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Abstract: 

 

Progressive optic neuropathies such as glaucoma are major causes of blindness globally. Multiple 

sources of subjectivity and analytical challenges are often encountered by the clinicians in the 

process of early diagnosis and clinical management of these diseases. In glaucoma, the structural 

damage is often characterized by neuroretinal rim (NRR) thinning of the optic nerve head, and 

other clinical parameters. Optical coherence tomography (OCT) is a popular and quantitative eye 

imaging platform for precise and reproducible measurement of such parameters in the clinic. 

 

Baseline structural heterogeneity in the eyes can play a key role in the progression of optic 

neuropathies, and thus present challenges to clinical decision-making. To address this, large and 

diverse normative OCT databases with mathematically precise description of phenotypes can help 

with early detection and characterization of the different phenotypes that are encountered in the 

clinic. In this study, we generated a new large dataset of OCT generated high-resolution circular 

data on NRR phenotypes, along with other clinical covariates, of nearly 4,000 healthy eyes as part 

of a well-established clinical cohort (LVPEI-GLEAMS) of Asian Indian participants. 

 

In this study, we (1) generated high-resolution circular OCT measurements of NRR thickness in a 

given eye, (2) introduced CIFU, a new computational pipeline for CIrcular FUnctional data 

modeling and analysis that is demonstrated using the OCT dataset, and (3) addressed the disparity 

of representation of the Asian Indian population in normative OCT databases. We demonstrated 

CIFU by unsupervised circular functional clustering of the OCT NRR data, meta-clustering to 

characterize the clustering output using clinical covariates, and presenting a circular visualization 

of the results. Upon stratification by age, we identified a healthy NRR phenotype cluster in the age 

group 40-49 years with predictive potential for glaucoma. 
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1.  Introduction 

 

Progressive optic neuropathies such as glaucoma can cause irreversible blindness, especially when 

left untreated or diagnosed late. Indeed, early detection and management hold the key to slowing 

the progressive loss of vision and preventing blindness due to many chronic and age-related 

degenerative eye diseases. Glaucoma, for instance, is the second-leading cause of blindness 

worldwide1. In 2020, an estimated 80 million individuals worldwide had glaucoma and this 

number is expected to increase to over 111 million by 20402. 

 

There are multiple sources of subjectivity and analytical challenges that are often encountered by 

the clinicians in the process of early diagnosis and clinical management of these diseases. In 

glaucoma, the functional damage is established most commonly by the occurrence of visual field 

(VF) loss whereas the structural damage is often characterized by neuroretinal rim (NRR) thinning 

of the optic nerve head (ONH), and loss of retinal nerve fibers, which are the axons of retinal 

ganglion cells (RGC). On the functional side, while standard automated perimetry (SAP) has been 

the gold standard for detection of VF loss, often 30% of RGC loss may have already occurred 

before VF defects could be detected by SAP3. 

 

On the structural side, biological heterogeneity of ONH phenotypes, with or without any 

neuropathy, can present challenges to clinical decision-making. For instance, NRR area has been 

found to normally decline at the rate of 0.28%-0.39% per year4. There is no single, specific 

management guidance for patients with diverse morphology of ONH5. For instance, to assess the 

progression of glaucoma, one of the parameters assessed is the optic cup-to-disc ratio (CDR) which 

is calculated by comparing the diameter of the “cup” portion of the optic disc with the total 

diameter of the latter. Yet, while a large CDR may indicate glaucoma or other pathology, deep yet 

stable (over age) cupping, i.e., a normal physiologically large optic disc cup, can occur due to 

genetic factors in the absence of any disease or associated clinical covariates (e.g., high intraocular 

pressure)6
. It is of great importance that sources of natural variation are rigorously understood 

thereby controlling for subjectivity in diagnosis. 
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In the clinic, non-invasive, high-resolution eye imaging platforms such as spectral-domain optical 

coherence tomography (OCT) provide excellent glaucoma diagnostic performance, especially in 

early stages of disease7,8. The quantitative and reproducible OCT data provide objective 

measurement of ONH parameters, NRR area, retinal nerve fiber layer (RNFL), macular thickness, 

etc., which are used by clinicians to identify structural damage. For instance, Zeiss Cirrus HD-

OCT platform uses the clinically invisible but OCT detectable Bruch’s membrane opening (BMO) 

as the landmark to measure the amount of NRR tissue in the optic nerve. It has been reported that 

NRR thickness calculation by Cirrus HD-OCT has high reproducibility and glaucoma diagnostic 

ability, and a low rate of incorrect optic disc margin detection9–11. The platform generates a 

comparative report of a patient's data based on its normative database. 

 

The OCT platform performs circular scans of the eye which, as in many biomedical technologies, 

are examples of measurements that are recorded or indexed at different directions, say, at given 

angular positions around a central point. Unlike the analyses of “linear” data points that reside on 

the real line or Euclidean spaces, directional data requires special and altogether different 

treatment. For instance, a direction in two-dimensional plane can be represented as a point on the 

circumference of a unit circle, or simply as an angle, but neither representation is unique, as both 

depend on the selection of some appropriate “zero-direction” from which to start measuring, as 

well as the sense of rotation, viz., clockwise or anti-clockwise. The unique properties of circular 

data – for instance, if one wishes to compare two such scans with a distance measure – are 

appropriately addressed by the field of circular statistics12. 

