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ABSTRACT 

In this thesis a theory of the Circular Intensity 

Differential Scattering (CIDS) of chiral molecules as mo

delled by a helix oriented with respect to the direction 

of incidence of light is presented. It is shown that a 

necessary condition for the existence of CIDS is the pre

sence of an asymmetric polarizability in the scatterer. 

The polarizability of the scatterer is assumed generally 

complex, so that both refractive and absorptive phenomena 

are taken into account. 

The theory is derived within the frame of the first

Born approximation to the internal field. Under these con

ditions, the preferential scattering observed is character

ized as FORM-CIDS, and shown to be valid for all ranges of 

wavelength of the incident radiation. 

The symmetry laws governing the spatial distribution 

of the scattering intensities are derived for the case of 

incidence of light perpendicular to the helix axis and for 

a helix possessing a uniaxial tangential polariza~ility. 

Calculations are presented for the case of a triaxial 

polarizability and analytical equations of the CIDS derived 

for a helix having a biaxial polarizability. In both cases 

anomalous behavior is found and their symmetry rules dis

cussed. 

It is also presented here a first correction to the 
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internal field by adding to the incident field the dipole 

radiation fields generated somewhere else in the scatter

er. The main result is the presence of non-vanishing for

ward CIDS. This is not a form-CIDS effect. 

Finally, the theory is generalized for the case of a 

sample of randomly oriented chiral scatterers of arbitra

ry geometry. 

The result of this study points out the promising 

aspects of CIDS as a powerful technique to probe chiral 

regions in macromolecular aggregates. 
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INTRODUCTION 

The last thirty years have witnessed the fast growth 

of the quantitative aspects of Biology. The great success 

of Biochemistry in providing better and more efficient 

separation methods, rapidly started to open the gigantic 

panorama of the molecular anatomy and physiology of the 

simplestliving organisms. 

At one side of the spectrum, biologically oriented 

researchers have concentrated on the study and character

ization of the function of the macromolecular components 

of the cell. At the other side, there have been workers 

trying to elucidate the structural properties of these 

macromolecules, by means of more physically oriented ex

perimental and theoretical methods. While the rationale 

of the functional approach is self-evident, the philosophy 

behind the structural approach is not as clear. 

Certainly, nobody denies that in a body of study such 

as Biology, in which the emergent forms are the result of 

natural selection, structure is a category reducible to 

function. What is not as clear is what is behind the struc

ture i.e. the dynamical play of forces and interactions 

that maintain and express themselves in that structure. Is 

it possible to reduce in turn the biological function to 

this inner dynamics of the structure? Hopefully yes. And 
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this is probably the Platonic archetype limit of the struc

tural approach. 

Experimentally, the use of a well characterized phy

sical property can give information on the structural dy

namics of the molecule which in turn, will help to build 

a dynamical structure of the system. Theoretically, one 

must resort to idealized models that approach more or less 

reality. It might be useful to remember at this point 

Plato again. Somewhere he has said that "some problems on

ly can be treated by building myths around them ... " His 

position is not far from Einstein's precept that "theory 

cannot be built on experimental results. It must be in

vented". 

The work presented here is an attempt to establish 

theoretical grounds of the preferential scattering of 

light of circular polarization by optically active mole

cules, and its possible utilization to obtain structural 

information of these molecules. 

In Chapter 1, a review of the main experimental evi

dence for the existence of CIDS in macromolecular ag

gregates and liquid crystals is done. This is followed 

by a general background in classical electrodynamics and 

the main results of the classical theory of scattering is 

presented. 

Chapter 2 shows the derivation of the integral for-
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malism of scattering theory. We then apply the results 

to a unidimensional oriented helix with a polarizability 

tangential at each point on the helix. The equations for 

the fields are solved along the three orthogonal directions 

of incidence of light. The corresponding analytical ex

pression for the differential scattered intensity (I1 -IR) 

of right and left circularly polarized incident light is 

derived. Also r 1+IR and the CIDS ratio:(I 1 -IR)/(I 1+IR) is 

obtained. At the end of the chapter the Stokes' parameters 

for the scattered light are derived. 

In Chapter 3 we present numerical calculations based 

on the equations derived in Chapter 2. The general fea

tures of the scattering pattern are presented in polar 

plots of intensity vs. angle and we derive relations to 

determine how the parameters of the scatterer affect these 

patterns. 

In Chapter 4 the case of an absorptive helical scat

terer is considered. The equivalent to Friedel's law for 

CIDS is established. The symmetry rules of the scattered 

intensities in space are then derived. Numerical calcula

tions are shown. 

In Chapter 5, the first-Born approximation in the in

ternal field is replaced by a dipole-dipole coupling of 

the radiating dipoles on the scatterer. We show that in 

this case a diffraction effect is responsible for non

zero CIDS in the forward direction. We present numerical 
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calculations of the equations obtained. 

Finally, in Chapter 6, we present the spatial ave

raging of the classical expressions for differential and 

total scattering of circularly and plane polarized light 

respectively. 
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Chapter 1 

GENERAL REVIEW AND BACKGROUND 

I. Differential Scattering: Review on Experimental 

Observations and Theoretical Treatments. 

1 

1) Experimental and theoretical results in biological 

systems. 

A great amount of work on the optical properties of 

biological macromolecules has appeared in the literature 

in the last two decades. These studies have been directed 

towards gaining a better understanding of the structural 

and electronic properties of these systems, in the hope 

that this, in turn, will clarify their biological functions. 

This has been, in part, the result of two major steps 

in the area: first, the development of better and more 

accurate measuring instruments, and second, the appearance 

during this period of very general and useful theories on 

the optical properties of macromolecules, in particular on 

circular dichroism (CD) and optical rotatory dispersion 

(ORD).
1 

These methods were originally limited to homogeneous 

solutions of macromolecules. Within the last decade, they 

have also been applied to increasingly complex systems such 

as particulate aggregates of biological macromolecules, 

suspensions of whole or fractured membranes, nucleohistones 

complexes, etc. A remarkable common feature of all these 

systems was the presence of notorious anomalies in their CD 
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and ORD spectra. 

Urry and co-workers
2 

were the first people attempting 

an explanation of the modifications they observed in the 

CD of suspensions of membranes. They also recognized that 

the difference between the CD of aggregates of poly-glutam-

ate versus the dispersed solution arose from Duysen's flat-

tening effect and preferential scattering of light of oppo

site circular polarization, and not from a dependence of 

the electronic states upon aggregation. These authors 

presented a phenomenological analysis in an attempt to 

recuperate the original CD signal. Their analysis has been 

questioned by other authors. 3 

Ottaway and Wetlaufer 4 have applied the Rayleigh 

Scattering theory modified to account for the optical acti

vity of the scattering particle. According to their cal-

culations, very small corrections of the measured CD would 

be found. It is clear that this theory, due to its restric

tive wavelength character (Rayleigh), cannot be applied to 

particles of the order or larger than the wavelength of 

light. Holzwarth
3 

has classified the three major mechanisms 

by which scattering of the sample could affect the intrinsic 

CD and ORD signal: 

a) Scattering can decrease the transmission of the signal. 

b) Depolarization of the incident light occurs when it 

passes through the scattering sample. 

c) Differential scattering of right and left circularly 
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polarized light might be present and can be inter

preted as differential absorption. 

5 
Schneider et al. raised the question of whether the 

CD spectral distorions characteristic of membrane systems 

reflect a unique and common structure in these systems or 

are the result of the combination of scattering and Duysen's 

flattening effects. With this purpose these authors carried 

out three types of experiments: First the CD spectra of 

red blood cell ghosts were compared to the spectra of soni

cated ghosts. They found that sonication produced a charac

teristic general increase in the ellipticity as compared to 

the intact ghosts, in particular of the band at 208 nm. 

Second, CD of hemoglobin in solution was compared with that 

of hemoglobin concentrated into red blood cells at different 

degrees of hemolysis. It was found that hemolysis restores 

the spectra of the hemoglobin in solution as compared to 

the flattened spectra observed for the hemoglobin inside 

the cells. Third, droplets (approximately 10 nm in diameter) 

of a solution of bovine serum albumin, when suspended in 

glycerol, showed large amounts of scattering. The ellip

ticities measured presented a similar type of distortion 

as the one observed in the ghost of red blood cells. These 

authors attributed these distortions to scattering and 

Duysen's flattening "artifacts" and discussed the possibility 

of a differential scattering contribution. 

In this context, it should be noted that total scattering 

and Duysen's flattening have opposite effects in the CD 
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spectra. We can write the contribution of the scattering 

to the ellipticities as: 

where r
1 

and IR are the transmitted intensities of the 

corresponding incident circular polarizations and S is the 

amount scattered by the sample (therefore the minus sign). 

Clearly, the scattering contribution cancels in the numerator 

but decreases the denominator, yielding an overall higher 

ellipticity. This, as mentioned above, is contrary to the 

spectral distortions observed in membranes.
6 

Conversely, 

Duysen's flattening effects tend to decrease the ellipti

cities. Although possible total scattering effects cannot 

be ruled out, it seems that Duysen's flattening and differ

ential scattering are the dominant contributions to the dis

tortions observed. Similar conclusions were drawn by Glaser 

and Singer
7 

by applying Urry's phenomenological equations to 

their CD data of red blood cell membranes. 

8 
Maestre et al., measuring the CD of bacteriophages 

T2• T4 , and T
6

, found that the CD curves presented long 

tails extending towards the longer wavelengths of the spec

trum up to the visible. These authors attributed the effect 

tl t d .ff t. 1 tt · Dorman et al., 9 ' 10 
correc y o 1 eren 1a sea er1ng. 

using a set of variable acceptance detectors and an integrat-

ing capturing device (fluorscat cell) that captures all but 



5 

the back-scattered light, were able to eliminate these 

tails effectively. 

. 11 12 
Many CD studies of nucleoh1stones ' and DNA-poly-

lysine complexes 13 , 14 have been reported. In all cases, 

an important differential scattering contribution is present 

showing long tails toward the red and giving rise to enor-

mous ellipticities (of the order of hundreds) within the 

absorption band of the complexes. 15 Another sample of 

biological material that exhibits similar manifestations 

are intact chloroplasts. They show remarkable dependence 

of the CD signal on the angular orientation of the sample 

with respect to the incident beam. 16 

Holzwarth et a1. 17 have pointed out at the similarities 

between the CD spectra of T-even bacteriophages and those 

of the liquid crystals (large ellipticities, positive or 

negative tails towards longer wavelengths). These authors 

tried to account for the scattering contributions to the 

CD by the use of Mie-type calculations. The model, however, 

proved unable to reproduce the experimental CD curves. 

In an effort to subtract the scattering artifacts 

plaguing the ORD and CD measurements of molecular aggregates, 

Schneider 18 has constructed the scattering amplitude matrix19 

for incident right and left circularly polarized light, to 

describe the intrinsic optical activity and all the scatter

ing properties of the suspension. The author relates the 

observed optical activity of the suspension to the elements 
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of the matrix, through the bulk refractive index of the 

suspension. In order to separate the optical activity from 

the scattering effects, the author proposes a general (non-

specified) functional dependence between the bulk optical 

properties of the suspension represented by the matrix 

elements and the true optical activity of the particles 

represented by their index of refraction. Unfortunately, 

it seems that all the information about the scattering 

effects of the sample is buried in this "functional depen-

dence'' whose determination is the central problem in under

standing these scattering phenomena. However, even pheno

menologically the analysis appears incorrect, since the for

malism deals only with the forward scattering matrix, fail

ing to recognize that non-forward total and differential 

scattering would also affect the differential extinction 

measured at the detector in the forward direction. 

Other attempts to fit the classical general scattering 

Mie theory by means of the introduction of ad-hoc terms to 

account for the optical activity of the particles and the 

anomalies in the CD spectra of several particulate suspen-

sions. have appeared in the literature, with quite varied 

20-23' 
degree of success. The most serious attempt in this 

sense was carried out by C. F. Bohren,
24 

who solved the 

scattering of an optically active isotropic sphere within 

the frame of the Mie-theory, using phenomenological coeffi

cients to describe its differential reactions to right and 
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left circularly polarized light. He found in calculations 

for polyglutamic acid spheres that even for ratios of radius 

of the sphere to wavelength of 1/8 the differential extinc

tion (including both absorption and scattering) peaked in 

the forward direction, although in this limit the scattering 

was negligible compared to the absorptive contribution. 

