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Circular BIST With State Skipping

Nur A. Touba

Abstract—Circular built-in self-test (BIST) is a “test per clock” scheme
that offers many advantages compared with conventional BIST approaches

in terms of low area overhead, simple control logic, and easy insertion.
However, it has seen limited use because it does not reliably provide high
fault coverage. This paper presents a systematic approach for achieving

high fault coverage with circular BIST. The basic idea is to add a small
amount of logic that causes the circular chain to skip to particular states.

This “state skipping” logic can be used to break out of limit cycles, break
correlations in the test patterns, and jump to states that detect random-pat-

tern-resistant faults. The state skipping logic is added in the chain inter-
connect and not in the functional logic, so no delay is added on system

paths. Results indicate that in many cases, this approach can boost the fault
coverage of circular BIST to match that of conventional parallel BIST ap-
proaches while still maintaining a significant advantage in terms of hard-

ware overhead and control complexity. Results are also shown for com-
bining “state skipping” logic with observation point insertion to further

reduce hardware overhead.

Index Terms—Built-in self-test (BIST), built-in testing, circuit testing, de-
sign for testability, limit cycles, pseudorandom pattern generation, scan

chains.

I. INTRODUCTION

There are two main functions that must be performed on-chip in

order to implement built-in self-test (BIST): test pattern generation and

output response analysis. The most common BIST schemes are based

on pseudorandom test pattern generation using linear feedback shift

registers (LFSRs) and output response compaction using signature an-

alyzers [1]. Three architectures that are used for performing BIST are

the following.

1) Scan BIST: An external LFSR is used to shift pseudorandom test

vectors into the scan chain, and an external signature register is

used to compact the response. This is a “test per scan” approach

where one test vector is applied to the circuit each time the com-

plete scan chain is loaded.

2) BILBO Registers: The flip-flops in a design are formed into

BILBO registers [2] that can operate in scan mode, test pattern

generator mode, or signature analyzer mode. The complete

circuit is tested by scheduling the operation of the various

BILBO registers so that some operate in test pattern generation

mode and others in signature analyzer mode in different test

sessions. BILBO registers provide a test-per-clock scheme,

where a test vector is applied to the circuit each clock cycle.

3) Circular BIST: The flip-flops in a design are replaced with spe-

cial BIST cells, which are connected to form one long circular

chain [3]–[5]. During BIST operation, each flip-flop is fed by
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the exclusive-OR of its normal functional input and the output of

the flip-flop that precedes it in the chain. Hence the response of

the circuit in each clock cycle during BIST is compacted in the

circular chain and then used as the test pattern in the next clock

cycle. This is a test-per-clock scheme that requires only one test

session.

Circular BIST provides a number of attractive features. It has a much

shorter test time than scan BIST because a test pattern is applied each

clock cycle. It has less overhead than using BILBO registers because

there is less register interconnection, less control complexity, and fewer

modes of operation. The BIST control logic for circular BIST is very

simple because there is only a single test session. Moreover, circuit

BIST is very easy to insert into a design because it is just like scan

insertion except using BIST cells instead of scan cells.

Despite all of the advantages that circular BIST offers compared with

conventional BIST approaches, it has seen limited use. The reason is

that it does not reliably provide high fault coverage. The test patterns

that are generated in circular BIST are not truly pseudorandom, as they

are with scan BIST or BILBO registers, and there can be significant

aliasing due to register adjacency [4], [6].

Several solutions to the register adjacency problem have been de-

scribed in [4] and [7]–[9]. However, the problem of reliably generating

test patterns that provide high fault coverage during circular BIST has

not been adequately dealt with. This problem is the major factor that

limits the effectiveness of circular BIST and is the problem that is ad-

dressed in this paper.

The test patterns generated by an LFSR have a guaranteed pseu-

dorandom property that can be used to reliably predict fault coverage

given the detection probabilities of the faults in the circuit [10]. This

is not the case for the test patterns that are generated during circular

BIST. Some probabilistic models of circuit behavior were used in [5]

and [7] to try to estimate the expected number of different test patterns

that are generated in a k-bit section of the circular chain during circular

BIST. This analysis assumes that the inputs to the k-bit section of the

circular chain are completely independent of the outputs of the k-bit

section. This assumption is really an approximation because obviously

the circular nature of the chain means that the outputs of the k-bit sec-

tion will eventually influence the inputs of the k-bit section after some

number of clock cycles. Consequently, the number of different test pat-

terns and the probability distribution of the patterns that are predicted

by probabilistic analysis of circular BIST are not reliable and cannot be

depended on. As has been shown in [11] and [12], in many real circuits,

the fault coverage provided by circular BIST can be surprisingly low.