 

Traditional OCT analysis may involve division of the circle around ONH into 4 fixed quadrants, 

or 12 clock-hours, to record measurements at these sectors. In this study, we extended such data 

collection to divide the same circle (of total 360 degrees) into much finer segments of 2 degrees 

each, and thus, generate 180 circular data points for each clinical sample (human eye). These rich 

and evenly spaced high-resolution circular (HRC) data allows for natural application of functional 

data analysis (FDA) where the data are not viewed as points but as curves or mathematical 

functions. Not to be confused with alternate usage of the term “function” (such as in vision), FDA 

is increasingly popular in biomedical informatics due to the emergence of new monitoring 

technologies that can record data as curves13–15. The HRC OCT data for each sample can be 
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modeled as a circular function or curve, with angle and magnitude being the independent and 

dependent variables, respectively. In this study, we describe methods for novel circular functional 

analysis of OCT data, and apply it for unsupervised identification of NRR phenotypes in healthy 

eyes.  

 

Progressive and degenerative eye diseases benefit from pre-existing knowledge and cumulative 

collection and description of normal phenotypes as these may help to identify early and 

characterize precisely the new phenotypes that emerge over time. While some normative OCT 

databases do exist, they are generally limited in their size and diversity. Thus, the breakup of their 

ethnic representation may not reflect the actual epidemiologic distribution of the disease. For 

instance, only 1% of the popular Cirrus HD-OCT platform’s normative database is of Asian Indian 

origin16, although India contributes to more than 12% of the global cases of both primary open-

angle and primary angle-closure glaucomas17. Towards this, we generated a new large HRC OCT 

dataset on NRR phenotypes, along with other clinical covariates, of 3973 healthy eyes as part of a 

well-established clinical cohort (LVPEI-GLEAMS) at the L.V. Prasad Eye Institute, Hyderabad, 

India.  

 

The main objectives of the present study are to: (1) generate HRC OCT data in the form of 180 

circular measurements of NRR thickness in a given eye, (2) introduce CIFU, a computational 

pipeline for CIrcular FUnctional data modeling and analysis that is demonstrated using the OCT 

dataset, and (3) address the disparity of representation of the Asian Indian population in normative 

OCT databases. In the next section, we describe the clinical cohort and the protocol for data 

generation as well as the algorithm of CIFU for unsupervised circular functional clustering of the 

OCT NRR data, followed by meta-clustering to characterize the clustering output using clinical 

covariates of glaucoma. In the following section, the results of CIFU analysis are described with 

help of circular visualization. In particular, upon stratification of the samples by age, we identified 

a healthy NRR phenotype cluster in the age group 40-49 years, and having the highest mean values 

of cup volume and average CDR among all clusters, with predictive potential for glaucoma. We 

end with discussion of the CIFU approach and its potential applications to future work. 
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2.  Data and Methods 

 

2.1  Data 

All participants were selected from a population-based study LVPEI-GLEAMS (LVPEI Glaucoma 

Epidemiology And Molecular Genetic Study17) conducted by the L.V. Prasad Eye Institute 

(LVPEI), Hyderabad, India. Data were collected on a total of 3973 (OD:1981; OS:1992) healthy 

eyes of 2222 participants from the southern Indian state of Andhra Pradesh, India. Written 

informed consent was obtained from all participants to participate in the study, and the ethics and 

review committee of the LVPEI reviewed and approved the methodology and was conducted in 

strict adherence to the tenets of the Declaration of Helsinki. The inclusion criteria used were age 

>= 40 years, best-corrected visual acuity of 20/40 or better, spherical equivalent of ±6 Diopters, 

good quality stereo optic disc photographs, and no media opacities (signal strength >=6). The 

exclusion criteria used were intraocular surgery within the previous 6 months, and any retinal 

(including macular) or neurologic diseases other that could confound the structural measurements 

with SD-OCT. 

 

Healthy eyes were defined by the absence of anterior and posterior pathology. Each digital optic 

disc photograph was evaluated by three glaucoma specialists independently. The specialists were 

masked to the other clinical findings and the other imaging outcomes of the subjects. Eyes were 

excluded from the study in case of any disagreements among the specialists. All participants 

underwent a comprehensive ophthalmic examination which included detailed medical and 

systemic history. The means of clinical determination included best-corrected visual acuity 

measurement, slit-lamp photographs (Topcon, Bauer Drive, Oakland, NJ), Goldmann applanation 

tonometry (Hagg-Streit AT 900, Hagg-Streit AG, Switzerland), gonioscopy with a Sussman four 

mirror gonioscope (Volk Optical Inc, Mentor, Ohio, USA), dilated fundus examination, central 

corneal thickness (CCT) assessment, Humphrey visual fields (HVF) with 24-2 Swedish Interactive 

threshold algorithm (SITA; Carl Zeiss Meditec Inc. Dublin, CA). Visual fields (VF) were 

considered if false positive, false negative, and fixation losses were less than 20%, and all the 

stereophotographs of the optic disc had good quality. 
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In addition, digital optic disc photography and spectral-domain optical coherence tomography 

imaging with Cirrus HD-OCT (software version 9.0.0.281; Carl Zeiss Meditec, Dublin, CA, USA) 

were used. This is a computerized instrument that acquires and analyzes cross-sectional and three-

dimensional tomograms of the eye using spectral-domain optical coherence tomography (SD-

