Circular Coinduction –A Proof Theoretical Foundation–

Grigore Roșu¹ Dorel Lucanu²

¹Department of Computer Science University of Illinois at Urbana-Champaign, USA grosu@illinois.edu

²Faculty of Computer Science Alexandru Ioan Cuza University, Iași, Romania dlucanu@info.uaic.ro

08/09/2009, CALCO 2009, Udine

1 / 21

∃ → (∃ →

Outline

Introduction

- CC History
- Behavioral Equivalence, intuitively
- Behavioral Specifications, intuitively
- Circular Coinduction, intuitively

Circular Coinduction Proof System

- Formal Framework
- Coinductive Circularity Principle
- The Proof System

3 Conclusion

Plan

1

Introduction

- CC History
- Behavioral Equivalence, intuitively
- Behavioral Specifications, intuitively
- Circular Coinduction, intuitively

2 Circular Coinduction Proof System

- Formal Framework
- Coinductive Circularity Principle
- The Proof System

Conclusion

CC History

Circular Coinduction: History

- 1998 first implementation of CC in BOBJ system [J. Goguen & K. Lin & G. Roşu, ASE 2000]
- 2000 CC formalized as a inference rule enriching hidden logic [G. Roşu & J. Goguen, written in 1999]
- 2002 CC described as a more complex algorithm [J. Goguen & K. Lin & G. Roșu, WADT 2002]

(a first version for special contexts, case analysis)

- 2005 CC implemented in CoCASL [D. Hausmann& T. Mossakowski & L. Schröder, FASE 2005]
- 2006 CC implemented in Maude (first version of CIRC) [D. Lucanu & A. Popescu & G. Roşu]
- 2007 first major refactoring of CIRC [CALCO Tools, 2007] (Maude meta-language application, regular strategies as proof tactics, simplification rules)

2009 CC formalized as a proof system [CALCO 2009, this paper - second major refactoring of CIRC [CALCO Tools, 2009]

Behavioral Equivalence: Intuition 1/2

Behavioral equivalence is the non-distinguishability under experiments

Example of streams:

- a stream (of bits) S is an infinite sequence b₁: b₂: b₃:...
 the head of S: hd(S) = b₁
 the tail of S: tl(S) = b₂: b₃:...
- experiments:

hd(*:Stream), hd(tl(*:Stream)), hd(tl(tl(*:Stream))), ...

- the basic elements upon on the expriments are built (here hd(*) and t/(*)) are called derivatives
- application of an experiment over a stream: C[S] = C[S/*]
- two streams S and S' are behavioral equivalent ($S \equiv S'$) iff C[S] = C[S'] for each exp. C
- for this particular case, beh. equiv. is the same with the equality of streams
- showing beh. equiv. is Π_2^0 -hard (S. Buss, G. Roşu, 2000, 2006)

Behavioral Equivalence: Intuition 2/2

(not in this paper)

Example of infinite binary trees (over bits):

- a infinite binary tree over D is a function T : {L, R}* → D the root of T: T(ε) the left subtree T_ℓ: T_ℓ(w) = T(Lw) for all w the right subtree T_r: T_r(w) = T(Rw) for all w
- knowing the root d, T_{ℓ} and T_r , then T can be written as $d/T_{\ell}, T_r \setminus .$
- the derivatives: root(*:Tree), left(*:Tree), and right(*:Tree)
- the experiments: root(*:Tree), root(left(*:Tree)), root(right(*:Tree)) and so on
- two trees T and T' are beh. equiv. $(T \equiv T')$ iff C[T] = C[T'] for each exp. C

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Behavioral Specifications: Intuition 1/2

Streams:

- derivatives: *hd*(* : *Stream*) and *tl*(* : *Stream*)
- beh specs are derivative-based specs

STREAM:	
Corecursive spec	Behavioral spec
<i>zeroes</i> = 0 : <i>zeroes</i>	hd(zeroes) = 0
	tl(zeroes) = zeroes
ones = 1 : ones	hd(ones) = 1
	tl(ones) = ones
blink = 0 : 1 : blink	hd(blink) = 0
	tl(blink) = 1 : blink
zip(B:S,S') = B: zip(S',S)	hd(zip(S,S')) = hd(S)
	tl(S,S') = zip(S',S)

• for streams, this can be done with STR tool (see H. Zantema's tool paper)