The recent development of the Fluorescence Detected 

Circular Dichroism technique (FDCD)
25 

has allowed Reich et 

a1.
26 

to measure the 4rr-radians integrated differential 

scattering of DNA condensates in ethanolic solutions. These 

authors found very little forward differential scattering. 

Most scattering appeared at right angles to the incident 

beam and moderate differential scattering occurred in the 

backward direction. Furthermore, CD studies of films of 

DNA twisted by shearing the fibers between two quartz plates
27 

yielded enormous ellipticities whose sign was reversed by 

reversing the sense of the twist. The back scattering inten

sities measured in these studies indicated that the polariza

tion of the reflected light was the same as that of the incom

ing beam. As will be seen later, this is a property of choles

teric and twisted nematic liquid crystals. To explain the 

large CD spectra observed in nucleohistone complexes, ethanolic 

precipitates of DNA, and polylysine-DNA aggregates, ~!aestrc ct 

a1.
27 

advanced the following conclusions: a) the anomalous CD 

spectra observed were the result of liquid crystal behavior witl1 
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both differential scattering and resonance transmission 

near the absorbance band; b) the long tails observed, being 

a scattering phenomenon, reflect the size and shape of the 

particle; c) the sign of the differential scattering contri

butions singled out ·by the FDCD technique must reflect the 

~ense of chirality of the studied structure. 

2) Liquid crystals. 

Cholesteric mesophases are a special type of nematic 

liquid crystals in which the constituent molecules are 

optically active. 28 - 30 Under appropriate conditions, 

the structure possesses a screw axis normal to the prefer

ential molecular orientations. The whole mesophase looks 

like a group of stacked planes each composed of well aligned 

parallel molecules with a definite twist angle between a 

given plane and the next. 

When the wavelength of light corresponds to the pitch 

of the cholesteric helix, there are two opposite cases: 

First, circularly polarized light incident along the helix 

axis and having the same handedness as that of the helix is 

almost completely reflected. On the contrary? if the cir

cular polarization of the light is opposite to the handedness 

of the helix, the light is almost completely transmitted. 

Furthermore, the polarization of the reflected light is the 

same as that of the incident radiation. Along its optical 

axes the systempossess0s enormous rotatory power as well 

as very large circular dichroism. Mauguin
31 

has treated 
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this problem theoretically seeking to explain the large 

ORD signal measured in the twisted nematic phase, when 

light is incident along the optical axis. An equivalent 

b d b . J 1 1 30 . h. h treatment can e one y us1ng ones ca cu us, 1n w 1c 

each plane of the cholesteric phase is treated as a thin 

birefringent medium with the principal axes of the succes-

sive planes twisted by a fixed angle. By calculating the 

phase retardation matrix which describes the modification 

of the incident electric vector in passing through each 

plane, it is possible to obtain for N successive planes, 

the retarder-rotator matrix J such that: 

D' = JD 

where D and D' are the incident and emergent displacement 

vectors of the light. 

Similar treatments have been presented by Oseen 
32 

and de Vries
33 

by solving the wave equation for propagation 

along the optical axis of a medium described by a continuous 

spiral dielectric tensor. In all cases only forward inten

sities (transmission) and reflection bands were derived. 

By allowing the birefringent planes (in the Mauguin layer 

theory) or the dielectric tensor (Oseen, de Vries) to be 

dichroic as well as birefringent, and assuming that the 

birefringent and dichroic axes coincide, the observed CD 

of these cholesterics have been reproduced very successfully. 

Analytical solutions for the scattering of polarized light 

as a function of wavelength and directions in space have not 
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been presented. The observed CD signals can be interpreted 

as manifestations of differential scattering reflecting the 

long range organization of the crystal and not as intrinsic 

dichroism, since the disordered mesophase presents CD signals 

2 or 3 orders of magnitude smaller. Numerical calculations 

along the lines described above have been carried out for 

light incident at oblique angles with respect to the optical 

axis and for wavelengths close to the pitch of the helix, by 

Berreman and Scheffer.
34 

Only transmission and reflection 

bands have been studied. No analytical solutions for the 

30 
amplitudes of the scattered fields have yet been found. 

Approximate expressions for the intensities of polarized 

diffraction maxima observed when plane polarized light is 

incident perpendicular to the optical axis have been derived 

by the Raman-Nath theory of the diffraction of light by 

1 
. . 35 

u trason1c waves. 

3) Theoretical treatments. 

Some very general treatments of scattering of circularly 

polarized light have appeared in the literature.
36 

Atkins 

37 
and Barron have given general expressions for the differ-

ential scattering of light both for Rayleigh and Raman 

processes, from a quantum mechanical point of view. These 

authors were able to obtain explicit expressions by construct-

ing the scattering matrix and relating it to molecular para-

meters. In their treatment the wavelength of light was large 
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compared to the dimensions of the molecules and no absorp-

tive phenomena were taken into account. Later, Barron and 

Buckingham
38 

presented both a classical and quantum mechan

ical analysis for the elastic and inelastic differential 

scattering of circularly polarized light. Harris and 

McClain
39

, 40 have presented a theory for the polarization 

of light scattered by polymers emphasizing its applicability 

for wavelengths shorter than the polymer dimensions. These 

authors construct the Perrin matrix for the scattering of 

light according to Stokes' formalism
41 

and relate this 

phenomenological treatment to molecular parameters. The 

wavelength is assumed to be large compared to the size of 

the monomers, but not necessarily large relative to the 

polymer. The treatment is general; it does not explicitly 

consider any particular geometry. 

II. Basic Electrodynamic Relations. 

1) The wave equation. 

The behavior of the electromagnetic fields and their 

interaction with charged particles is the subject of study 

of electrodynamics. Between the years of 1860-1870, J. C. 

Maxwell formulated his unified theory of all electromagnetic 

phenomena that culminated in the fundamental relations of 

classical electrodynamics. These are called the Maxwell 

equations and their microscopic formulations have the form: 



1 2 

1 
ab 

Vxe + - 0 (la) - at = c 

1 ae 
41T 

Vxb - j (x, t) (1 b) - IT 
= -c c -

(lc) 

V•e = 4n ~(x,t) (ld) 

where ~ and j are the microscopic charge and current den

sities, and include all charges free and bound; e and ~ 

are the microscopic electric and magnetic fields. To 

obtain the corresponding macroscopic relations, a space 

averaging on all charges at a given instant of time must 

be carried out. In this process the averaged charge density 

can be shown
42 

to take the form: 

~(x,t) = ~free + ~bound(x,t) - V•P(x,t) + 

(2) 

where ~free and ~bound are the averaged densities of free 

and bound charges, respectively, ~ is macroscopic polariza

tion (i.e., the averaged dipole moment of all bound charges) 

and GaB the corresponding macroscopic quadrupole density. 

Given that <b> ~ Band <e> ~ ~' then substituting Equa-
- av - av -

tjon (2) into expression (ld) and averaging: 
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::: 47T (~f + t ree bound 

from which a new associated displacement vector can be 

defined as: 

constitutive macroscopically 
linear relation averaged electric 

dipole 

(3) 

macroscopically 
averaged electric 
quadrupole 

The corresponding averaging process for the current density 

yields the macroscopic magnetic field 

H 
a 

B 
a 

constitutive 
linear relation 

4n(M + ••• ) 

fa 
macroscopically 
averaged magnetic 
dipole 

(4) 

where EaB is the electric permitivity and ~~S the inverse 

magnetic permeability. 

The last two equations are the constitutive relations 

that express the relationship between the principal (~,~) 

and the derived fields (D,H) in material media. ~ is usually 

called the magnetic displacement and~ the magnetic field. 

We can now write the macroscopic Maxwell equations for 

material media equivalent to expression (1): 
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aB 
1 VXE - 0 (Sa) + ~ n = 
c 

1 
an 4n VXH - - n = -- ~free (Sb) c c 

V•B = 0 (Sc) 

V•D = 4n ~free (Sd) 

where all quantities involved are macroscopic averages. 

It can be shown that for electro-neutral molecules the con-

tribution of the bound charge density of expression (2) 

vanishes and therefore only free charges and currents appear 

explicitly in the macroscopic equations. The bound charges 

and currents appear instead through the higher moments of 

the charge and current distributions (~, ~' ~). 

Notice that even for zero values of both currents and 

charge densities, Equations (5) possess nontrivial solutions. 

This is in fact the way Maxwell theory accounts for the 

existence of electromagnetic radiation in the absence of 

43 
charges in space. It must be clear,on the other hand, 

that E and B are the fundamental fields, whereas their 

associated fields D and H are introduced to take into account 

the average contribution of the bound charges. 

It is convenient to introduce potentials in terms of 

which the electric and magnetic fields can be obtained, so 

that Maxwell equations are replaced by a smaller number of 

second order differential equations. 
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Since V•B = 0, we can define B in terms of a vector 

potential A: 

B = VXA (6) 

1 d~ 
Then from Equation (Sa), VX(E +cat) = 0. The quantity 

in parenthesis, having a vanishing curl, can be written 

as the gradient of a scalar function (potential), so that: 

E = - (7) 

If the medium is homogeneous EaB and v~ 6 in (3) and (4) are 

scalars and Equations (Sb) and (Sd) become: 

1 
- VXB 
v 

()E 
E 

eFt 

(Sa) 

= 4
1T ~free 

(8b) 

with v = (V')-
1

. Taking the divergency of (7) and using 

Equation (8a): 

(9) 

also, substituting (6) into (8b): 

liE " V2A + 41T ,,"' "2 n(n•A +c ~ ~t ~) J ~~a A 
v v o L '~~ = V c- -free - ~2 ~2 ._ 

(1 0) 
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The definitions of the field in terms of the potentials 

do not determine these fields uniquely, since the same 

would be obtained if A+ A' = A + 6A, and ~ + ~~ = ~ -

fields 

1 aA 
cat' 

where A is some arbitrary scalar. This Jack of uniqueness 

of the potentials allows for the possibility to choose them 

in such a way as to satisfy a supplementary condition (Gauge), 

according to the nature of the problem being solved. In this 

case we impose the often called Lorentz condition: 

which combine with (9) and (10) to give the second order dif-

ferential equations that are completely equivalent to the Max

well equations. They are frequently called the wave equations: 

47Tp 
free -----
E: 

(11) 

For constant fields these equations give the usual static 

solutions (Poisson for the scalar potential and a correspond

ing one for the vector potential). For problems involving the 

emission of electromagnetic radiation by time dependent charge 

and current densities, we are interested in the solutions to 

these equations as fully written above. 

The wave-equations (11) are very important for the 

general theory of scattering. The differential formulation, 

despite its inherent difficulty in interpretation, has the 

advantage of allowing for the search of solutions in regions 

of the space, to which supplementary initial and boundary 

conditions (at the frontier between regions) are added to 

obtain unique solutions. Let us suppose that a given body 
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possessing both bound and free charges is occupying a finite 

region of space. An incident electromagnetic radiation im

pinges upon the body and it is required to obtain the scat

tered field far away from the region occupied by the scat

terer. Away from this region p = 0, J = 0, and ~£ = 1 

so that first, the corresponding homogeneous wave equations 

in vacuo must be solved. Next, the solution within the 

region of the scatterer must be obtained, for which we need 

to solve Equations (11) as fully written. Having both solu

tions, it is then possible to apply the adequate conditions 

at the boundary between the two regions and an initial con

dition, such as the form of the incident electromagnetic 

field at time t = 0. In this way, the scattering problem 

can, in principle, be solved from the differential equations. 

Notice that if the scatterer is a nonconducting dielectric, 

Pfree = ~free = 0 when seeking the inner solution. 

2) Retarded potentials - multipole expansion of the 

scattering fields. 