OCT) technology. The algorithm of the instrument automatically identifies the optic disc margin 

as the termination of Bruch's membrane (BM). BM opening (BMO) is used as the landmark to 

measure the amount of neuro-retinal rim tissue in the optic nerve. Optic Disc Cube 200x200 

protocol was used to scan the ONH and peripapillary area through a 6 mm square grid, which 

consists of 200 horizontal linear B-scans and each composed of 200 A-scans. First, the Cirrus HD-

OCT algorithm identifies the center of ONH and then automatically places a calculation circle of 

3.46 mm diameter evenly around it. The circular scan starts at an extreme temporal point and 

moves around the ring in the superior direction, then nasal, then inferior, then back to temporal 

(TSNIT). The circular measurements are made clockwise for the right eye and counter-clockwise 

for the left eye. NRR thickness is measured by the amount of neuro-retinal tissue in the optic nerve 

around the entire edge of the optic disc. Zeiss Cirrus HD-OCT used Bruch's membrane opening–

minimum rim width (BMO-MRW) to measure the rim area. The BMO-MRW is the shortest 

distance from BMO to the retinal internal limiting membrane. The advanced export functionality 

was used to record the NRR thickness values at 180 points in TSNIT order spaced evenly by 2 

degrees (from 2°–360°) around the circle. We refer to this as our NRR OCT high-resolution 

circular (HRC) data. The data were stratified into 3 age groups: (1) 40-49 years, (2) 50-59 years, 

and (3) 60 years and older. 

 

2.2  Methods 

 

We describe CIFU pipeline for circular functional modeling and clustering of HRC OCT data, 

followed by metaclustering based clinical characterization of the clusters identified by CIFU. 

 

Circular Functional Modeling and Clustering 

First, we introduce a method for clustering OCT HRC data into 𝐾 homogeneous groups of samples 

(i.e., eyes).  As an unsupervised approach, the method is based only on HRC data as input, and not 
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any clinical variables of the samples. While the actual OCT measurements are taken on a discrete 

grid of angles around the center of ONH, in principle, these finely indexed measurements are 

assumed to vary continuously around a circular scale ranging from 0 to 360 degrees, and wrapped 

around.  Thus, for statistical modeling, we will refer to the OCT data as a collection of 𝑛 circular 

curves 𝑋1(𝑡), 𝑋2(𝑡) … , 𝑋𝑛(𝑡), where 𝑋𝑖(𝑡) represents the OCT value (of NRR thickness) in the 𝑖𝑡ℎ 

sample (𝑖 = 1, 2, … 𝑛) measured radially at each point 𝑡 (here, 𝑡 = 1,2, … 180) and around a 

common center. The angular indices are aligned for all samples and spaced 2 degrees apart starting 

from a common 0 degrees. 

To allow for comparison of the curves based on their shapes rather than the magnitude, we 

normalize each curve 𝑋𝑖(𝑡) by dividing it by ∫ 𝑋𝑖(𝑡)𝑑𝑡2𝜋0 .  

Our modeling begins with the use of 𝑝 basis functions for capturing the functional nature of data. 

If 𝜓1 ,  𝜓2 , . . . , 𝜓𝑝 are the basis functions with the associated basis expansion coefficients 𝑖𝑗, 

where 𝑖 = 1, 2, … 𝑛 and 𝑗 = 1, 2, … 𝑝, then the functional approximation for the 𝑖𝑡ℎ curve at point 𝑡, 𝑋𝑖(𝑡) , is given by 

                                                                𝑋𝑖(𝑡) ≈ ∑ 𝑖𝑗𝜓𝑗 (𝑡)𝑝𝑗=1  = 𝑋𝑖𝑝(𝑡).   (1) 