One way to view circular BIST is that it converts the circuit into an

autonomous finite-state machine (FSM) (i.e., with no primary inputs)

during testing. In the state transition diagram for circular BIST, there is

exactly one outgoing edge from each state. A state may not necessarily

have any incoming edges, in which case it can only be visited if it is

the initial state. The state transition diagram contains one or more cy-

cles that partition it into state transition subgraphs; this is illustrated in

Fig. 1. One problem that can arise with circular BIST is limit cycling,

which occurs when the circuit gets stuck in a state cycle and repeat-

edly generates the same test patterns. It should be noted that for large

circuits, as circular BIST was originally proposed for in [5], limit cy-

cling is very unlikely to occur. However, for control circuits and other

smaller circuits, identifying an initial state for circular BIST that will

not result in limit cycling is a problem. Another problem is that the

1063-8210/02$17.00 © 2002 IEEE
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Fig. 1. Example of state transition diagram with four subgraphs.

set of test patterns that detect fault F1 may be in a disjoint set of state

transition subgraphs from the set of test patterns that detect fault F2. In

that case, no initial seed can be found that will allow both faults to be

detected. These problems do not arise with an LFSR because there is

only one cycle (besides the degenerate all-zero state), and the distance

between states that detect different faults can be reliably predicted with

probabilistic analysis.

There are three things that can limit the fault coverage achieved by

circular BIST.

1) Limit Cycling. If the circular chain gets stuck in a cycle before

a sufficient set of test patterns is generated, than the fault cov-

erage can be low. Simulation can be used to check whether limit

cycling occurs. If so, then a different initial seed can be tried, or

the chain can be reordered. However, results were shown in [12]

that while these techniques can help, they do not always work.

A method for finding the longest acyclic path in the state transi-

tion diagram was described in [12]. This approach works in some

cases but is computationally intensive for large circuits.

2) Correlations in Test Patterns. It may not be possible to generate

test patterns for some faults regardless of the test length because

of correlations due to the circuit structure. Avoiding register adja-

cency helps reduce this problem considerably, but there are many

other sources of correlation that can occur due to reconvergence

after multiple clock cycles. Some examples of a few different

types of correlation that can occur in circular BIST structures

were shown in [9]. Techniques for analyzing word-level correla-

tion are described in [13].

3) Random-Pattern-Resistant (RPR) Faults. RPR faults can only be

detected by a relatively small number of test patterns, and thus

are hard to detect in any pseudorandom BIST scheme. Inserting

test points to increase the detection probability for RPR faults

is complicated in circular BIST. Inserting a control point com-

pletely changes the sequence of test patterns that are generated,

hence simulation-based approaches for test point insertion are

not effective. Moreover, inserting control points can introduce

register adjacency. However, observation-point insertion can be

still be used.

This paper proposes a unified approach for solving all three of the

problems listed above. The idea is to add a small amount of logic that

causes the circular chain to skip to particular states. This “state skip-

ping” logic alters the state transition diagram. If simulation indicates

that the circular chain gets stuck in a limit cycle, then state-skipping

logic can be used to jump out of the cycle. State-skipping logic can

also be used to break correlations in the test patterns, and it can be used

to jump to states that detect random-pattern-resistant faults.

An example of state-skipping logic is shown in Fig. 2. When the

chain reaches state 1011, if the next state in the sequence would nor-

mally be 1000, then the state-skipping logic would cause it to skip to

state 1100 instead. Note that the state-skipping logic is added in the

Fig. 2. Example of state-skipping logic.

Fig. 3. Example of finding decoding cube d.

chain interconnect and not in the functional logic, so no delay is added

on system paths.

A systematic procedure is described for designing state-skipping

logic that provides a desired fault coverage. With this procedure, high

fault coverage for circular BIST can reliably be achieved. This is some-

thing that chain reordering and initial seed selection alone cannot guar-

antee.

