
just as in the circular limit, the result dv/dt > 0 holds for
generic nearly horizon-skimming orbits. Furthermore, and
contrary to the speculation of Ref. [14], we do not find a
large amplification of div/dr as orbits are made more
eccentric.

Our conclusion is that the nearly horizon-skimming
regime, though an interesting curiosity of strong-field
orbits of nearly extremal black holes, will not im-
print any peculiar observational signature on EMRI wave-
forms.

The remainder of this paper is organized as follows. In
Sec. II, we review the properties of bound stable orbits in
Kerr, providing expressions for the constants of motion
which we will use in Sec. III to generalize nearly horizon-
skimming orbits to the noncircular case. In Sec. IV, we
study the evolution of the inclination angle for circular
nearly horizon-skimming orbits using Teukolsky-based
fluxes; in Sec. V we do the same for noncircular orbits,
using kludge fluxes. We present and discuss our detailed
conclusions in Sec. VI. The fits and post-Newtonian fluxes
used for the kludge fluxes are presented in the Appendix.
Throughout the paper we have used units in which G =
c=1.
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II. BOUND STABLE ORBITS IN KERR
SPACETIMES

The line element of a Kerr spacetime, written in Boyer-
Lindquist coordinates reads [25]

ds? = —(1 — —2;/1r>dt2 + %d}’2 + 3d6* + <r2 + a?
2Md> 4M
+ ; rsin20>sin20d¢2 - %sinzﬁdtddx

(D
where

S = 2 + a?%cos?6, A=r2-2Mr+ad®. (2)

Up to initial conditions, geodesics can then be labeled by
four constants of motion: the mass u of the test particle, its
energy E and angular momentum L, as measured by an
observer at infinity and the Carter constant Q [18]. The
presence of these four conserved quantities makes the
geodesic equations separable in Boyer-Lindquist coordi-
nates. Introducing the Carter time A, defined by

dr
_ = E, 3
m 3)
the geodesic equations become
dr\2 dt
— ] =V.(n), —=V,/(r, 0),
(mG) =V mg=viee) .
do\2 d¢
— | = Vy(0), — = V,(r, 0),
(hg) =Vo®  wG=Vel0)
with
1D'4 . Wz
V(r, ) = E<T - a2s1n20> + aLZ<l - X) (52)
V,(r) = (Ew? — aL,)? — A[p*r* + (L, — aE)* + Q]
(5b)
Vo(0) = Q — L2cot?0 — a*(u? — E?)cos?6, (5¢)
w? a’L
Vy(r, 0) = L.csc?6 + aE(T — 1> Y z (54d)
where we have defined
w? = r*+ ad* (6)

The conserved parameters E, L., and Q can be re-
mapped to other parameters that describe the geometry of
the orbit. We have found it useful to describe the orbit in
terms of an angle 6,;,—the minimum polar angle reached
by the orbit—as well as the latus rectum p and the eccen-
tricity e. In the weak-field limit, p and e correspond exactly
to the latus rectum and eccentricity used to describe orbits
in Newtonian gravity; in the strong field, they are essen-
tially just a convenient remapping of the orbit’s apoastron
and periastron:
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_ b _ D
rap=1_e’ rperi=1+e- @)
Finally, in much of our analysis, it is useful to refer to
- = COS2eminr (8)

rather than to 6, directly.

To map (E, L., Q) to (p, e, z_), use Eq. (4) to impose
dr/dA =0 at r=r, and r=r,; and to impose
d0/dA =0 at 0 = 0,,;,. (Note that for a circular orbit,
Tap = Tperi — To- In this case, one must apply the rules
dr/dX = 0 and d*r/dA*> =0 at r = r,.) Following this
approach, Schmidt [26] was able to derive explicit expres-
sions for E, L, and Q in terms of p, e and z_. We now
briefly review Schmidt’s results.

Let us first introduce the dimensionless quantities

0= 0/(uM)?,
9)

E=E/u, L, ,=L/(uM),

a=a/M, F=r/M, A=A/M?2,  (10)

and the functions

f® =+ a@[FF+2) +z_ 4] (11)
g(F) =2ar, (12)

hF) = 7(F ~2) + - i*z_ A, (13)
d(7) = (7 + a*z-)A. (14)

Let us further define the set of functions

(fl’ gl, h], dl) = {(‘f(FP)’ g(ip)’ h(?p)J d(Fp)) lf e > 0’

(f (7o), g(7o), h(Fy), d(7y)) if e =0,
(15)

_ [(f(70), g(Fo), h(Fy), d(7,))  if e>0,

o ) = | () o i, ) it =0
(16)

and the determinants

K = d1h2 - dzh], (17)
e =d g — dyg, (18)
p = fihy — fahy, 19)
n=f18 — [2&1 (20)
o =ghy — &hy. (21)
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The energy of the particle can then be written

kp + 2e0 — 2D\Jo(0€* + pex — nK?)

E= >
p- t4no

(22)

The parameter D takes the values *=1. The angular mo-
mentum is a solution of the system

f1E* = 2g,EL, — L2 —d, =0, (23)

foE* — 2g,EL, — h,L? — d, = 0. (24)

By eliminating the L? terms in these equations, one finds
the solution
. pE*—«k

L,=—F+— 25
: 2E0 25)

for the angular momentum. Using df/dA = 0 at 0 = 6,;,,
the Carter constant can be written

2
0= z[dz(l — Bt fZZ } (26)

Additional constraints on p, e, z_ are needed for the
orbits to be stable. Inspection of Eq. (4) shows that an
eccentric orbit is stable only if

av,
W (rperi) > 0. (27)

It is marginally stable if 0V,/dr = Oat r = Fperi- Similarly,
the stability condition for circular orbits is

9%V,

(0 <0; (28)

marginally stable orbits are set by 92V, /dr*> = Oat r = r,.

Finally, we note that one can massage the above solu-
tions for the conserved orbital quantities of bound stable
orbits to rewrite the solution for L, as

- E D ~ =
Lo=-824 2B + (B~ doh.  (29)
1 1

From this solution, we see that it is quite natural to refer to
orbits with D = 1 as prograde and to orbits with D = —1
as retrograde. Note also that Eq. (29) is a more useful form
than the corresponding expression, Eq. (A4), of Ref. [21].
In that expression, the factor 1/h; has been squared and
moved inside the square root. This obscures the fact that &,
changes sign for very strong field orbits. Differences be-
tween Eq. (29) and Eq. (A4) of [21] are apparent for a =
0.835, although only for orbits close to the separatrix (i.e.,
the surface in the space of parameters (p, e, t) where
marginally stable bound orbits lie).
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ITII. NONCIRCULAR NEARLY HORIZON-
SKIMMING ORBITS

With explicit expressions for E, L, and Q as functions of
p, e and z_, we now examine how to generalize the
condition dL.(r, t)/d¢ >0, which defined circular nearly
horizon-skimming orbits in Ref. [14], to encompass the
noncircular case. We recall that the inclination angle ¢ is
defined as [14]

LZ
(30)

Jo+rz

Such a definition is not always easy to handle in the case of
eccentric orbits. In addition, ¢ does not have an obvious
physical interpretation (even in the circular limit), but
rather was introduced essentially to generalize (at least
formally) the definition of inclination for Schwarzschild
black hole orbits. In that case, one has Q = L3 + L and
therefore L, = | L] cost.

A more useful definition for the inclination angle in Kerr
was introduced in Ref. [21]:

COoSstL =

w

Hinc = D) - Damin’ (31)
where 6, is the minimum reached by 6 during the orbital
motion. This angle is trivially related to z_ (z_ = sin®6;,.)

and ranges from 0 to 77/2 for prograde orbits and from 7/2
to 7 for retrograde orbits. It is a simple numerical calcu-
lation to convert between ¢ and 6;,.; doing so shows that
the differences between ¢ and 6;,. are very small, with the
two coinciding for a = 0, and with a difference that is less
than 2.6° for @ = M and circular orbits with r = M.