Our objective is to cluster each of the circular curves described as above into a pre-specified 

number (𝐾) of clusters. Towards this, we used a discriminative functional mixture (DFM) model 

given by Bouveyron et al. (2015)18 in which 𝛾𝑖 = (𝛾𝑖1 , … , 𝛾𝑖𝑝)𝑡
 of curve 𝑋𝑖 follows a finite 

mixture model of 𝐾 Gaussian components with the density function 𝑓(𝛾) =  ∑ 𝜋𝑘∅(𝛾; 𝑈𝜇𝑘 , 𝑈𝑡 ∑ 𝑈𝑘  + 𝛯)𝐾𝑘=1  ,             (2) 

where 𝜋𝑘 ≥ 0 is the mixing proportion of the 𝑘𝑡ℎ component (i.e., the cluster 𝑘) such that ∑ 𝜋𝑘 = 1𝐾𝑘=1 , and ∅ is the standard Gaussian density function. Here, 𝑈 is a 𝑝 × 𝑑 orthogonal 

matrix mapping the basis coefficients 𝛾 into the discriminative subspace (of dimension 𝑑 < 𝑝) 

through a linear transformation. Similarly, 𝜇𝑘 and 𝛴𝑘 are the mean vector and covariance matrix 

(for cluster 𝑘) of 𝛾 mapped into the discriminative subspace, and the noise of the above 

transformation is normally distributed with mean zero and covariance 𝛯. 
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The DFM model was fit with an EM algorithm implemented in the R package funFEM19. 

Following the idea of constraining variance parameters in Fraley and Raftery (1999)20, the funFEM 

package allows 12 different choices of DFM models. As an initial step, using different restrictions 

on the noise covariance matrix 𝛯, a preliminary model search was run with NRR data, with outlier 

curves included, over all 12 models and a flexible set of (61) basis functions. Based on the results 

of the initial run, and after removing the outlier curves by equation (3), the clustering algorithm 

was run using a smaller selective set of (21) basis functions.  

A given curve 𝑋𝑖(𝑡) is considered an outlier if it exceeds the following threshold 𝑋𝑜𝑢𝑡 =  max𝑡 �̅�𝑖(𝑡) + 3.5 ×  max𝑡 𝑠𝑑(𝑋𝑖(𝑡)) , 𝑡 = 1, … 180; 𝑖 = 1, … 𝑛   (3) 

To avoid model overfitting, we determined the smallest number of basis functions (𝑝) that recover 

the input curves sufficiently well, as determined by the fraction of variation explained (𝐹𝑉𝐸) as 

described below. Let the sample mean of 𝑛 given curves be 

                                                               �̅�(𝑡) =  1𝑛 ∑ 𝑋𝑖(𝑡)𝑛𝑖=1 ,    𝑡 = 1 , 2 , ⋯ , 180.  (4) 

Then the total variation (TV) is given by  

𝑇𝑉 = 1𝑛−1 ∑ ∫(𝑋𝑖(𝑡) −  �̅�(𝑡))2 𝑑𝑡𝑛𝑖=1    (5) 

and the fraction of variation explained (FVE) by  

𝐹𝑉𝐸 = 𝑇𝑉− 1𝑛−1 ∑ ∫(𝑋𝑖𝑝(𝑡)−𝑋𝑖(𝑡))2 𝑑𝑡𝑛𝑖=1 𝑇𝑉  .   (6) 

We used 𝐹𝑉𝐸 as the criterion for selecting an optimal number of basis functions (𝑝). 

Finally, the number of clusters identified by the DFM models for each age group was determined 

by 3 known model selection criteria AIC, BIC and ICL. 

For intuitive visualization of the clustering results, we plotted the curves of every cluster in a 

distinct color using a circular scale. The mean curve of each cluster, as computed by (4), is included 

as a bold black curve, which serves as a cluster-specific template.  
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For comparison of our circular functional clustering method with a popular non-circular data 

clustering approach, we used the Partitioning Around Medoids (PAM) as implemented in R. The 

optimal number of clusters identified by PAM was selected using the Average Silhouette Width 

(ASW), while Dunn Index was calculated as a measure of inter-cluster variation. We used the R 

packages ‘factoextra’ and ‘fpc’ for PAM clustering, validation and visualization. 

 

Metaclustering and Clinical Characterization of Clusters 

In the metaclustering step, the clusters identified by circular functional data were grouped based 

on their samples’ similarity in terms of a selected set of clinical variables that are known covariates 

of glaucoma. A feature selection step was performed simultaneously to detect the covariates that 

were the most distinctive across the metaclusters. The metaclustering workflow consists of the 

following steps: 

1. In each age group, each circular functional cluster 𝐶 was represented by the mean values of a 

set of clinical covariates of the samples in 𝐶. 

2. We performed agglomerative hierarchical clustering of the clusters given by their mean 

covariate data with complete linkage, and a tuning parameter (wbound) to select the covariates 

that are the most distinctive across the metaclusters.  

3. We plotted the metaclusters (identified by Step 2) with age group-specific dendrograms. A flat 

cut of the dendrograms at a common height threshold was use to distinguish the metaclusters in 

each age group, which were shown as subtrees of corresponding colors. 

4. We visualized using contour plots the corresponding metaclusters of each age group to compare 

the distributions of the selected covariates across the metaclusters as well as the age groups.  

The set of 9 covariates used in step 1, selected for their clinical relevance, are shown in Table 2. 

