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Abstract

A signed graph is a pair (G, σ), where G is a graph (loops and multi edges
allowed) and σ : E(G) → {+,−} is a signature which assigns to each edge of G a
sign. Various notions of coloring of signed graphs have been studied. In this paper,
we extend circular coloring of graphs to signed graphs. Given a signed graph (G, σ)
with no positive loop, a circular r-coloring of (G, σ) is an assignment ψ of points of
a circle of circumference r to the vertices of G such that for every edge e = uv of G,
if σ(e) = +, then ψ(u) and ψ(v) have distance at least 1, and if σ(e) = −, then ψ(v)
and the antipodal of ψ(u) have distance at least 1. The circular chromatic number
χc(G, σ) of a signed graph (G, σ) is the infimum of those r for which (G, σ) admits a
circular r-coloring. For a graph G, we define the signed circular chromatic number
of G to be max{χc(G, σ) : σ is a signature of G}.

We study basic properties of circular coloring of signed graphs and develop tools
for calculating χc(G, σ). We explore the relation between the circular chromatic
number and the signed circular chromatic number of graphs, and present bounds
for the signed circular chromatic number of some families of graphs. In particular,
we determine the supremum of the signed circular chromatic number of k-chromatic
graphs of large girth, of simple bipartite planar graphs, d-degenerate graphs, simple
outerplanar graphs and series-parallel graphs. We construct a signed planar simple
graph whose circular chromatic number is 4 + 2

3 . This is based and improves on a
signed graph built by Kardos and Narboni as a counterexample to a conjecture of
Máčajová, Raspaud, and Škoviera.
Mathematics Subject Classifications: 05C88, 05C89
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1 Introduction

Assume r > 1 is a real number. We denote by Cr the circle of circumference r, obtained
from the interval [0, r] by identifying 0 and r. Points in Cr are real numbers from [0, r).
For two points x, y on Cr, the distance between x and y on Cr, denoted by d(mod r)(x, y),
is the length of the shorter arc of Cr connecting x and y. Given two real numbers
a and b, a, b ∈ [0, r), the interval [a, b] on Cr is a closed interval of Cr in clockwise
orientation of the circle whose first point is a and whose end point is b. For example
if r > 4, then [4, 1] = {t | 4 6 t < r, or 0 6 t 6 1}. Intervals [a, b), (a, b] and
(a, b) are defined similarly. The length of the interval [a, b] is denoted by `([a, b]). Thus
d(mod r)(x, y) = min{`([x, y]), `([y, x])}.

Given a graph G, a circular r-coloring of G is a mapping f : V (G) → Cr such that
for any edge uv ∈ E(G), d(mod r)(f(u), f(v)) > 1. The circular chromatic number of G is
defined as

χc(G) = inf{r : G admits a circular r-coloring}.
The concept of circular coloring of graphs was introduced by Vince in 1988 in [26],

where a different definition was given and the parameter was called the “star chromatic
number”. The term “circular chromatic number” was coined in [33] and the above defini-
tion was given in [30]. One important feature of the circular chromatic number is that
for any graph G, χ(G) − 1 < χc(G) 6 χ(G) and hence χ(G) = dχc(G)e. In this sense,
the invariant χc(G) is a refinement of χ(G) and it contains more information about the
structure of G. The circular chromatic number of graphs has been studied extensively in
the literature, and the reader is referred to [33, 34] for surveys on this subject.

A signed graph is a graph G = (V,E) (allowing loops and multi-edges) together with
an assignment σ : E → {+,−}, denoted (G, σ). An edge with sign − is a negative edge
and an edge with sign + is a positive edge. If (G, σ) is a signed graph in which all the
edges are positive (respectively, negative), then (G, σ) is denoted as (G,+) (respectively,
(G,−)). When the signature is clear from the context, we may omit the signature and
denote the signed graph by G̃.

In this paper, we extend the concept of circular coloring of graphs to signed graphs.
We remark that an extension of circular coloring to signed graphs was also introduced in
[11]. However, the extension defined in this paper is different. The difference between
these two extensions is further discussed in Section 8.

For each point x on Cr, the unique point of distance r
2
from x is called the antipodal

of x and is denoted by x̄. Given a set A of points on Cr, the antipodal of A, denotes by
Ā, is the set of antipodals of points in A.

Definition 1. Given a signed graph (G, σ) with no positive loop and a real number r, a
circular r-coloring of (G, σ) is a mapping f : V (G)→ Cr such that for each positive edge
e = uv of (G, σ),

d(mod r)(f(u), f(v)) > 1,

and for each negative edge e = uv of (G, σ),

d(mod r)(f(u), f(v)) > 1.
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The circular chromatic number of (G, σ) is defined as

χc(G, σ) = inf{r > 1 : (G, σ) admits a circular r-coloring}.

Note that if e = uv is a negative edge, the condition d(mod r)(f(u), f(v)) > 1 is equiv-
alent to d(mod r)(f(u), f(v)) 6 r

2
− 1. This definition can be equivalently viewed as an

assignment ϕ of intervals of length 1 (whose center is determined by f) to the vertices
such that for a positive edge uv, the intervals ϕ(u) and ϕ(v) do not intersect and for a
negative edge uv, the intervals ϕ(u) and ϕ(v) do not intersect.

Observe that if (G, σ) has no edge, then χc(G, σ) = 1, and if (G, σ) has an edge, either
positive or negative, then (G, σ) is not circular r-colorable for r < 2. As graphs with no
edge are not interesting, in the remainder of the paper, we always assume that r > 2.

It follows from the definition that for any graph G, χc(G,+) = χc(G). So the circular
chromatic number of a signed graph is indeed a generalization of the circular chromatic
number of a graph.

Definition 2. For a simple graph G, the signed circular chromatic number χsc(G) of G is
defined as

χsc(G) = max{χc(G, σ) : σ is a signature of G}.

The circular chromatic number of a graph is a refinement of its chromatic number:
for any positive integer k, a graph G is circular k-colorable if and only if G is k-colorable.
The same is also true for the chromatic number of signed graphs based on the notion of
0-free coloring defined by Zaslavsky [27].

Definition 3. Given a signed graph (G, σ) and a positive integer k, a 0-free 2k-coloring
of (G, σ) is a mapping f : V (G) → {±1,±2, . . . ,±k} such that for any edge e = uv of
(G, σ), f(u) 6= σ(e)f(v).

Proposition 4. Assume (G, σ) is a signed graph and k is a positive integer. Then (G, σ)
is 0-free 2k-colorable if and only if (G, σ) is circular 2k-colorable.

Proof. Assume f : V (G)→ {±1,±2, . . . ,±k} is any mapping. Let

g(v) =

{
f(v)− 1, if f(v) ∈ {1, 2, . . . , k}
−f(v) + k − 1, if f(v) ∈ {−1,−2, . . . ,−k}.

It is straightforward to verify that g is a circular 2k-coloring of (G, σ) if and only if f is
a 0-free 2k-coloring of (G, σ).

The number of colors used in the 0-free coloring is always even. There have been
several attempts to introduce an analogue coloring which uses an odd number of colors.
The term “0-free" indeed distinguishes this coloring from a similar coloring where 0 is
added to the set of colors and the set of vertices colored with 0 induces an independent
set. To be precise, a (2k + 1)-coloring of a signed graph uses colors {0,±1, . . . ,±k}, and
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the constraint is still the same: for any edge e = uv of G, f(u) 6= σ(e)f(v). In a (2k+ 1)-
coloring of a signed graph, the color 0 is different from the other colors. The antipodal of
0 is 0 itself. The set of vertices of color 0 is an independent set of G, and for every other
color i, vertices colored by color i may be joined by negative edges. In some sense, for
any odd integer k, (2k, 2)-coloring of signed graphs defined in Section 2 provides a more
natural generalization of 0-free coloring to k-coloring of signed graphs, where the colors
are symmetric.

In this paper, we shall study basic properties of circular coloring of signed graphs. We
shall explore the relation between the circular chromatic number and the signed circular
chromatic number of graphs, and prove that for any graph G, χc(G) 6 χsc(G) 6 2χc(G).
We prove that the upper bound is tight even when restricted to graphs of arbitrary
large girth or bipartite planar graphs. Furthermore, we construct a signed planar simple
graph whose circular chromatic number is 4 + 2

3
. Máčajová, Raspaud, and Škoviera [16]

conjectured that every signed planar simple graph is 4-colorable. By Proposition 14,
this is equivalent to say that χsc(G) 6 4 for every planar graph G. Kardos and Narboni
[12] refuted this conjecture by constructing a non-4-colorable signed planar graph. Our
construction improves on the example of Kardos and Narboni. Thus we show that the
supremum of the signed chromatic number of planar graphs is between 4 + 2

3
and 6. The

exact value remains an open problem.

2 Equivalent definitions

There are several equivalent definitions of the circular chromatic number of graphs. Some
of these definitions are also extended naturally to signed graphs.

Note that for s, t ∈ [0, r), d(mod r)(s, t) = min{|s−t|, r−|s−t|}. So a circular r-coloring
of a graph can be defined as follows, which is sometimes more convenient.

Definition 5. A circular r-coloring of a signed graph (G, σ) is a mapping f : V (G) →
[0, r) such that for each positive edge uv,

1 6 |f(u)− f(v)| 6 r − 1

and for each negative edge uv,

either |f(u)− f(v)| 6 r

2
− 1 or |f(u)− f(v)| > r

2
+ 1.

If r is a rational number, then in a circular r-coloring of a signed graph (G, σ), it suffices
to use a finite set of colors from the interval [0, r). We may assume that r = p

q
, where p

is even and subject to this condition p
q
is in its simplest form. For i ∈ {0, 1, . . . , p − 1},

let Ii be the half open, half closed interval [ i
q
, i+1

q
) of [0, r). Then ∪p−1

i=0 Ii is a partition of
[0, r). Assume f : V (G) → [0, r) is a circular r-coloring of a signed graph (G, σ). Then
for each vertex v of G, let g(v) = i

q
if and only if f(v) ∈ Ii. If e = uv is a positive edge,

then 1 6 |f(u) − f(v)| 6 p
q
− 1. This implies that 1 − 1

q
< |g(u) − g(v)| < p

q
− 1 + 1

q
.
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Since q|g(u) − g(v)| is an integer, we conclude that 1 6 |g(u) − g(v)| 6 p
q
− 1. If e = uv

is a negative edge, then either |g(u) − g(v)| < p
2
− 1 + 1

q
or |g(u) − g(v)| > p

2
+ 1 − 1

q
.

Since p is even, p
2
is an integer. As q|g(u) − g(v)| is an integer, we conclude that either

|g(u) − g(v)| 6 p
2
− 1 or |g(u) − g(v)| > p

2
+ 1. It is crucial that p is an even integer.

For otherwise p
2
is not an integer, and we cannot conclude that |g(u) − g(v)| 6 p

2
− 1 or

|g(u)− g(v)| > p
2

+ 1. Indeed, if p is odd, then the set {0, 1
q
, . . . , p−1

q
} is not closed under

taking antipodal points.
The above observation leads to the following equivalent definition of the circular chro-

matic number of signed graphs. For i, j ∈ {0, 1, . . . , p−1}, the modulo-p distance between
i and j is

d(mod p)(i, j) = min{|i− j|, p− |i− j|}.

Given an even integer p, the antipodal color of x ∈ {0, 1, . . . , p− 1} is x̄ = x+ p
2
(mod p).

Definition 6. Assume p is an even integer and q 6 p
2
is a positive integer. A (p, q)-

coloring of a signed graph (G, σ) is a mapping f : V (G)→ {0, 1, . . . , p− 1} such that for
any positive edge uv,

d(mod p)(f(u), f(v)) > q,

and for any negative edge uv,

d(mod p)(f(u), f(v)) > q.

The circular chromatic number of (G, σ) is

χc(G, σ) = inf{p
q

: p is an even integer and (G, σ) has a (p, q)-coloring}.

Note that d(mod p)(i, j) > q is equivalent to

q 6 |i− j| 6 p− q.

A homomorphism of a graph G to a graph H is a mapping f : V (G) → V (H) such
that for every edge uv of G, f(u)f(v) is an edge of H. It is well-known and easy to
see that a graph G is k-colorable if and only if G admits a homomorphism to Kk, the
complete graph on k vertices. Similarly, circular chromatic number of graphs could also
be defined through graph homomorphism. For integers p > 2q > 0, the circular clique
Kp;q has vertex set [p] = {0, 1, . . . , p− 1} and edge set {ij : q 6 |i− j| 6 p− q}. Then a
circular p

q
-coloring of a graph G is equivalent to a homomorphism of G to Kp;q.

Definition 7. An edge-sign preserving homomorphism of a signed graph (G, σ) to a signed
graph (H, π) is a mapping f : V (G) → V (H) such that for every positive (respectively,
negative) edge uv of (G, σ), f(u)f(v) is a positive (respectively, negative) edge of (H, π).