Bearing all this in mind, the condition we have adopted
to generalize nearly horizon-skimming orbits is

aLz(p’ e, Hinc) >

0. 32
6Hinc ( )

We have found that certain parts of this calculation, par-
ticular the analysis of strong-field geodesic orbits, are best
done using the angle 6;,.; other parts are more simply done
using the angle ¢, particularly the kludge computation of
fluxes described in Sec. V. (This is because the kludge
fluxes are based on an extension of post-Newtonian for-
mulas to the strong-field regime, and these formulas use ¢
for inclination angle.) Accordingly, we often switch back
and forth between these two notions of inclination, and in
fact present our final results for inclination evolution using
both dv/dt and d6,./dt.

Before mapping out the region corresponding to nearly
horizon-skimming orbits, it is useful to examine stable
orbits more generally in the strong field of rapidly rotating
black holes. We first fix a value for a, and then discretize
the space of parameters (p, e, 0;,.). We next identify the
points in this space corresponding to bound stable geodesic
orbits. Sufficiently close to the horizon, the bound stable
orbits with specified values of p and e have an inclination
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angle 6;,. ranging from O (equatorial orbit) to a maximum
value ¢3¢, For given p and e, 62" defines the separatrix
between stable and unstable orbits.

Example separatrices are shown in Fig. 1 for a =
0.998M and a = M. This figure shows the behavior of
0% as a function of the latus rectum for the different
values of the eccentricity indicated by the labels. Note
that for a = 0.998M the angle ;)3 eventually goes to
zero. This is the general behavior for a < M. On the other
hand, for an extremal black hole, a = M, 673" never goes
to zero. The orbits which reside at »r = M (the circular
limit) are the ‘‘horizon-skimming orbits” identified by
Wilkins [12]; the a = M separatrix has a similar shape
even for eccentric orbits. As expected, we find that for
given latus rectum and eccentricity the orbit with 6;,. = 0
is the one with the lowest energy E (and hence is the most-
bound orbit), whereas the orbit with 6;,. = 073* has the
highest E (and is least-bound).

Having mapped out stable orbits in (p, e, 6;,.) space, we
then computed the partial derivative dL.(p, e, 0inc)/90inc
and identified the following three overlapping regions:

(i) Region A: The portion of the (p, ) plane for which
dL,(p, e, 03c)/00;inc > 0 for 0 = 6, = 072, This
region is illustrated in Fig. 2 as the area under the
heavy solid line and to the left of the dashed-dotted
line (green in the online color version).

(ii) Region B: The portion of the (p, e) plane for which

(L )most bouna(ps €) is smaller than (L) eas bouna (P> €)-
In other words,

L.(p,e 0)<L,(p,e 60%) (33)
in Region B. Note that Region B contains Region A.
It is illustrated in Fig. 2 as the area under the heavy
solid line and to the left of the dotted line (red in the
online color version).

(iii) Region C: The portion of the (p, ¢) plane for which
aL_(p, e, 0;,)/ 305, > 0 for at least one angle 6;,.
between 0 and 0772*. Region C contains Region B,
and is illustrated in Fig. 2 as the area under the heavy
solid line and to the left of the dashed line (blue in the
online color version).

Orbits in any of these three regions give possible gen-
eralizations of the nearly horizon-skimming circular orbits
presented in Ref. [14]. Notice, as illustrated in Fig. 2, that
the size of these regions depends rather strongly on the spin
of the black hole. All three regions disappear altogether for
a < 0.9524M (in agreement with [14]); their sizes grow
with a, reaching maximal extent for a = M. These regions
never extend beyond p = 2M.

As we shall see, the difference between these three
regions is not terribly important for assessing whether there
is a strong signature of the nearly horizon-skimming re-
gime on the inspiral dynamics. As such, it is perhaps most
useful to use Region C as our definition, since it is the most
inclusive.
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FIG. 1. Left panel: Inclination angles 6;,. for which bound stable orbits exist for a black hole with spin a = 0.998M. The allowed
range for 6;,. goes from 6;,. = 0 to the curve corresponding to the eccentricity under consideration, 6;,. = #2*. Right panel: Same as

mc
the left panel, but for an extremal black hole, @ = M. Note that in this case #jn2* never reaches zero.
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FIG. 2 (color online). Left panel: Noncircular nearly horizon-skimming orbits for a = 0.998M. The heavy solid line indicates the
separatrix between stable and unstable orbits for equatorial orbits (¢ = 6;,. = 0). All orbits above and to the left of this line are
unstable. The dashed-dotted line (green in the online color version) bounds the region of the (p, ¢)-plane where dL_/986;,. > 0 for all
allowed inclination angles (‘‘Region A’’). All orbits between this line and the separatrix belong to Region A. The dotted line (red in the
online color version) bounds the region (L) yost bound < (L:)icast bound (‘Region B””). Note that B includes A. The dashed line (blue in
the online color version) bounds the region where dL,/96;,. > 0 for at least one inclination angle (“Region C”); note that C includes
B. All three of these regions are candidate generalizations of the notion of nearly horizon-skimming orbits. Right panel: Same as the
left panel, but for the extreme spin case, @ = M. In this case the separatrix between stable and unstable equatorial orbits is given by the
line p/M =1+ e.
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IV. EVOLUTION OF 6,,.: CIRCULAR ORBITS

To ascertain whether nearly horizon-skimming orbits
can affect an EMRI in such a way as to leave a clear
imprint in the gravitational-wave signal, we have studied
the time evolution of the inclination angle 6;,.. To this
purpose we have used the so-called adiabatic approxima-
tion [20], in which the infalling body moves along a
geodesic with slowly changing parameters. The evolution
of the orbital parameters is computed using the time-
averaged fluxes dE/dt, dL./dt and dQ/dt due to
gravitational-wave emission (‘‘radiation reaction’’). As
discussed in Sec. II, E, L, and Q can be expressed in terms
of p, e, and 6;,.. Given rates of change of E, L, and Q, it is
then straightforward [23] to calculate dp/dt, de/dt, and
db;,./dt (or du/dr).

We should note that although perfectly well-behaved for
all bound stable geodesics, the adiabatic approximation
breaks down in a small region of the orbital parameters
space very close to the separatrix, where the transition from
an inspiral to a plunging orbit takes place [27]. However,
since this region is expected to be very small® and its
impact on LISA waveforms rather hard to detect [27], we
expect our results to be at least qualitatively correct also in
this region of the space of parameters.

Accurate calculation of dE/dt and dL./dt in the adia-
batic approximation involves solving the Teukolsky and
Sasaki-Nakamura equations [28,29]. For generic orbits this
has been done for the first time in Ref. [21]. The calculation
of dQ/dt for generic orbits is more involved. A formula for
dQ/dt has been recently derived [22], but has not yet been
implemented (at least in a code to which we have access).

On the other hand, it is well-known that a circular orbit
will remain circular under radiation reaction [30—32]. This
constraint means that Teukolsky-based fluxes for E and L,
are sufficient to compute dQ/dt. Considering this limit, the
rate of change dQ/dt can be expressed in terms of dE/dt
and dL/dt as

Q =_N1(P; l‘) d_E‘ _N4(P; l‘) &
dt )circ NS(p’ )\ dt Jeirc Ns(l’y W)\ dt circ’

(34)

where
Ni(p, v) = E(p, )p* + a*E(p, v) p?
- 2aM(LZ(p’ L) - aE(P’ L))P: (35)

Ny(p,v) = @2Mp — p*)L(p, ) — 2MaE(p, v)p, (36)

Ns(p.1) = @Mp — p* = a*)/2. 37)
(These quantities are for a circular orbit of radius p.) Using

this, it is simple to compute df;,./dt (or dv/dr).