The R package ‘sparcl’21 was used for agglomerative and sparse hierarchical metaclustering in 

step 2; the arguments of the wbound parameter were varied from 2 to 5. 
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3  Results 

 

The CIFU pipeline was run with HRC NRR phenotype data collected with OCT and clinical 

assessment of a normal cohort consisting of 3973 healthy eyes. The steps of the pipeline began 

with stratification of the OCT and clinical data by age into 3 age groups with (1) 1841, (2) 1351, 

and (3) 781 samples respectively. The list of clinical variables are summarized in Table 1. An 

identical sequence of steps of analysis was followed by CIFU within each age group.  

 

The 180-point HRC data for each sample (eye) were modeled using 𝑝 = 11 Fourier basis 

functions. We chose 𝑝 = 11 since it was the smallest value of 𝑝 for which 𝐹𝑉𝐸, as given in 

equation (6), exceeded 99% (Supplementary Figure S1). The curves were normalized and aligned 

to a common starting angle of 0 degrees to allow for comparison of their shapes around the center 

of ONH. Using equation (3), the outlier OCT samples were removed: 6 samples from age group 

1, 1 from age group 2, and 5 from age group 3. Then, within each age group, the curves were 

clustered by a discriminative functional mixture (DFM) model as described in equation (2). The 

number of clusters (𝐾) for each age group was determined by 3 different well-known criteria: AIC, 

BIC, and ICL. These criteria showed overall strong agreement attesting to optimal model selection 

as seen in Figure 1. Thus, we determined 𝐾, the number of clusters, for age group 1, 2, and 3 as 7, 

8, and 6 respectively. The size of each cluster is shown in Table 2.  

 

The results of our circular functional clustering are shown in Figure 2(a)-(c) as a panel of 𝐾 clusters 

for each age group. Each cluster 𝐶 within a panel consists of the circular curves for the samples 

that belong to 𝐶 (all shown in a common color specific to 𝐶) based on the similarity of their 

functional representation. To gain an intuitive understanding of the 180-point HRC OCT data on 

NRR phenotypes, we used a visualization of curves as represented on a common circular scale. 

Unsupervised clustering of the circular functions revealed various NRR patterns in the identified 

clusters, some of which were distinctive whereas others have subtle differences. Notably, the 

visualization reveals the unique mean shape (or NRR “template”) of each cluster as shown by a 

bold black circular curve in each plot of Figure 3.  
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The circular curve visualization allows several interesting observations. We note the consistent dip 

at the temporal (T) region near 0 degrees, which is a characteristic feature shared by the templates 

of all clusters. This is supported by the well-known ISNT rule22 according to which, from the 

center of ONH, the rim is the thinnest at the temporal (T) region. Interestingly, we also observed 

various shapes and features in the cluster templates (such as distinctive protrusions, notches, tilts, 

etc.) that appear as well as vary continuously in different (non-T) regions around the circle. The 

clustering solution allows us to record the intra-cluster variation which could be used to 

quantitatively compare the dynamics (say, the rates of focal change) of corresponding clusters 

across age groups. In this regard, we note that non-circular (PAM) clustering of the same NRR 

HRC data yielded only 2 clusters of low phenotypic variation in every age group (Supplementary 

Figures S2 and S3) as noted by their small values of Dunn Index for every age group (1: 0.0548; 

2: 0.044; 3: 0.0557).  

 

In order to establish a correspondence among the clusters in different age groups as well as to 

characterize the samples that belong to each cluster, we conducted a metaclustering analysis. In 

this step, we clustered the clusters based on a set of 9 clinical variables of the samples therein. 

These are known covariates of glaucoma, and no NRR data from the previous clustering step was 

used. The results of sparse hierarchical metaclustering are shown in Figure 5. The dendrograms 

reveal the similarities among the clusters in terms of their mean sample covariates as well as the 

counts of metaclusters identified at different levels of each dendrogram. Based on flat cuts of all 

the dendrograms (at a common height threshold of 0.1), we identified 3 metaclusters {𝑀11, 𝑀21, 𝑀31} 

for age group 1; 2 metaclusters {𝑀12, 𝑀22} for age group 2; and 2 metaclusters {𝑀13, 𝑀23} for age 

group 3. Notably, all the dendrograms show the metacluster 𝑀2• (pink subtree) to be more 

heterogeneous in every age group than the metacluster 𝑀1• (blue subtree). Among the youngest 

participants, i.e., in age group 1, the metacluster 𝑀31 (consisting of the original cluster 4) is distinct 

from the metacluster 𝑀21.    

 

A feature selection step, performed along with metaclustering, identified the optic disc cup volume 

and the average cup-to-disk ratio (CDR) of an eye as the most significant features in terms of the 

contributions of the different covariates to the metaclustering. These distinctive covariates allow 

us to register the correspondence of the metaclusters across the different age groups in Figure 6, 
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which shows the contour plots of the metaclusters in their matched colors. The 3 metaclusters 𝑀1• 
shown in blue have the smallest mean values of cup volume and CDR, the 3 metaclusters 𝑀2• 
shown in pink have higher mean values of these covariates, and the single unmatched metacluster 𝑀31 shown in red has the highest mean values (Table 2).   