This paper is organized as follows. In Section II, an overview of

the procedure for adding state-skipping logic to achieve a desired fault

coverage is given. In Section III, the process of designing the state-

skipping logic is described in detail. In Section IV, combining state

skipping with observation-point insertion is discussed for improving

coverage of RPR faults. In Section V, experimental results are shown

comparing parallel BIST, normal circular BIST, and circular BIST with

state-skipping logic. Section VI presents conclusions.

II. OVERVIEW OF PROCEDURE

Given a circular BIST structure and the initial state, this section de-

scribes a systematic procedure for adding state-skipping logic that will

provide a desired fault coverage. The basic idea is to do fault simulation

for the sequence of states that is generated in the circular chain until a

point is reached where no new faults are being detected. At that point,

state-skipping logic is added to jump to a new state that detects a fault

that is currently undetected and hopefully gets the circular chain in a

new state transition subgraph that will allow additional faults to be de-

tected. The decision on when to give up on the current state sequence

and add state-skipping logic is governed by a parameter m. If no new

faults have been detected by the lastm states, then state-skipping logic

is added. The parameter m can be used to trade off between hardware

area and test time. Smaller values of m will result in more state-skip-

ping logic and a shorter overall test length. Larger values of m will

result in a longer overall test length, but less state-skipping logic will

be needed.

The procedure is described step by step below.

1) Do fault simulation until no new faults are detected by the last

m states. Fault simulation is done for the sequence of states that

is generated in the circular chain. If no new faults are detected

by the lastm states, then state-skipping logic is added.
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Fig. 4. Circular chain with state-skipping logic for the example in Fig. 3.

2) Compare test cubes for the undetected faults with the last m

states to identify the test cube c and state s that differ in the

fewest number of bits (minimum Hamming distance). Test cubes

for the undetected faults are found by automatic test pattern gen-

eration (ATPG) and leaving unspecified inputs as “don’t cares”

(Xs). This ATPG need only be done the first time, and then the

test cubes can be stored and reused in subsequent iterations. The

reason for finding the test cube c and state s that differ in the

fewest number of bits is to minimize the amount of state-skip-

ping logic that is required. None of the lastm states detected any

faults, so it does not matter which of those states are skipped.

3) Add state-skipping logic to cause the sequence to jump from the

state directly preceding state s to a state that matches the test

cube c. The state-skipping logic alters the sequence of the cir-

cular chain so that instead of going to state s, the sequence jumps

to a state that matches the test cube c. The state-skipping logic is

designed in a way that preserves the same state sequence up to,

but not including, state s. Thus, all of the faults that have been

detected up to state s will remain detected, and there is no need

to resimulate the circular chain. The procedure for designing the

state-skipping logic is described in detail in Section III.

4) If the fault coverage is still not sufficient, then loop back to step

1). The procedure iterates and continues to add state-skipping

logic until the fault coverage is sufficient.

This procedure uses a hill-climbing approach to continue adding

state-skipping logic until the fault coverage is sufficient. Because the

state-skipping logic preserves the previous sequence, time-consuming

resimulation is not necessary. The procedure is guaranteed to eventu-

ally achieve the required fault coverage. The overall test length will

depend strongly on the value of m. If the test length becomes too long,

then the procedure can be repeated with a smaller value of m.

III. STATE-SKIPPING LOGIC

Step 3) of the procedure involves adding state-skipping logic to alter

the sequence of the circular chain so that instead of going to state s,

the sequence jumps to a state that matches a test cube c. The process

of designing this state-skipping logic is the subject of this section.

The first step is to find the largest cube d that contains the state that

directly precedes state s (this state will be labeled state p) in the se-

quence but does not contain any of the other previous states in the se-

quence. Cube d is used to decode state p and initiate the state skipping.

To preserve the sequence, cube d should not decode any of the other

previous states in the sequence that come before state p. It is desirable

to have cube d be as large as possible so that the corresponding AND

will have as few inputs as possible.