A completely formal solution to the wave equations (11) 

can be found by linearly combining the solution to the homo

geneous equation and a particular solution of the inhomogen

eous one. It is a well known result of electrodynamics 

that the particular solution to the inhomogeneous equations 

is given by the so-called "retarded potentials" and that 

the general solutions of the inhomogeneous equations are: 
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p(r,t' - ).lt:R 
) 

¢(r',t')= I - c dV + cl>o 
R 

- ).le:R 
( 12) 

J(r,t' ) 

~C!:' ,t') = ).1£ 

f - - c dV + ~0 c 
R 

An important point should be made clear here. In 

the way Equations (12) have been obtained from (5) through 

(11), it is apparent that p and~ appearing in these equations 

are the free charge and current densities. These are clearly 

zero for nonconducting material. However, it is possible to 

write Equations (5) for nonconducting material in terms of the 

fundamental fields E and ~ so that they maintain their general 

form but Pfree and ~free being replaced by pbound and ~bound' 

The equivalent wave equation (11), as well as the correspond-

ing general solutions (12) can then be obtained explicitly 

in terms of pbound and ~bound valid for nonconducting dielec

tric media. In this way, Equations (12) represent the 

general formal solutions for the scattered fields in conduc-

tion or dielectric media. 

In Equation (12), r' is the observation point, E is 

the reg ion where the sea ttered is bounded and R = IE' - E I 

(See Fig. 1) . 

~ 0 and cp 0 are the solutions to the homogeneous wave 

equations but more generally they are chosen so that the 

condit1ons of the particular problem are satisfied. These 

conditjons are commonly those imposed for far distances. 
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For example, suppose that a given radiation impinges upon 

the systems of charges from outside. Here the field that 

results from the interaction can be different from the 

incident exterior field only in the radiation originated by 

the system itself. At large distances this radiation must 

have the form of waves that propagate away from the system, 

which corresponds to the retarded potential part of Equation (12). 

whereas ¢0 and ~ 0 in this equation must be recognized as the 

external fields. 

We can now make the assumption that the charge and 

current densities vary harmonically with time, so that 

p(t) 

J( t) -

2 7TVi t = pe 

Since in most physical problems p and ~ are restricted 

to finite regions of space whose dimensions are small com

-1 
pared to k (with k ~ 2Tiv/c), this suggests a development 

of the retarded potential formula according to powers of k. 

In the expressions: 

27TiVt'J -ikR = e pe dV 
R 

in the far field or rad?ation zone, R = r' - n•r with n = 
r' 

lr'T (see Fig. 1) so that: 
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Figure 1. The distance approximation involved in the radi~tion 

zone is shown. 0 is an arbitrary origin of coor-

dinates within the molecule. r is the position of 

the scattering element and r' is the location of the 

observer. n is a unit vector along~'· If 

1~'1 >> 1~1, then clearly 1~1 -1~'1- n•r. 
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2 2 

A 

¢(r',t') = ei(27rvt'-kr') eik~·r 
J A dV 
(r' -n•r) - -

Now we do a double Taylor expansion both for the exponential 

and the denominator and collecting the terms with the same 

power of k it can be shown
44 

that: 

1 J 2 + 2 pr dV] + ••• } 

But fpdV = 0 and the dipole and quadrupole moments are 

defined as: 

Therefore, the potentials up to the second power ink are: 

¢(!'' ,t') 
i(Znvt'-kr') " 1 2 " A 

= e r' {ik(l-~)n·~ - 2 k [~·~·~ 

A A 

- ~ ( 3~ • ~ • 12) ] } (13) 

i(27r\Jt'-kr') 
A ( r ' , t ) = e r , { i k P - i k ( 1 - k ~ , ) ~X~ 

1 2 i A 

- -
2 

k 0-r..::-r)n•G} 
K r · - ::: 
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where M is the magnetic dipole moment and is defined as: 

1 
M = 2C (r x J) 

Expression (13) describes, therefore, the interaction of 

the incident radiation with a system of charges and currents 

through the induction by the external fields of a series 

of moments of the distributions. An observer placed at r' 

at time t' will therefore receive the radiation contributions 

of the electric dipole (the most important), the magnetic 

dipole, and the quadrupole induced in the scatterer by the 

incident electromagnetic field. 

It can be shown45 that the amplitudes of the different 

oscillating moments induced in the system can be written 

(keeping only linear terms in the fields): 

p ( 0) E C?) + 1 G • ( 0) 
+ !_ A ('il E (?) :::: 

c\~s BSi a fH C'f aS 3 aSY S y1 

M(O) = -G E C?) + ... (14) 
a Sa Sl 

8( 0) = A EC?) + ... 
aS yaS yl 

where the subscripts "i" indicate the amplitudes of the 

incident fields. In Equations (14) tensor notation has 

been used, meaning that the expressions with repeated sub-

indices must be summed over their three spatial components. 



24 

Expressions (14) can be formally obtained by doing a time 

dependent perturbation derivation of the induced moments 

in a molecule perturbed by an external field.
45 

Classically, 

however, Equation (11) is still valid and we can see that 

aaS represents a symmetric polarizability. GSa is the co

efficient of the term which is proportional to the time 

derivative of the magnetic field (i.e., proportional to the 

curl of E) and therefore responsible for natural optical 

activity. This term can be formally derived from the anti-

symmetric part of the polarizability. A 0 is the hyper
a~y 

polarizability connected to the gradient of the electric 

field. Each of these polarizabilities can be, in general, 

complex and therefore they contain both the absorptive and 

refractive properties of the molecular system. 

Our derivation up to this point has been based in the 

choice of the Lorentz Gauge: (~·A - E~ tt) = 0; this allowed 

us to obtain the wave equation and has the additional advan

tage of rendering completely relativistically invariant 

equations. However, in dealing with radiation problems, we 

are interested in obtaining solutions for the electric and 

magnetic field that are transverse to the direction of pro

pagation. The Lorentz Gauge gives transverse magnetic fields 

but the electric vector has components parallel and perpen

dicular to the k vector. To obtain completely transverse 

fields that are uniquely determined, we can use the Coulomh 

or radiation gauge~ ?•A = 0 and the additional condition 
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¢ = 0, so that the Lorentz condition is still satisfied 

and all our derivations are still valid. In this radiation 

1 a~ 
gauge then: H = V x A and E = - --- Keeping only the 

c at · 
dipole term in (13), we can write, for light scattered along 

the y-axis: 

E(r',t') = - ikw Pe -i (wt' -ky) 
err-

with w = Znv. From (14): 

E 
a 

(VBE )0 + ••• } x e-i(wt-ky) 
yi 

where the primes have been dropped for simplicity. 

III. Differential Scattering - Classical Formalism. 

(15) 

(16) 

Suppose the light is incident along the z-axis; then 

the signal recorded at the photomultiplier is proportional 

to the time-averaged flux of energy given by the real part 

of the complex Poynting vector: 

v-;herc the subscripts "S" indicate the amplitudes of the 

scattered fields, with B = ~H as before. The components 

of S associated with electric vectors Ez and Ex can be written: 



If the incident radiation is right (plus sign) and left 

(minus sign) circularly polarized, 

_!_E(O)(.+ .. ) . ~ - lJ 
v'2: 1 - -

26 

with ~' J, k a set of units vector along the x, y, and z 

directions, then the differential scattered intensities are 

(with l.l = 1): 

3 2 
81Tc r 

* * * 1m{azy azx + azy Gzy + azx Gzx -

(17) 

where the term proportional to (V
0 

E .) 0 has been neglected . 
..., Yl 

Equation (17) shows that within the dipole approximation for 

the scattered field (15), the differential scattering inten

sity can be directly related to the symmetric and anti-sym

metric parts of the polarizability of the molecular system. 
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The possibility of nonvanishing differential scattering 

within the dipole radiation field depends therefore on the 

symmetry properties of the polarizability tensor of the 

molecule and on the validity of neglecting the second term 

in the right-hand side of (16). In the next chapter we 

will treat with more detail the condition imposed on the 

polarizability of a molecule~ for the existence of finite 

differential scattering intensities in the radiation field. 
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Chapter 2 

THEORY 

I. Introduction. 

In the previous chapter a review has been done of the 

main experimental evidence for the presence of differential 

light scattering phenomena in systems of biological origin, 

as well as in the cholesteric and twisted nematic mesophases 

of liquid crystals. Some of the theoretical attempts in 

characterizing this phenomenon have also been discussed. 

Clearly, between the macroscopic phenomenological approa-

1-3 4 5 
ches and the completely general theoretical treatments ' 

that have appeared in the literature, a link is necessary: 

a theory that will make use of the molecular properties 

involved in the differential scattering and will directly 

correlate the properties of this scattering phenomenon with 

the structure of the chiral molecules. The model must 

allow for analytical solutions so that the physics of the 

process is not buried in implicit expressions. 

Chiral media interact differently with the light of 

opposite circular polarization. The existence of different 

refractive indices for right and left circularly polarized 

light gives rise to the well known phenomena of circular 

birefringence and circular dichroism. These are connected. 

respectively, to differences in the real and imaginary parts 
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of the refractive index for the two circular polarizations. 

As shown in the previous chapter, classical electro

dynamics describes light scattering as the result of the ra

diation emitted by changes in the charge distribution of a 

system, induced by an oscillating electromagnetic field. 

In the dipole radiation approximation, these changes are 

described by the polarizability of the medium, which contains 

all the symmetry properties necessary to account for the 

differential scattering of light. An appropriate measure 

of this is the ratio of the difference of scattered inten-

sities between left and right circularly polaried light to 

its sum 

where r1 and IR are the scattered intensities for the two 

polarizations of the incident light. Atkins and Barron
4 

have suggested that this ratio be called Circular Intensity 

Differential Scattering (CIDS). The above definition is 

valid for both elastic and inelastic scattering. 

We have chosen an oriented helix as the simplest chiral 

structure whose CIDS can be obtained analytically. This ' 

geometry has many advantages: (a) It can be described in a 

mathematically simple way, (b) its chirality can easily be 

reversed to study its effect on the CIDS, (c) it is a pre-

ferred form of packing adopted by biological superstructures 
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and by cholesteric liquid crystals. 

In the first part of this chapter the derivation of an 

integral equation of scattering will be accomplished as a 

simple way of obtaining the scattering amplitude of an 

arbitrarily shaped structure. In the second part the in

tegral formalism will be applied to obtain the CIDS of 

helical structures. 

II. The Integral Equation of Scattering. 

1) Derivation by the tensorial Green's function method. 

As mentioned in Chapter 1, all scattering problems can 

(in principle) be solved using the Maxwell equation, which 

in the absence of free sources and assuming harmonic time 

dependence c~ = 1) are: 

vxE = iw H (1) --c -
iw 

iwt: (r) 
VxH = D = - E (2) 

c - c 

where E is the dielectric constant of the medium and is 

a continuous function with the possible exception of surface 

di'scontinuities. It is assumed that all scattering centers 

can be enclosed within a finite region. The wave equations 

for E and H are then: 

2 
E(r)k E = 0 (3a) 



35 

and 

(3b) 

We will work with the equation for ~ and regard ~ as deter

mined by (2). Next we impose the coulomb gauge: 

so that 

which substituted in (3a) gives: 

(4) 

The solution of this equation, subject to appropriate 

boundary conditions both at infinity and at the surface of 

the scatterer, is very difficult for geometries other than 

spherical, cylindrical, etc. The alternative is to trans-

form this equation into an integral form. Here we will 

follow closely the method of Levine and Schwinger. 6 The 

first Green's Identity can be written as: 

(5) 
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Next we introduce the Green's function, r (in general, a 

tensor),satisfying the equation: 

( 6) 

with 1 = ii + ~l + kk (~, i' ~ three orthogonal unit vectors 

along x, y and z directions). By taking the scalar product 

of (6) with an arbitrary vector ~(E'), we seen that ~(E,E')• 

j(r') is the field at (r) due to a vector point source lo

cated at r'. Taking the divergency of (5) on both sides 

we obtain: 

after which (5) can be rewritten as: 

(7) 

Introducing the scalar Green's function: 

G(r,r') = 

which satisfies 

::: - (8) 
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Then replacing this defintion for oCI:-:' I) in (7) and since 

' 2 2 1 
the operator (V +k ) commutes with (1- ki VV') we obtain 

f(r,r') = r(r',r) = (1-
1 

VV')G(r,r') 
- - - ~ - -

(9a) 

Note that: 

r{r,r') = rT(r',r) = r(r',r) (9b) 

where rT is the transpose of r. 