  

It is interesting to consider the unmatched metacluster 𝑀31 which not only has the highest mean 

values of the covariates (cup volume and average CDR) but is, in fact, comprised of a single, 

distinct cluster based on the OCT NRR phenotype data (Figure 5a). Here we note that 

notwithstanding a large value of CDR (especially > 0.5), cupping by itself is not indicative of 

glaucoma. In fact, it is known that deep but stable cupping can occur due to hereditary reasons 

without glaucoma (see Discussion). Rather, it is a change in these ONH parameters with age of 

the participants that is a clinical indicator of glaucoma. Since the samples included in the present 

study contain only healthy eyes as determined clinically by agreement of multiple glaucoma 

specialists, the presence of this unmatched cluster only in the youngest age group serves as a 

signature of healthy NRR phenotype with predictive potential for glaucoma. That is, the 

corresponding metacluster with such high values of these covariates among the older age groups 

would have the likelihood of progressing to glaucoma, and thus, is unlikely to be represented in a 

cohort of only healthy eyes, as we have in the present study. 

 

4  Discussion 

Unsupervised learning of the heterogeneity of normative ONH phenotypes in a given population 

can provide a more comprehensive understanding of the diversity of baselines that exist for 

degenerative neuropathies. Such knowledge is particularly useful in the case of glaucomas for 

which different ONH parameters play a combined role in early detection. For example, in a non-

glaucoma multiethnic cohort of Asian individuals, the inter-eye RNFL profile was found by OCT 

to be less symmetric in Malays and Indians than that in Chinese23. Not only are the structural 

characteristics of individual eyes known to vary racially, even their rates of change over time could 

be different across population groups. For instance, the rate of change of BMO-MRW was 

recorded as −1.82 μm/year and −2.20 μm/year in glaucoma suspect eyes of European and African 

descents respectively24. In another multi-centred normal population study, both age-related decline 

and between-subject variability in BMO-MRW were observed25. Indeed, even the manufacturers 
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of OCT technology noted racial differences in optic disc area, CDR, cup volume, and RNFL 

thickness when measured using their platform26. 

 

The presence of phenotypic heterogeneity makes it less justified to apply common, universal 

thresholds for clinical determination of glaucomatous damage in different population groups using 

OCT measurements, particularly in the early stages of the disease when the baselines could have 

stronger initial effects. To account for the effects of normal variation in ONH parameters, large 

and racially representative normative databases of healthy eye OCT phenotypes should be created. 

However, often such collections of healthy samples tend to be small or moderately sized, e.g., the 

normative database of Cirrus HD-OCT platform included just 284 subjects26. In that cohort, 

Caucasians represented 43%, Chinese 24%, African Americans 18%, Hispanics 12%, and others 

6%. The representation of Asian Indians, in contrast, was about 1% of the Cirrus HD-OCT cohort, 

which does not adequately reflect the 2020 projections about India to become the second in global 

glaucoma numbers, surpassing Europe27. Thus, more than 16 million Indians could be affected by 

glaucomas, and nearly 1.2 million get blind from the disease. Some resources such as the HRT3 

Normative Database, while including 104 Indian individuals, did not improve the diagnostic 

sensitivity or specificity for glaucoma in that group for the potential reasons of limited sample size 

and intra-racial variation of ocular topography28. 

 

In this study, we leverage on the large population-based LVPEI-GLEAMS study to generate new 

and relatively large OCT dataset based on nearly 4000 samples from normal Asian Indian 

participants. In fact, given that the recruitment of all the study participants was from a single 

geographic region (namely, the state of Andhra Pradesh), the scope of intra-racial variation to 

affect this dataset is limited. Moreover, the relatively large sample size of the data allowed us to 

identify a variety of clusters of NRR phenotypes, including the signature (cluster 4) with predictive 

potential for glaucoma consisting of 6.6% of all samples in the youngest age group (40-49 years). 

The absence of its corresponding cluster in the older healthy age groups despite their considerable 

sample sizes (total of 2132 samples of age 50 years and above) leads to a reasonable supposition 

of its potential pathological progression with increase in age, thereby resulting in lack of 

subsequent representation in a healthy cohort such as in the present study. Such phenotypic decline 
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is consistent with the findings from a prospective longitudinal study that found the rate of age-

related, glaucomatous global (or global percentage) rim area loss to be 3.7 (5.4) times faster as 

compared to healthy eyes29. 

 

Importantly, independent support for the identified signature relies on its clinical characterization 

in terms of covariates such as cup volume and CDR, which are useful parameters for diagnosis of 

glaucoma suspect30. Despite its normal mean value of intraocular pressure (IOP) as is expected of 

healthy eyes, the signature cluster has the highest mean values of average CDR and cup volume 

of all metaclusters across all 3 age groups (Table 2). In a recently published longitudinal study that 

started from baseline values and was run over a 5-year period, the covariates which had statistically 

significant increase in glaucomatous progression included CDR and cup volume31. We understand 

that it would perhaps be ideal to follow-up healthy individuals and measure the changes in their 

clinical covariates as they age in order to classify the ONH phenotypes via supervised learning. 