We write (G, σ)
s.p.−→ (H, π) if there exists an edge-sign preserving homomorphism of

(G, σ) to (H, π).
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For integers p > 2q > 0 such that p is even, the signed circular clique Ks
p;q has vertex

set [p] = {0, 1, . . . , p− 1}, in which ij is a positive edge if and only if q 6 |i− j| 6 p− q
and ij is a negative edge if and only if either |i− j| 6 p

2
− q or |i− j| > p

2
+ q. If q = 1,

then Ks
p;1 is also written as Ks

p .
Note that in Ks

p;q, each vertex i is incident to a negative loop. When p
q
> 4, there are

parallel edges of different signs. Furthermore, the subgraph induced by all the positive
edges of Ks

p;q is the circular clique Kp;q, which is known to be of circular chromatic number
p
q
, thus we have χc(Ks

p;q) = p
q
.

The following lemma gives another equivalent definition of the circular chromatic
number of a signed graph.

Lemma 8. Assume (G, σ) is a signed graph, p is a positive even integer, q is a positive
integer and p > 2q. Then (G, σ) has a (p, q)-coloring if and only if (G, σ)

s.p.−→ Ks
p;q. Hence

the circular chromatic number of (G, σ) is

χc(G, σ) = inf{p
q

: (G, σ)
s.p.−→ Ks

p;q}.

As homomorphism relation is transitive, we have the following lemma.

Lemma 9. If (G, σ)
s.p.−→ (H, π), then χc(G, σ) 6 χc(H, π).

For a real number r > 2, we can also define Ks
r to be the infinite graph with vertex

set [0, r), in which xy is a positive edge if 1 6 |x− y| 6 r− 1 and xy is a negative edge if
either |x− y| 6 r

2
− 1 or |x− y| > r

2
+ 1. Then it follows from the definition that a signed

graph (G, σ) is circular r-colorable if and only if (G, σ) admits an edge-sign preserving
homomorphism to Ks

r . If r = p
q
is a rational and p is an even integer, then it follows from

the definition that Ks
p;q is a subgraph of Ks

r . On the other hand, it follows from Lemma 8
that Ks

r admits an edge-sign preserving homomorphism to Ks
p;q. Note that if r′ > r then

f : [0, r) → [0, r′) defined as f(x) = r′x
r

is an edge-sign preserving homomorphism of Ks
r

to Ks
r′ .

Lemma 10. Given even positive integers p, p′ and positive integers q, q′, satisfying q 6
p

2

and q′ 6
p′

2
, if

p

q
6
p′

q′
, then Ks

p;q

s.p.−→ Ks
p′;q′.

Proof. Let r = p
q
, r′ = p′

q′
. Then Ks

p;q

s.p.−→ Ks
r

s.p.−→ Ks
r′

s.p.−→ Ks
p′;q′ .

Assume (G, σ) is a signed graph. A switching at vertex v is to switch the signs of
edges incident to v. A switching at a set A ⊂ V (G) is to switch at each vertex in A,
that is equivalent to reversing the signs of all edges in the edge-cut E(A, V (G) \ A). A
signed graph (G, σ) is a switching of (G, σ′) if it is obtained from (G, σ′) by a sequence
of switchings. We say (G, σ) is switching equivalent to (G, σ′) if (G, σ) is a switching of
(G, σ′). It is easily observed that given a graph G, the relation “switching equivalent” is
an equivalence class on the set of all signatures on G.
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It was observed in [28] that if (G, σ) admits a 0-free 2k-coloring then every switching
equivalent signed graph (G, σ′) admits such a coloring: If c is a 0-free 2k-coloring of (G, σ),
then after a switching at a vertex v one may change the color of v from c(v) to −c(v) to
preserve the property of being a 0-free 2k-coloring. The same argument applies to circular
r-coloring.

Proposition 11. Assume (G, σ) and (G, σ′) are switching equivalent, say (G, σ′) is ob-
tained from (G, σ) by switching at a set A. Then every circular r-coloring of (G, σ)
corresponds to a circular r-coloring of (G, σ′). In particular, χc(G, σ′) = χc(G, σ).

Proof. Assume f is a (p, q)-coloring of (G, σ) and (G, σ′) is obtained from (G, σ) by
switching at a set A. Let g : V (G)→ {0, 1, . . . , p− 1} be defined as

g(v) =

{
f(v), if v ∈ V (G)− A,
f(v) + p

2
, if v ∈ A.

Here the addition f(v) + p
2
is carried out modulo p, so that f(v) + p

2
∈ {0, 1, . . . , p− 1}.

It is easy to verify that g is a (p, q)-coloring of (G, σ′).

Assume (G, σ) is a signed graph and c is a (p, q)-coloring of (G, σ) (where p is even and
subject to this condition p

q
is in its simplest form). Let A = {v : c(v) > p

2
} and let (G, σ′)

be obtained from (G, σ) by switching at A. It follows from the proof of Proposition 11
that there is a (p, q)-coloring c′ of (G, σ′) such that c′(v) 6 p

2
− 1 for each vertex v. Let

K̂s
p;q be the signed subgraph of Ks

p;q induced by vertices {0, 1, . . . , p
2
− 1}.

Definition 12. Assume (G, σ) and (H, π) are signed graphs. If there is a signed graph
(G, σ′) which is switching equivalent to (G, σ) such that (G, σ′)

s.p.−→ (H, π), then we say
(G, σ) admits a switching homomorphism to (H, π). We write (G, σ)

switch−→ (H, π) if (G, σ)
admits a switching homomorphism to (H, π).

Then we have the following lemma, which can be viewed as another definition of
circular chromatic number of signed graphs.

Lemma 13. Assume (G, σ) is a signed graph. Then

χc(G, σ) = inf{p
q

: p is even and (G, σ)
switch−→ K̂s

p;q }.

Thus, in particular, Lemma 9 and Lemma 10 can be restated with a switching homo-
morphism in place of edge-sign preserving homomorphism.

Note that in the graph K̂s
p , every pair of distinct vertices are joined by a positive edge

and a negative edge, and moreover, each vertex i is incident to a negative loop. Thus we
have the following result.

Proposition 14. A signed graph (G, σ) is (2k, 1)-colorable, or equivalently 0-free 2k-
colorable, if and only if there is a set A of vertices such that after switching at A, the
result is a signed graph whose positive edges induce a k-colorable graph.
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In the study of circular coloring of signed graphs, switching-equivalent signed graphs
are viewed as the same signed graph. The problem as which signed graphs are equivalent
was first studied by Zaslavsky [28]. We define the sign of a cycle (respectively, a closed
walk) in (G, σ) to be the product of the signs of the edges of the cycle (respectively, the
closed walk). One may observe that a switching does not change the sign of a cycle of
(G, σ). A result of Zaslavsky, fundamental in the study of signed graphs, shows that a
switching equivalent class to which (G, σ) belongs is determined by signs of all cycles of
(G, σ).

Theorem 15. [28] Two signed graphs (G, σ1) and (G, σ2) are switching equivalent if and
only if they have the same set of negative cycles.

Thus we have the following proposition (see [22] for more details).

Proposition 16. A signed graph (G, σ) admits a switching homomorphism to a signed
graph (H, π) if and only if there is a homomorphism f from G to H such that for every
closed walk W of (G, σ), W and f(W ) have the same sign.

The next lemma follows from Theorem 15.

Lemma 17. A signed graph (G, σ) admits a switching homomorphism to (H, π) if and
only if there is a mapping of vertices and edges of (G, σ) to the vertices and edges of (H, π)
which preserves adjacencies, incidences, and signs of closed walks.

For a non-zero integer `, we denote by C` the cycle of length |`| whose sign agrees
with the sign of `. So for example C−4 is a negative cycle of length 4. Observe that the
signed graph K̂s

4k;2k−1 is obtained from C−2k by adding a negative loop at each vertex.
Note that adding negative loops to a signed graph or deleting them does not affect its
circular chromatic number. So we may ignore negative loops in (G, σ). However, as a
target of switching homomorphism, negative loops are important, because we can map
two vertices connected by a negative edge to a same vertex v, provided v is incident to a
negative loop.

3 Some basic properties

Given a signed graph (G, σ) and a circular r-coloring φ of (G, σ), the partial orientation
D = Dφ(G, σ) of G with respect to the circular r-coloring φ is defined as follows: (u, v)
is an arc of D if and only if one of the following holds:

• uv is a positive edge and (φ(v)− φ(u))(mod r) = 1.

• uv is a negative edge and (φ(v)− φ(u))(mod r) = 1.

Definition 18. Assume (G, σ) is a signed graph and φ is a circular r-coloring of (G, σ).
Arcs in Dφ(G, σ) are called tight arcs of (G, σ) with respect to φ. A directed path (re-
spectively, a directed cycle) in Dφ(G, σ) is called a tight path (respectively, a tight cycle)
with respect to φ.
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Lemma 19. Let (G, σ) be a signed graph and let φ be a circular r-coloring of (G, σ). If
Dφ(G, σ) is acyclic, then there exists an r0 � r such that (G, σ) admits an r0-circular
coloring.

Proof. For a given signed graph (G, σ) and a circular r-coloring φ of (G, σ), suppose
that Dφ(G, σ) is acyclic. Moreover, we assume among all such φ, Dφ(G, σ) has minimum
number of arcs. First we show that Dφ(G, σ) has no arc. Otherwise, since Dφ(G, σ) is
acyclic, Dφ(G, σ) has an arc (v, u) such that u is a sink. Thus for every positive edge uw,
(φ(w)−φ(u))(mod r) > 1 and for every negative edge uw, (φ(w)−φ(u))(mod r) > 1. AsG
is finite, there exists an ε > 0 such that for every positive edge uw of (G, σ), (φ(w)−φ(u))
(mod r) > 1 + ε and for every negative edge uw, (φ(w)− φ(u))(mod r) > 1 + ε.

Let ψ(x) = φ(x) for x 6= u and ψ(u) = φ(u) + ε. Then ψ is a circular r-coloring of
(G, σ) and Dψ(G, σ) is a sub digraph of Dφ(G, σ), in which (v, u) is not an arc and no
new arc is created. So Dψ(G, σ) is acyclic and has fewer arcs than Dφ(G, σ), contrary to
our choice of φ.

As Dφ(G, σ) has no arc, it follows from the definition that there exists ε > 0 such that
for any positive edge uv,

1 + ε 6 |φ(u)− φ(v)| 6 r − (1 + ε)

and for any negative edge uv,

1 + ε 6 |φ(u)− φ(v)| 6 r − (1 + ε).

Let r0 = r
1+ε

and let ψ : V (G)→ [0, r′) be defined as ψ(v) = φ(v)
1+ε

. Then ψ is an r0-circular
coloring of (G, σ).

Corollary 20. If χc(G, σ) = r, then every circular r-coloring φ of (G, σ) has a tight
cycle.

The converse of Corollary 20 is also true.

Lemma 21. Given a signed graph (G, σ), χc(G, σ) = r if and only if (G, σ) is circular
r-colorable and every circular r-coloring φ of (G, σ), has a tight cycle.

Proof. One direction is proved in Corollary 20. It remains to show that if χc(G, σ) < r,
then there is a circular r-coloring φ of (G, σ) such that Dφ(G, σ) is acyclic.

Assume χc(G, σ) = r′ < r. Let ψ : V (G) → [0, r′) be a circular r′-coloring of (G, σ).
Let φ(v) = r

r′
ψ(v). Then it is easy to verify that φ is a circular r-coloring of (G, σ) and

Dφ(G, σ) contains no arc (and hence is acyclic).

Proposition 22. Any signed graph (G, σ) which is not a forest has a cycle with s positive

edges and t negative edges such that χc(G, σ) =
2(s+ t)

2a+ t
for some integer a.
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Proof. Assume χc(G, σ) = r and ψ : V (G) → [0, r) is a circular r-coloring of (G, σ).
By Lemma 21, Dψ(G, σ) contains a directed cycle B. Assume B consists of s positive
edges and t negative edges. We view the colors as the points of a circle Cr of circum-
ference r, which is obtained from the interval [0, r] by identifying 0 and r. Assume
B = (v1, v2, . . . , vs+t). If vivi+1 is a positive edge, then traversing from the colors of vi,
one unit along the clockwise direction of Cr, we arrive at the color of vi+1. If vivi+1 is a
negative edge, then from the color of vi, by first traversing r

2
unit along the anti-clockwise

direction of Cr then traversing along the clockwise direction a unit distance, we arrive at
the color of vi+1. Therefore, directed cycle B represents a total traverse along the circle
Cr distance s− ( r

2
− 1) · t, at end of which one must come back to the starting color. So

s− (
r

2
− 1)× t = r × a

for some integer a. Hence

r =
2(s+ t)

2a+ t
.

Since s + t 6 |V (G)|, and r > 2, given the number of vertices of G, there is a finite
number of candidates for the circular chromatic number of (G, σ). Thus we have the
following corollary.

Corollary 23. Assume (G, σ) is a signed graph on n vertices. Then χc(G, σ) =
p

q
for

some p 6 2n. In particular, the infimum in the definition of χc(G, σ) can be replaced by
minimum.

It also follows from Corollary 23 that there is an algorithm that determines the circular
chromatic number of a finite signed graph. Of course, determining the circular chromatic
number of a signed graph is at least as hard as determining the chromatic number of
a graph, and, hence, the problem is NP-hard and, unless P=NP, there is no feasible
algorithm for the problem. Nevertheless, it is easy to determine whether a signed graph
(G, σ) has circular chromatic number 2.