Now we apply Green's theorem (5) to ~(E') and ~Cr',E) • ~, 

where e is an arbitrary constant vector. Integrating over 

all space: 

· r ( r ' , r) ·e) dV ' - - -

where the integral over the surface at infinity provides 

the incident field. The last expression can be also written: 

E(r) = 

and from (9b) 

E(r) 

E. _lnc + fv k
2
(e(r')-l]E(r')•r(r',r)dV' 

2 
k [e(r')-1]r(r.r')·E(r')dV' 

(10) 
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We see, therefore, that the field at a position E is the 

sum of the incident fields plus a superposition of the 

fields at each pointE' by sources of strength k
2
(E(r)-l)· 

E(r'). Notice that Equation (10) incorporates all boundary 

conditions of the problem and, since no derivatives of 

E(r) or E are involved, this expression is valid even in 

the presence of discontinuties of ~(E)· 

Substituting (9a) into (10): 

=E. (r) + k
2 I [E(r')-l]E(r')G(r,r') 

~1nc ~ v - - - - -

Now we notice that: 

G(r,r') 
- ikr 

e +ik•r' 
- --;r:rry- ( e - - ) , r -+ oo 

where k is the outgoing wave vector. The first integral 

of (10) then becomes: 

fv G(r,r')k 2 [t:(r')-l]~(E')dV' z 

The second integral becomes: 

-ikr k.~ kk 
c ---r - 41T ( ~) • I e i~·~' (E-J)f:(r')dV' 
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so that the scattered field in the radiation or far field 

7 
zone is (exchanging rand r' for simplicity): 

E(r') 
~ -

[e(r)-l]•E(r) dV (12) 

where EC:') is the scattered field at position!' and the 

integral extends over the whole volume occupied by the 

scatterer. This is the result we were seeking. Equation 

(12), as said before, is only valid in the far field approx-

imation (i.e .• for r' >> r). It is not a solution of the 

differential equation (4), since the electric field appears 

at both sides of the expression. We must now transform it 

into a solution of (4). 

2) First Born approximation. 

To transform (12) into a solution of the wave equation 

(4), we identify the electric field appearing in the inte

grand with the incident field. This is called the first 

Born approximation and is valid for small values of E - 1. 

Since (E-l)/4n is equal to the polarizability tensor per 

unit volume (a) the microscopic equivalent of Equation (12) is: 

E(r') -ikr 
e 

I i ( k - k () ) • r E ( ) <l \. 
v ~ - - - 0·~ r (13) 
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~ 0 and ~O are the amplitude and wave-vector of the incident 

radiation, respectively, and the integration is to be carried 

out over the volume occupied by the scatterer. It should be 

noticed that in the far field approximation, the scattered 

field at any point has the character of a spherical wave. 

Equation (13) is now a solution to (3) and gives the scat

tered field at position r' as the superposition of all the 

contributions of dipole radiation induced by the incident 

field and it automatically incorporates through : the 

boundary conditions at the surface of the scatterer. 

Figure 1 shows the spatial relations of these quantities, 

for a scatterer with the shape of a helix. 

III. Theory of Scattering of Radiation by a Helical Structure 

A helix can be described parametrically as: 

E = : 1 a cose + : 2 a sine + : 3 Pe/Zn (14) 

where a is the radius and P the pitch of the helix; : 1 , : 2 

and :
3 

are a set of unit orthogonal vectors. The helix 

can be thought of as a thin wire in a helical shape; it is 

essentially a one dimensional helix. Our next task is to 

write down the polarizability of the helix. At each point 

along its length we define a Cartesian coordinate system 

(see Figure 2) whose unit vectors are normal to the helix 

(n), tangent to it (t) and perpendicular (p) to these t~o 

and given by: 
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Figure 1. A segment of the helix of radius a, showing the 

relations between E' the vector position of the 

scatterer; r' the vector position of the point 

of observation S and r" the distance from the 
~ 

scatterer to the observation point. In the far 

field approximation lr'-r' I is approximately r'. 
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Figure 2. A segment of the helix showing the local orthogonal 

coordinate system in terms of which the dielectric 

tensor is defined. The parameter B is shown also. 

See text for the definitions of t, £' and n. 
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n = ~ 1 cose + ~ 2 sine 

p = nxt = ~ 1 (P/2nM)sine - ~ 2 (P/2nM)cose + ~ 3 (a/M) 

(15) 

where M 1s a normalization constant given by: 

In the local cartesian system, therefore, the polarizability 

can be written as: 

Evaluation of the integral (13) requires the differential 

of volume of the helix; this can easily be shown to be: 

where Ah 1s the cross-sectional area of the helix. Equation 

(13) for the helix can now be written as: 

2·rr v 
E(r') = B!:·[ 1 exp[i(~-~ 0 )·E]~·~de 

( 1 6 ) 
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(16) 

where t is the number of turns of the helix and ~ describes 

the state of polarization of the incident radiation. We 

see that the amplitude of the scattered electric field is 

proportional to the length of the helix. Notice also that 

the product a•j of the polarizability and the polarization 

vector of the incident radiation which appears in the inte-

grand will determine the amplitude of the scattered wavelet 

at each point on the helix. In this context, the scattered 

electric field appears as the Fourier transform of the 

a•j product. i.e., a transformation from the real space to 

the reciprocal space. 

Let us consider first the integration of the exponential 

function in Equation (16). As an example, we choose radiation 

incident along : 2 ; the exponential is: 

where 

k 
X 

= e ·k· k 
-1 -' y 

Introducing two new parameters defined as R
2 

(17) 
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and tan~= ky/kx (see Figure 2), we rewrite (17) as: 

exp{i[Racos(~-e) + ~kzPe/2n]Jexp[-i(21Ta/A. )sine] (18) 

Next we use Bessel function expansions of the exponentials: 

exp{iRacos(~-e)} = I J (Ra)exp[-in(~-e)]exp(inn/2) 
n=-oon 

exp[-i(21Ta/A)sine] = I Jm(21Ta/A.)exp(-ime) (19) 
m=-oo 

where Jn is the cylindrical Bessel function of order n. 

The integral of the exponential function in Equation (18) 

is now: 

21Tt 
I = IIJn(Ra)J (2na/A)exp[in(n/2-~)]jexp[i(n-m+ 

nm m 0 

~k P/21T)e]de 
z 

(20) 

For ~ >> 1, the only terms that contribute signficantly to 

this integral are those for which the argument of the expo

nential function vanishes, therefore m = (~kzP/2TI) + n = 

v + n, and the last expression becomes: 

I = 2TI~ I Jn(Ra) Jv+n(Zrra/A)exp[-in(~-TI/2)] 
n 

8 Graff's theorem provides a further simplification: 

(21) 
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I Jn (v) Jv+n (u) exp (ina) 
n=-oo 

in which the relationships among the variables are given 

by the Gegenbauer relations 8 (see Figures 3 and 4): 

u - v coso. :::: w cosx 

v sino. = w sinx 

So that (21) can be written as: 

27f,Q, 
I = bexp[i(~-~ 0 )·rJ = 27f,Q,Jv(Qa)exp{i(~k 2 P/2TI)· 
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(22) 

( 2 3) 

* (W +TI/2)} (24) 

where: 

L'.k P/27T = v; v = 0, ±1, ±2, 
z 

and a = ( 7T I 2 - w) 

* W = (X - TI/2) (24a) 

Connections between the physical variables can now be obtained 

from relations (23): 
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Figure 3. Relations between the incident and scattered 

vectors ~O and ~ are shown for light incident 

along : 2 ; Q is the projection of the vector ~-~ 0 
* onto the plant ~l' ~ 2 (x-y plane). ~ is the 

angle between Q and the e1 -axis. The third com

ponent of ~-~ 0 = ~kz is also shown in the figure. 

The experimentally observed angle of scattering, 

~, is shown. 



so 
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Figure 4. The relationship between Gegenbauer's triangle 

and the corresponding variables appearing in the 

theory are shown for light incident along the : 2 

direction. 
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For incidence along :
2

, 

* cos~ = (R/Q 2) cos~ 

(25) 

For incidence along : 1, 

(26) 

For incidence along : 3 (the helix axis), 

(27) 

where R = (2TI/A)sin¢ and relations (24a) have been used. 

Figure 4 depicts congruently the variables of Equations (21) 

and (22). It is seen that 0 ~ ~ ~ 2TI is the azimuthal angle 

of scattering; 0 : ¢ : 180 is the polar angle of scattering. 

These two are the experimentally measured parameters in 

terms of which the whole scattering field can be subtended. 

* Angle ~ is a parameter which can be related to the physic-

ally observed~ through Equations (25) and (26). Physically, 

it is the angle between the projection of~~ on the : 1-: 2 
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plane, i.e., Q and : 1 (for incidence along :z• see Figure 3) 

or : 2 (for incidence along : 1 , not depicted here). In 

the first case it becomes more negative as ~ becomes more 

positive: 

* first and fourth quadrant 0°< ~ < -90° 

* second and third quadrant -90° < ~ < 180° 

For incidence along ~ 1 it becomes more positive as ~ 

increases positively: 

* first and second quadrant -90° < ~ < 0° 

* third and fourth quadrant 0° < ~ < 90° 

Equation (24) must now be analyzed carefully. It shows 

that if t >> 1 (i.e., for large helices) there is a selection 

rule that quantizes the allowed values that the ~ 3 component 

of 6~ ~ ~-~ 0 can take in space: 

6kz = Znv/P, v = integer 

Since in general 6kz = (2n/A) cos$ (see Figure 3), the 

maximum magnitude of 6k is Zn/A, and therefore Equation z 

(28) 

(28) only has solutions for 6kz when P > A. This indicates 

that for a long helix (t >> 1) whose pitch is at least the 

wavelength of the incident radiation, a discrete scattering 
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pattern will be found. For a short helix (~ ~ 1), or for a 

pitch smaller than the wavelength, a continuous scattering 

pattern is obtained. The planes in space where nonvanishing 

scattering intensities are to be found are called the scatter-

ing layer lines. Equations (24) and (28) imply that for a 

given layer line (v), only Bessel functions of order v 

contribute to the scattering intensity. This is the result 

originally obtained by Cochran, Crick and Vand
9 

for the 

scattering of unpolarized radiation by a helix. It is 

clearly seen that their solution corresponds to the case 

of a helix possessing a spherically symmetric polarizability, 

a= al. 

For a general polarizability tensor, the trigonometric 

factors appearing in the integrand are written in exponential 

form. These alter the selection rule in Equation (28) with 

the result that, for a given layer line, v, Bessel functions 

of order v, v ± 1, v ± 2, etc., may contribute to the scatter

ing amplitude. These extra trigonometric factors affecting 

the selection rules are the result of taking into account 

the polarization of the incident light. It is this new re

sult that determines the spatjal symmetry properties of the 

scattering of polarized light by a helical structure, and 

determines the differential behavior for light of opposite 

circular polarization. The latter, it can be seen now, 

results from the fact that different kinds of incident polari

zation arc changed differently \vhen the polari::ability of 

the scatterer is asymmetric. 
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For a thin wire in helix form, we can take the polari-

zability to have only a tangential component, so that a= -
at!!; this is an exact result in the limit of an infinitely 

thin wire (a one-dimensional helix). Using Equation (15) 

and substituting into Equation (16), we can obtain the 

scattered amplitudes. For light polarized along ~ 3 and 

incident along ~ 1 (use minus sign) or ~ 2 (use plus sign), 

and for P > ~' 1 >> 1, 

with 

and 

+ * 
~~ = exp[in(w ±n/2)] 
n. 

n = (L1k P/2n) 
z 

(2 9a) 

(29b) 

The equation for the scattered field amplitude on layer 

line n for light incident along ~ 1 , polarized ~ 2 (for P > 

and 1 > > 1) is: 

E ( r') 
~ -
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(30) 

and for incident along : 2 , polarized along :
1 

(for P > A 

and ~ > > 1) is: 

E (r') 

+ 
where~- has the same meaning as in Equation (29a). For 

* light incident along ~ 3 , w = w . Therefore, the equations 

for incidence ~ 3 , polarization ~ 1 are identical to Equation 

* (31), but with Rand~ replacing Q and~, respectively. 