2Its width in p/M is expected to be of the order of Ap/M ~
(u/M)¥5, where w is the mass of the infalling body [27].
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This procedure was followed in Ref. [14], using the code
presented in Ref. [17], to determine the evolution of ¢; this
analysis indicated that di/dr <0 for circular nearly
horizon-skimming orbits. As a first step to our more gen-
eral analysis, we have repeated this calculation but using
the improved Sasaki-Nakamura-Teukolsky code presented
in Ref. [21]; we focused on the case a = 0.998M.

Rather to our surprise, we discovered that the fluxes
dE/dt and dL_/dt computed with this more accurate
code indicate that di/dt >0 (and d6,,./dt > 0) for all
circular nearly horizon-skimming orbits—in stark contrast
with what was found in Ref. [14]. As mentioned in the
introduction, the rate of change of inclination angle ap-
pears as the difference of two quantities. These quantities
nearly cancel (and indeed cancel exactly in the limit a =
0); as such, small relative errors in their values can lead to
large relative error in the inferred inclination evolution.
Values for dE/dt, dL,/dt, di/dt, and d6;,./dt computed
using the present code are shown in Table I in the columns
with the header “Teukolsky.”

V. EVOLUTION OF 6;,.: NONCIRCULAR ORBITS

The corrected behavior of circular nearly horizon-
skimming orbits has naturally led us to investigate the
evolution of noncircular nearly horizon-skimming orbits.
Since our code cannot be used to compute dQ/dt, we have
resorted to a kludge approach, based on those described in
Refs. [23,24]. In particular, we mostly follow the procedure
developed by Gair and Glampedakis [24], though (as de-
scribed below) importantly modified.

The basic idea of the kludge procedure is to use the
functional form of 2PN fluxes E, L, and Q, but to correct
the circular part of these fluxes using fits to circular
Teukolsky data. As developed in Ref. [24], the fluxes are
written

<le_§>GG —(1 - 62)3/2[(1 _ 62)3/2(2_?)21)1\1(1% e )

B <%>2PN(p, 0.0+ (Céll—f>ﬁt circ(p’ L)} G

<d;tz>GG =(1- 62)3/2[(1 - 62)_3/2<%>2PN(17’ @

dL, dL,
a ( dt >2PN(P, O’ L) - < dt >fitcirc(p, L) i|’ (39)

<%> — (- ezp/z\/@

<[a- (2 .

- <de//§dt>2PN(p' 0.9* (d%dt>fit m(p, L)}
(40)
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TABLE I. Teukolsky-based fluxes and kludge fluxes [computed using Eqs. (40), (43), and (44)] for circular orbits about a hole with a = 0.998M; u represents the mass of the
infalling body. The Teukolsky-based fluxes have an accuracy of 107°.

(deg.) (deg.) (kludge) (Teukolsky) (kludge) (Teukolsky) (kludge) (Teukofgky) (kludge) (Teukolsky)
13 0 0 0 -9.108 X 1072 —9.109 X 1072  —2.258 X 107!  —2.259 X 10! 0 0 0 0
13 0 104870 11.6773 —9.328x 1072 —9332X 1072 —-2304x 107" —2306%x 107! 1.837x 1072 1.839X 1072 6462X1073  6.475x1073
13 0 146406 161303 —9.588 X 1072 —9.588 X 1072 —2359x 107" —2360%x 107! 2397 X 1072 2400X 1072 8645X 1073  8.667 X 1073
13 0 177000 193172 —9.875X 1072 —9.876X 1072 —2420x 107! —2421 X 107! 2728 X 1072 2731 xX1072 1.007x 1072 1.010X 1072
13 0 201636 21.8210 -1.019xX107" —1.019x 107! —2486x 107" —2488x 107! 2943x1072 2950X 1072 1.111x1072 1.117 x 1072
14 0 0 0 —8.700 X 1072 —8.709 X 1072  —2311 X 107! —2312x 107! 0 0 0 0
1.4 0 145992 160005 —9.062X 1072 —9.070 X 1072 —2386x 107" —2.386%x 107! 2316 x 1072 2319X 1072 8823 X 10723 8.848 X 1073
14 0 201756 21.7815 —=9.520X 1072 —9.526X 1072 —2482x 107! —2482 X 107! 2875X 1072 2877 X 1072 1.141 X 1072 1.143 X 1072
14 0 241503 257517 —1.006 X 107" —1.007 X 107! —2.595x 107" —2.596 %X 107! 3.140xX 1072 3.141 X 1072 1289 X 1072  1.288 X 1072
14 0 272489 287604 —1.067x 107! —1.068x 107! —2725%x 107! —2725x 107! 3.274x 1072 3275x1072 1378 X102  1.377 X 1072
15 0 0 0 —8.009 X 1072 —7.989 X 1072 —2270x 107" —2.265 % 107! 0 0 0 0
15 0 167836 18.1857 —8401 X 1072 —8383 X 1072 —2348X 107! —2343x 107! 2360X 1072 2351X1072 9.602X 1073 9.545x 1073
1.5 0 230755 246167 —8917x 1072 —8.897 X 1072 —2454x 107" —2449x 107! 2872X 1072 2863X 1072 1.228X 1072  1.222Xx 1072
15 0 274892 289670 —9.537X 1072 —9516X 1072 —2.583x 107! —2579x 107! 3.091 X 1072 3.082x 1072 1.372x 1072  1.367 X 1072
1.5 0 308795 322231 —1.025x107" —1.023x 107! —2733x107" —2.728 x 107! 3.184 X 1072 3.173X 1072  1452X 1072  1.443 X 1072
16 0 0 0 —7.181 X 1072 —7.156 X 1072 —2.168 X 107! —2.162 X 107! 0 0 0 0
1.6 0 183669 197220 —7.568 X 1072  —7.545X 1072 —2242x 107" —2237x 107! 2240X 1072 2229X 1072 9.600x 1073  9.515x 1073
1.6 0 251720 266245 —8.084 X 1072 —8062X 1072 —2346x 107" —2341x 107! 2701 X 1072 2.685 X 1072 1.223 X 1072 1.210 X 1072
1.6 0 299014 31.2625 —8708 X102 —8.687 X 1072 —2474x10"" —2470%x 107! 2889 x 1072 2872X 1072 1.363X1072  1.349 x 1072
1.6 0 335053 347164 —9.425%X1072 —9399X 1072 —2.622X 107! —2616X 107! 2964 X 1072 2951 X 1072  1.441 X 1072 1.432 X 1072
1.7 0 0 0 —-6.332 X 1072 —6317X 1072  —=2.034x 107" —2.031 x 107! 0 0 0 0
1.7 0 19.6910 209859 —6.702X 1072 —6.687 X 1072 —2.101 X107} —2.098 X 107! 2057 X 1072 2.052x 1072 9.202x 1073  9.171 X 1073
17 0 269252 282884 —7.197 X102 —7.184 X 1072 —2.199x 107" —2.196 X 107! 2467 x 1072 2456X 1072 1.170 X 1072  1.162 X 1072
1.7 0 319218 33.1786 —7.794X 1072 —7.782X 1072 —2319x 107" —2316X 107! 2632X 1072 2620X 1072 1306 X 1072  1.296 X 1072
17 0 357100 368118 —8475X 1072 —8465X 1072 —2457x107" —2455%x 107! 2698 X102 2.686X 1072 13841072 1.373x1072
18 0 0 0 —5.531 X102 —5528 X 1072 —1.888x 107! —1.887 X 107! 0 0 0 0
1.8 0 208804 221128 —5879X 1072 —5874%X 1072 —1.948x 107" —1.946x 107! 1.858x 1072 1.858 X 1072 8635X 1073  8.639x 1073
1.8 0 285007 297791 —6.343X1072 —6336X1072 —2.036x 107! —2.035Xx 107! 22211072 2223x1072 1.098 X102  1.101 X 1072
1.8 0 337400 349034 —6.901 X102 —6.894X 1072 —2.146x10"" —2.144x 107! 23681072 2371 X1072 12281072 1.232x 1072
1.8 0 376985 387065 —7.533X1072 —7.533X 1072 —2271x107' —2271 X107} 2429Xx1072 2427X1072 1.306Xx1072  1.303 X 1072
19 0 0 0 —4.809 X 1072 —4811X 1072 —1.740x 107" —1.740 X 107! 0 0 0 0
1.9 0 219900 23.1615 —5132X1072 —5134%X1072 —1.792x 107" —1.793 X 107! 1.666 X 1072 1.664 X 1072  8.022X 1073  8.007 X 1073
1.9 0 299708 31.1702 —5562X 1072 —5564%x 1072 —1.872x10"' —1.872x 107! 1.986x 1072 1987 X 1072 1.019x 1072  1.020 X 1072
1.9 0 354385 365176 —6.078X 1072 —6.077 X1072 —1971 X 107! —1970 X 107! 2118 X 1072 2122X 1072 1.143X 1072 1.148 X 1072
1.9 0 395592 404847 —6.659 X 1072 —6.658 X 1072 —2.082x 107" —2.082x 107! 2.177x1072 218X 1072 12221072 1.228x 1072
20 0 0 0 —4.174 X 1072 —4.175X 1072 —1.598 x 107!  —1.598 X 107! 0 0 0 0
20 0 23.0471 241605 —4.471 X 1072 —4472X 1072 —1.643x 107! —1.643 X 107" 1480 X 1072 1.489x 1072  7.425X 1073  7.424 x 1073
20 0 313715 324978 —4.867 X 1072 —4871x1072 —1713x107! —1714x107' 1.773Xx 1072 1770 X 1072 9436 X 1073  9.411 x 1073
20 0 37.0583 380608 —5.341 X 1072 —5345x1072 —1.801 x 107! —1.801x 107! 1.893x 1072 1.889x 1072 1.062X 1072  1.057 X 1072
20 0 413358 421876 —5.873Xx 1072 —5875X 1072 —1.900 X 10°!  —1.900 X 107! 1.950 X 1072 1948 X 1072  1.141 X 1072  1.138 X 1072
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TABLE II.  As in Table I but for noncircular orbits; the Teukolsky-based fluxes for E and L, have an accuracy of 1073. Note that our
code, as all the Teukolsky-based code that we are aware of, presently does not have the capability to compute inclination angle
evolution for generic orbits.