G. Roșu, D. Lucanu (UIUC, UAIC)

Behavioral Specifications: Intuition 2/2

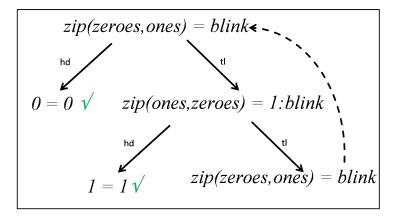
Infinite binary trees (TREE):

- derivatives: root(*:Tree), left(*:Tree), and right(*:Tree)
- beh specs are derivative-based specs

Corecursive spec	Behavioral spec
	root(ones) = 1
$\textit{ones} = 1/\textit{ones},\textit{ones} \setminus$	left(ones) = ones
	right(ones) = ones
$b/T_{\ell}, T_r \setminus + b'/T'_{\ell}, T'_r \setminus = b \vee b'/T_{\ell} + T'_{\ell}, T_r + T'_r \setminus$	$root(T + T') = root(T) \lor root(T)$
	left(T + T') = left(T) + left(T')
	right(T + T') = right(T) + right(T')
	root(thue) = 0
$thue = 0/thue, thue + one \setminus$	left(thue) = thue
	right(thue) = thue + one

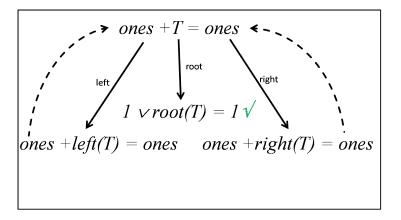
Circular Coinduction: Intuition 1/2

- the goal is to prove that $zip(zeroes, ones) \equiv blink$ holds in STREAM



Circular Coinduction: Intuition 2/2

- the goal is to prove that $ones + T \equiv ones$ holds in TREE



- a more challenging property: thue + one = not(thue)

Plan

Introduction

- CC History
- Behavioral Equivalence, intuitively
- Behavioral Specifications, intuitively
- Circular Coinduction, intuitively

Circular Coinduction Proof System

- Formal Framework
- Coinductive Circularity Principle
- The Proof System

Conclusion

Formal Framework

Formal Framework 1/2

A behavioral specification consists of:

• a many-sorted algebraic spec $\mathcal{B} = (S, \Sigma, E)$ $(S = \text{set of sorts}, \Sigma = \text{set of opns}, E = \text{set of eqns})$

• a set of derivatives $\Delta = \{\delta[*:h]\}$ $\delta[*:h]$ is a context the sort h of the special variable * occuring in a derivative δ is called hidden: the other sorts are called visible

- each derivative can be seen as an equation transformer: if e is t = t' if cond, then $\delta[e]$ is $\delta[t] = \delta[t']$ if cond $\Delta[e] = \{\delta[e] \mid \delta \in \Delta\}$
- an entailment relation \vdash , which is reflexive, transitive, monotonic, and Δ -congruent ($E \vdash e$ implies $E \vdash \Delta[e]$)

Formal Framework 2x/2

Experiment:

each visible $\delta[*:h] \in \Delta$ is an experiment, and if C[*:h'] is an experiment and $\delta[*:h] \in \Delta$, then so is $C[\delta[*:h]]$

Behavioral satisfaction: $\mathcal{B} \Vdash e$ iff: $\mathcal{B} \vdash e$, if *e* is visible, and $\mathcal{B} \vdash C[e]$ for each experiment *C*, if *e* is hidden

Behavioral equivalence of B: $\equiv_{\mathcal{B}} \stackrel{def}{=} \{ e \mid \mathcal{B} \Vdash e \}$

A set of equations \mathcal{G} is behaviorally closed iff $\mathcal{B} \vdash visible(\mathcal{G})$ and $\Delta(\mathcal{G} - \mathcal{B}^{\bullet}) \subseteq \mathcal{G}$, where $\mathcal{B}^{\bullet} = \{e \mid \mathcal{B} \vdash e\}$

Theorem

(coinduction) The behavioral equivalence \equiv is the largest behaviorally closed set of equations.