The approach of CIFU, in comparison, involves unsupervised learning of different high-resolution 

phenotypes in age-stratified data and their characterization using key covariates, which is far less 

time-consuming and yet has the potential to produce a clinically insightful database for diverse 

populations with high phenotypic heterogeneity.  

 

In addition to its sample size and racial representation, perhaps the most noteworthy feature of the 

present OCT dataset is its unique HRC measurements of NRR thickness.  These samples, collected 

at every 2 degrees, extend the typical use of such measurements recorded at either 4 quadrants or 

12 clock-hours, and even 48 angular positions32, to higher-dimensional analysis. As clustering with 

curves show, the focal variations could be more nuanced than that suggested by a general rule, 

e.g., ISNT, and a capability to “zoom” into finer angular divisions can reveal further patterns33. In 

low-resolution data, it may be difficult to detect focal changes within the confines of pre-

determined inflexible sectors. Moreover, the templates of the clusters could also be compared 

using known tests in shape analysis34. Be it circular data from OCT, or optic phenotypes in general, 

they seem suitable as candidate applications of circular statistics, and yet, we are unaware of any 

major previous studies in this regard. Further, the high-resolution also allowed the HRC data to be 

closely approximated by continuous curves, and thus, specified by the corresponding functional 

representation. While clustering of circular point data12,35,36 as well as clustering of curves37–39 and 
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(non-circular) functional data13,14,19,40–42 have been addressed by past studies, the present clustering 

of curves in the form of circular functions is possibly a novel application. 

 

We understand that the present study has certain limitations. As we noted above, a prospective 

cohort study would be better suited to validate the predictive glaucomatous potential of the 

identified NRR phenotypic signature. We plan to address this in our future work. While HRC data 

could be accessed from the OCT scans, it is not commonly done by the clinical protocols. We hope 

that by adding user-friendly interfaces to CIFU, we may promote such data acquisition and 

analysis. Indeed, there are several distinct advantages of our approach which could be built upon 

further in future studies. The numeric representation of the functional mixture model parameters 

could be used to compare the normal against disease ONH phenotypes allowing us to characterize 

any changes therein with precision and rigor. Once a database of phenotypic parameters is 

developed, known measures of shapes and distances between curves could be used for objective 

clinical classification of new samples. Applied to longitudinal analyses, our high-resolution 

modeling could identify intermediate, or previously uncharacterized, stages of disease progression, 

especially by focusing on variations within fine angular sections. Straightforward extensions are 

feasible for similar circular data such as RNFL phenotypes and other optic neuropathies as well as 

related eye imaging platforms, e.g., OCT-Angiography (OCTA). As we have demonstrated for 

other biomedical platforms39,43–46, the new pipeline CIFU could be enhanced incrementally with 

different functionalities, say, to increase computational efficiency or capture the perspective of the 

clinical experts. The circular curve visualization introduced in the present study may lead to a more 

user-friendly tool for clinical purposes as we plan to make it interactive, with advanced capabilities 

to jointly handle data and metadata, in our future work. 
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Figures 

 

Figure 1: The values of model selection criteria AIC, BIC, and ICL corresponding to fitting of a 

DFM model of 𝐾 clusters to OCT NRR samples of age group 1 shown in (a), 2 in (b) and 3 in (c). 

The optimal DFM models for the age groups 1, 2 and 3 were selected for 𝐾=7, 8 and 6 respectively, 

beyond which no significant gain was noted. 
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Figure 2: The results of clustering the OCT NRR data of age groups 1, 2, and 3 are shown 

respectively in panels (a), (b), and (c) using a circular functional representation. The curves 

belonging to each cluster is shown in a distinct color within a panel. The sample mean of each 

cluster is shown as a bold black circular curve.  
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Figure 3: The results of metaclustering are shown using dendrograms for age groups (a) 1, (b) 2, 

and (c) 3. The leaves denote the Id-s of the circular functional clusters of OCT NRR data. The 

metaclusters are obtained by a flat cut of each dendrogram at the common height of 0.1, and the 

labels and subtrees representing them are shown in different colors.    
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Figure 4: Contour plots of the distributions of clinical covariates volume and average cup CDR 

of the samples belonging to metaclusters of age groups 1: (a) 𝑀11, (b) 𝑀21, (c) 𝑀31; 2: (d) 𝑀12, (e) 𝑀22; and 3: (f) 𝑀13, (g) 𝑀23. The corresponding metaclusters are shown in matched colors. 
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Tables 

 

Table 1: The clinical variables of the study participants in the three age groups. The units are 

given in parentheses. The asterisk(*) denotes that a variable is described as mean±sd. (N: Number 

of samples; OD: Oculus Dexter; OS: Oculus Sinister; BCVA LogMAR: Best Corrected Visual 

Acuity Logarithm of the Minimum Angle of Resolution; IOP: IntraOcular Pressure; CCT: Central 

Corneal Thickness; CDR: Cup-to-Disc Ratio.) 