ya e 0. . djx%f dE v M? dL. v M dL. v M duse M ine ¢ M.
M inc dr 7 u? dr 7 u? dt u? dt u? dr 7 u? dt u?
(deg.) (deg.) (kludge) (Teukolsky) (kludge) (Teukolsky) (kludge) (kludge)
1.3 0.1 0 0 —8.804 X 1072 —8.804 X 1072 —2.098 X 107!  —2.098 X 10! 0 0
14 01 0 0 —8728 X 1072 —8719 X 1072 —2274x 107! —2275%x 107! 0 0
1.4 01 8 88664 —9.110 X 1072 —8.736 X 1072 —2355x 107! —2273 X 107! 4.066 X 1072 2.938 X 1072
1.4 0.1 16 174519  —1.030 X 107! —8.958 X 1072 —2.602 X 10~ —2309 X 10~! 7.428 X 10°2  5.475 X 1072
1.4 01 24 255784 —1.243x 107! —9771 X 1072 —3.037X 107" —2415X10"! 9.663 X 1072  7.316 X 1072
1.5 01 0 0 —8.069 X 1072 —8.095 X 1072 —2.255x 107! —2.260 X 107! 0 0
1.5 0.1 8 87910 —8323X 1072 —8.133X 1072 —2310X 107" —2264X 107! 2996 X 1072 2.070 X 1072
1.5 01 16 173490  —9.121 X 1072 —8.395 X 1072 —2483 X 107! —2314x 107! 5512%x 1072 3.888 X 1072
1.5 0.1 24 255197 —1.059 X 107" —8980 X 1072 —2.792Xx 107! —2423X 107! 7.255X 1072 5.264 X 1072
1.6 0.1 0 0 —7.255x 1072 —7.281 X 1072 —2.161 X 107! —2.168 X 107! 0 0
1.6 0.1 8 87195 —7.430X 1072 —7.321X1072 —2201x10"' —2.173x 107! 2258 %1072 1.502 X 1072
1.6 0.1 16 17.2437  —7.986 X 1072 —7.533 X 1072 —2323 X 107! —2212x 107! 4179 X 1072  2.839 X 1072
1.6 0.1 24 254388 —9.025 X 1072 —8.040 X 1072 —2.547x 107! —2309 X 10~! 5.554 X 1072  3.886 X 1072
1.6 0.1 32 332683 —1.082X 107! —9435X 1072 —2.920X 107! —-2551x10"! 6316 X 1072 4.559 X 1072
1.7 0.1 0 0 —6.427 X 1072 —6.440 X 1072 —2.036 X 107"  —2.040 X 107! 0 0
1.7 0.1 8 8.6555 —6.552X 1072 —6478 X 1072 —2.065X 107! —2.045%X 107! 1.742X 1072 1.124 X 1072
1.7 01 16 17.1454 —6.953 X 1072  —6.651 X 1072 —2.154%x 107" —2.075X 107! 3240 X 1072 2.134 X 1072
1.7 0.1 24 253531 —7.707 X 1072 —7.052 X 1072 —2317X 107! —2.150X 107! 4342 x 1072 2.948 X 1072
1.7 0.1 32 332416 —9.009 X 1072 —=7.959 X 1072  —2.590 X 10! —2.324 X 107! 4998 X 1072 3.512 X 1072
1.8 0.1 0 0 —5.640 X 1072 —5640 X 1072 —1.897 X 107! —1.897 x 10! 0 0
1.8 0.1 8 85991 —5732X1072 —5676x1072 —1918x 107! —1.902x 107! 1.371 X 1072 8.640X 1073
1.8 0.1 16 17.0562 —6.028 X 1072 —5.817X 1072 —1.984 X 10~!' —1.925X 107! 2562 X 1072 1.647 X 1072
1.8 01 24 252693 —6.588 X 1072 —6.139 X 1072 —2.105x 107" —1.983 X 107! 3.456X 1072 2.291 X 1072
1.8 0.1 32 332018 —7.555X 1072 —6.849x 1072 —2307 X 107! —2.120x 107! 4.020 X 1072  2.765 X 1072
1.9 0.1 0 0 —-4915x 1072 —4911 X 1072 —1.753x 107! —1.751 x 107! 0 0
1.9 0.1 8 85494 —4985X 1072 —4945%x 1072 —1.768x 107! —1.755x 107! 1.097 X 1072 6.791 X 1073
1.9 0.1 16 169760 —5.208 X 1072 —5.064 X 1072 —1.817X 107" —1.774Xx 107" 2055 X 1072 1.298 X 1072
1.9 0.1 24 25.1898 —5.633 X 1072 —5328X 1072 —1.908 X 107! —1.819x 107! 2788 X 1072 1.816X 1072
1.9 01 32 33.1555 —6.364X 1072 —5870X 1072 —2.059 X 107! —1.920x 107! 3.272x 1072 2214 X 1072
20 0.1 0 0 —4263 X 1072 —4264X 1072 —1.607x 107" —1.608 X 107! 0 0
20 0.1 8 85057 —4316X 1072 —4292X10"2 —1.619X 107" —1611X10"! 8862 X 1073 54241073
20 0.1 16 169042 —4.488 X 1072 —4390X 1072 —1.656%x 107! —1.625X 107" 1.666 X 1072 1.039 X 1072
20 0.1 24 25.1156 —4.815X 1072 —4.604 X 1072 —1.724%x 107" —1.660X 107" 2271 X 1072 1.459 X 1072
20 0.1 32 33.1064 —5376 X 1072 —5.031 X102 —1.838X 10! —1.736 X 107! 2.684 X 102 1.793 X 1072
20 0.1 40 40.8954 —6.339X 1072 —6.236X 1072 —2.027 X 107" —1.967 X 10"! 2917 X 1072 2.036 X 1072

The post-Newtonian fluxes (dE/dt),pn, (dL./dt)py and dO/dt dL [0(p. 0.0
(dQ/dt)py are given in the Appendix [particularly < % )f' (py= 2tam[<d—;>f o M
1t circ 1t circ

Egs. (A1)—(A3)]. s
Since for circular orbits the fluxes dE/dt, dL./dt and % (ﬂ) } 41)

dQ/dr are related through Eq. (34), only two fits to circular dt Jiccire |

Teukolsky data are needed. One possible choice is to fit

dL,/dt and du/dt, and then use the circularity constraint to

obtain® [24] <d_E> (5 0) = — M(%) (p, o) = Nslpt)
dt Jsit circ ' Nl (P, L) dt )it circ ' Nl (P, L)
dQ/dt
X \0(p, 0, o( ) (p.0). (42)
\/@ fit circ
3 . . . . . .