G. Roșu, D. Lucanu (UIUC, UAIC)

イロト イポト イヨト イヨト

The Freezing Operator

- is the most important ingredient of CC
- it inhibits the use of the coinductive hypothesis underneath proper contexts;

- if e is t = t' if cond, then its frozen form is t = t' if cond (-: $s \rightarrow Frozen$)

 $-\vdash$ is extended for frozen equations s.t. (A1) $E \cup \mathcal{F} \vdash e$ iff $E \vdash e$, for each visible eqn e; (A2) $E \cup \mathcal{F} \vdash \mathcal{G}$ implies $E \cup \delta[\mathcal{F}] \vdash \delta[\mathcal{G}]$ for each $\delta \in \Delta$, equivalent to saying that for any Δ -context C, $E \cup \mathcal{F} \vdash \mathcal{G}$ implies $E \cup C[\mathcal{F}] \vdash C[\mathcal{G}]$

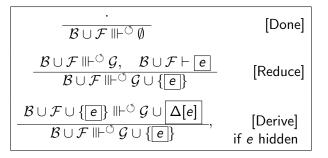
Theorem

(coinductive circularity principle) If \mathcal{B} is a behavioral specification and F is a set of hidden equations with $\mathcal{B} \cup [F] \vdash [\Delta[F]]$ then $\mathcal{B} \Vdash F$.

イロト イポト イヨト イヨト

3

Circular Coinduction Proof System



Theorem

(soundness of circular coinduction) If \mathcal{B} is a behavioral specification and G is a set of equations such that $\mathcal{B} \Vdash^{\bigcirc} G$ is derivable using the Circular Coinduction Proof System, then $\mathcal{B} \Vdash G$.

The proof is monolithic and, intuitively, the correctness can be explained in different ways:

(1) since each derived path ends up in a cycle, it means that there is no way to show the two original terms behaviorally different by applications of derivatives;

(2) the obtained circular graph structure can be used as a backbone to "consume" any possible experiment applied on the two original terms;

(3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas inferred in order to prove the original task;

(4) when it stabilizes, it "discovers" a relation which is compatible with the derivatives and is the identity on data, so the stabilized set of equations is included in the behavioral equivalence;

(5) it incrementally completes a given equality into a bisimulation relation on terms $\frac{3}{1}$

Theorem

(soundness of circular coinduction) If \mathcal{B} is a behavioral specification and G is a set of equations such that $\mathcal{B} \Vdash^{\bigcirc} G$ is derivable using the Circular Coinduction Proof System, then $\mathcal{B} \Vdash G$.

The proof is monolithic and, intuitively, the correctness can be explained in different ways:

(1) since each derived path ends up in a cycle, it means that there is no way to show the two original terms behaviorally different by applications of derivatives;

(2) the obtained circular graph structure can be used as a backbone to "consume" any possible experiment applied on the two original terms;

(3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas inferred in order to prove the original task;

(4) when it stabilizes, it "discovers" a relation which is compatible with the derivatives and is the identity on data, so the stabilized set of equations is included in the behavioral equivalence;

(5) it incrementally completes a given equality into a bisimulation relation on terms $\frac{3}{10}$

Theorem

(soundness of circular coinduction) If \mathcal{B} is a behavioral specification and G is a set of equations such that $\mathcal{B} \Vdash^{\bigcirc} G$ is derivable using the Circular Coinduction Proof System, then $\mathcal{B} \Vdash G$.

The proof is monolithic and, intuitively, the correctness can be explained in different ways:

(1) since each derived path ends up in a cycle, it means that there is no way to show the two original terms behaviorally different by applications of derivatives;

(2) the obtained circular graph structure can be used as a backbone to "consume" any possible experiment applied on the two original terms;

(3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas inferred in order to prove the original task;

(4) when it stabilizes, it "discovers" a relation which is compatible with the derivatives and is the identity on data, so the stabilized set of equations is included in the behavioral equivalence;

(5) it incrementally completes a given equality into a bisimulation relation on terms $\frac{3}{1}$

Theorem

(soundness of circular coinduction) If \mathcal{B} is a behavioral specification and G is a set of equations such that $\mathcal{B} \Vdash^{\bigcirc} G$ is derivable using the Circular Coinduction Proof System, then $\mathcal{B} \Vdash G$.