Proposition 24. Any signed graph (G, σ) with at least one edge has χc(G, σ) > 2, and
χc(G, σ) = 2 if and only if (G, σ) is switching equivalent to (G,−).

Assume χc(G, σ) = r and f : V (G) → [0, r) is a circular r-coloring of (G, σ). Let
A = {v : f(v) > r

2
}. Let (G, σ′) be obtained from (G, σ) by switching at A. Then

g(v) =

{
f(v), if f(v) < r

2

f(v)− r
2
, if f(v) > r

2

is a circular r-coloring of (G, σ′). A tight cycle B = (v1, v2, . . . , vl) with respect to f is
also a tight cycle with respect to g. However, for each edge (vi, vi+1), (g(vi), g(vi+1)) is an
arc on the circle of length r

2
along the clockwise direction.
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Recall that the core of a graph G is a smallest subgraph H of G to which G admits a
homomorphism. If (G, σ) is a signed graph and H is a subgraph of G, then we denote by
(H, σ) the signed subgraph of (G, σ), where σ in (H, σ) is considered to be the restriction
of σ to E(H). We define the sp-core of a signed graph (G, σ) to be a smallest signed
subgraph (H, σ) such that (G, σ) admits an edge-sign preserving homomorphism to (H, σ).
The switching core of a signed graph (G, σ) is a smallest signed subgraph (H, σ) such that
(G, σ) admits a switching homomorphism to (H, σ). That the sp-core and the switching
core of a finite signed graph is unique up to isomorphism and thus the well-definiteness
is shown in [20].

It follows from the definition that the switching core of (G, σ) is isomorphic to a signed
subgraph of a sp-core of (G, σ).

Lemma 25. Assume r =
p

q
is a rational, p is an even integer and with respect to this

condition
p

q
is in its simplest form. Then K̂s

p;q is the unique switching core of Ks
r .

Proof. Since K̂s
p;q is a subgraph of Ks

r and Ks
r
switch−→ K̂s

p;q, it suffices to show that K̂s
p;q is a

switching core, i.e., it is not switching homomorphic to any of its proper signed subgraphs.
Assume to the contrary that there is a switching homomorphism of K̂s

p;q to a proper
signed subgraph of Ks

r , say (H, σ). As (H, σ)
switch−→ K̂s

p;q and K̂s
p;q

switch−→ (H, σ), we have
χc(H, σ) = χc(K̂

s
p;q) = p

q
.

Let φ be a switching homomorphism of (H, σ) to K̂s
p;q. By Corollary 20, there is a

tight cycle C with respect to φ. Assume C = v1v2 · · · vl is a cycle of length l. It follows
from the definition of tight cycle that φ(vi+1)−φ(vi) = q(mod p

2
). Thus lq = mp

2
for some

positive integer m. Since (p
2
, q) = 1, we conclude that l > p

2
. So |V (H)| > |V (C)| = l >

p
2

= |V (K̂s
p;q)| and hence (H, σ) = K̂s

p;q.

Lemma 26. Assume r =
p

q
is a rational, p is an even integer and with respect to this

condition
p

q
is in its simplest form. Then Ks

p;q is the unique sp-core of Ks
r .

Proof. As Ks
r

s.p.−→ Ks
p;q, it is enough to prove that Ks

p;q is a sp-core. Let (H, σ) be
the sp-core of Ks

p;q which is a proper subgraph and let ϕ be an edge-sign preserving
homomorphism of Ks

p;q to (H, σ). Since any edge-sign preserving homomorphism is, in
particular, a switching homomorphism and by Lemma 25, K̂s

p;q is a subgraph of (H, σ).
Observe that for each vertex u of K̂s

p;q there are two corresponding vertices u1 and u2 of
Ks
p;q such that a switching at u1 gives u2. Furthermore, there exists a positive edge u1u2

in Ks
p;q. So ϕ(u1) 6= ϕ(u2). Moreover ϕ(vi) 6= ϕ(uj), for any i, j ∈ {1, 2} and for any other

vertex v of K̂s
p;q, as otherwise we have an edge-sign preserving homomorphism of K̂s

p;q to
its proper subgraph by mapping u to v. It is a contradiction.
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4 Circular chromatic number vs. signed circular chromatic num-
ber

The following lemma follows from the definitions.

Lemma 27. For any integers p, q, satisfying p > 2q > 2, for any i, j ∈ [p], ij is an edge
of Kp;q if and only if ij is both a positive edge and a negative edge of K̂s

2p;q.

Let D be the signed graph on two vertices u and v which are adjacent by two edges:
one positive, another negative. This signed graph normally referred to as digon.

Corollary 28. For any simple graph G, let (G′, τ) be obtained from G by replacing each
edge of G by a digon. Then χc(G′, τ) = 2χc(G).

For a graph G and an arbitrary signature σ, with the definition of (G′, τ) given in the
previous corollary, we have (G, σ) ⊂ (G′, τ), thus

Corollary 29. For every graph G, χsc(G) 6 2χc(G).

As adding or deleting negative loops does not affect the circular chromatic number,
the signed graph (G, σ) obtained from Kp;q by replacing each edge with a pair of positive
and negative edges has circular chromatic number 2p

q
. So Corollary 29 is tight. However,

this signed graph has girth 2, i.e., has parallel edges. The following result shows that the
bound in Corollary 29 is also tight for graphs of large girth.

Theorem 30. For any integers k, g > 2, for any ε > 0, there is a graph G of girth at
least g satisfying that χ(G) = k and χsc(G) > 2k − ε.

The proof of Theorem 30 uses the concept of augmented tree introduced in [1]. A
complete k-ary tree is a rooted tree in which each non-leaf vertex has k children and all
the leaves are of the same level (the level of a vertex v is the distance from v to the
root). For a leaf v of T , let Pv be the unique path in T from the root to v. Vertices in
Pv − {v} are ancestors of v. A q-augmented k-ary tree is obtained from a complete k-ary
tree by adding, for each leaf v, q edges connecting v to q of its ancestors. These q edges
are called the augmenting edges from v. For positive integers k, q, g, a (k, q, g)-graph is a
q-augmented k-ary tree which is bipartite and has girth at least g. The following result
was proved in [1].

Lemma 31. For any positive integers k, q, g > 2, there exists a (k, q, g)-graph.

Assume T is a complete k-ary tree. A standard labeling of the edges of T is a labeling
φ of the edges of T such that for each non-leaf vertex v, for each i ∈ {1, 2, . . . , k}, there is
one edge from v to one of its child labeled by i. Given a k-coloring f : V (T )→ [k] of the
vertices of T (which does not need to be proper), the f -path Pf = (v1, v2, . . . , vm) of T
is the path from the root vertex v1 to a leaf vm of T so that for each i = 1, 2, . . . ,m− 1,
f(vi) = φ(vivi+1).

Proof of Theorem 30
Assume k, g > 2 are integers. We shall prove that for any integer p, there is a graph

G for which the followings hold:
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1. G has girth at least g and chromatic number at most k.

2. There is a signature σ of G such that (G, σ) is not (2kp, p+ 1)-colorable.

Let H be a (2kp, k, 2kg)-graph with underline tree T . Let φ be a standard 2kp-labeling
of the edges of T . For v ∈ V (T ), denote by `(v) the level of v, i.e., the distance from v to
the root vertex in T . Let θ(v) = `(v)(mod k).

For each leaf v of T , let uv,1, uv,2, . . . , uv,k be the vertices on Pv that are connected to
v by augmenting edges. Let u′v,i ∈ Pv be the closest descendant of uv,i with θ(u′v,i) = i
and let ev,i be the edge connecting u′v,i to its child on Pv.

Let sv,i = φ(ev,i) and let

Av,i = {sv,i, sv,i + 1, . . . , sv,i + p}, Bv,i = {a+ kp : a ∈ Av,i}, Cv,i = Av,i ∪Bv,i.

The addition above are carried out modulo 2kp.
As |Cv,i| = 2(p + 1) and ∪ki=1Cv,i ⊆ [2kp], there exist distinct indices i, j such that

Cv,i ∩ Cv,j 6= ∅.
Note that Bv,i is a kp-shift of Av,i. So if Av,i ∩ Av,j 6= ∅, then Bv,i ∩ Bv,j 6= ∅. In this

case,
d(mod 2kp)(φ(ev,i), φ(ev,j)) 6 p.

Otherwise Av,i ∩Bv,j 6= ∅ (and hence Bv,i ∩ Av,j 6= ∅) and

d(mod 2kp)(φ(ev,i), φ(ev,j)) 6 p.

Let L be the set of leaves of T . For each v ∈ L, we define one edge ev on V (T ) as
follows:

• If d(mod 2kp)(φ(ev,i), φ(ev,j)) 6 p, then let ev be a positive edge connecting u′v,i and
u′v,j.

• If d(mod 2kp)(φ(ev,i), φ(ev,j)) 6 p, then let ev be a negative edge connecting u′v,i and
u′v,j.

Let (G, σ) be the signed graph with vertex set V (T ) and with edge set {ev : v ∈ L}, where
the signs of the edges are defined as above. We shall show that (G, σ) has the desired
properties.

First observe that θ is a proper k-coloring of G. So G has chromatic number at most
k.

Next we show that G has girth at least g. For each edge ev = u′v,iu
′
v,j of G, let Bv

be the path of H which is the union of the subpath of Pv from u′v,i to uv,i and the path
uv,ivuv,j and the subpath of Pv from uv,j to u′v,j. Then Bv has length at most 2k. If C is
a cycle in G, then replace each edge ev of C by the path Bv, we obtain a cycle in H. As
H has girth at least 2kg, we conclude that C has length at least g and hence G has girth
at least g.

Finally, we show that (G, σ) is not (2kp, p+ 1)-colorable. Assume f is a (2kp, p+ 1)-
coloring of (G, σ). As f is a 2kp-coloring of the vertices of T , there is a unique f -path
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Pv. Assume ev = u′v,iu
′
v,j. It follows from the definition of f -path that f(u′v,i) = φ(ev,i)

and f(u′v,j) = φ(ev,j). It follows from the definition of ev that if ev is a positive edge, then
d(mod 2kp)(φ(ev,i), φ(ev,j)) 6 p. If ev is a negative edge, then d(mod 2kp)(φ(ev,i), φ(ev,j)) 6 p.
This is in contrary to the assumption that f is a (2kp, p+ 1)-coloring of (G, σ).

Remark: The graph constructed above is shown to have chromatic number at most k.
However, since 2kp

p+1
< χc(G, σ) 6 2χ(G), we conclude that χ(G) = k when p + 1 > 2k.

It is not known whether there is a finite k-chromatic graph of girth at least g and with
χsc(G) = 2k. Also it is unknown whether for every rational p

q
and integer g and any ε > 0,

there is a graph G with χc(G) 6 p
q
and χsc(G) > 2p

q
− ε.

A graph G is called k-critical if χ(G) = k and for any proper subgraph H of G,
χ(H) = k− 1. The following result about circular chromatic number of critical graphs of
large girth was proved in [33].

Theorem 32. For any integer k > 3 and ε > 0, there is an integer g such that any
k-critical graph of girth at least g has circular chromatic number at most k − 1 + ε.

As a consequence of Theorem 32 and Corollary 29, we know that for any integer k > 3
and ε > 0, there is an integer g such that any k-critical graph G of girth at least g has
signed circular chromatic number at most 2k − 2 + ε. However, this bound is not tight.
The following proposition follows from Proposition 14.

Proposition 33. If G is a k-critical graph, then χsc(G) 6 2k − 2.

Proof. Let σ be a signature on G. If (G, σ) = (G,+), then χc(G, σ) 6 χ(G, σ) = χ(G) =
k. If σ(e) = − for some edge e, then the subgraph of G induced by positive edges has
chromatic number at most k − 1. Hence χc(G, σ) 6 2(k − 1).

5 Signed indicator

In the study of coloring and homomorphism of graphs, using gadgets to construct new
graphs from old ones is a fruitful tool. In this section, we explore the same idea for signed
graph coloring.

Definition 34. A signed indicator I is a triple I = (Γ, u, v) such that Γ is a signed graph
and u, v are two distinct vertices of Γ.

Definition 35. Assume Ω is a signed graph, I = (Γ, u, v) is a signed indicator and e = xy
is an (either positive or negative) edge of Ω. By replacing e with a copy of I, we mean
the following operation: Take the disjoint union of Ω and I, delete the edge e from Ω,
identify x with u and identify y with v.

There is a subtle issue in the above definition. An edge e = xy is an unordered pair.
So we can write it as e = yx as well. However, by identifying y with u and identifying
x with v, the resulting signed graph is different from the one as defined above. To avoid
such confusion, it is safer to first orient the edges of Ω and then replace the directed edge e
with I. However, for our usage in this paper, the difference does not affect our discussion,
so we just say replace the edge e with I.
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Definition 36. For a graph G and a signed indicator I, we denote by G(I) the signed
graph obtained from G by replacing each edge with a copy of I.