“This choice might seem more involved than fitting directl .
dL./dt and dQ/ d%, but, as noted by Gair and Glalipedakis}j As stressed in Ref. [24], one does not expect these fluxes
ensures more sensible results for the evolution of the inclination to work well in the strong field, both because the post-
angle. This generates more physically realistic inspirals [24]. Newtonian approximation breaks down close to the black
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TABLE III.  As in Table II, but for additional values of eccentricity e; the Teukolsky-based fluxes for E and L, have an accuracy of
1073,

b e Oine L {l—fx":—f ‘ji—’fxf‘:—f ‘%x% %x% dex M, "%xﬂﬂ
(deg.) (deg.) (kludge) (Teukolsky) (kludge) (Teukolsky) (kludge) (kludge)

14 02 0 0 —8.636 X 1072  —8.642x 1072 —2.119x 107! —2.121 x 107! 0 0

1.4 02 8 88215 —9.853 X 1072 —8240X 1072 —2374x 107" —2015x 107! 1.148x 107! 9714 x 1072

1.5 02 0 0 —8362X 1072 —8349x 1072 —2236x 107! —2.230 % 107! 0 0

1.5 02 8 87595 —9.141 X 1072 —8276X 1072 —2410X 107! —2206%X 107! 7.893 X 1072  6.549 X 1072

15 02 16 172957 —1.145%x 107!  —8394 X 1072 —2915X 107! —2215x10"! 1.466x10"! 1.230x 107!

1.5 02 24 254608 —1.524 X 107! —9.230x 1072 —3712X 107! -2357x10"! 1952x 107! 1.661 X 107!

1.6 02 0 0 —7.596 X 1072 —=7.616 X 1072  —2.171 X 107! —2.176 X 107! 0 0

1.6 02 8 86935 —8111X1072 —7.641%X1072 —2292x10"! —2177X107! 5520%X 1072 4502 X 1072

1.6 02 16 17.1994 —9.649 X 1072 —7.798 X 1072 —2.647 X 107"  —2.198 X 107!  1.032x 10~!  8.500 X 1072

1.6 02 24 253891 —1.221 x 107" —8314x 1072 —3212xX 107" —2288x 107" 1.388x 107! 1.160x 107!

1.7 02 0 0 —6.765 X 1072 —6.799 X 1072 —2.057 X 10~!  —2.068 X 107! 0 0

1.7 02 8 86329 —7.116 X102 —6813X 1072 —2.144X 107! —2.066 X 10"! 3.963 X 10~2  3.176 X 1072

1.7 02 16 17.1064 —8.171 X 1072 —6.995 X 1072 —2.398 X 101  —2.096 X 107! 7441 X 10"2 6.024 X 1072

1.7 02 24 253085 —9.948 X 1072 —7.443 X 1072 —2.806 X 107! —2.178 X 107! 1.009 X 10~!  8.290 X 1072

1.7 02 32 332037 —1.257 X 107" —8.558 X 1072 —3.371 X 107" —2366x 107! 1.175x 107! 9.806 X 1072

1.8 02 0 0 —5.965 X 1072  —=5.962X 1072 —1.927x 107" —1.926 X 107! 0 0

1.8 02 8 85780 —6.211 X 1072 —5997 X 1072 —1.990 X 107! —1.930 X 10~! 2919 X 1072  2.300 X 1072

1.8 02 16 170211  —6.953 X 1072 —6.147 X 1072 —=2.175X 107! —1.954 X 107! 5504 X 1072  4.380 X 1072
1.8 02 24 252283 —8216 X 1072 —6.502X 1072 —2474 X 107! —2.016 X 107! 7.515X 1072  6.068 X 1072

1.8 02 32 33.1656  —1.009 X 107!  —7.410X 1072 —2.890 X 10~! —2.190 X 10!  8.839 X 1072  7.258 X 1072
1.9 02 0 0 —5218 X 1072  —-5210x 1072 —1.786 x 107! —1.783 x 10! 0 0

1.9 02 8 85312 —5.394X 1072 —5244x 1072 —1.833x 107! —1.787x 107! 2197 X 1072 1.704 X 1072
19 02 16 169441 —5928 X 1072  —5373x 1072 —1.970 X 107! —1.807 X 107! 4.156 X 1072  3.254 X 1072
1.9 02 24 251518 —6.843 X 1072  —5669 X 1072 —2.192x 107! —1.858X 107! 5706 X 1072  4.535 X 1072
1.9 02 32 33.1207 —8213X 1072 —6277X 1072 —2502X 107! —1.966X10"! 6.767 X 1072 5.475 % 1072
20 02 0 0 —4528 X 1072 —4530x 1072 —1.637x 107! —1.638 X 107! 0 0

20 02 8 84891 —4.657 X 1072 —4557X 1072 —1.671 X 107! —1.641 X 107" 1.679 X 1072 1.283 X 1072
20 02 16 168749  —5.049 X 1072 —4.664 X 1072 —1.774 X 107! —1.657 X 107! 3.184 X 1072 2.457 X 1072
20 02 24 250802 —5725X 1072  —4.904 X 1072  —1.941 X 107!  —1.696 X 107!  4.391 X 1072 3.440 X 1072
20 02 32 33.0730 —6.743 X 1072 —5427X 1072 —2175X 107! —1.793 X 107! 5.243X 1072 4.184 X 1072
1.5 03 0 0 —8.481 X 1072 —8478x 1072 —2.094 X 107!  —2.094 x 107! 0 0

15 03 8 87037 —1.006 X 107!  —7.824 X 1072 —2442x 107! —1934x 107! 1.484x 107! 1.301 x 107!
15 03 16 172003 —1.469 X 107!  —7.811 X 1072 —3.435X 107" —1.864 X 107! 2.766 X 107!  2.440 x 107!
1.6 03 0 0 —8.144x 1072 -8.123xX 1072 —-2.183%x 107! —2.178 x 107! 0 0

1.6 03 8 86498 —9.182X 1072 —7.807 X 1072 2426 X 107! —2.095X 107! 1.028 X 10! 8918 X 1072
1.6 03 16 17.1246 —1.223 X 107! —8.089 X 1072 —3.122X 107! —2.144x 107! 1.928 X 107! 1.683 X 107!
1.6 03 24 253046 —1.716 X 107! —8.666 X 1072  —4.197 X 10~! —2229x 10~ 2607 X 10~!  2.295 x 107!
1.7 03 0 0 —7362x 1072  —7314X 1072 —2.104 X 107"  —2.095 x 107! 0 0

1.7 03 8 85953 —8.060 X 1072 —7.224x 1072 —2277X 107! —2.065%X 107! 7.240 X 1072  6.224 X 1072
1.7 03 16 17.0415 —1.013 X 107! —7.369 X 1072 —2.774 X 107!  —2.084 X 107! 1.365x 107! 1.180 X 107!
1.7 03 24 252339 —1.349x 107! —7.800x 1072 —3.547 X 107! —2.153x 107! 1.861 X 107!