Finding the largest cube d is done by finding a minimum column

cover in a Boolean conflict matrix. The conflict matrix has one row for

each state in the sequence that comes before state p. So if state p is

the (L+1)th state in the sequence, then there are L rows in the conflict

Fig. 5. Example of control logic for circular BIST with state skipping.

matrix. The columns in the conflict matrix correspond to the bits in the

state. So if there are n flip-flops in the circular chain, then there are

n columns in the conflict matrix. For each of the L states that come

before state p, the corresponding row in the conflict matrix is formed

by placing a “1” in each column where the bit value of the state is

different from the bit value of state p and placing a “0” in each column

with the bit values are the same. A set of columns covers the matrix if

every row has a “1” in at least one of the columns in the set. The literals

in the largest cube d correspond to the set of columns in the minimum

column cover of the conflict matrix. This set of literals is compatible

with state p, but conflicts with all L states that come before state p in

the sequence. Finding the minimum column cover is an NP-complete

problem, but efficient heuristics and techniques exist for solving it [14].

An example of forming the conflict matrix and finding the largest

cube d is shown in Fig. 3. The conflict matrix is covered by columns 3

and 4, so cube d has two literals that correspond to the last two bits in

state p.

When the circular chain reaches state p, the decoding cube d is ac-

tivated and the state-skipping is performed by complementing the bits

in the next state (i.e., state s) that differ from the test cube c to force the

next state of the circular chain to match test cube c. Complementing

the bits of the next state is performed by adding exclusive-OR gates

in front of each flip-flop where state s differs from test cube c. The

exclusive-OR gates are added in the chain interconnect and not on the

functional path. This is done so that no delay is added to system paths.

Fig. 4 shows the circular chain with state-skipping logic for the ex-

ample in Fig. 3. The second and third bits in state s differ from the

second and third bits in test cube d, so exclusive-OR gates are added in

front of the corresponding flip-flops.

One question that arises is whether the state-skipping logic that is

added is itself tested. The way that it is constructed ensures that it will

be tested by the patterns that are generated during circular BIST. The

number of literals in the decoding cube is minimized such that if any

input to the corresponding AND gate is removed due to a stuck-at fault,

then the cube would decode some pattern earlier in the sequence and

therefore change the sequence in the presence of the fault. If the output

of the AND gate is stuck at zero, then the state skipping would not occur

and the circular chain would follow the normal sequence. So any fault

in the state-skipping logic is guaranteed to change the sequence of the

circular chain. The only way that the fault would not be detected is if

signature aliasing occurs.
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TABLE I
RESULTS FOR ISCAS’89 BENCHMARK CIRCUITS

TABLE II
RESULTS FOR OBSERVATION-POINT INSERTION

Fig. 5 shows an example of how the control logic can be imple-

mented for circular BIST with state-skipping logic. The circular BIST

cell that is shown is the one proposed in [4].

IV. COMBINING STATE SKIPPING AND OBSERVATION-POINT INSERTION

For circuits that contain random pattern resistant faults, state-skip-

ping logic can be used to jump to states where the random pattern re-

sistant faults will be detected. However, in some circuits where there is

a cone of logic that is difficult to observe, a lot of state skipping may be

necessary to detect all the faults in that cone. A more efficient solution

would be to insert some observation points to alleviate the observability

problem.

Combining observation-point insertion with state skipping is very

easy. When a point is reached where very few faults are being detected

by additional state skipping, a path-tracing-based observation-point in-

sertion procedure (e.g., [15], [16]) can be used to analyze the patterns

applied so far and select the optimal location for observation points to

increase the fault coverage. If the response of the observation points

is captured in a separate miltiinput signature register (MISR), then the

sequence of states visited during circular BIST will be preserved.

Another approach would be to use a testability measure-based test

point insertion procedure (e.g., [17] and [18]) right away before the

state-skipping procedure is used. This would insert test points in the

design at the outset to reduce the random pattern resistance of the de-

sign.

V. EXPERIMENTAL RESULTS

Experimental results were generated for some of the ISCAS’89 [19]

benchmark circuits comparing parallel BIST, normal circular BIST,

and circular BIST with state-skipping logic. The procedure described

in this paper was used to insert the state-skipping logic. The results

are shown in Table I. For each circuit, the factored form literal count

is shown along with the size of the circular chain. The circuits were

simulated for up to 50 000 patterns. The same initial seed was used for

each of the three BIST schemes. The test length and fault coverage are

shown for each scheme. The fault coverage is for detectable faults. For

the parallel BIST approach, an LFSR was used to apply pseudorandom

patterns, and a separate MISR was used to compact the response. For

the normal circular BIST scheme with no state-skipping logic, if the

circular chain got stuck in a limit cycle, then the number of distinct

test patterns that were generated are shown in parenthesis. For the cir-

cular BIST with state-skipping logic, the number of extra literals that

are added for the state-skipping logic is shown, and a percentage over-

head figure is computed by comparing the number of extra literals for

the state-skipping logic with the number of literals in the functional

circuit.