For a signed graph Ω and two signed indicators I+, I−, we denote by Ω(I+, I−) the
signed graph obtained from Ω by replacing each positive edge with a copy I+ and replacing
each negative edge with a copy of I−.

Definition 37. Assume I = (Γ, u, v) is a signed indicator and r > 2 is a real number.
For a, b ∈ [0, r), we say the color pair (a, b) is feasible for I (with respect to r) if there is
a circular r-coloring φ of Γ such that φ(u) = a and φ(v) = b.

Note that if (a, b) is feasible for I, then for any t ∈ [0, r), (a + t, b + t) and (−a,−b)
are also feasible for I. Here the calculation is modulo r. Thus if we know feasible pairs
of the form (0, b) for b ∈ [0, r

2
], then we know all the feasible pairs.

Definition 38. Assume I = (Γ, u, v) is a signed indicator and r > 2 is a real number.
Let

Z(I, r) = {b ∈ [0,
r

2
] : (0, b) is feasible for I with respect to r }.

Observe that for I = (Γ, u, v), Z(I, r) 6= ∅ if and only if χc(Γ) 6 r. One useful
interpretation of Z(I, r) is that this is the set of possible distances (in Cr) between the
two colors assigned to u and v in a circular r-coloring of Γ.

Let the sign of a path P in (G, σ) be the product of the signs of the edges of P .

Example 39. If Γ is a positive 2-path connecting u and v, and I = (Γ, u, v), then for
any ε, 0 < ε < 1, and r = 4− 2ε,

Z(I, r) = [0,
r

2
− ε].

If Γ′ is a negative 2-path connecting u and v, and I ′ = (Γ′, u, v), then for any ε, 0 < ε < 1,
and r = 4− 2ε,

Z(I ′, r) = [ε,
r

2
].

If Γ′′ consists of a negative 2-path and a positive 2-path connecting u and v, and I ′′ =
(Γ′′, u, v), then for any ε, 0 < ε < 1, and r = 4− 2ε,

Z(I ′′, r) = [ε,
r

2
− ε].

Lemma 40. Assume I = (Γ, u, v) is a signed indicator, r > 2 is a real number.

(1) If Z(I, r) = [t,
r

2
] for some 0 < t < r

2
, then for any graph G,

χc(G(I)) = tχc(G).

(2) If Z(I, r) = [t,
r

2
− t] for some 0 < t < r

4
, then for any graph G,

χc(G(I)) = 2tχc(G).
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Proof. (1) Let r′ = r
t
. If χc(G) 6 r′ and f is a circular r′-coloring of G, then g : V (G)→

[0, r) defined as g(x) = tf(x) satisfies the condition that for any edge e = xy of G,

d(mod r)(g(x), g(y)) > t.

So d(mod r)(g(x), g(y)) ∈ Z(I, r), and the mapping g can be extended to a circular r-
coloring of the copy of Γ that was used to replace edge e. So the mapping g can be
extended to a circular r-coloring of G(I).

Conversely, assume χc(G(I)) 6 r. Let g be a circular r-coloring of G(I). Then for
any edge xy of G, d(mod r)(g(x), g(y)) ∈ Z(Γ, r), i.e., t 6 d(mod r)(g(x), g(y)) 6 r

2
. Let

f : V (G)→ [0, r′) be defined as f(x) = 1
t
g(x). Then for any edge xy of G, d(mod r′)(f(x)−

f(y)) > 1. Hence f is a circular r′-coloring of G.
(2) Let r′ = r

2t
. If χc(G) 6 r′ and f is a circular r′-coloring of G, then g : V (G)→ [0, r

2
)

defined as g(x) = tf(x) satisfies the condition that for any edge e = xy of G,

t 6 d(mod r)(g(x), g(y)) 6
r

2
− t.

So d(mod r)(g(x), g(y)) ∈ Z(I, r), and the mapping g can be extended to a circular r-
coloring of the copy of Γ that was used to replace e. So g can be extended to a circular
r-coloring of G(I).

Conversely, assume χc(G(I)) 6 r. By vertex switching, we may assume that g(x) ∈
[0, r

2
) for every vertex x of G(I). Then for any edge xy of G, d(mod r)(g(x), g(y)) ∈ Z(Γ, r),

i.e., t 6 d(mod r)(g(x), g(y)) 6 r
2
− t. Let f : V (G) → [0, r′) be defined as f(x) = 1

t
g(x).

Then for any edge e = xy of G, 1 6 |f(x)−f(y)| 6 r′−1. Hence f is a circular r′-coloring
of G.

A similar proof implies the following:

Lemma 41. Assume I+ and I− are indicators, r > 2 is a real number and

Z(I+, r) = [t,
r

2
], Z(I−, r) = [0,

r

2
− t]

for some 0 < t < r
2
. Then for any signed graph Ω,

χc(Ω(I+, I−)) = tχc(Ω).

Corollary 42. Let I = (Γ, u, v) be the indicator, where Γ consists of a positive 2-path
and a negative 2-path connecting u and v. Then for any graph G,

χc(G(I)) = 4− 4

χc(G) + 1
.

Proof. Let ε = 2
r′+1

and r = 4−2ε. By Example 39, Z(I, r) = [ε, r
2
−ε]. Note that r′ = r

2ε
.

The conclusion follows from Lemma 40.
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We note thatG(I) defined above is the same as S(G) defined in [20]. In [20], it is shown
that by using S(G) construction and the graph homomorphism, the chromatic number
of graphs can be captured by switching homomorphisms of signed bipartite graphs. This
corollary shows, furthermore, that χc(S(G)) also determines χc(G).

Definition 43. Let Γ1 be a positive 2-path connecting u1 and v1. For i > 2,

• if i is even, then let Γi be obtained from Γi−1 by

– adding two vertices ui, vi,

– connecting ui to ui−1 by a positive edge, ui to vi−1 by a negative edge,

– connecting vi to ui−1 by a negative edge, vi to vi−1 by a positive edge;

• if i is odd, then let Γi be obtained from Γi−1 by

– adding two vertices ui, vi,

– connecting each of ui and vi to each of ui−1 and vi−1 by a positive edge.

For example, Γ4 and Γ5 are illustrated in Figure 1 and Figure 2 respectively.

u1 v1

u2

v2

u3 v3

u4

v4

u1 v1

u2

v2

u3 v3

u4

v4

u5 v5

Figure 1: Γ4 Figure 2: Γ5

Lemma 44. Let Ii = (Γi, ui, vi). Assume i > 1, 0 < ε < 1
i
and r = 4−2ε. The followings

hold:

• If i is odd, then
Z(Ii, r) = [0,

r

2
− iε].

• If i is even, then
Z(Ii, r) = [iε,

r

2
].

Proof. We prove the lemma by induction on i. For i = 1, this is trivial and observed in
Example 39.

Assume i > 2 and the lemma holds for i′ < i.
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Case 1 i is even.
Assume φ is a circular r-coloring of Γi with φ(ui−1) = 0. As Z(Ii−1, r) = [0, r

2
−(i−1)ε],

we may assume that φ(vi−1) ∈ [0, r
2
− (i− 1)ε].

The possible colors for ui are [1, r
2

+1− iε], and the possible colors for vi are [3− ε, r)∪
[0, 1− iε]. So the possible distances between φ(ui) and φ(vi) are [iε, r

2
], i.e.,

Z(Ii, r) = [iε,
r

2
].

Case 2 i is odd.
Assume φ is a circular r-coloring of Γi with φ(ui−1) = 0. As Z(Ii−1, r) = [(i− 1)ε, r

2
],

we may assume that φ(vi−1) ∈ [(i− 1)ε, r
2
].

The possible colors for ui and vi are [1 + (i − 1)ε, 3 − 2ε]. So the possible distances
between φ(ui) and φ(vi) are [0, 2− (i+ 1)ε] = [0, r

2
− iε], i.e.,

Z(Ii, r) = [0,
r

2
− iε].

Corollary 45. For any ε > 0, there is a signed bipartite planar simple graph Γ with
χc(Γ) > 4− 2ε.

Proof. Let 1
2ε
< i < 1

ε
. Let Γ′i be obtained from the disjoint union of Γ2i−1 and Γ2i by

identifying u2i−1 in Γ2i−1 and u2i in Γ2i into a single vertex u′i, and identifying v2i−1 in
Γ2i−1 and v2i in Γ2i into a single vertex v′i. It follows from the construction that Γ′i is a
signed bipartite planar simple graph.

Let I ′i = (Γ′i, u
′
i, v
′
i). Then for r = 4− 2ε, r

2
− (2i− 1)ε = 2− 2iε < 2iε. Hence

Z(I ′i, r) = Z(I2i−1, r) ∩ Z(I2i, r) = [0,
r

2
− (2i− 1)ε] ∩ [2iε,

r

2
] = ∅.

So Γ′i is not circular r-colorable.

Corollary 46. If i = 2k, then for any graph G,

χc(G(Ii)) =
4kχc(G)

kχc(G) + 1
= 4− 4

kχc(G) + 1
.

Proof. By Lemma 44, Z(Ii) = [iε, r
2
], where iε = k(4 − r). It follows from Lemma 40

(1) that G(Ii) is circular r-colorable if and only if r > iεχc(G). By replacing iε with
k(4 − r), we conclude that G(Ii) is circular r-colorable if and only if r > 4kχc(G)

kχc(G)+1
, and

hence χc(G(Ii)) = 4kχc(G)
kχc(G)+1

.
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6 Circular chromatic number of signed graph classes

We have shown that χsc(G) 6 2χc(G) and this bound is tight even for graphs G of large
girth. However, when restricted to some natural families of graphs, the upper bound can
be improved.

Given a class C of signed graphs we define χc(C) = sup{χc(G, σ) : (G, σ) ∈ C}. In
light of Corollary 28 and the fact that negative loops do not affect the circular chromatic
number, we shall restrict to signed graphs with no digons and no loops, i.e., the underlying
graphs are simple graphs.

We denote by

• SDd the class of signed d-degenerate simple graphs,

• SSP the class of signed series parallel simple graphs,

• SO the class of signed outer planar simple graphs,

• SBP the class of signed bipartite planar simple graphs,

• SP the class of signed planar simple graphs.

Proposition 47. For any positive integer d, χc(SDd) = 2bd
2
c+ 2.

Proof. First we show that every (G, σ) ∈ SDd admits a circular (2bd
2
c + 2)-coloring.

Equivalently, (G, σ) admits an edge-sign preserving homomorphism to Ks
2b d

2
c+2

whose

vertices are labelled 0, 1, . . . , 2bd
2
c + 1 in a cyclic order. Recall that in Ks

2b d
2
c+2

between
any pair of vertices xi, xj there are both positive and negative edges, unless i = j or
i = j + bd

2
c + 1. When i = j, there is a negative loop but no positive loop; when

i = j + bd
2
c + 1, xixj is a positive edge but not a negative edge. Thus, given a vertex u

of (G, σ) and a partial mapping φ of (G, σ) to Ks
2b d

2
c+2

, if at most d neighbors of u are
already colored, then φ can be extended to u. This now can be applied on the ordering
of vertices of G which is a witness of G being d-degenerate.

To prove that the upper bound is tight, we consider three cases. For d = 2, the signed
graphs built in Corollary 45 are all 2-degenerate and the claim of this corollary is that the
limit of their circular chromatic numbers is 4. For any odd integer d, this bound is tight
by considering the signed complete graphs (Kd+1,+). For any even integer d > 4, we now
construct a d-degenerate graph G together with a signature σ such that χc(G, σ) = d+ 2.

Define a signed graph Ωd as follows. Take (Kd,+) whose vertices are labelled x1, x2, . . . ,
xd. For each pair i, j ∈ [d] (i 6= j), we add a vertex yi,j and join it to xi, xj with negative
edges, and to all the other xk’s with positive edges. Since each yi,j is of degree d and
after removing all of them we are left with a Kd, we have Ωd ∈ SDd. We claim that
χc(Ωd) = d+ 2.