1.8 03 0 0 —6.488 X 1072 —6484x1072 —1973x 107! —1.972x 107! 0 0

1.8 03 8 8.5454 —6.970 X 1072 —6.480x 1072 —2.099 X 107!  —1.966 X 10~! 5206 X 1072 4.436 X 1072
1.8 03 16 169628 —8.402X 1072 —6.671 X 1072 —2461 X 107! —1.998 X 107! 9.857 X 1072 8.445 X 1072
1.8 03 24 251601 —1.075%x 107! —7.030 X 1072 —3.026 X 10~  —2.056x 107! 1.353x 107! 1.169 X 107!
1.8 03 32 33.1047 —1.404 X 107! —8153 X 1072 —3.762X 107! —2255%x10"! 1.600X 107! 1.394 X 10!
1.9 03 0 0 —5.669 X 1072  —5.690x 1072 —1.829 x 107! —1.832 % 107! 0 0

1.9 03 8 85010 —6.010X 1072 —5683X 1072 —1.922x 107! —1.824x 107! 3.823x 1072 3.229 X 1072
1.9 03 16 16.8911 —7.025%x 1072 —5818 %X 1072 —2.189x 107! —1.844x 107" 7.263x 1072 6.165x 1072
1.9 03 24 25.0887 —8.701 X 1072 —6.054 X 1072 —2.609 X 10°! —1.874x 107" 1.003 X 107! 8.579 X 1072
19 03 32 33.0624 —1.106 X 107! —6.912Xx 1072 —3.157 X 107! —=2.034x 107! 1.195x 107! 1.032 X 107!
20 03 0 0 —4.953 X 1072  —4.946 X102 —1.683x 107! —1.683 %X 107! 0 0

20 03 8 84616 —5.199X 1072 —4970%X 1072 —1.753 X 107! —1.685x 107! 2862 %X 1072 2.395 X 1072
20 03 16 168262 —5.932 X 1072  —5079 X 1072 —1.954 X 107! —1.699 X 107! 5452X 1072 4.585 %X 1072
20 03 24 25.0215 —7.150 X 1072 —5328 X 1072 —2269X 107! —1.737X 107! 7.564 X 1072 6.411 X 1072
20 03 32 33.0172 —8.878 X 1072 —6.003 X 1072 —2.682X 107! —1.864x 10! 9.077 X 1072 7.771 X 1072
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hole, and because the circular Teukolsky data used for the
fits in Ref. [24] was computed for 3M = p = 30M. As a
first attempt to improve their behavior in the nearly
horizon-skimming region, we have made fits using circular
Teukolsky data for orbits with M < p = 2M. In particular,
for a black hole with a = 0.998M, we computed the cir-
cular Teukolsky-based fluxes dL./dt and di/dt listed in
Table I (columns 8 and 10). These results were fit (with
error < 0.2%); see Eqs. (A4) and (AS5) in the Appendix.
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Despite using strong-field Teukolsky fluxes for our fit,
we found fairly poor behavior of these rates of change,
particularly as a function of eccentricity. To compensate
for this, we introduced a kludge-type fit to correct the
equatorial part of the flux, in addition to the circular part.
We fit, as a function of p and e, Teukolsky-based fluxes for
dE/dt and dL_/dt for orbits in the equatorial plane, and
then introduce the following kludge fluxes for E and L,:

TABLE IV. As in Tables II and III, but for different values of eccentricity e; the Teukolsky-based fluxes for E and L, have an

accuracy of 1073,

P e 0. . dE w« M dE v« M? dL; « M. dL. <« M. dese M dOe s M.
M nc dt n? dt u? dt n? dt u? dr 7" u? dt u?
(deg.) (deg.) (kludge) (Teukolsky) (kludge) (Teukolsky) (kludge) (kludge)
1.6 04 0 0 —7.766 X 1072 —7.772X 1072 —1.918 X 10~! —1.919 x 10! 0 0
1.6 04 8 8.5863 —9.433 X 1072 —7.645X 1072 —2297x 107! —1.881x 107! 1.528 X 107! 1.370 X 107!
1.6 04 16 170151 —1432X 107" —=7.651 X 1072 —3.382X 107" —1.837 X 107" 2.873 X 107! 2.584 X 107!
1.7 04 0 0 —7.882 X 1072 —7.953 X 1072 —2.097 X 10°! —2.115x 107! 0 0
1.7 04 8 85426 —9.002 X 1072 —7.408 X 1072 —-2367 X 107" —1.978 X 10~! 1.087 X 10~! 9.656 X 1072
1.7 04 16 169502 —1.229X 107! —7.682X 1072 —3.143 X 107" —2.025x 107! 2054 x 10" 1.830x 107!
1.7 04 24 251282 —1760X 107" —8.090X 1072 —4.336 X 107! —2.075X 107" 2.809 X 107! 2.514 X 107!
1.8 04 0 0 —7.107 X 1072 —7.007 X 1072 —2.013 X 107! —1.988 X 107! 0 0
1.8 04 8 84989 —7.877 X 1072 —7.001 X 1072 —2209 X 107" —1.981 X 10~! 7.788 X 1072 6.879 X 1072
1.8 04 16 168817 —1.015x 107! —=7.009 X 1072 —2.774 X 1071 —1.965x 107" 1.478 X 10~' 1.309 X 10!
1.8 04 24 250646 —1383 X 107! —7314Xx 1072 —3.646 X 107" —2.003 X 107! 2.036 X 10~' 1.810 x 107!
1.8 04 32 330184 —1.887x107' —9.193X 1072 —4.755X 107! —-2319%x 107! 2.414 X 107! 2.156 x 107!
1.9 04 0 0 —6.187 X 1072 —6.267 X 1072 —1.861 X 107! —1.881 x 10! 0 0
1.9 04 8 84591 —6.728X 1072 —6.216X 1072 —2.006x 107! —1.861 X 107! 5.666 X 1072 4.980 X 1072
1.9 04 16 168173 —8328X 1072 —6222X 1072 —2424X 107! —1.844 X 107! 1.079 X 10~! 9.506 X 1072
1.9 04 24 250006 —1.094Xx 107! —6486x 1072 —-3.071 X 107! —1.878 X 107! 1.495x 107! 1.322 x 10!
1.9 04 32 329804 —1452Xx107' —7.884X 1072 —3.806X 107! —2.158 x 107! 1.787 x 10~} 1.588 x 107!
20 04 O 0 —5.483 X 1072 —=5.457X 1072 —1.735%x 107! —1.729 x 107! 0 0
20 04 8 84235 —5871 X 1072 —5445X 1072 —1.844 X 107! —1.720x 107! 4222 X 1072 3.686 X 1072
20 04 16 167586 —7.020X 1072 —5555x 1072 —2.158 X 107! —1.733 X 107! 8.064 X 1072 7.057 X 1072
20 04 24 249396 —8902X 1072 —5.844 X 1072 —2645X 107! —1.778 X 107" 1.122 X 107! 9.860 X 1072
20 04 32 329380 —1.150x 107! —6.536X 1072 —3.267 X 107" —1.8906 X 107" 1.351 X 107! 1.193 X 107!
1.7 05 0 0 —7.421 X 1072 —7.401 X 1072 —1.815%x 107! —1.810 X 107! 0 0
1.7 05 8 84736 —8957 X 1072 —7.168 X 1072 —2.173 X 107" —1.750%X 107! 1.379 X 107! 1.256 X 107!
1.7 05 16 168300 —1.347Xx107! —6.999 X 1072 —3.201 X 10™' —1.676 X 107! 2.611 X 10" 2.378 X 107!
1.8 05 0 0 —7.589 X 1072 —7.620 X 1072 —1.993 X 10~! —2.000 X 107! 0 0
1.8 05 8 84395 —8.644 X 1072 —6.929 X 1072 —2254x 107! —1.829 X 107! 1.005% 107! 9.076 X 1072
1.8 05 16 167776 —1.175X107! —7.210Xx 1072 —3.004 X 107" —1.880 X 107! 1911 X 10" 1.726 X 10!
1.8 05 24 249413 —1.678 X 107" —7.395X 1072 —4.158 X 107" —1.881 X 107" 2.638 X 107! 2.385 X 10!
1.9 05 0 0 —6.646 X 1072 —6.620 X 1072 —1.855 X 107! —1.849 x 107! 0 0
1.9 05 8 84059 —7.386X 1072 —6.320X 1072 —2.048 X 107" —1.768 X 10~! 7.312X 1072 6.579 X 1072
19 05 16 167233 —9572X 1072 —6.551 1072 —2.603 X 107" —1.809x 10™' 1.395X 107" 1.255X 107!
1.9 05 24 248877 —1312X 107" —7.087 X 1072 —3.461 X 107" —1.909 X 107" 1.937 X 107! 1.744 X 107!
1.9 05 32 328741 —1795X 107! —8247X 1072 —4.544x 107! —2.091 X 107! 2.320 X 10~} 2.092 X 107!
20 0.5 0 0 —5.987 X 1072 —5.995x 1072 —1.761 X 107! —1.763 X 107! 0 0
20 05 8 83750 —6.516 X 1072 —5918 X 1072 —1.906 X 107" —1.738 X 107! 5.456 X 1072 4.882 X 1072
20 05 16 166725 —8.081 X 1072 —5817 X 1072 —2324X 107! —1.694 X 107! 1.044 X 107! 9.343 x 1072
20 05 24 248347 —1.063x 107! —6254x 1072 —2970x 107! —1.776 X 107! 1.456 X 10~' 1.304 X 10!
20 05 32 328378 —1.412X 107! —6.993 X102 —3787 X 107! —1.893x 107! 1.756 X 107! 1.576 X 10!
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dL
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()20 44