The proof is monolithic and, intuitively, the correctness can be explained in different ways:

(1) since each derived path ends up in a cycle, it means that there is no way to show the two original terms behaviorally different by applications of derivatives;

(2) the obtained circular graph structure can be used as a backbone to "consume" any possible experiment applied on the two original terms;

(3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas inferred in order to prove the original task;

(4) when it stabilizes, it "discovers" a relation which is compatible with the derivatives and is the identity on data, so the stabilized set of equations is included in the behavioral equivalence;

(5) it incrementally completes a given equality into a bisimulation relation on terms $\frac{3}{1}$

Theorem

(soundness of circular coinduction) If \mathcal{B} is a behavioral specification and G is a set of equations such that $\mathcal{B} \Vdash^{\bigcirc} G$ is derivable using the Circular Coinduction Proof System, then $\mathcal{B} \Vdash G$.

The proof is monolithic and, intuitively, the correctness can be explained in different ways:

(1) since each derived path ends up in a cycle, it means that there is no way to show the two original terms behaviorally different by applications of derivatives;

(2) the obtained circular graph structure can be used as a backbone to "consume" any possible experiment applied on the two original terms;

(3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas inferred in order to prove the original task;

(4) when it stabilizes, it "discovers" a relation which is compatible with the derivatives and is the identity on data, so the stabilized set of equations is included in the behavioral equivalence;

(5) it incrementally completes a given equality into a bisimulation relation on terms $\frac{3}{1}$

Theorem

(soundness of circular coinduction) If \mathcal{B} is a behavioral specification and G is a set of equations such that $\mathcal{B} \Vdash^{\bigcirc} G$ is derivable using the Circular Coinduction Proof System, then $\mathcal{B} \Vdash G$.

The proof is monolithic and, intuitively, the correctness can be explained in different ways:

(1) since each derived path ends up in a cycle, it means that there is no way to show the two original terms behaviorally different by applications of derivatives;

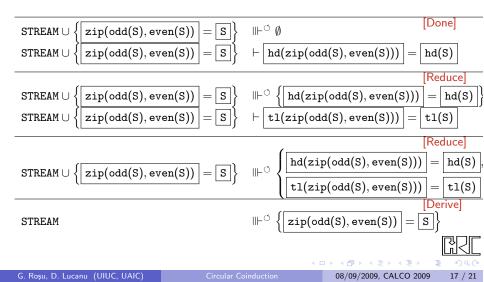
(2) the obtained circular graph structure can be used as a backbone to "consume" any possible experiment applied on the two original terms;

(3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas inferred in order to prove the original task;

(4) when it stabilizes, it "discovers" a relation which is compatible with the derivatives and is the identity on data, so the stabilized set of equations is included in the behavioral equivalence;

(5) it incrementally completes a given equality into a bisimulation relation on terms $\frac{3}{12}$

Example



Plan

Introduction

- CC History
- Behavioral Equivalence, intuitively
- Behavioral Specifications, intuitively
- Circular Coinduction, intuitively

2 Circular Coinduction Proof System

- Formal Framework
- Coinductive Circularity Principle
- The Proof System

Conclusion

Related Approaches

Context induction [R. Hennicker, 1990]

- exploits the inductive definition of the experiments [used also here in CCP]

- requires human guidance, generalization of the induction assertions

Observational Logic [M. Bidoit, R. Hennicker, and Al. Kurz, 2002]

- model based (organized as an institution)
- there is a strong similarity between our beh equiv II⊢ and their infinitary proof system

Coalgebra[e.g., J. Adamek 2005, B. Jacobs and J. Rutten 1997] – used to study the states and their operations and their properties

- final coalgebras use to give (behavioral) semantics for processes

- when coalgebra specs are expressed as beh. specs, CC Proof System builds a bisimulation

Observational proofs by rewriting [A. Bouhoula and M. Rusinowitch, 2002]

- based on *critical contexts*, which allow to prove or disprove conjectures
- A coinductive calculus of streams [Jan Rutten, 2005]
- almost all properties proved with CIRC
- extended to infinite binary trees [joint work with Al. Silva]

Future Work

Theoretical apsects:

– in some cases the freezing operator is too restrictive \Rightarrow extend the proof system with new capabilities (special contexts, generalizations, simplifications etc)

- productivity of the behavioral specs vs. well-definedness
- (full) behavioral specification of the non-deterministic processes (behavioral TRS?)
- complexity of the related problems

CIRC Tool:

- automated case analysis
- more case studies (e.g., behavioral semantics of the functors)
- the use of CC as a framework (its use in other applications)
- its use in program verification and analysis

Thanks!

G. Roșu, D. Lucanu (UIUC, UAIC

Circular Coinduction

08/09/2009, CALCO 2009

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