Again, for incidence ~ 3 , polarization ~ 2 , the equations are 

the same as (30), with R, ~and~+ instead of Q, ~*and f;-. 

Clearly n = 0 corresponds to the zeroth layer line. 

The maximum number of layer lines that can be observed 

is obtained from the selection rule (29b). The total number 

of layer lines (including both those above and below the zero 

layer line) is: 
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2{P/A} + 1 (32) 

where {P/A} means the integral part of P/A. Equation (16) 

can be integrated in general without the restrictions of 

P > A and ~ >> 1. 

In this general case, i.e., without the above restrictions 

and for a tangential polarizability, the amplitudes for 

the scattering field can be written as an infinite sum of 

all order Bessel functions. For incidence along ~ 2 (plus 

sign) or ~l (minus sign), and polarization along ~ 3 : 

with 

E (r ') = _P- K • { [- i a I J ( Qa) S ( 1) ( -1) ~ ( n + 1) ] e 
2 M

2 - n n -1 
~ n=-oo 

()Q (1) 
+ [ a P \' J (Q a ) T S ( -1) ~ ( n + 1 ) ] e 

L n · n n -2 
n=-oo 

()Q 

+ ct~ I Jn(Qa)(~Tn)-1(-1)n~J~3}· 
n=-oo 

* sin(P~~kz/2)exp(in(~ ±~/2) 

( 1) 2 2 -1 
Sn = {nP[(~kz/2n - n/P) - 1/P ]} 

K = a BF 
t ~ 

(33) 



For incidence ~ 2 , polarization : 1 : 

E(r') = (a/2M 2 )~· {-a[ I Jn(Qa) (PTnS~Z) 
n=-oo 

00 

I Jn (Qa) .. 
n=-oo 

For incidence : 1 , polarization : 2 : 

E(r') = (a/2M 2 )~·{[-ia I Jn(Qa)S~ 2 )(-1)n.R.J: 1 n=-oo 

+ [a I Jn (Qa) (PTnS~Z) + (nTn) -
1

) 
n =-co 

( -1) n .R.] e + [ ~ I J ( Q a) PT S ( 1) • _z n n n n n=-oo 

where sCZ) = {irP[(t,k /2n-n/P) 2-4/P
2
]}-

1
, and sCl) and Tn 

n z n 

are given as in Equation (33). 

The case of incidence along : 3 , polarization : 1 , is 

* 
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(34) 

(35) 

the same as Equation (33) with w and R replacing w and Q, 

respectively, and the plus sign being used. For incidence 

: 3 , polarization : 2 , the expression is the same as Equation 

* (35), with Rand exp[in(~+n/2)] replacing Q and exp[in(~ -n/2)], 
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respectively. Equations (33), (34), and (35) are the general 

expressions for the scattered electric field. Hence, for 

P s A according to these equations, the scattering pattern 

is continuous in space. Moreover, even for the case P ~ A, 

the equations predict a continuous pattern, if the length 

of the helix is comparable to the wavelength of light. This 

feature is depicted in the general equations by factors such as: 

that can be expanded to yield: 

sinnP~(-n/P+6kz/2n-2/P) 

n(-n/P+6kz/2n-2/P) 

sinnPi(-n/P+6k
2
+2/P) 

n(-n/P+6k
2
/2n+2/P) 

that behave as Dirac-delta sequences centered at 6kz = 

(n/P ± 2/P). They predict continuous scattering patterns, 

for helices of a length comparable to the wavelength of 

light for any ratio of P/A, in which the magnitudes of the 

scattered intensities between layer lines are of the same 

magnitude as those at the layer lines themselves. For 

~ ~ oo, these sequences tend to Dirac-delta functions 

and quantize the allowed scattered directions provided that 

P/A > 1. Therefore, these equations reduce to Equations 

(29), (30). and (31) for the case of P > A and t >> 1. 

The expressions for the scattered fields from right and left 

circularly polarized light can be obtained from linear 
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combinations of those obtained for plane-polarized radiation. 

Once obtained (the scattered fields for right and left 

circularly polarized light) the corresponding scattered 

intensities can be obtained. For left circularly polarized 

light, the scattered field is: 

where ~L,O is the scattered field without the transversality 

correction. 

The intensity measured at the detector is: 

Equivalent expressions can be obtained for the right cir-

cularly polarized incident light, so that the CIDS can now 

be written as: 

CIDS 

In the special case of P > \ and t >> 1, the calculation can 

be carried out analyticall>·· 

The expressions for CIDS along the three perpendicular 

directions ~l' ~ 2 , and ~ 3 ar~ therefore: 
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For ~ 2 -incidence: 

2 - 2 2 2 -
sin~]sin2~-(P U /n )cos~'cos ~+a [V • 

( 36a) 

and 

4 4 + 4 + 
+ (P /4n ) (0-S ) +a (0-X cos2~')} - (1/ 

2 4 + 2 + + cos2~'cos ~)]+a [2(0-S )cos ~+S +2Icos 

+ ] . 2 4 4 
(4~'-2~)-ZX cos~cos(2~'-~) s1n ~+(P jn )· 
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sin~'cos~]sin2¢}} (36b) 

* with ~~ = (~ + TI/2) 

For incidence along !
1

: 

4 -
+ (aP/4TIM ){(aP/2TI)((X /2)cos(2~'-~) 

- ] 2-2 2 2 - Z cos~ sin2¢+(P U /TI )sin~'·cos ¢-a· 

(3 ?a) 

and 

2 2 2 + . 2 
{(a P /TI )[Z -2N(cos(2~'-2~)sln ¢-cos2~'· 

2 4 + . 2 + 
cos ¢)]+a [2(0-S )s1n ~+S -2Icos(4~'-2~) 
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(3 7b) 

* with¢' = Cw -TI/2). 

For ~ 3 -incidence: 

2 2 - 2 
-(P /TI )Z sin<!>} (38a) 

(38b) 

with: 

N :::: 3n+1 3n-l 

0 = 2J2 + J2 + J2 
n n+2 n-2 

+ 2 J2 ) s- :::: (Jn+2 ± 
n -2 

+ 2 
(n + 1) J~ + 1] T- ::::: (2/Qa)[(n-l)Jn_ 1 

± 

+ u- :::: 3n(Jn+l ± Jn-1) 



+ v- = (Jn-lJn-2 ± Jn+lJn+Z) 

x± = ZJn(Jn+2 ± Jn_z) 

w± = Jn+Z(Jn+l ± Jn-1) 

y± = (Jn-1Jn+2 ± 3n+1Jn_z) 

z± 2 Jz ) = (Jn+1 ± 
n-1 

* ~~ = (~ + ~/2) 

Equations (38) show that the expression for the CIDS for 

light incident along the helix axis is independent of the 

* azimuthal angle ~ or ~ . This cylindrical symmetry does 
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not hold along the other two directions of incidence. The 

corresponding formulas for the case P < A and ~ - 1 are 

combinations of all the sums in Equations (33), (34) and 

(35), and numerical calculations must be used. From the 

equations obtained for the CIDS, we notice that the actual 

value of the tangential polarizability cancels when taking 

the ratio of the scattered intensities. 

As a result, these equations for CIDS cannot take into 

account the dispersion properties of the scatterer, and will 

fail to describe the CIDS of helical structures at wavelengths 

inside an absorption band. Effects resulting from band shapes 

are also neglected in this model. This is the result of 
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having combined two different approximations: a) the assump-

tion that the polarizability is purely uniaxial: ~ = at!!' 

and b) the approximation of replacing the "local field" in 

the integral Equation (12) by the incident field. Relaxing 

either of these will result in a polarizability-dependent 

CIDS. In fact, a polarizability of the form: a = a tt + 
~ t--

a nn will not cancel when the ratio for CIDS is taken and 
n--

will be able to describe band effects. In general, it is 

useful to choose a complex polarizability. The real part 

characterizes the dispersive contribution to the differential 

scattering, whereas the imaginary part·allows for absorptive 

behavior of the scatterer. Use of complex polarizabilities 

does not take into account intrinsic optical activity; we 

are still only considering form CIDS in which the geometric 

arrangement of frequency-dependent polarizabilities determines 

the optical properties. Only when actual coupling of the 

radiating elements of the scatterer are taken into account 

can we properly speak of intrinsic CIDS. This case will be 

treated in Chapter 5 of this thesis, by allowing dipole-

dipole interaction among the dipoles induced along the scat

terer by the incident electromagnetic radiation. We have 

only considered here form CIDS in which the ratio of scattered 

intensities are independent of the magnitude of the polariz-

ability. 

From Equations (13) and (16) it is seen that the crucial 

feature in the model that accounts for the differential 
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behavior of the scatterer with light of opposite circular 

polarization is the product ~·i appearing in the integrand. 

For a spherically symmetric polarizability, ~ = a~, and 

therefore, different states of polarization will be left 

unchanged when taking their product with the polarizability. 

This product !oi, being independent of the variable of in

tegration, can be taken outside the integral and as a result, 

when the field amplitudes are squared to obtain the intensities, 

the difference between these intensities for right and left 

circularly polarized light will vanish, yielding no CIDS. 

Thus, differential scattering of light of opposite polariza

tion is the result of (and a measure of) the asymmetry of 

the dielectric properties of the scatterer. 

IV. Characterization of the State of Polarization of the 

Scattered Light. 

A complete characterization of the scattered radiation 

must include both its intensity and polarization. Nothing 

has been said so far about the polarization of the scattered 

light for a given state of polarization of the incident 

radiation. It is interesting to establish the effect of the 

geometry and the dielectric properties of the scatterer in 

determining the final state of polarization of light. In the 

most general case, the polarization vector of monochromatic 

light traveling along a given direction describes an ellipse 

in spacc.
10 

Indeed, if x andy are two arbitrary sets of 
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axes and the light is propagating along the z-axis, then 

the components of the electric field are (in complex notation) 

and 

from which we can obtain easily: 

where 6 = 6
2

-6
1 

is the phase difference between the two 

components of the electric field. Equation (39) is the 

(39) 

equation of an ellipse. The following relations can be shown 

to hold: 

tan2~ = (tan2a)cos6 

sin2x = (sin2a)sin6 

with a and b the semi-axes of the ellipse; ~ is the angle 

between the x direction and the major axis of the ellipse (its 

incUnation is tana = a 2/a1 ); and tanx = ±b/a, where x is 

proportional to the ellipticity of the light wave. Its sign 

indicates the sense of rotation of the polarization vector describ-

ing the ellipse. Therefore, characterizing the polarization 



of light is equivalent to determining the polarization 

~lipse. For this we need three independent parameters, 

e.g., the amplitudes a
1 

and a 2, the phase difference o or 

the two axes of the ellipse (a and b), and the angle~ 

that specifies- the orientation of the ellipse. In 1852 
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G. G. Stokes 11 introduced four parameters that are combina

tions of the first three independent variable mentioned 

above. They are of practical use because they all have the 

same dimensions and are frequently called the Stokes' 

parameters. In our notation they are: 

I IE 1
2 

IE 1
2 2 2 

= + = al + a2 X y 

Q = IE 1

2 
IE 1

2 2 2 
= al - a2 X y 

* * u = E E + E E = 2a
1

a
2 

coso 
X y X y 

* * v = i(E E 
X y ExEy) = 2a

1
a

2 
sino 

Because these four parameters are defined out of only three 

independent variables, there is a relation connecting all 

of them; this is: 

(40) 

I represents the total intensity. Q is the excess in 

intensity of light transmitted by a polarizer which accepts 

linear polarization in the x-direction over a polarizer that 
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accepts linear polarization along the y-direction. U has 

a meaning equivalent to Q, but with the polarizers oriented 

at 45° and 135° from the x-axis. V describes the excess 

in intensity of light transmitted by a device that accepts 

right circularly polarized light over that which accepts 

the opposite polarization. Since in scattering phenomena 

light is dispersed in all directions, the definition of the 

Stoke's parameters should be the same regardless of the di

rection of propagation of the scattered light. To accomplish 

this, it is necessary to choose a reference frame that will 

be equivalent for all possible directions of propagation of 

the scattered light. It is common use to define these 

parameters relative to the scattering plane,
12 

i.e., the 

plane which contains both the incident and scattered wave 

vector. The scattered electric field is therefore written 

in terms of its component (EU) in the scattering plane, but 

perpendicular to~· and its out-of-plane component (E
1
). 