[Note that Eq. (40) for dQ/dt is not modified by this
procedure since dQ/dt = 0 for equatorial orbits.] Using
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equatorial noncircular Teukolsky data provided by Drasco
[21,33] for a =0.998 and M <p =2M (the + =0
Teukolsky data in Tables II, III, and IV), we found fits
(with error < 1.5%); see Eqs. (A8) and (A9). Note that the
fits for equatorial fluxes are significantly less accurate than
the fits for circular fluxes. This appears to be due to the fact
that, close to the black hole, many harmonics are needed in
order for the Teukolsky-based fluxes to converge, espe-
cially for eccentric orbits (cf. Figs. 2 and 3 of Ref. [21],
noting the number of radial harmonics that have significant
contribution to the flux). Truncation of these sums is likely
a source of some error in the fluxes themselves, making it
difficult to make a fit of as high quality as we could in the
circular case.

TABLE V. Variation in the inclination angles ¢ and 6;,,. as well as time needed to reach the separatrix for several inspirals through the
nearly horizon-skimming regime. In all of these cases, the binary’s mass ratio was fixed to u/M = 107°, the large black hole’s spin
was fixed to @ = 0.998M, and the orbits were begun at p = 1.9M. The time interval At is the total accumulated time it takes for the
inspiralling body to reach the separatrix (at which time it rapidly plunges into the black hole). The angles A6;,. and A are the total
integrated change in these inclination angles that we compute. For the ¢ = 0 cases, inspirals are computed using fits to the circular
Teukolsky fluxes of E and L_; for eccentric orbits we use the kludge fluxes (40), (43), and (44). Notice that Af;,. and A¢ are always
positive—the inclination angle always increases during the inspiral through the nearly horizon-skimming region. The magnitude of

this increase never exceeds a few degrees.

e Oinc (deg.) ¢ (deg.) At/M Ab;,. (deg.) A (deg.)
0 0 0 1.250 X 10° 0 0

0 5 5.355510 1.217 X 10° 1.949 x 107! 4.954 x 107!
0 10 10.679331 1.118 X 10° 3.468 x 107! 8.631 X 107!
0 15 15.943192 9.574 X 10° 4.236 X 107! 1.019

0 20 21.125167 7.446 X 10° 4.109 X 107! 9.440 X 107!
0 25 26211779 4.981 X 10° 3.158 X 107! 6.860 X 107!
0 30 31.199048 2.528 X 10° 1.732 X 107! 3.527 X 107!
0 35 36.092514 6.584 X 10* 4.636 X 1072 8.806 X 1072
0.1 0 0 1.228 X 10° 0 0

0.1 5 5.351602 1.198 X 10° 4517 X 107! 7.766 X 107!
0.1 10 10.671900 1.103 x 10° 6.900 x 107! 1.236

0.1 15 15.932962 9.426 X 10° 7.283 X 107! 1.344

0.1 20 21.113129 7.315 X 10° 6.433 X 107! 1.187

0.1 25 26.199088 4.900 X 10° 4.780 X 107! 8.547 X 107!
0.1 30 31.186915 2.513 X 10° 2.730 X 107! 4.585 X 107!
0.1 35 36.082095 6.589 X 10* 8.385 X 1072 1.279 X 107!
0.2 0 0 1.173 X 10° 0 0

0.2 5 5.339916 1.150 x 10° 1.204 1.598
0.2 10 10.649670 1.064 X 10° 1.698 2331

0.2 15 15.902348 9.043 X 10° 1.618 2.293
0.2 20 21.077081 6.980 X 10° 1.324 1.900
0.2 25 26.161046 4.693 X 10° 9.545 X 107! 1.351
0.2 30 31.150481 2.486 X 10° 5.674 X 107! 7.711 X 107!
0.2 35 36.050712 7.562 X 10* 2.070 X 107! 2.648 X 107!
0.3 0 0 1.087 X 10° 0 0

0.3 5 5.320559 1.069 X 10° 2.307 2.788
0.3 10 10.612831 1.001 X 10° 3.256 4.007
0.3 15 15.851572 8.454 X 10° 2.984 3.741

0.3 20 21.017212 6.483 X 10° 2375 2.998
0.3 25 26.097732 4.408 X 10° 1.700 2.129
0.3 30 31.089639 2.493 X 10° 1.040 1.276
0.3 35 35.997987 1.108 X 10° 4.626 x 107! 5.569 X 107!
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These fits were then finally used in Egs. (43) and (44) to
calculate the kludge fluxes dE/dt and dL,/dt for generic
orbits. This kludge reproduces to high accuracy our fits to
the Teukolsky-based fluxes for circular orbits (e = 0) or
equatorial orbits (¢ = 0). Some residual error remains
because the ¢ = 0 limit of the circular fits do not precisely
equal the ¢ = 0 limit of the equatorial fits.

Table I compares our kludge to Teukolsky-based fluxes
for circular orbits; the two methods agree to several digits.
Tables 11, III, and IV compare our kludge to the generic
Teukolsky-based fluxes for dE/dt and dL,/dt provided by
Drasco [21,33]. In all cases, the kludge fluxes dE/dt and
dL./dt have the correct qualitative behavior, being nega-
tive for all the orbital parameters under consideration (a =
0.998M, 1 < p/M=2,0=<=e=0.5and 0° = =41°).
The relative difference between the kludge and Teukolsky
fluxes is always less than 25% for e = 0 and e = 0.1 (even
for orbits very close to separatrix). The accuracy remains
good at larger eccentricity, though it degrades somewhat as
orbits come close to the separatrix.

Tables I, II, III, and IV also present the kludge values of
the fluxes dv/dt and d6;,./dt as computed using Egs. (43)
and (44) for dE/dt and dL_/dt, plus Eq. (40) for dQ/dt.
Though certainly not the last word on inclination evolution
(pending rigorous computation of dQ/dt), these rates of
change probably represent a better approximation than
results published to date in the literature. (Indeed, prior
work has often used the crude approximation di/dt = 0
[21] to estimate dQ/dt given dE/dt and dL,/dt.)