Assume this is not true and ϕ is a circular r-coloring of Ωd and r < d + 2. With-
out loss of generality, we may assume that ϕ(x1), ϕ(x2), . . . , ϕ(xd) are cyclically ordered
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on Cr in a clockwise orientation. Furthermore, we may also assume that ϕ(x1), ϕ(x2)
has the maximum distance among all the pairs ϕ(xi), ϕ(xi+1) where the addition of the
index is taken (mod 2d). As the distance between each consecutive pair ϕ(xi), ϕ(xi+1)
is at least 1, it follows that, except for x1, x2, d(mod r)(ϕ(xi), ϕ(xi+1)) < 2. We will now
show that there is no possible choice for y1,1+ d

2
. A point between ϕ(xi) and ϕ(xi+1) for

i ∈ {2, 3, . . . , d
2
− 1} ∪ {d

2
+ 2, . . . , d − 1} is at distance less than 1 from one of the two

and cannot be the color of y1,1+ d
2
because xiy1,1+ d

2
, xi+1y1,1+ d

2
are both positive edges. If

ϕ(y1,1+ d
2
) ∈ [ϕ(x1), ϕ(x2)], then we show that d(mod r)(ϕ(y1,1+ d

2
), ϕ(x1+ d

2
) > d

2
, which is a

contradiction because y1,1+ d
2
x1+ d

2
is a negative edge. To see this, we consider clockwise

and anti-clockwise distances of ϕ(y1,1+ d
2
) and ϕ(x1+ d

2
). On the anti-clockwise direction,

(ϕ(y1,1+ d
2
), ϕ(x1+ d

2
)) contains d

2
intervals of the form (xi, xi+1), each of which is of length

at least 1. On the clockwise direction, first of all, y1,1+ d
2
x2 is a positive edge which means

d(mod r)(ϕ(y1,1+ d
2
), ϕ(x2)) > 1, and, furthermore, (ϕ(y1,1+ d

2
), ϕ(x1+ d

2
)) contains d

2
−1 inter-

vals of form (xi, xi+1) (for i ∈ {2, 3, . . . , d
2
}). If ϕ(y1,1+ d

2
) ∈ [ϕ(xd), ϕ(x1)], then the same

argument shows that d(mod r)(ϕ(y1,1+ d
2
), ϕ(x1+ d

2
)) > d

2
. If ϕ(y1,1+ d

2
) ∈ [ϕ(x d

2
), ϕ(x d

2
+1)] or

ϕ(y1,1+ d
2
) ∈ [ϕ(x d

2
+1), ϕ(x d

2
+2)], then d(mod r)(ϕ(y1,1+ d

2
), ϕ(x1)) > d

2
, which is a contradic-

tion as y1,1+ d
2
x1 is a negative edge.

It follows from Proposition 47 that χc(G, σ) 6 2b∆(G)

2
c+ 2.

It was proved in [20] that every simple signed K4-minor-free graph (G, σ) admits a
switching homomorphism to the signed Paley graph SPal5, depicted in Figure 3. It is
easy to check that SPal5 is a signed subgraph of Ks

10;3. Hence we have

χc(SO) 6 χc(SSP) 6
10

3
.

1

3

57

9

Figure 3: The signed Paley graph

y

x z

b

a

c

Figure 4: (F, σ)

We shall prove the following result.

Theorem 48. χc(SSP) = χc(SO) =
10

3
.
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Proof. It suffices to show that χc(F, σ) = 10
3

for the signed outer planar simple graph
(F, σ) of Figure 4.

Since (F, σ) contains a positive triangle as a subgraph, its circular chromatic number
is at least 3. By the formula of the tight cycle the only possible values are 3 and 10

3
.

It remains to show that this graph does not admit a circular 3-coloring, that is to say,
(F, σ) does not admit a switching homomorphism to K̂s

6;2. Note that K̂s
6;2 is equivalent

to a positive triangle, with each vertex incident to a negative loop. If φ is a switching
homomorphism of (F, σ) to K̂s

6;2, then at least one negative edge of the negative triangle
xyz is mapped to a negative loop, because in K̂s

6;2 every negative closed walk contains a
negative loop. Whichever edge of xyz is mapped to a negative loop, its two end vertices
are identified and the resulting signed graph has a negative cycle of length 2. But K̂s

6;2

contains no negative closed walk of length 2, a contradiction. Hence χc(F, σ) = 10
3
.

In Section 5, we have seen that χc(SBP) = 4. However, we do not know if there is a
signed bipartite planar simple graph reaching the bound 4. Further improvement based
on the length of the shortest negative cycle is given in the forthcoming work [19].

Next we consider the circular chromatic number of signed planar simple graphs. Since
planar simple graphs are 5-degenerate, by Proposition 47, we have χc(SP) 6 6. It was
conjectured in [16] that every planar simple graph admits a 0-free 4-coloring. However, this
conjecture was disproved in [12] using a dual notion. A direct proof of a counterexample
is given in [18]. Extending this construction, we build a signed planar simple graph with
circular chromatic number 4 + 2

3
.

Theorem 49. χc(SP) > 4 +
2

3
.

We shall construct a signed planar simple graph Ω with χc(Ω) = 4 + 2
3
. The con-

struction is by assembling certain gadgets. Similar to the gadget of [12], we start with a
mini-gadget depicted in Figure 5 and state its circular coloring property in Lemma 51.

a

b

c

x y

z

w

x1

x2

x3 x4

x5

z t

u

v

−

−

−

−

Figure 5: Mini-gadget (T, π) Figure 6: A signed Wenger Graph
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Definition 50. Let r be a positive real number. Let φ be a mapping of a set {v1, . . . , vk}
of points (or vertices of a graph) to Cr. We denote by Iφ;v1,v2,...,vq ,vq+1,...,vk an interval of
minimum length which contains {φ(vi) : i = 1, 2, . . . , q} ∪ {φ(vi) : i = q + 1, . . . , k} and
by `φ;v1,v2,...,vq ,vq+1,...,vk the length of this interval.

Note that the minimality of the length implies that the two end points of the interval
Iφ;v1,v2,...,vq ,vq+1,...,vk are in {φ(vi) : i = 1, 2, . . . , q} ∪ {φ(vi) : i = q + 1, . . . , k}

Lemma 51. Assume φ is a circular (4+α)-coloring of the signed graph (T, π) of Figure 5
satisfying that 0 6 α < 2. Then `φ;x,y,z ∈ [1 − α

2
, 1 + α

2
]. Moreover, for any t1, t2, t3 with

max{d(mod r)(ti, tj) : i, j ∈ {1, 2, 3}} ∈ [1 − α
2
, 1 + α

2
], there exists a circular r-coloring φ

of (T, π) such that φ(x) = t1, φ(y) = t2, φ(z) = t3.

Proof. Let r = 4+α and let φ be a circular r-coloring of (T, π). Without loss of generality
we may assume that φ(x), φ(y) and φ(z) are on Cr in the clockwise order, and assume the
interval [φ(z), φ(x)] is a longest interval among [φ(x), φ(y)], [φ(y), φ(z)] and [φ(z), φ(x)].
Thus Iφ;x,y,z = [φ(x), φ(z)]. We first claim that [φ(z), φ(x)] contains φ(y). Otherwise,
either [φ(y), φ(y)] or [φ(y), φ(y)] which is of length r

2
, is included in either (φ(x), φ(y)] or

[φ(y), φ(z)). This is a contradiction as [φ(z), φ(x)] is longest among the three. As φ(y) is
contained in [φ(z), φ(x)], and as y is adjacent to both z and x with a negative edge, we
conclude that [φ(z), φ(x)] is of length at least 2. On the other hand, since z and x are
adjacent with a negative edge, one of the two intervals, [φ(z), φ(x)] or [φ(x), φ(z)] is of
length at most r

2
− 1 = 1 + α

2
. As α < 2, the only option is that [φ(x), φ(z)] is of length

at most 1 + α
2
.

For the other direction, assume `φ;x,y,z < 1− α
2
, say Iφ;x,y,z = [0, β] for some β < 1− α

2
.

Each of a, b, c is joined by a positive edge and a negative edge to vertices in x, y, z. This
implies that φ(a), φ(b), φ(c) ∈ [1, 1 + β + α

2
] ∪ [3 + α

2
, 3 + α + β]. As each of the intervals

[1, 1 + β + α
2
] and [3 + α

2
, 3 + α+ β] has length strictly smaller than 1, two of the vertices

a, b, c are colored by colors of distance less than 1 in Cr. But abc is a triangle with three
positive edges, a contradiction.

For the “moreover" part, without loss of generality, we assume that t3 = 0, t1 ∈
[1− α

2
, 1 + α

2
], t2 ∈ [0, t1]. If t1 ∈ [1− α

2
, 1], then let φ(a) = 3 + α

2
, φ(b) = 2 and φ(c) = 1;

if t1 ∈ [1, 1 + α
2
], then let φ(a) = 3 + α

2
, φ(b) = 2 + α

2
and φ(c) = 1. It is straightforward

to verify that φ is a circular r-coloring of (T, π).

By taking α = 2
3
−ε and a switching at the vertex z, we have the following formulation

of the lemma which we will use frequently.

Corollary 52. Let (T, π′) be a signed graph obtained from (T, π) by a switching at the
vertex z, and let φ be a circular (14

3
− ε)-coloring of (T, π′) where 0 < ε < 2

3
. Then

`φ;x,y,z̄ ∈ [2
3

+ ε
2
, 4

3
− ε

2
].

We define W̃ to be the signed graph obtained from signed Wenger graph of Figure 6
by completing each of the four negative facial triangles to a switching of the mini-gadget
of Figure 5. Next we show that W̃ has a property similar to signed indicators, more
precisely:
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Lemma 53. Let r =
14

3
− ε with 0 < ε 6

2

3
. For any circular r-coloring φ of W̃ ,

`φ;u,v >
4

9
.

The proof of Lemma 53 is long, and we leave it to the next section. Let Γ be obtained
from W̃ by adding a negative edge uv. Let I = (Γ, u, v). It follows from Lemma 53 that
for 4 6 r < 14

3
,

(I, r) ⊆ [
4

9
,
r

2
− 1].

Theorem 54. Let Ω = K4(I). Then Ω is a signed planar simple graph with χc(Ω) =
14

3
.

Proof. First we show that Ω admits a circular 14
3
-coloring.

For r = 14
3
, there is a circular r-coloring φ of Γ with φ(u) = φ(v), defined as φ(u) =

φ(v) = 0, φ(w) = 3, φ(x1) = 2, φ(x2) = 1, φ(x3) = 2, φ(x4) = 1
3
, φ(x5) = 4 and

φ(z) = φ(t) = 1.
Observe that each of the four negative triangles satisfies the conditions of Lemma 51,

and that the coloring of its vertices can be extended to the inner part of the mini-gadget.
Let v1, v2, v3, v4 be the 4 vertices of K4. Then there is a circular 14

3
-coloring φ of K4(I)

with φ(vi) = 0 for i = 1, 2, 3, 4. So χc(Ω) 6 14
3
.

It remains to show that χc(Ω) > 14
3
. Assume to the contrary that χc(Ω) < 14

3
, let φ

be a circular r-coloring of Ω for some 4 6 r < 14
3
(for the purpose of applying Lemma 53,

we assume r > 4). Without loss of generality, assume φ(v1), φ(v2), φ(v3) and φ(v4) are
on Cr in this cyclic order.

As (I, r) ⊆ [4
9
, r

2
− 1], we know that for any 1 6 i < j 6 4,

4

9
6 d(mod r)(φ(vi), φ(vj)) 6

r

2
− 1.

By symmetry, we may assume

d(mod r)(φ(v1), φ(v3)) = `([φ(v1), φ(v3)]) and d(mod r)(φ(v2), φ(v4)) = `([φ(v2), φ(v4)]).

Hence

`([φ(v1), φ(v4)]) = `([φ(v1), φ(v2)]) + `([φ(v2), φ(v3)]) + `([φ(v3), φ(v4)]) > 3× 4

9
>
r

2
− 1,

and
`([φ(v4), φ(v1)]) > r − (`([φ(v1), φ(v3)]) + `([φ(v2), φ(v4)])) > 2 >

r

2
− 1.

This implies that d(mod r)(φ(v1), φ(v4)) > r
2
− 1, a contradiction.
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7 Proof of Lemma 53

Assume to the contrary that φ is a circular r-coloring of W̃ with `φ;u,v = η < 4
9
. Without

loss of generality, we assume that φ(u) = 0 and φ(v) = η. Since each of φ(z) and φ(t) is
of distance at least 1 from both φ(u) and φ(v), we have:

φ(z), φ(t) ∈


[1 + η,

4

3
− ε

2
] ∪ [

10

3
− ε

2
,
11

3
+ η − ε], if η 6

1

3
− ε

2
,

[
10

3
− ε

2
,
11

3
+ η − ε], otherwise.

(1)

Lemma 55. φ(w) 6∈ (
5

3
− ε, 3 + η) ∪ (4− 3ε

2
,
2

3
+ η +

ε

2
).

Proof. Let φ(w) = δ. First we show that δ 6∈ (5
3
− ε, 3 + η). Assume to the contrary that

δ ∈ (
5

3
− ε, 3 + η).

As x2 is joined to u and w by positive edges,

φ(x2) ∈


[1, δ − 1], if δ >

8

3
− ε,

[δ + 1,
11

3
− ε] if δ < 2,

[1, δ − 1] ∪ [δ + 1,
11

3
− ε], if 2 6 δ 6

8

3
− ε.

(2)

φ(x3) ∈


[1 + η, δ − 1] if δ >

8

3
+ η − ε,

[δ + 1,
11

3
+ η − ε] if δ < 2 + η,

[1 + η, δ − 1] ∪ [δ + 1,
11

3
+ η − ε] if 2 + η 6 δ 6

8

3
+ η − ε.

(3)

For a depiction of these cases, see Figure 7.

0
φ(z)

φ(z)

φ(x3)

φ(x3)

φ(x2)

φ(x2)

Figure 7: A sketch of locating φ(z), φ(x2) and φ(x3) on Cr

Claim 56. The following restrictions on the value of φ(z) hold:
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I. If δ < 3 and φ(x2) ∈ [1, δ − 1], then η 6 1
3
− ε

2
and φ(z) ∈ [1 + η, 4

3
− ε

2
].