Defining in-plane CpJ and out-of-plane (n) unit vectors 

along these components, 

p = (kxn) /I kxn I 
AJ ..... ...... "'V 

we obtain 

(41) 
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The directions of the components are chosen so that ~xp is 

along the direction of propagation of the outgoing wave. 

The scattering fields to be used in Equation (41) are the 

fields without the transversality correction (~-~~/k 2 ). 

The Stokes' parameters can now be written as: 

* 2 * I = ~. (~~+1212). ~ = E•(l-kk/k )•E 

* Q = E• (pp-nn) •E - -- ...,....... -

* u :::: E• (pn+np) •E -- --

(42) 

2 2 1/2 
n = (-cos : 1 + cos~ sin~: 3 )/(1-sin ~ sin ~) 

and 

from which we obtain the matrices needed to compute the 

Stokes parameters in (41). Here we will write down these 

matrices for light incident along : 2 and polarized along :
1

, 

only: 



(l-kk/k
2

) = 

pp-nn = 

l-cos
2

1jJsin
2

¢ -sinljJcosljJsin
2

¢ 

-simpcosljJsin 
2

¢ 1 . 21jJ . 2¢ -sJ.n sl.n 

-cosljJsin¢cos¢ -sinljJsin¢cos¢ 

cos
2
1jJsin

2
1jJsin

4
¢ -cosljJsinljJsin

2
¢ 

-cos
2
¢/ (l-sin

2w 

sin
2
¢) 

-cosljJsinljJsin 
2

¢ 

cos¢sin¢cosljJ 

2 2 
(sin ljJsin ¢+1)/ 

(l-sin
2

1jJsin
2 

¢) 

2cosljJsinljJsin
2

¢ 

cos¢/ (l-sin
2

1JJ 

2 
sin ¢) 

-cos¢ 

siniJJsin¢(cos
2

¢ 

2 2 
-cos IJJsin ¢)I 

2 2 
( 1-sin IJJsin ¢) 

1 . 2,, . 2"' 
-sl.n 'l'sl.n "' 

-sinljJsin¢cos¢ 

-cos¢ 

0 

cosiJJsin¢ 

-cosljJsin¢cos¢ 

-sinljJsin¢cos¢ 

. 2 <P sJ.n 

cos¢sin¢cosljJ(sin
2

1jJ 

sin
2
¢+1)/(l-sin

2w 
2 

sin ¢) 

-sinljJsin¢cos¢ 

sin
2
¢(sin

2
1jJcos

2
¢-

cos
2

1jJ)/ (l-sin
2

¢ 

2 
sin ljJ) 

sinljJsin¢(cos
2
¢-

2 2 
cos ljJsin ¢)I (1-

sin
2
1jJsin

2
¢) 

cosWsin¢ 

-2siniJJcosiJJsin
2

<P 

cos¢/ (l-sin
2

1JJ 

sin
2

¢) 
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(43) 

(44) 

(45) 
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0 i cos¢ -i sinljJsin¢ 

-i cos¢ 0 +i cosljJsin<P 

+i sin1/Jsin<P -i cos1jJsin<P 0 

(46) 

These matrices, plus the scattered fields, contain all the 

necessary information to describe the state of polarization 

of radiation scattered by a helix when incident along ~ 2 

and polarized along ~ 1 • From Equations (42) we obtain (for 

P >A and~>> 1): 

sin(l)J-3l)J')+V+sin(1jJ'-l)J) -2U+sinl)J'cosl)J]sin2¢} (47) 

. ( 2 A, : • 2 ~I ( 1 . 2 . 2 ) (V+ I s1n¢ cos ~-cos Psln ¢J -s1n ljls1n ¢ + cosljl 
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( 48) 

3 - - - -
8nM )[-Y sin(~+3~')+(W +2U )cos~'sin~-2V sin~' 

cos~]sin<j>} (49) 

where the symbols used here have the same meaning as in 

Equation (38). Because of expression (40), the fourth 

parameter is automatically determined by the three written 

above. 

V. Discussion and Conclusions. 

In this chapter we have presented analytical expressions 

for the circular intensity differential scattering (CIDS) 

of a chiral structure (an oriented helix) possessing a polar

izability tangent to the helix. The general expressions 

for the scattered fields, for any ratio of helix pitch to 

wavelength (P/A) are Equations (33), (34), and (35); they 

may be simplified when P > A and the number of turns of the 

helix is large (~ >> 1) to give Equations (29), (30), and 

(31). In this latter case, a selection rule for the allowed 

directions of scattered intensities is obtained as given by 

Equation (28). This is related to the Bragg scattering law 

found for unpolarized X-ray scattering from helices and for 

light scattering from liquid crystals. It is similar to the 
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resonance relations for the interactions of helical antennae 

with circularly polarized radio waves. 13 A helix long with 

respect to the wavelength of light, whose pitch is greater 

than the wavelength, interacts like a set of slits with the 

light. Interference strongly limits the scattered rays to 

specific angles, and a diffraction pattern is observed. 

The intensities between layer lines become more important 

as the size of the helix is reduced relative to the wavelength 

of light. When both the wavelength of light and the length 

of the helix are of the same order of magnitude, the equations 

predict a continuous scattering pattern even when the pitch 

is greater than the wavelength. As the length of the helix 

increases, these equations approach the discrete solutions 

which quantize the allowed scattered directions and lead to 

layer lines. 

A remarkable property of the CIDS measurement is that 

since it involves a ratio, it may give values of (I
1

-IR)/ 

(I
1

+IR) of the order of 1 even when each of the values for 

I are very small. The technique thus depends on the ability 

of an instrument to differentiate r
1 

and IR from the stray 

light components in the system. 

The expressions obtained for the CIDS of a helix show 

that the numerator involves helix parameters and differences 

in product of the Bessel functions. The latter are important 

1n determining many of the symmetry features of the scattering 

patterns. It is worth pointing out that the scattering of 

plane polarized light in general shows imaginary components in 
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the scattered field, indicating that the scattered light is 

always elliptically polarized. This is true for the scatter

ing from a helix, regardless of the type of polarization of 

the incoming light. For polarizability which is only tangen

tial to the helix, the equations show that the scattering is 

symmetric with respect to the incoming light beam, i.e., it 

shows mirror image symmetry in the layer lines above and 

below the zero layer line. This behavior is no longer true 

for the case of a general, complex polarizability in which 

the scattering pattern shows antisymmetric properties. For 

light incident along the helix axis the scattering pattern 

shows cylindrical symmetry, the equations for this direction 

of incidence being independent of the azimuthal angle ~. 

The total scattering (I
1

+IR) is positive definite and 

has no zeros, except for special cases such as helices with 

infinite pitch or zero radius. In addition, for light 

incident along the axis of an infinite helix there are cer-

tain angles which give zeros for both 1
1 

and IR. A closer 

analysis of the equations describing the scattering for 

light perpendicular to the helix axis shows that the CIDS 

vanishes in the forward direction for all values of pitch, 

radius, and wavelength of light. This is contrary to the 

experimental observations of liquid crystals and phenomeno

logical computations of differential scattering done by 

Bohren
14 

using the Mie-theory. Form-CIDS is a diffraction 

phenomenon and since the scattered electric field is the 
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superposition of many waves originated at the scatterer, 

their relative phase is what determines the interference 

or diffraction of the incident wave. This phase change
14 

( F . 5) . . b i(6k•r) . . 11 th see 1gure 1s g1ven y e - - appear1ng 1n a e 

equations. It can be seen from the figure that in the 

forward direction, no interference takes place; the result 

1s zero differential forward scattering. It will be seen 

in Chapter 5 of this thesis that allowing coupling among 

the induced dipoles on the chiral molecule produces finite 

differential scattering intensities in the forward direction. 

It is apparent, through the results of these equations, 

that the existence of nonvanishing form-CIDS of a chiral 

object is related to the asymmetry of its polarizability. 

CI DS is then a measure of that asymmetry. I r; general, 

spherically symmetric polarizabilities yield no CIDS. 

Finally, we have seen that combining two approximations 

(uni-axiality in the polarizability and first Born-approx

imation in the local field) results in CIDS independent 

of both the position and shape of the absorption bands. 

In Chapter 4, by relaxing the first of these t~o approx-

imations, the general case of an absorptive chiral scatterer 

will be treated. 



Figure 5. Phase difference between two wavelets originated 

at two different scatters placed at 0 and at the 

position! (labeled 0') from the first.k and ~O 

are the scattered and incident wave-vectors, 

respectively. 2B is the scattering angle. The 

path difference between the two wavelets is 

k·r - k •r = ~k·r. In the forward direction the 
- . 0 - -

path difference vanishes. 
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Chapter 3 

NUMERICAL COMPUTATIONS 

I. Introduction. 

In Chapter 2 a general theory ·on the circular intensity 

differential of scattering (CIDS) of chiral structures, as 

modeled by helices, has been derived. The theory has been 

obtained as a function of the helix parameters, and the angle 

of scattering and is valid for all wavelengths of light. 

In this chapter, a detailed analysis of the properties of 

the differential scattering patterns of a helical structure 

along with numerical calculations for different parameters 

will be presented. All the calculations shown deal with 

helical structures whose interactions with the incident 

radiation take place through a uniaxial polarizability, its 

axis being directed along the tangent to the helix. 

According to the theory derived in the last chapter, 

a necessary condition for the existence of CIDS is that 

the scatterer must have an asymmetric polarizability. As 

a iesult~ the numerical calculations for this simplified 

model illustrate a number of symmetry properties of the 

differential scattering patterns, whose physical basis will 

be derived and discussed here. 

The organization of this chapter is as follows: In 

part II the numerical methods and strategies used in perform-
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ing the computations are described. Part III shows some 

of the results of the calculations. Here the general char

acteristics of the differential scattering patterns are 

outlined in the form of simple rules. In part IV a detailed 

analysis of the symmetry properties of the CIDS is presented. 

We obtain a general expression that accounts for the func-

tional dependence of the differential scattering patterns 

on the helix parameters and the wavelength of light. In 

part V the practical use of the technique as a probe for 

chiral structures is discussed. The relation between the 

differential intensities and the length and molecular weight 

of the chiral regions of a structure is pointed out, and a 

comparison with experimental measurements on a bacterial 

membrane is made. The theory of differential scattering 

for helical structures as derived in the last chapter seems 

to be in good qualitative agreement with the experimental 

data. 

II. Numerical Computations. 

All the computations presented here correspond to the 

scattering properties of a very thin (uni-dimensional) helix. 

The polarizability is defined (see Chapter 2, Section II) 

as a tensor with three principal axes: along the tangent 

to the helix, !, along the normal direction, ~' and along 

the remaining orthogonal direction, ~' so that ~ = at!! + 

a nn + a pp. To simplify the results and facilitate their 
n-- P--
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interpretation while preserving the significant scattering 

behavior, a and a are set equal to zero. In Chapter 2, 
n p 

two different sets of equations were derived to describe 

the CIDS of a chiral structure. Equations (36), (37) and 

(38) are the completely analytical solutions valid for 

wavelengths of light (A) smaller than or equal to the pitch 

(P) of the helix, and when the length of the helix is much 

larger than the wavelength of light. In this case, the 

scattering patterns are discrete, the polar angle of scatter-

ing is limited to certain allowed values, and gives rise to 

layer lines of scattered intensities in space. For the case 

P < A, Equations (33), (34) and (35) in Chapter 2, valid 

for all ratios of P/A and for helices of arbitrary length, 

must be used and the intensities can be obtained through 

numerical computations. As shown in Chapter 2, if P < A, 

the scattering pattern is continous in space. 