Most significantly, we find that (di/df)yygee > 0 and
(dBine/dt)yiuage > 0 for all of the orbital parameters we
consider. In other words, we find that dv/dt and d6;,./dt
do not ever change sign.

Finally, in Table V we compute the changes in ;.. and ¢
for the inspiral with mass ratio x/M = 107, In all cases,
we start at p/M = 1.9. The small body then inspirals
through the nearly horizon-skimming region until it
reaches the separatrix; at this point, the small body will
fall into the large black hole on a dynamical timescale ~M,
so we terminate the calculation. The evolution of circular
orbits is computed using our fits to the circular Teukolsky
fluxes of E and L,; for eccentric orbits we use the kludge
fluxes (40), (43), and (44). As this exercise demonstrates,
the change in inclination during inspiral is never larger
than a few degrees. Not only is there no unique sign change
in the nearly horizon-skimming region, but the magnitude
of the inclination change remains puny. This leaves little
room for the possibility that this class of orbits may have a
clear observational imprint on the EMRI waveforms to be
detected by LISA.

VI. CONCLUSIONS

We have performed a detailed analysis of the orbital
motion near the horizon of near-extremal Kerr black holes.
We have demonstrated the existence of a class of orbits,
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which we have named ‘‘noncircular nearly horizon-
skimming orbits,” for which the angular momentum L,
increases with the orbit’s inclination, while keeping latus
rectum and eccentricity fixed. This behavior, in stark con-
trast to that of Newtonian orbits, generalizes earlier results
for circular orbits [14].

Furthermore, to assess whether this class of orbits can
produce a unique imprint on EMRI waveforms (an impor-
tant source for future LISA observations), we have studied,
in the adiabatic approximation, the radiative evolution of
inclination angle for a small body orbiting in the nearly
horizon-skimming region. For circular orbits, we have
reexamined the analysis of Ref. [14] using an improved
code for computing Teukolsky-based fluxes of the energy
and angular momentum. Significantly correcting
Ref. [14]’s results, we found no decrease in the orbit’s
inclination angle. Inclination always increases during
inspiral.

We next carried out such an analysis for eccentric nearly
horizon-skimming orbits. In this case, we used kludge
fluxes to evolve the constants of motion E, L, and Q
[24]. We find that these fluxes are fairly accurate when
compared with the available Teukolsky-based fluxes, in-
dicating that they should provide at least qualitatively
correct information regarding inclination evolution. As
for circular orbits, we find that the orbit’s inclination never
decreases. For both circular and noncircular configura-
tions, we find that the magnitude of the inclination change
is quite paltry—only a few degrees at most.

Quite generically, therefore, we found that the inclina-
tion angle of both circular and eccentric nearly horizon-
skimming orbits never decreases during the inspiral.
Revising the results obtained in Ref. [14], we thus con-
clude that such orbits are not likely to yield a peculiar,
unique imprint on the EMRI waveforms detectable by
LISA.
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APPENDIX

In this Appendix we report the expressions for the post-
Newtonian fluxes and the fits to the Teukolsky data neces-
sary to compute the kludge fluxes introduced in Sec. V. In
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particular the 2PN fluxes are given by [24]

<%>2PN B 352 1512< ) (1 - ez)m[gl(e) B a<p>3/2g2(6) coss — (%)&(6) n 7-r<%>3/2g4(e)

- (%) g5(e) + d2(%>2g6(e) - %cﬂ(M )%m%} (A1)

EF

(d;;)zPN - _?2
oo
<CZ—?>2PN _ _65_4 L( >7/2\/_ 5 sinu(l — ez)*/z[gg(e) 3 a<p>3/2 cosgh(e) — <%>g“(e) + 7,(%)3/25:12(6)

- <%>2813(€) + 512(%>2 (814(6) - ;Sln%ﬂ (A3)

where u is the mass of the infalling body and where the various e-dependent coefficients are

< )7/2(1 - 62)3/2[5'9(6) cost + a(p) /2(g?0(e) — cosughy(e)) — (%)g“(e) cose
3/2

> g12(e) cost — <M>2g13(e) cost + d2<%>2 COSL<g14(6’) - 4—SSiI12L> } (A2)
P P 8
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1375 44711 172157 359 7
=4+ 2 —t—— _33 .39, =1+ _¢?
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The fits to the circular Teukolsky data of Table I are instead given by

sz ( ) 32 ,u2 M\7/2 coss + M\3/2/61 61COS b dmcos 1247 /1M cos
— L) = —— —|— L — —— — L T COSL — L
(dr >ﬁmm u 5 M(p) { (p) (24 8 ) 336 (p)

+ (%)2 COSL( 1625 _ 45 —sin L) + (%)5/2[5’1(1)/M) + Jz(p/M) cost + 33(p/M)coszL

) 567 8
. . . M\3/2
+ dy(p/M)cos e + ds(p/M)cos*s + dg(p/M)cos’t + COSL<—> A+ Bcos%)“, (A4)
p
2 in? 1 /M /2 M\3/2
()0 =5 55 o () o (Jtommn o () et () (5]
dt /i circ 5 M /o(p,0, 1) P P p p
. M\5/2. . .
+ cos2b(—>dg(p/M) + cosn(—) [h(p/M) + COSZLhZ(p/M)]}, (AS)
p p
where
di(x)=a,+bx 12+ cix ! i=1..., 8, hi(x) = a, + bix~/2, i=12 (A6)

and the numerical coefficients are given by
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a) = —278.9387, b} = 84.1414, a; = 8.6679, b2 = —9.2401, A = —18.3362, B = 24.9034,
(A7)
and by the following table.
i 1 2 3 4 5 6 7 8
al, 15.8363 4454418 —2027.7797 3089.1709 —2045.2248 498.6411  —8.7220 50.8345
bl —55.6777 —1333.2461 5940.4831 —9103.4472 6113.1165 —1515.8506 —50.8950 —131.6422
c 38.6405  1049.5637 —4513.0879 69263191 —4714.9633  1183.5875 251.4025 83.0834

Note that the functional form of these fits was obtained from Eqgs. (57) and (58) of Ref. [24] by setting a (i.e., g in their
notation) to 1. Finally, we give expressions for the fits to the equatorial Teukolsky data of Tables II, III, and IV (data with
t = 0, columns with header Teukolsky):

dE dE 32 [ u\2/M\> M\1/2 M
) 0=(5), e -5 (5) (5) 0 - a@+ (7] + ae(7)
<df )fiteq dt )opN 5\M) \p ! A\ p A p
M\ M2
sa() e (A8)
p p
L, L 32 u? (M\7/2 -~ < (M\1/2
i) po=(5), pe0-5 () 0 - e+ ()
(dt>fiteq dt 2PN S M P : ? p
~ M ~ M\3/2 . M\2
she(0) () i) ] (A9)
p p p
gile) = al + bie* + che* + dief, file) = al + bie* + clhet + dief, i=1,...,5, (A10)
where the numerical coefficients are given by the following table.

i aé bg cg d; a}- b}- c}- d}v
1 6.4590 —2038.7301  6639.9843  227709.2187 54577 -—3116.4034  4711.7065  214332.2907
2 —31.2215 10390.6778 —27505.7295 —1224376.5294 —26.6519 15958.6191 —16390.4868 —1147201.4687
3 57.1208 —19800.4891 39527.8397 2463977.3622 50.4374 —30579.3129 15749.9411 2296989.5466
4 —49.7051 16684.4629 —21714.7941 —2199231.9494 —46.7816 25968.8743 656.3460 —2038650.9838
5 16.4697 —5234.2077  2936.2391 734454.5696 15.6660 —8226.3892 —4903.9260 676553.2755
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