Several observations can be made about the results. The fault cov-

erage for circular BIST in most of the smaller circuits (s208, s298,

s344, s382, s510, s526) was limited by the fact that the circular chain

got stuck in a cycle. Those circuits were very random pattern testable,

and parallel BIST achieved complete fault coverage in a very short test

length. A small amount of state-skipping logic was sufficient to allow

the circular chain to jump out of the limit cycles and achieve 100%

fault coverage. The area overhead of the state-skipping logic is much

less than what is required for a separate MISR or a CBILBO register to

perform parallel BIST. Hence, these results indicate that circular BIST

with state skipping is an attractive and effective approach for BIST of

small controllers.

For the circuits that contain random-pattern-resistant faults, the fault

coverage for both parallel BIST and circular BIST was limited. In some

cases, the added correlation in the test patterns generated in circular

BIST provided slightly more fault coverage than the purely pseudo-

random patterns generated in parallel BIST (e.g., s641 and s9234),

and in some cases it provided less fault coverage (e.g., s420, s1196,
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s5378). The fault coverage for s5378was quite a bit lower. For the cir-

cuits with a relatively small number of random-pattern-resistant faults,

the results indicate that adding state-skipping logic is an efficient way

to boost the fault coverage up to 100%.

For the circuits that had a large number of random-pattern-resistant

faults (e.g., s420 and s5378), adding state-skipping logic is not so

efficient. As was described in Section IV, a more effective approach

for RPR circuits would be to combine state skipping with observa-

tion-point insertion. Results are shown in Table II for combining state

skipping with observation-point insertion for the RPR circuits. The ob-

servation-point procedure described in [16] was used. As can be seen

from the results, adding a small number of observation points signifi-

cantly reduces the amount of additional logic needed for state skipping.

It should be noted that some means for observing the observation points

is required, either with a condensation network [20] or an MISR (which

may already exist in the boundary scan).

VI. CONCLUSION

A systematic approach for reliably achieving high fault coverage

with circular BIST was presented. State-skipping logic is inserted into

the circular chain to improve the test patterns that are generated during

circular BIST. The state-skipping logic is used to jump out of limit

cycles, break correlations in the test patterns, and jump to states that

detect random-resistant faults. Result indicate that, in many cases, this

approach can boost the fault coverage of circular BIST to match that of

conventional parallel BIST approaches while still maintaining a signif-

icant advantage in terms of hardware overhead and control complexity.
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Combined Data-Driven and Event-Driven Scheduling

Technique for Fast Distributed Cosimulation

Dohyung Kim, Chan-Eun Rhee, and Soonhoi Ha

Abstract—Fast distributed cosimulation is a challenging problem

for the embedded system design. The main theme of this paper is to
increase the simulation speed by reducing the frequency of intersimulator
communications, reducing the active duration of simulators, and utilizing

the parallelism of component simulators. Those enhancements are
accomplished by the proposed virtual synchronization technique, which

combines event-driven and data-driven simulation methods. Experimental
results show that the proposed technique can boost the cosimulation speed

significantly compared with the previous conservative approaches.

Index Terms—Cosimulation, distributed simulation, time accurate sim-
ulation, virtual synchronization.

I. INTRODUCTION

A complex embedded system usually consists of software modules

and hardware modules that are mapped to heterogeneous components

such as programmable processors, customized application-specific in-

tegrated circuits, and Internet protocols (IPs). Though several efforts

are invested to model all modules in a single simulation platform, a

current practice of system-level simulation is likely to involve commu-

nication and synchronization between component simulators, some-

times geographically distributed, to make it a distributed cosimula-

tion. For time-accurate simulation, component simulators are basically

event-driven or time-driven so that the simulator processes events in

chronological order [1].

As system complexity increases and fast design turnaround time is

required, increasing the simulation performance becomes more impor-

tant especially because the simulation complexity is a superlinear func-

tion of design size. The performance bottleneck of distributed event-
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