 

Clinical variables Age Group1  Age Group2  Age Group3   

Number of eyes, N (OD/OS) 1841(917/924) 1351(677/674)  781(387/394) 

Age (years)* 43.95±2.83 53.18±2.76 64.63±5.39 

Gender, N (Female/Male) 1256/585 755/596 372/409 

BCVA LogMAR* 0.01±0.04 0.03±0.08 0.09±0.11 

Spherical equivalent (diopter)* 0.02±0.75 0.16±1.05 -0.17±1.3 

IOP (mmHg)* 12.58±2.34 12.49±2.41 12.13±2.38 

CCT (µm)* 525.7±32.22 524.28±31.96 517.14±31.62 

Axial length (mm)* 22.59±0.74 22.63±0.71 22.6±0.8 

Family history of Glaucoma, n, (no/yes) 1835/6 1345/6 781/0 

Diabetes mellitus, n, (no/yes) 1720/121 1163/188 666/115 

Hypertension, n, (no/yes) 1696/145 1083/268 575/206 

RIM AREA (mm2)* 1.36±0.22 1.34±0.23 1.33±0.25 

DISC AREA (mm2)* 1.96±0.35 1.97±0.35 2.01±0.37 

AVERAGE CDR* 0.52±0.15 0.53±0.14 0.55±0.14 

AVERAGE THICKNESS (µm)* 94.36±9.25 92.3±9.57 90.73±9.9 

VERTICAL CDR* 0.49±0.15 0.5±0.13 0.52±0.13 

CUP VOLUME (mm3)* 0.18±0.16 0.18±0.15 0.2±0.18 

DISC DIAMETER (mm)* 1.49±0.15 1.51±0.15 1.53±0.16 

 

. 
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Table 2:  The clinical covariates used for metaclustering in the three age groups. The two 

most significant covariates due to feature selection are shown in bold. The values of each variable 

in a metacluster are described as mean±sd. The units are given in parentheses. (N: the number of 

samples; IOP: IntraOcular Pressure; CCT: Central Corneal Thickness; CDR: Cup-to-Disc Ratio.) 

 

 

 

 

 

 

 

 

 

  

 Age Group 1 Age Group 2 Age Group 3 

Metacluster {Clusters} M1 {3,6} M2 {1,2,5,7} M3 {4} M1 {1,5,7} M2 {2,3,4,6,8} M1 {3} M2 {1,2,4,5,6} 

Metacluster N (percent) 549 (29.8) 1170 (63.6) 122 (6.6) 547 (40.5) 804 (59.5) 212 (27.1) 569 (72.9) 

IOP (mmHg) 12.68±2.31 12.54±2.33 12.54±2.61 12.34±2.31 12.6±2.48 12.12±2.48 12.13±2.34 

CCT (µm) 525.93±31.08 526.24±32.86 519.53±30.68 523.06±31.53 525.09±32.23 518.71±33.58 516.56±30.87 

Axial Length (mm) 22.55±0.75 22.59±0.74 22.7±0.67 22.63±0.69 22.63±0.72 22.8±0.72 22.53±0.82 

RIM AREA (mm2) 1.44±0.23 1.32±0.21 1.25±0.19 1.42±0.24 1.29±0.21 1.42±0.25 1.3±0.24 

DISC AREA (mm2) 1.86±0.29 1.99±0.35 2.17±0.4 1.89±0.32 2.02±0.36 1.88±0.32 2.06±0.38 

DISC DIAMETER (mm) 1.47±0.13 1.5±0.15 1.59±0.17 1.48±0.14 1.52±0.15 1.48±0.14 1.55±0.16 

VERTICAL CDR 0.45±0.13 0.49±0.15 0.56±0.14 0.47±0.14 0.52±0.13 0.48±0.12 0.53±0.14 

AVERAGE CDR 0.44±0.13 0.54±0.15 0.62±0.12 0.46±0.14 0.57±0.13 0.46±0.12 0.58±0.14 

CUP VOLUME (mm3) 0.1±0.1 0.2±0.16 0.3±0.19 0.12±0.12 0.22±0.16 0.11±0.11 0.23±0.19 
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Supplementary Figures 

 

Supplementary Figure S1: The fraction of variation explained (𝐹𝑉𝐸) by models with different 

choices of the number (𝑝) of basis functions used for the functional representation of OCT data. 
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Supplementary Figure S2: Average Silhouette Width (ASW) for different choices of the number 

of clusters (K) due to PAM clustering of OCT HRC data for age groups (a) 1, (b) 2, and (c) 3. The 

value of ASW is maximum for K=2 for all three age groups. 
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Supplementary Figure S3: Results of PAM clustering OCT HRC data for age groups (a) 1, (b) 

2, and (c) 3. Each scatterplot shows K=2 clusters (in red and green) as identified by PAM based 

on maximum ASW. Each 2D point represents a sample’s first two principal components of HRC 
data.  
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