II. If φ(x2) ∈ [δ + 1, 11
3
− ε], then φ(z) ∈ [10

3
− ε

2
, 11

3
+ η − ε].

III. If φ(x3) ∈ [1 + η, δ − 1], then φ(z) ∈ [10
3
− ε

2
, 11

3
+ η − ε].

IV. If δ > 5
3
+η−ε and φ(x3) ∈ [δ+1, 11

3
+η−ε], then η 6 1

3
− ε

2
and φ(z) ∈ [1+η, 4

3
− ε

2
].

Proof of the claim: [I] Assume to the contrary (by 1) that φ(z) ∈ [10
3
− ε

2
, 11

3
+ η − ε]

and φ(x2) ∈ [1, δ − 1]. Then

d(mod r)(φ(x2), φ(z)) > min{10

3
− ε

2
− (δ − 1),

14

3
− ε+ 1− (

11

3
+ η − ε)} > 4

3
− ε

2
,

contradicting the fact that x2z is a negative edge.

[II] Assume to the contrary (by 1) that φ(z) ∈ [1 + η, 4
3
− ε

2
] and η 6 1

3
− ε

2
. Then

d(mod r)(φ(x2), φ(z)) > min{2 + η, δ − 1

3
+
ε

2
} > 4

3
− ε

2
,

contradicting the fact that x2z is a negative edge.

[III] Assume to the contrary (by 1) that φ(z) ∈ [1 + η, 4
3
− ε

2
], φ(x3) ∈ [1 + η, δ − 1]

and hence δ > 2 + η. As δ ∈ (5
3
− ε, 3 + η),

d(mod r)(φ(x3), φ(z)) 6 δ − 1− (1 + η) < 1,

contradicting the fact that x3z is a positive edge.

[IV] Assume to the contrary (by 1) that φ(z) ∈ [10
3
− ε

2
, 11

3
+ η − ε]. As δ > 5

3
+ η − ε,

d(mod r)(φ(x3), φ(z)) 6
11

3
+ η − ε− (δ + 1) < 1,

contradicting the fact that x3z is a positive edge.
This completes the proof of Claim 56. 3

To complete the proof of Lemma 55, we partition the interval (5
3
− ε, 3 + η) into three

parts and consider three cases depending on to which part δ belongs.

Case (i) δ ∈ (
5

3
− ε, 2 + η).

As δ < 2 + η, by 3, φ(x3) ∈ [δ + 1, 11
3

+ η − ε]. Thus φ(x3) ∈ [δ − 4
3

+ ε
2
, 4

3
+ η − ε

2
].

By 2, φ(x2) ∈ [1, δ − 1] ∪ [δ + 1, 11
3
− ε].

Subcase (i-1) φ(x2) ∈ [1, δ − 1] and hence (by 2) δ > 2.
As δ < 2 + η < 3, by [I], φ(z) ∈ [1 + η, 4

3
− ε

2
] and η 6 1

3
− ε

2
. Hence δ < 2 + η 6 7

3
− ε

2
.

Consider the interval Iφ;x̄3,x2,z, see Figure 8. If φ(x3) is the starting point of this
interval, then since δ − 1 < 4

3
− ε

2
, we have

[φ(x3), φ(z)] ⊆ [δ − 4

3
+
ε

2
,
4

3
− ε

2
].
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0

φ(z)

φ(x3)

φ(x2)

Figure 8: Subcase (i-1): Restrictions on the negative triangle x3x2z.

If the starting of Iφ;x̄3,x2,z is φ(x2) or φ(z), then since δ − 1 < 4
3
− ε

2
, we have

[φ(x2), φ(x3)] ⊆ [1,
4

3
+ η − ε

2
].

In either case, Iφ;x̄3,x2,z has length at most 2
3
− ε, contrary to Corollary 52.

Subcase (i-2) φ(x2) ∈ [δ + 1, 11
3
− ε].

By [II], φ(z) ∈ [10
3
− ε

2
, 11

3
+ η − ε]. Note that `([10

3
− ε

2
, 11

3
+ η − ε]) = 1

3
+ η − ε

2
< 1.

Since d(mod r)(φ(x3), φ(z)) > 1 (as x3z is a positive edge) and φ(x3) ∈ [δ + 1, 11
3

+ η − ε],
we conclude that δ 6 5

3
+ η − ε and

φ(x3) ∈ [δ + 1,
8

3
+ η − ε].

This implies that Iφ;x3,x2 ⊆ [δ + 1, 11
3
− ε]. As δ > 5

3
− ε, `([δ + 1, 11

3
− ε]) < 1, contrary to

the fact that x2x3 is a positive edge.

Case (ii) δ ∈ [2 + η,
8

3
+ η − ε].

Depending on the ranges of φ(x2) and φ(x3), we consider four cases.

Subcase (ii-1) φ(x2) ∈ [1, δ − 1] and φ(x3) ∈ [1 + η, δ − 1].
By [III], φ(z) ∈ [10

3
− ε

2
, 11

3
+ η − ε].

As φ(x2), φ(x3) ∈ [1, δ − 1], `([1 + η, δ − 1]) < 1 and x2x3 is a positive edge, we have
δ > 3 and φ(x2) ∈ [1, δ − 2]. However, the distance of points in [10

3
− ε

2
, 11

3
+ η − ε] and

[1, δ − 2] is at least 2 − η which is strictly larger than 4
3
− ε

2
, contradicting that x2z is a

negative edge.

Subcase (ii-2) φ(x2) ∈ [1, δ−1] and φ(x3) ∈ [δ+1, 11
3

+η−ε]. (φ(x3) ∈ [δ− 4
3
+ ε

2
, 4

3
+η− ε

2
])

By [IV], φ(z) ∈ [1 + η, 4
3
− ε

2
] and by 1, η 6 1

3
− ε

2
.

Note that the interval Iφ;x̄3,x2,z is one of the following intervals:

[φ(x3), φ(z)] ⊆ [δ − 4

3
+
ε

2
,
4

3
− ε

2
], [φ(x3), φ(x2)] ⊆ [δ − 4

3
+
ε

2
, δ − 1],

[φ(z), φ(x2)] ⊆ [1 + η, δ − 1], [φ(z), φ(x3)] ⊆ [1 + η,
4

3
+ η − ε

2
],
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and [φ(x2), φ(x3)], [φ(x2), φ(z)] ⊆ [1,
4

3
+ η − ε

2
].

All the above intervals have lengths at most 2
3
− ε, implying that `φ;x̄3,x2,z <

2
3

+ ε
2
, this

contradicts Corollary 52.

Subcase (ii-3) φ(x2) ∈ [δ + 1, 11
3
− ε] and φ(x3) ∈ [1 + η, δ − 1].

By 2, δ 6 8
3
− ε, and by [III], φ(z) ∈ [10

3
− ε

2
, 11

3
+ η − ε]. Observe that φ(x3) ∈

[10
3

+ η − ε
2
, 4

3
+ δ − ε

2
]. So Iφ;x̄3,x2,z is one of the following intervals:

[φ(x3), φ(z)], [φ(x3), φ(x2)] ⊆ [
10

3
+ η − ε

2
,
11

3
+ η − ε], [φ(x2), φ(x3)] ⊆ [δ + 1,

4

3
+ δ − ε

2
],

[φ(x2), φ(z)] ⊆ [δ + 1,
11

3
+ η − ε], [φ(z), φ(x2)] ⊆ [

10

3
− ε

2
,
11

3
− ε]

and [φ(z), φ(x3)] ⊆ [
10

3
− ε

2
,
4

3
+ δ − ε

2
].

Thus the `φ;x̄3,x2,z <
2
3
− ε, contradicting Corollary 52.

Subcase (ii-4) φ(x2) ∈ [δ + 1, 11
3
− ε] and φ(x3) ∈ [δ + 1, 11

3
+ η − ε].

The interval [δ + 1, 11
3

+ η− ε] has length at most 2
3
− ε < 1. This contradicts the fact

that x2x3 is a positive edge.

Case (iii) δ ∈ (
8

3
+ η − ε, 3 + η).

As δ > 8
3

+ η − ε > 8
3
− ε, by 2 and 3, φ(x2) ∈ [1, δ − 1] and φ(x3) ∈ [1 + η, δ − 1].

As `([1 + η, δ − 1]) < 1 and d(mod r)(φ(x2), φ(x3)) > 1, we conclude that δ > 3 and
φ(x2) ∈ [1, δ − 2]. As x2z is a negative edge, and the distance between the intervals
[10

3
− ε

2
, 11

3
+ η − ε] and [1, δ − 2] is strictly larger than 4

3
− ε

2
, we know that φ(z) /∈

[10
3
− ε

2
, 11

3
+ η− ε]. By 1, φ(z) ∈ [1 + η, 4

3
− ε

2
] and η 6 1

3
− ε

2
. This implies that φ(z) and

φ(x3) are both in [1 + η, δ− 1]. However, δ < 3 + η, so `([1 + η, δ− 1]) < 1, contradicting
the fact that x3z is a positive edge.

This completes the proof that φ(w) /∈ (5
3
− ε, 3 + η).

We observe that in this proof, vertex x1 played no role. In other words, the conclusion
holds for the signed subgraph induced on G \ x1. In this subgraph a switching at U =
{w, x2, x3, x4, x5} results in an isomorphic copy where x4 and x5 play the role of x2 and
x3. Thus for the mapping φ′ defined as φ′(v) = φ(v) for v ∈ V (W̃ )− U and φ′(v) = φ(v)
for v ∈ U , we have φ′(w) /∈ (5

3
− ε, 3 + η). Hence φ(w) 6∈ (4− 3ε

2
, 2

3
+ η + ε

2
).

If η > 1− 3ε
2
, then by the Lemma 55, we have no choice for φ(w). Thus we assume in

the rest of the proof that η 6 1− 3ε
2
and

φ(w) ∈ [3 + η, 4− 3ε

2
] ∪ [

2

3
+ η +

ε

2
,
5

3
− ε].

The two cases will be consider separately.

Case A. φ(w) ∈ [3 + η, 4− 3ε
2

].
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As ux5 is a negative edge and φ(u) = 0, we have φ(x5) ∈ [10
3
− ε

2
, 4

3
− ε

2
]. As `([3 +

η, 4− 3ε
2

]) < 1, and x5w is a positive edge, we conclude that 3 +η, φ(w), φ(x5), 4
3
− ε

2
occur

in this cyclic order. This implies that

φ(x5) ∈ [4 + η,
4

3
− ε

2
].

For i = 1, 2, 3, 4, by considering the edges between xi and u, v, w, similar arguments
as above lead to the following restrictions on the value of φ(xi):

φ(x1) ∈ [1, 3− 3ε

2
], φ(x2) ∈ [1, 3− 3ε

2
], φ(x3) ∈ [1 + η, 3− 3ε

2
], φ(x4) ∈ [4 + η,

4

3
+ η− ε

2
].

By 1, based on the choices of φ(z) and φ(t), we consider four cases.

Case A-1 η 6
1

3
− ε

2
and φ(z), φ(t) ∈ [1 + η,

4

3
− ε

2
].

0

φ(t), φ(z)

φ(x5)

φ(x4)

φ(x3)

φ(x2)

φ(x1)

Figure 9: Case A-1: Updating ranges of
φ(xi)’s

0
φ(w)

φ(x5)

φ(x1)

Figure 10: Case A-1: Restrictions on
x1x5u

We will update the ranges of φ(xi)’s as depicted in Figure 9. In this figure the range
of each φ(xi) is shown as an interval partitioned to two parts. The full interval represents
the restriction we have started with. We then show that the dotted part of the interval
is not available for φ(xi), thus updating the range to the solid part of the interval.

As `([1 + η, 4
3
− ε

2
]) < 1, φ(x3) ∈ [1 + η, 3 − 3ε

2
] and zx3 is a positive edge, the points

1 + η, φ(z), φ(x3), 3− 3ε
2
occur in Cr in this cyclic order. This implies that

φ(x3) ∈ [2 + η, 3− 3ε

2
].

As `([2 + η, 3 − 3ε
2

]) < 1, φ(x2) ∈ [1, 3 − 3ε
2

] and x2x3 is a positive edge, the points
1, φ(x2), φ(x3), 3− 3ε

2
occurs in Cr in this cyclic order. This implies that

φ(x2) ∈ [1, 2− 3ε

2
].

By considering the positive edges x5t and then x4x5, similar arguments show that

φ(x5) ∈ [4 + η,
1

3
− ε

2
] and φ(x4) ∈ [

1

3
+ η + ε,

4

3
+ η − ε

2
].
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Considering the positive edge x1x2 and the range of φ(x2) given above, a similar
argument shows that

φ(x1) ∈ [2, 3− 3ε

2
] and hence φ(x1) ∈ [

13

3
− ε

2
,
2

3
− ε].

Now consider the negative triangle x1x5u. If Iφ;x̄1,x5,u = [φ(x1), φ(x5)], then Iφ;x̄1,x5,u ⊆
[13

3
− ε

2
, 1

3
− ε

2
] but `([13

3
− ε

2
, 1

3
− ε

2
]) = 2

3
− ε < 2

3
+ ε

2
, contrary to Corollary 52.