Two different computer programs corresponding to these 

two sets of equations have been written: PROGRAM CIDSY uses 

the analytical expressions of CIDS for light incident along 

the c
2
-axis; PROGRAM VINO uses Equations (33-35) for the 

same direction of incidence, with the infinite sums appear-

ing in these expressions being carried out to terms of order 

±4o. 

The overlapping regions of P/A served as a check on 

the calculations performed by the two programs. A third 

program, PAN, that computes the CIDS for light incident 
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along the helix axis, has been also written. A listing of 

PROGRAMS VINO and PAN can be seen in the Appendices to this 

thesis. The calculated scattering patterns were used to 

study the properties of interactions of helices with cir

cularly polarized light. These patterns are presented as 

polar plots of intensity vs. angle, ~ (which measures 

the angle between the incident and the scattered radiation), 

for each layer line (in the case P > A) or for different 

chosen values of the altitude~ (for the case of P >A). 

The plots were generated with the graphics subroutine 

library IDDS of the Lawrence Berkeley Laboratory, and the 

output obtained optionally in microfiche, 35 mm film, or 

paper plots with the Cal-comp. The Bessel functions of 

order 0 to ± 40 were calculated from Sandia Corporation 

subroutines (Sand-75-0147) to obtain the intensities at 

one degree increments of~ for each layer line, or for 

each value of the altitude. Both total intensity of scat

tering and CIDS = (IL-IR)/(IL+IR), where IL and IR are the 

scattered intensities for incident left and right circu

larly polarized light, will be presented here. All the com

putations have been carried out in the Computer Center of 

the Lawrence Berkeley Laboratory. 

III. Numerical Results. 

Figure 1 gives the CIDS and total scattering for a 

helix whose pitch is ten times the wavelength, whose radius 
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Figure 1. Polar plots of circular intensity differential 

scattering (CIDS y) and total scattering inten

sity (SCATT y) of a helix for light incident 

along they c: 2)-axis (from right to left in 

the figures). P = pitah of the helix, R = 

radius, L = number of turns of helix, and W = 

wavelength of light. The thick lines indicate 

negative values of the CIDS, the light ones, 

positive. LYR denotes the number of the layer 

line being plotted. The total scattering is 

scaled to the maximum scattering intensity in 

the zero layer line; the CIDS values (I
1

-IR)/ 

(I1+IR), are not scaled. 
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is equal to the wavelength and whose length is twenty times 

the wavelength. The scattering patterns are given for layer 

lines 0, 4, 8. CIDS is a ratio whose absolute magnitude is 

equal to one or less, therefore the actual value of CIDS is 

plotted with dark lines representing negative values of CIDS 

and light lines representing positive values. The total 

intensity, whose magnitude dependes on instrumental parameters, 

is plotted relative to the maximum intensity in the zero layer 

line. In this figure and in subsequent ones, the light is 

incident perpendicular to the helix axis from the right 

(along 270°), therefore, the forward scattering is along 

90° in the figures. 

The first thing to note is that the differential scat

tering for circularly polarized light is large. For example, 

in Figure 1, at angles of ±25° from the forward direction, 

in the zero layer line essentially only left circularly 

polarized light is scattered for a right-handed helix; the 

CIDS is close to 1. In general, the magnitudes of CIDS do 

not correlate with the magnitudes of the total scattering. 

The total scattering is a maximum in the forward direction 

for the zero layer line, whereas the CIDS is zero in this 

direction. Figure 1 illustrates other general properties 

of the differential scattering pattern. The CIDS in the 

zero layer line shows the following characteristics: A 

large and broad, negative back-scattering lobe, zero differ

ential scattering in the forward direction, 15 zeros, 14 of 
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which involve a change of sign. As the number of the layer 

line increases, the number of the scattering lobes (zeros) 

is reduced, and the sign of the back-scattering lobe alter

nates between positive and negative for the first few layer 

lines. The patterns for both total and differential scatter

ing are symmetric with respect to the direction determined 

by the incident light. The patterns are also symmetric 

above and below the zero layer line; that is, the scattering 

in the -1 layer line is identical to that in the +1 layer 

line. The differential scattering always contains much more 

structure than the total scattering. Thus, a small variation 

in the parameters of the helix will produce large changes in 

the CIDS, whereas the total scattering will change very 

slightly both in magnitude and direction of the scattering 

lobes. Moreover, the total scattering will not give informa

tion about the sense of the helix, but the sign of the CIDS 

is a direct measure of the sense of the helix. 

Figure 2 illustrates the scattering patterns as the wave

length increases relative to the pitch and radius. The helices 

are the same as Fig. 1 except that the ratio of pitch/wave

length is now 1. 1/2, 1/4; only the patterns corresponding 

to the zero layer line are shown. Note that the CIDS is still 

large (>0.5) for a pitch and radius equal to one-fourth the 

wavelength. General characteristics of the scattering pat

terns including those illustrated in Figures 1 and 2 are: 

(a) There is no differential forward scattering in the zero 



Figure 2. Polar plots of CIDS and total scattering for 

increasing values of the wavelength of light 

while keeping the same ratio of pitch/radius 

90 

of the helix. The labels are the same as in 

Figure 1. In the case of pitch less than wave

length (absence of discrete layer lines), LYR 

has been replaced by the ALT, indicating the 

altitude angle measured from the (~ 2 ,~ 1 ) plane. 

Note that CIDS is greater than 0.5 even for a 

wavelength four times larger than the pitch and 

radius. 
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layer line; this is true for any dimension of the helix. 

For all other layer lines the differential forward scatter

ing is not zero. (b) The pattern of layer lines is symmetric 

about the zero layer line. An equivalent statement is that 

the scattering is symmetrical above and below the scattering 

plane perpendicular to the helix axis. (c) The number of 

lobes of the scattering pattern for the zero layer line is 

independent of the ratio of pitch/wavelength, but it is an 

increasing function of the ratio of radius/wavelength. The 

lobes alternate in sign. The number of lobes decreases in 

go1ng from the zero layer line to the higher order layer 

1 ines. (d) For each layer line the envelope of the differ-

ential scattering pattern, i.e., a measure of the differen-

tial scattering at all angles in that layer line, depends 

markedly on the ratios of pitch and radius to wavelength. 

Maxima and minima in differential scattering occur as a 

function of these ratios. The minima are analogous to the 

"invisible" particles described by Kerker 1 and Chew and 

Kerker
2 

for total scattering. (e) Differential back scat-

tering, and differential scattering along the helix axis 

and perpendicular to the incident light, changes sign as a 

function of pitch/wavelength and radius/wavelength. These 

results are related to the sense of circular polarization 

of radiation scattered by helical antennae 3 and liquid 

4 
crystals. (f) As the wavelength increases relative to the 

pitch and radius of the helix, the differential scattering 
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decreases and its angular dependence approaches that of 

Rayleigh scattering. In the limit of very long wavelengths 

the differential scattering is zero. (g) The total scatter

ing of the successive layer lines when projected as density 

spots on a plane would reproduce the well known X of the 

X-ray diffraction patterns of helical molecules. 5 (h) 

Although not shown here, computations of the CIDS for light 

incident along the helix axis give completely symmetrical 

intensities with respect to angle ~ and zero forward CIDS. 

In fact, the zero-forward differential scattering is common 

to all three orthogonal directions of incidence and is a 

direct consequence of having used the first Born-approxima

tion in the local incident field. The CIDS so obtained has 

been called in Chapter 2 form-CIDS. 

In the next section we will analyze quantitatively the 

zeros and the signs of the CIDS in terms of the helix para

meters, the layer lines and the wavelength of light. 

IV. Symmetry Properties of the Scattering Patterns. 

The polar plots of differential scattering intensities 

vs. azimuthal angle, ~' show a remarkable symmetry for each 

layer line; the direction of incidence of the light acts as 

a c2 axis. Furthermore, it is seen that the patterns show 

a distinctive lobe structure of alternating signs with zeros 

between lobes. To better understand the patterns, it is 

appropriate to analyze the equations responsible for this 

behavior. The equations and notation are described in Chapter 2. 



1) The zeros of the CIDS patterns. 

We will analyze the patterns for long helices with 

pitch ~ wavelength, therefore a layer line structure will 

exist. The analysis will be done only for light incident 

along the e 2-axis, i.e., perpendicular to the axis of the 

helix. Since for each layer line the zeros of the CIDS 

are the zeros of IL-IR, it will suffice to consider the 

behavior of the numerator of the CIDS formulas. We can 

use the recurrence formulas for the derivatives of the 

Bessel functions: 6 

to simplify the numerator of Equations (36a) in Chapter 2 

and equate it to zero, to obtain: 

Pn a J2 + a { 2[( 2 2 ) 
nQ ~1 a(Qa) n a(Qa) a Jn+l + Jn-1 ~2 

(1) 

where: 
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~1 
::::: [sin(21jJ'-1jJ) + sin1ji]sin2¢ 

~2 
:::: cos1)J'(sin

2
¢-2) 

~3 
::::: cos(21ji-31)J')sin

2
¢ 

~4 
::: {[cos1jJ'-2cosljicos(1jJ'-1jJ) + cos(21jJ-31jJ')]a 2 -

p2 2 

2 coslji'}xsin ¢ 
'lT 

~5 
::: sin(21jJ'-1jJ)sin2~ 

Here n specifies the layer line and the order of the Bessel 

functions, Jn(Qa); a is the radius, P is the pitch and Q = 

(2n/A)(l+sin 2¢-2sin¢sin1jJ)l/Z. The angles¢ and 1jJ are the 

polar angle and the azimuthal angle of the scattering 

pattern; for each layer line ¢ is constant and 1jJ varies 

from 0 to 2n. The ~ depend on the scattering angles, lji, 

1jJ' and ¢, where lji' (defined in Chapter 2) depends on lji, 

¢ and wavelength. Let us consider the zero layer line, 

as a similar analysis applies to all the layer lines. 

For the zero layer line, ¢ = 90°, n = 0, and after some 

algebraic manipulation the zeros are found to be: 

J
1 

(Qa) = 0 

p2 2 

2 cos1jJ'J 0 (Qa) +a {J2 (Qa)[cos1)J'-cos(21)J-31)J')] 
1T 

(2) 



It 1s clear that the Bessel functions control the zeros 

of the scattering pattern. For the zero layer line the 

zeros of J
1 

are exact zeros and for P ~ lOa, the zeros 
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of J 0 are approximate zeros. As the radius, a, increases 

relative to the pitch, P, the zeros of J 2 also contribute. 

It is interesting to point out that the theorem of inter-

laced zeros of Bessel functions states that Bessel func

tions of different orders have no common zeros. 6 This 

prevents Equation (2) from being satisfied by simultaneous 

nulling of J 0, J
1

, and J 2, therefor~ the zeros which appear 

are either a manifestation of the predominance of one term, 

or a very rare case in which both phases and Bessel functions 

combine to satisfy Equation (2) at particular values of w. 

To find the values of w corresponding to the zeros 

of the Bessel functions, we need an expression for Qa vs. w. 
As cos ¢ for each layer line equals (n~/P), we can use the 

definition of Q above to relate Q to W for any layer line. 

For the zero layer line 

Qa = 2/2 na(l-sinw)
1

/
2 

~ 

(3) 

For a helix with P = 10, a = 1, ~ = 1 as shown in Figure 1, 

the zeros of J
1

(Qa) and J 0 (Qa) determine the scattering 

pattern in the zero layer line. The values of w correspond-

ing to these zeros are in excellent agreement with those 

seen in Figure 1. The trigonometric factors appearing in 

Equation (2) do not contribute to any of the change of sign 



of the differential scattering; they mainly govern the 

envelope of the scattering pattern. 
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As the ratio of P/a decreases, we can no longer neglect 

the second term and some of the zeros contributed by J 0 will 

start disappearing and a few of those due to J 2 will appear. 