Also φ(u) = 0 cannot be an end point of the interval Iφ;x̄1,x5,u, as 0 is at distance less
than 2

3
+ ε

2
from each of the four end points of the intervals that are the ranges of φ(x1)

and φ(x5).
Thus Iφ;x̄1,x5,u = [φ(x5), φ(x1)]. By Corollary 52, `([φ(x5), φ(x1)]) > 2

3
+ ε

2
. Thus

`([φ(x1), φ(x5)]) =
r

2
− `([φ(x5), φ(x1)]) 6

5

3
− ε.

As φ(x1) ∈ [2, 3− 3ε
2

], φ(w) ∈ [3 + η, 4− 3ε
2

] and φ(x5) ∈ [4 + η, 1
3
− ε

2
], we conclude that

φ(w) ∈ [φ(x1), φ(x5)] (see Figure 10). Since wx1 and wx5 are positive edges, we have

2 6 `([φ(x1), φ(w)]) + `([φ(w), φ(x5)]) = `([φ(x1), φ(x5)]) 6
5

3
− ε,

a contradiction.

Case A-2 η 6
1

3
− ε

2
, φ(z) ∈ [1 + η,

4

3
− ε

2
] and φ(t) ∈ [

10

3
− ε

2
,
11

3
+ η − ε].

The proof is similar to the previous case. The positive edge zx3 and the negative edge
tx4 further restrict the ranges of φ(x3), φ(x4). Then, the new ranges of φ(x3) and φ(x5),
together with the positive edges x3x2 and x4x5 further restrict the range of φ(x2), φ(x5).
As the computations are very similar to the previous case, we just list the conclusion of
this argument:

φ(x3) ∈ [2+η, 3−3ε

2
], φ(x2) ∈ [1, 2−3ε

2
], φ(x5) ∈ [

1

3
+η+ε,

4

3
− ε

2
] and φ(x4) ∈ [4+η,

1

3
− ε

2
].

Next we consider the negative triangle vx3x4. As

φ(x3) ∈ [
13

3
+ η − ε

2
,
2

3
− ε], φ(x4) ∈ [4 + η,

1

3
− ε

2
] and φ(v) = η.

Similar analysis as in the previous case shows that

Iφ;x̄3,x4,v = [φ(x4), φ(x3)] and `(φ(x4), φ(x3)) >
2

3
+
ε

2
.

This means that `([φ(x3), φ(x4)]) < 2. Similarly, we have φ(w) ∈ [φ(x3), φ(x4)]. As
x3w, x4w are positive edges, we have

2 6 `([φ(x3), φ(w)]) + `([φ(w), φ(x4)]) = `([φ(x3), φ(x4)]) < 2,
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0
φ(z)

φ(t)

φ(x5)

φ(x4)

φ(x3)

φ(x2)

Figure 11: Case A-3: Updating ranges
of φ(xi)’s

0

Iw

I5

I4

I3

I2

Figure 12: Case A-3: Restrictions on
wx5x4x3x2

a contradiction.

Case A-3 η 6
1

3
− ε

2
, φ(z) ∈ [

10

3
− ε

2
,
11

3
+ η − ε] and φ(t) ∈ [1 + η,

4

3
− ε

2
].

We will update the ranges of φ(x2), . . . , φ(x5) as depicted in Figure 11.
Recall that φ(x2) ∈ [1, 3 − 3ε

2
] and φ(x5) ∈ [4 + η, 4

3
− ε

2
]. If φ(x2) ∈ [1, 2), then

d(mod r)(φ(x2), φ(z)) > 4
3
− ε

2
, contrary to the fact that x2z is a negative edge. Thus

φ(x2) ∈ [2, 3− 3ε

2
] := I2.

If φ(x5) ∈ (1
3
− ε

2
, 4

3
− ε

2
], then d(mod r)(φ(x5), φ(t)) < 1, contrary to the fact that x5t is a

positive edge. Therefore

φ(x5) ∈ [4 + η,
1

3
− ε

2
] := I5.

Note that `(I5) < 1. As φ(x4) ∈ [4 + η, 4
3

+ η − ε
2
] and d(mod r)(φ(x5), φ(x4)) > 1 (x4x5

is a positive edge), we conclude that the points 4 + η, φ(x5), φ(x4), 4
3

+ η− ε
2
occurs in Cr

in this cyclic order and

φ(x4) ∈ [
1

3
+ η + ε,

4

3
+ η − ε

2
] := I4.

Similarly, `(I2) < 1, and x2x3 is a positive edge. Recall that φ(x3) ∈ [1 + η, 3− 3ε
2

]. Thus
the points 2, φ(x2), φ(x3) occurs in Cr in this cyclic order. Hence

φ(x3) ∈ [1 + η, 2− 3ε

2
] := I3.

Finally recall that

φ(w) ∈ [3 + η, 4− 3ε

2
] := Iw.

The intervals Iw, I5, I4, I3, I2 are each of length less than 1, and except for I3 and I4

there is no intersection among them (see Figure 12). Since `(I3) < 1, we have φ(x4) /∈ I3

(because x3x4 is a positive edge). Thus the points φ(w), φ(x5), φ(x4), φ(x3), φ(x2) occur
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in this cyclic order. As Cr is of length 14
3
− ε, the colors of some two consecutive vertices

of the 5-cycle wx5x4x3x2 is less than 1, but all the edges of this cycle are positive. This
is a contradiction.

Case A-4 φ(z), φ(t) ∈ [
10

3
− ε

2
,
11

3
+ η − ε].

Similarly, we obtain that

φ(x2) ∈ [2, 3− 3ε

2
] := I2, φ(x4) ∈ [4 + η,

1

3
+ η − ε

2
] := I4,

φ(x5) ∈ [
1

3
+ η + ε,

4

3
− ε

2
] := I5, φ(x1) ∈ [

4

3
+ η + ε, 2− 3ε

2
] := I1.

The points φ(w), φ(x4), φ(x5), φ(x1) and φ(x2) occur in Cr in this cyclic order. As all
the edges of the 5-cycle wx4x5x1x2 are positive, this is a contradiction.

Case B. φ(w) ∈ [
2

3
+ η +

ε

2
,
5

3
− ε].

Similarly, by considering the edges between each of xi’s and vertices u, v, w, we have
that

φ(x1), φ(x2) ∈ [
5

3
+ η +

ε

2
,
11

3
− ε], φ(x3) ∈ [

5

3
+ η +

ε

2
,
11

3
+ η − ε],

φ(x4) ∈ [
10

3
+ η − ε

2
,
2

3
− ε] and φ(x5) ∈ [

10

3
− ε

2
,
2

3
− ε].

Based on the choices of φ(z) and φ(t), we have four sub-cases to discuss.

Case B-1 φ(z), φ(t) ∈ [
10

3
− ε

2
,
11

3
+ η − ε].

0φ(t), φ(z)

φ(x5)

φ(x4)

φ(x3)

φ(x2)

φ(x1)

Figure 13: Case B-1: Updating ranges
of φ(xi)’s

0

φ(w)

φ(x5)

φ(x1)

Figure 14: Case B-1: Restrictions on
x1x5u

We will update the ranges of φ(xi)’s as depicted in Figure 13.
The positive edges zx3 and tx5 further restrict the ranges of φ(x3) and φ(x5). Then

the new ranges of φ(x3) and φ(x5), through the positive edges x3x2 and x5x4, further
restrict the ranges of φ(x2) and φ(x4). By similar computation as previous cases, we have

φ(x3) ∈ [
5

3
+ η +

ε

2
,
8

3
− ε], φ(x2) ∈ [

8

3
+ η +

ε

2
,
11

3
− ε],
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φ(x5) ∈ [
13

3
+ η − ε

2
,
2

3
− ε] and φ(x4) ∈ [

10

3
+ η − ε

2
,
13

3
− 2ε].

Considering the positive edge x1x2 and the range of φ(x2) given above, we obtain that

φ(x1) ∈ [
5

3
+ η +

ε

2
,
8

3
− ε].

Next we consider the negative triangle x1x5u. As φ(x1) ∈ [4 + η, 1
3
− ε

2
], φ(x5) ∈ [13

3
+

η − ε
2
, 2

3
− ε] and φ(u) = 0, similar analysis shows that Iφ;x̄1,x5,u = [φ(x1), φ(x5)] and

`([φ(x1), φ(x5)]) > 2
3

+ ε
2
. It implies that `([φ(x5), φ(x1)]) = 5

3
− ε

2
< 2. We observe that

φ(w) ∈ [φ(x5), φ(x1)] (see Figure 14) and since x5w, x1w are both positive edges, we have
that

2 6 `([φ(x5, w)]) + `(φ(w), φ(x1)) = `([φ(x5), φ(x1)]) < 2,

a contradiction.

Case B-2 η 6
1

3
− ε

2
, φ(z) ∈ [

10

3
− ε

2
,
11

3
+ η − ε] and φ(t) ∈ [1 + η,

4

3
− ε

2
].

The positive edge zx3 and the negative edge tx4 further restrict the ranges of φ(x3) and
φ(x4) respectively. Then the new ranges of φ(x3) and φ(x4), through the positive edges
x3x2 and x4x5, further restrict the ranges of φ(x2) and φ(x5). By similar computation as
previous cases, we have

φ(x3) ∈ [
5

3
+ η +

ε

2
,
8

3
− ε], φ(x2) ∈ [

8

3
+ η +

ε

2
,
11

3
− ε],

φ(x4) ∈ [
13

3
+ η − ε

2
,
2

3
− ε] and φ(x5) ∈ [

10

3
− ε

2
,
13

3
− 2ε].

Next we consider the negative triangle x3x4v. As φ(x3) ∈ [4 + η, 1
3
− ε

2
], φ(x4) ∈ [13

3
+

η − ε
2
, 2

3
− ε] and φ(v) = η, similar analysis shows that Iφ;x̄3,x4,v = [φ(x3), φ(x4)] and

`([φ(x3), φ(x4)]) > 2
3

+ ε
2
. This means that `([φ(x4), φ(x3)]) < 2. We observe that φ(w) ∈

[φ(x4), φ(x3)] and as x4w, x3w are both positive edges, we have that

2 6 `([φ(x4, w)]) + `(φ(w), φ(x3)) = `([φ(x4), φ(x3)]) < 2,

a contradiction.

Case B-3 η 6
1

3
− ε

2
and φ(z), φ(t) ∈ [1 + η,

4

3
− ε

2
].

We will update the ranges of φ(xi)’s as depicted in Figure 15.
Recall that φ(x2) ∈ [5

3
+ η + ε

2
, 11

3
− ε] and φ(x4) ∈ [10

3
+ η − ε

2
, 2

3
− ε].

If φ(x2) ∈ (8
3
− ε, 11

3
− ε], then d(mod r)(φ(x2), φ(z)) > 4

3
− ε

2
, contrary to the fact that

x2z is a negative edge. Thus

φ(x2) ∈ [
5

3
+ η +

ε

2
,
8

3
− ε] := I2.
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0

φ(t), φ(z)
φ(x5)

φ(x4)

φ(x3) φ(x2)

φ(x1)

Figure 15: Case B-3: Updating ranges
of φ(xi)’s

0

Iw

I2

I1

I5

I4

Figure 16: Case B-3: Restrictions on
wx5x4x3x2

If φ(x4) ∈ [10
3

+ η − ε
2
, 13

3
+ η − ε

2
), then d(mod r)(φ(x4), φ(t)) > 4

3
− ε

2
, contrary to the fact

that x4t is a negative edge. Therefore

φ(x4) ∈ [
13

3
+ η − ε

2
,
2

3
− ε] := I4.

Note that `(I4) < 1. As φ(x5) ∈ [10
3
− ε

2
, 2

3
− ε] and d(mod r)(φ(x5), φ(x4)) > 1 (x4x5 is

a positive edge), we conclude that

φ(x5) ∈ [
10

3
− ε

2
,
13

3
− 2ε] := I5.

Similarly, `(I2) < 1, and x2x3 is a positive edge. Recall that φ(x3) ∈ [5
3

+η+ ε
2
, 11

3
+η− ε].

Thus
φ(x3) ∈ [

8

3
+ η +

ε

2
,
11

3
+ η − ε] := I3.

By the restriction from the positive edges x1x2 and x1x5 and the new range I2, I5, we
have

φ(x1) ∈ [
8

3
+ η +

ε

2
,
10

3
− 2ε] := I1.

Finally recall that

φ(w) ∈ [
2

3
+ η +

ε

2
,
5

3
− ε] := Iw.

The intervals Iw, I2, I1, I5, I4 are each of length less than 1, and there is no intersection
among them. (see Figure 16) As Cr is of length 14

3
− ε, the colors of some two consecutive

vertices of the 5-cycle wx2x1x5x4 is less than 1, but all the edges of this cycle are positive.
That is a contradiction.

Case B-4 η 6
1

3
− ε

2
, φ(z) ∈ [1 + η,

4

3
− ε

2
] and φ(t) ∈ [

10

3
− ε

2
,
11

3
+ η − ε].

Similarly we obtain that

φ(x2) ∈ [
5

3
+ η +

ε

2
,
8

3
− ε] := I2, φ(x3) ∈ [

8

3
+ η +

ε

2
,
11

3
+ η − ε] := I3,
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φ(x4) ∈ [
10

3
+ η − ε

2
,
13

3
− 2ε] := I4 and φ(x5) ∈ [

13

3
+ η − ε

2
,
2

3
− ε] := I5.

Recall that
φ(w) ∈ [

2

3
+ η +

ε

2
,
5

3
− ε] := Iw.

The intervals Iw, I2, I3, I4, I5 are each of length less than 1, and except for I3 and I4

there is no intersection among them. As `(I4) < 1, φ(x3) /∈ I4 (since x3x4 is a positive
edge). That is again a contradiction because of the 5-cycle wx2x3x4x5 all whose edges are
positive.

This completes the proof of Lemma 53.

8 Questions and Remarks

Another notion of circular coloring of signed graphs was introduced in [11]. It is different
from the definition in this paper essentially because the concept of “antipodal" points are
defined differently. Both definitions use points on a circle as colors (the discrete version
in [11] uses Zk as colors, and we can view elements of Zk as points uniformly distributed
on a circle). In [11], a fixed diameter of the circle is chosen, and the antipodal of a point
is obtained by flipping the circle along the chosen diameter. Thus for such a coloring,
the colors are not symmetric. In particular, for each of the two end points of the chosen
diameter, its antipodal is itself. In some sense, the definition in [11] more faithfully extends
the coloring of signed graphs that allows 0 (as opposed to 0-free coloring) introduced by
Zaslavsky, where 0 is a special color, whose antipodal is 0 itself. We consider the speciality
of a certain color to be an undesirable feature. A circular object should be invariant under
rotation. In this sense, the circular coloring of signed graphs in this paper more faithfully
extends the circular coloring of graphs.

The circular coloring of graphs has been studied extensively in the literature. Many
of the results and problems on circular coloring of graphs would be interesting in the
framework of signed graphs. We list some specific problems below and believe that there
are many more interesting problems.

8.1 Jaeger-Zhang conjecture and extensions

For a positive integer k, we have χc(C−2k) = 4k
2k−1

. On the other hand, while for a
negative odd cycle C−(2k+1) we have χc(C−(2k+1)) = 2, for the positive odd cycle C+(2k+1)

we have χc(C+(2k+1)) = χc(C2k+1) = 2k+1
k

. These two facts can be stated uniformly by
the following definition.

Given ij ∈ Z2, we say a closed walk W of a signed graph (G, σ) is of type ij if the
number of negative edges of W (counting multiplicity) is congruent to i(mod 2), and the
total number of edges (counting multiplicity) is congruent to j(mod 2). For ij ∈ Z2 we
define gij(G, σ) to be the length of a shortest closed walk of type ij in (G, σ), setting it
to be ∞ if there is no such a closed walk (see [22] for corresponding no-homomorphism
lemma and relation to coloring and homomorphism).
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Let Co+
l be a signed cycle of length l where the number of positive edges is odd. Then

χc(C
o+
l ) =

2l

l − 1
. It is a well-known fact that a homomorphism of a graph onto an odd

cycle gives an upper on its circular chromatic number. The following theorem, whose
proof we leave to the reader, is an extension of this fact.

Theorem 57. Given a positive integer l and a signed graph (G, σ) satisfying gij(G, σ) >

gij(C
o+
l ) for ij ∈ Z2

2, we have χc(G, σ) 6
2l

l − 1
if and only if (G, σ)

switch−→ Co+
l .

The question of mapping planar graphs of odd girth large enough to C2k+1 was shown
by C.Q. Zhang (see [14] and [29]) to be related to a conjecture of Jaeger in the theory of
circular flow. A bipartite analogue of Jaeger-Zhang conjecture was introduced in [20] and
studied in [4], a first case of which is disproved in [19]. Thus we rather pose the following
question:

Problem 58. Given a positive integer l, what is the smallest value f(l) such that for every
signed planar graph (G, σ) satisfying (1) gij(G, σ) > gij(C

o+
l ) and (2) gij(G, σ) > f(l) for

all ij ∈ Z2
2, we have χc(G, σ) 6

2l

l − 1
.

The condition (1) implies that for the odd values of l the signed graph (G, σ) is
switching equivalent to (G,+) and that for even values of l the graph G is bipartite. In
the former case we have classic Jaeger-Zhang conjecture and in the latter case we have
its bipartite analogue. That f(3) = 5 is a restatement of the Grötzsch theorem. That
f(4) = 8 is proved in [19]. For integers l > 5 it is known that f(l) exists and is finite.
Furthermore, 4k + 1 6 f(2k + 1) 6 6k + 1 [29, 15], f(5) 6 11 [6] and 4k − 2 6 f(2k) 6
8k − 2 [4].

8.2 Hadwiger conjecture and extensions

One of the most intriguing conjectures in graph theory is the Hadwiger conjecture which
tries to extend the four-color theorem. It claims that any graph without a Kk+1-minor is
k-colorable. The case k 6 3 of this conjecture is rather easy, but the case k = 4 contains
the four-color theorem. As the case k + 1 would imply the case k, the difficulty of the
conjecture only increases by k. Catlin [3] introduced a stronger version of the case k = 3
which we restate below using the terminology of signed graphs and notion of circular
coloring that we have introduced here. A signed graph (H, π) is said to be a minor of
(G, σ) if it is obtained from (G, σ) by a series of the following operations: 1. deleting
vertices or edges, 2. contracting positive edge, 3. switching.

Theorem 59. [3] If (G,−) has no (K4,−)-minor, then χc(G,+) 6 3.

A possible strengthen of Catlin’s result was proposed independently by B. Gerard and
P. Seymour. This conjecture, which is stronger than the Hadwiger conjecture, is known
as the Odd-Hadwiger conjecture and using the development in this work can be restated
as follows.
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Conjecture 60 (Odd-Hadwiger). If a signed graph (G,−) has no (Kk+1,−)-minor, then
χc(G,+) 6 k.

To generalize this, one may ask:

Problem 61. Assuming (G, σ) has no (Kk+1,−)-minor, what is the best upper bound
on χc(G,−σ)?

Observe that K̂s
2k is the signed graph whose vertices are 1, 2, . . . k where each pair

of distinct vertices are adjacent by both a negative edge and a positive edge, and each
vertex has a negative loop. It follows from the structure of these signed graphs, in an
edge-sign preserving mapping of a signed graph (G, σ) to K̂s

2k, negative edges introduce
no restriction, while vertices connected by a positive edge cannot be mapped to a same
vertex. In other words, any such a mapping is a proper k-coloring of the subgraph G+

σ

induced by the set of positive edges of (G, σ). Recall that a switching homomorphism
of (G, σ) to K̂s

2k is to find a signature σ′ equivalent to σ and an edge-sign preserving
homomorphism of (G, σ′) to K̂s

2k. Therefore, based on the following definition we have
the next theorem. We define

χ+(G, σ) = min
σ′≡σ
{χ(G+

σ′)}.

Theorem 62. Given a signed graph (G, σ), we have

2χ+(G, σ)− 2 < χc(G, σ) 6 2χ+(G, σ).

Let f(k) be the answer to Problem 61. By Theorem 62 one observes that if Con-
jecture 60 holds, then f(k) 6 2k. Similarly, considering the result of [10] we have
f(k) = O(n

√
log n).

8.3 Signed planar graphs

Let D be a digon on two vertices u and v. It is mentioned that χc(D) = 4, moreover, given
r > 4, if φ is a circular r-coloring of D where φ(u) = 0, then simply by the definition
we have φ(v) ∈ (1, r

2
− 1). Thus, by Lemma 40, when D is viewed as an indicator,

we have χc(G(D)) = 2χc(G) where G is a graph (not signed) (this is a restatement of
Corollary 28). In particular, we have χc(K4(D)) = 8. Noting this is a signed planar
multigraph and that, by the four-color theorem, every signed planar multigraph without
a loop admits an edge-sign preserving homomorphism to it, we obtain χc(SPM)) = 8
where SPM denotes the class of signed planar multigraphs. Furthermore, we recall that
a signed graph with a positive loop admits no circular coloring and that adding a negative
loop to a vertex of a signed graphs does not affect its circular chromatic number.

For the class of signed planar simple graphs, the upper bound of 6 follows from the fact
that these graphs are 5-degenerate. With our definition of circular chromatic number and
development in this work, one may restate a conjecture of [16] as to “circular chromatic
number of the class of signed planar simple graphs is 4”. However, this conjecture is
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recently disproved in [12]. The first counterexample provided in [12] is essentially the
subgraph K3(I) of the signed graph of Theorem 54 (they become a same signed graph
after a switching). The work of [12] is based on the dual interpretation of the circular
four-coloring of signed planar graphs. The examples build there then are based on non-
Hamiltonian cubic bridgeless planar graphs. The underlying graph of the signed graph of
Figure 6 is the dual of Tutte fragment used to build the first example of a non-Hamiltonian
cubic bridgeless planar graph and referred to as Wenger graph in some literature. This
graph itself is used as a building block in a number of coloring results. Noting that a
connection to a list coloring problem and circular 4-coloring (of signed planar simple)
graphs was established by the 3rd author, [35], we refer to [13] for recent use of this
gadget in refuting a similar conjecture.

We note, furthermore, that since in Theorem 54 we give the exact value of the circular
chromatic number of K4(I), one does not expect to improve the lower bound using this
particular gadget.

It remains an open problem to decide the exact value of the circular chromatic number
of the class of signed planar simple graphs or to improve the bounds (of 14

3
and 6) from

either direction.

8.4 Girth and planarity

Some of the questions mentioned above can be generalized in the following way:
Given an integer l and a class C of signed graphs, such as signed planar graphs or

signed K4-minor-free graphs, what is the circular chromatic number of signed graphs in
C whose underlying graphs have girth l?

As an example, a result of [21] implies that every signed planar graph of girth at least
7 admits a switching homomorphism to the signed graph (K6,M) which is the signed
graph on K6 with the negative edges forming a perfect matching. As this signed graph
has circular chromatic number 3, we conclude that:

Theorem 63. For the class SPg>7 of signed planar graphs of girth at least 7, we have
χc(SPg>7) 6 3.

We do not know if this bound is tight. In a more refined version of the question one
might be given three values of l01, l10 and l11 and be asked for a best bound on circular
chromatic number of signed graphs in C which satisfies gij(G, σ) > lij for ij ∈ {01, 10, 11}.

8.5 Spectrum

Given a family G of signed graphs, instead of the supremum of the circular chromatic
numbers of signed graphs in G, another natural problem is to determine the range of
circular chromatic numbers of signed graphs in G. For example, it is known in [9] that a
rational number r is the circular chromatic number of a non-trivial K4-minor-free graph
if and only if r ∈ [2, 8

3
] ∪ {3}. As for signed K4-minor-free simple graphs we extended

the upper bound to 10
3
. It is recently shown in [25] that each rational number in [2, 10

3
]

is the circular chromatic number of a K4-minor-free signed simple graph. Spectrum of

the electronic journal of combinatorics 28(2) (2021), #P2.44 37



the circular chromatic number of series-parallel graphs of given girth and circular chro-
matic number of planar graphs were studied in [17, 23, 24, 31, 32]. Similar questions are
interesting for signed planar graphs and other families of signed graphs.

8.6 Complexity of the circular r-coloring problem

Given integers p and q satisfying p > 2q > 0, the problem of circular p
q
-coloring of signed

graphs is defined as follows.

Circular p
q
-coloring

INSTANCE: A signed graph (G, σ).
QUESTION: Is (G, σ) circular p

q
-colorable?

That the problem is in NP easily follows from definitions and discussions in this work.
As this problem includes the problem of circular p

q
-coloring of graphs (not signed), it is

an NP-complete problem for p > 2q. For p = 2q it is equivalent to determining if (G, σ) is
switching equivalent to (G,−) for which there are algorithms of order O(n2) (for example
see Proposition 4 of [22]).

This problem is a special case of (H, π)-coloring problem studied in [2]. More precisely,
Circular p

q
-coloring is the same as K̂s

p;q-coloring problem as defined in [2]. When
p
q

= 2 the core of K̂s
p;q consists of a single negative loop and then K̂s

p;q-coloring problem
admits a quadratic time algorithm. For all other choices of p and q, the core of K̂s

p;q

has more than two edges and has no positive loop, hence the K̂s
p;q-coloring problem is an

NP-hard problem.
To determine the complexity of the problem when restricted to certain subclasses of

signed graphs is also of high interest and remains mostly open. A particular case is the
restriction to the class of signed planar graphs. Some cases of the question are settled in
the general context of homomorphisms of graphs and signed graphs. We refer to [5] and
some of the references there. Based on such results for example we know that the problem
of circular 2k

k−1
-coloring restricted to the class of signed planar graphs is NP-complete for

every integer value of k. For most other values of p and q, 2 < p
q
< 8, to decide the

complexity of the problem when restricted to the planar instances remains open. We note
that case p

q
= 4 is of special interest.
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