This behavior is complicated by the fact that the number of 

zeros of J 0 (Qa), J 1 (Qa), and J 2 (Qa) depends on the radius, 

a, of the helix and in fact is approximately a linear func

tion of a. We can analyze the pattern if the pitch, P, of 

the helix is ~hanged while the radius and wavelength are 

held constant. This is shown in Figure 3, where one sees 

the same zeros as in Figure 1 due to J 1 , but some of the 

zeros from J 0 disappear as P/a changes from 8 to 2. 

A similar analysis for the other layer lines can be 

done; the main difference is that higher order Bessel func

tions control the scattering patterns. 

2) Dependence of the zeros of the CIDS on helix geometry. 

As the zeros of a few Bessel functions determine the 

zeros of the CIDS in each layer line, we can understand 

the patterns from learning how the Bessel function zeros 

depend on pitch, radius and wavelength. We make use of the 

7 -v 
theorem that the number of zeros of z Jv(z) between 0 and 

[m + (2v+l)/4]n is exactly m. However, we must realize 

that between 0 and [m ± £ + (2v+l)/4]n (where £ is an arbi-

trarily small number), there may be m ± 1 zeros. That is, 

there is an inherent uncertainty of ±1 in the number of zeros 



Figure 3. Polar plots of CIDS for different ratios of 

pitch/wavelength while keeping the ratio of 

radius/wavelength constant. The labels are 

the same as before. The number of zeros in 

the scattering pattern increases with increas

ing pitch. 
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calculated for a Bessel function over the range of our 

variable, Qa. As we want to know how the number of zeros 

in the scattering pattern changes with helix parameters 

and wavelength, rather than the exact number of zeros, 

this small uncertainty is not significant. 

For each layer line, n, 

. ,,,]1/2 
s1n'~' 

100 

(4) 

The maximum and minimum values of Qa on each layer line 

occur when sinljJ = ±1. To apply the theorem we must compare 

the maximum and minimum values of Qa with (Zv+l)rr/4. First 

we obtain the number of zeros between 0 and the minimum 

value of Qa by writing 

min Qa = [m + (2v+l)/4]rr 

and solving for m. Similarly, we obtain the number of 

zeros between 0 and the maximum value of Qa. The difference 

is the number of zeros in the interval (min Qa, max Qa), 

i.e., in the intervals 90° ~ ljJ ~ 270°. 

The number of zeros of the v-order Bessel function in 

the interval 0 < Qa < min Qa is: 

(l min Qa - 2v+l)f . 
TI 4 m1n 

and in the interval 0 < Qa < max Qa 
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mmax = (~max Qa - ~)f 
v 1T <+ max 

The factors f . and f are introduced to assure that the m1n max 

number (m) of zeros for any given interval is always positive 

or zero. They are defined as Heaviside functions: 

c if min Qa < (Zv+l)/4 
f . m1n otherwise 

{: 
if max Qa < (2v+l)/4 

fmax 
otherwise 

The number of zeros of the v-order Bessel function in the 

interval min Qa < Qa < max Qa will be therefore: 

2v+l 
..............- (f -f . ). 

tt max m1n 

There are three possibilities which must be considered 

for each layer line to estimate the number of zeros, m, of 

each Bessel function J . First, for a layer line in which 
\) 

2v+l . 2v+l 
fmax "" fmin (max Qa > --:r-- and m1n Qa > - 4-) then: 

2 2 
m = l (max Qa - min Qa) = ~a (1-~)l/Z (Sa) 

1T A p~ 

Second. if min Qa < (Zv+l)/4 and max Qa < (Zv+l)/4, then 
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m = 0 (min Qa and max Qa < (2v+l)n) 
4 (Sb) 

Third, the intermediate case, m = ~ (max Qa) - ~ so that 

(min Qa < (2v+l)n 
4 (Sc) 

In obtaining the derivation of Equations (Sa)-(Sc) the 

expression for Qa given in Equation (4) has been used with 

sin~ = ±1. These equations provide the general results we 

need. They show that the number of zeros in each layer line 

depends linearly on a/A, but depends only slightly on P/A; 

for the zero layer line the number of zeros is independent 

of P/A. The number of zeros decreases with increasing layer 

line and becomes zero for the maximum layer line (n = P/A). 

In applying these equations, we should remember the restric-

tions. The actual number of zeros of each Bessel function 

is an integer near m ± 1, and Equation (5) is derived for 

P/A ~ 1, which is a necessary condition for the existence 

of layer lines. 

Figure 1 clearly illustrates the decreasing number of 

zeros in the differential scattering pattern with increasing 

layer line; for the maximum layer line there are no zeros as 

expected. In this figure a/A ~ 1 and P/A = 10, thus we know 

tl1at only J 0 and J 1 contribute to the pattern of zeros in the 
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zero layer line, and we can easily calculate their number. 

The minimum value of Qa here is zero and the maximum is 8n, 

so Equation (Sc) must be used. The calculated values of m 

are 7.5 for J 0 and 6.5 for J 1 ; their sum of 14 agrees with 

the 14 (plus one zero at ~ = 90°) seen for the zero layer 

line. Figures 3 and 4 illustrate the strong dependence of 

the number of zeros on radius (compare Figure 4a with a/A 

= 5 with Figure 4b with a/A = 0.5) and the weak dependence 

on pitch (see Figure 3 with P/A = 2,4,6,8), the behavior of 

which is correctly predicted by Equation (Sb). 

A few more differential and total scattering patterns 

for helices of different structural and electronic parameters 

can be found in the microfiches attached at the end of this 

thesis. 

3) Vanishing of CIDS at specific angles of scattering. 

It is possible to find helix parameters for which the 

differential scattering at certain directions in space van-

ishes. The differential back scattering (i.e., differential 

reflection) can easily be shown to possess an inversion point 

for certain ratios of P/a and a/A, for which no reflection is 

observed. The differential reflection .(~ = -n/2) in the zero 

layer line can be obtained from Equation (1). For light 

incident along : 2 and for the case of P >A: 

(6) 



Figure 4. The dependence of the number of zeros of CIDS 

on. the ratio of radius/wavelength. In the 

upper figure there is no attempt to indicate 

1~ 

the sign of the CIDS because of the large number 

of zeros. 
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Setting this equation equal to zero, we obtain the value 

of P/a at which no differential reflection exists: 

( 7) 

At the inversion point, the argument of the Bessel functions 

(Qa) is a constant equal to 4na/A, so that the ratio obtained 

is an implicit function of (a/A). To prove that it is not 

a minimum or a maximum, but a point of inversion, we must 

show that this value of P/a does not satisfy the equation 

obtained by setting the derivative with respect to P of 

Equation (6) equal to zero. Although not shown here, it 

does not satisfy the equation, therefore P = na/2(1-J
2
/J

0
) 

is an inversion point for the differential reflection. 

Notice from Equation (6) that the differential reflection 

has the opposite sign for a left-handed helix (pitch = -P) 

than for a right-handed helix (pitch= P). The equations 

we have derived in this section provide a quantitati~e basis 

for understanding the scattering patterns. 

V. Applications. 

From the analysis of the preceding section, it is apparent 

that the CIDS signal as a function of wavelength o~ of the 

azimuthal angle of scattering can give important information 

about the conformation of chiral structures. In fact, it was 

seen that the sign of the CIDS ~ontains the information on the 
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handedness of the molecule, whereas the intensity is directly 

related to the geometrical parameters of the chiral scatterer. 

As a technique, the most significant advantages of CIDS 

depend on the fact that it is a ratio of intensities, 

(IL-IR)/(IL+IR), and that it can be positive or negative. 

Both of these characteristics make it more sensitive than 

the total scattering to structure and conformation. Right

and left-handed helices, otherwise identical, will have 

identical CIDS except with the opposite sign. To determine 

the sense of a helix from the sign of its CIDS at a chosen 

scattering angle, we need to know the pitch, P, and radius, 

a, of the helix. For long helices with P > A, layer lines 

occur and the total scattering can be used to obtain P and 

8 
a. The spacing between successive layer lines is inversely 

proportional to P, and the angle between the arms of the 

characteristic X pattern produced by the scattering of a 

helix leads to the ratio of P/a. Thus, the geometry and 

the sense of the helix can be determined by the combined 

techniques. For helices with P < A, layer lines do not 

occur and the usefulness of the CIDS increases relative 

to the total scattering. The sign snd angular dependence 

of CIDS can provide the sense and helical parameters when 

the total scattering pattern is indistinguishable from that 

of a point or line. That is, values of CIDS of 10- 2 to 10- 4 

should be measurable and interpretable, when the only geo

metrical information available from the total scattering 
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is that both P and a are less than A/10. 

1) Length of helix. 

The intensity of scattered light is proportional to 

the square of the length of the helix (Equation (36), 

Chapter 2), and therefore proportional to the square of the 

molecular weight of the helix. The CIDS is independent of 

length; it only depends on the helical geometry. The CIDS 

and total scattering have very different angular dependence; 

the maxima for CIDS tend to occur where the total intensity 

is small. These properties can be used to measure the 

amounts of helical (or chiral) structures in a mixture. 

For example, in cholesteric or twisted nematic liquid crys

tals, it is only the helical regions that give rise to the 

very strong circularly polarized differential scattering. 

In principle, it would be possible. to measure the amount 

of helix in a protein from the CIDS. 

2) Experimental results. 

Although the model is a very simple one, it allows 

immediate experimental applications as a first approximation 

to the measured CIDS of such structures as bacteriophages,
9 

nucleohistones, 10 , DNA aggregates, 10 membranes, chromomsomes, 

etc. (Maestre, unpublished), all of which have been shown 

to have CD scattering components. The CIDS is independent 

of the molecular weight of the helix and for a uniaxial 

,polarizability,even the actual value of this polarizability 

cancels and has no influence on the measurement. The behavior 
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of the incoming circularly polarized light is affected only 

by the geometry of the helix. Thus, for example, we can 

obtain information about the possible supercoiling of a DNA 

molecule without knowing the details of the interaction of 

the chromophores with light. 

As we have seen in this and the preceding chapter, the 

number of layer lines, the sign of the scattering lobes, 

and the number of lobes or zeros in each layer line can be 

used to give the main characteristics of any sample of he

lices. The computed values for the helical models are simi

lar to those found experimentally. 10 Thus, liquid crystals 

with reflection coefficients of the order of 80 to 95% 

would give CIDS of the order of 1 (i.e., almost complete 

reflection for one sense of polarization). DNA films with 

ellipticities of nearly 4 degrees (A1 -AR = 0.14) have been 

reported and many measurements of ellipticities in the range 

from 0.1 to 10- 3 are routinely measured by CD scattering 

1 0 
methods for large, optically active, biological aggregates. 

Thus models which give CIDS values in the range from 1 down 

to 10- 4 will have applicability in the interpretation of 

experimental measurements. In extreme cases in which the 

pitch is much larger than the radius of the helix or the 

radius much larger than the pitch, simple formulas can be 

derived that will give approximate values for the scattering 

intensities. For the zero layer lines these formulas reduce 

to approximations that have been used for computational pur-
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poses in the field of helical antennae. 3 The values obtained 

for these cases can be used to check the ratios of pitch to 

radius as determined by the number of zeros measured for the 

CIDS scattering envelope. If the whole scattering envelope 

cannot be measured, simple formulas for specific angles can 

be used to determine roughly the helical parameters. 

Here we will discuss only one case of experimentally 

measured CIDS. This system has been chosen for its simpli

city and because it allows easy correlation with the calcu

lated values. These are the membranes of the bacterium 

Spirillum serpens, which show differential scattering for 

circularly polarized light when suspended in solution (Chiu, 

Maestre and Glaeser, in preparation}. These flat, sheetlike 

membranes should not show CIDS, and only small corrections 

to the circular dichroism for Mie type scattering
11 

is 

expected. However, a strong signal was measured at right 

angles to the incident light beam, in the wavelength range 

of 200-300 nm (Figure 5). Electron micrographs showed that 

rodlike membranes with a diameter of approximately 160 nm 

were mixed in with the flat membranes (Figure 6). Calcula-

tions for a helix with ratios of pitch and radius to wave-

length which correspond to the experimental conditions give 

the scattering pattern shown in Figure 7. Although the com

puted CIDS is for an oriented helix with the scattering 

plane perpendicular to the helix axis, and the experiment 

is for an unoriented sample, the results can hc qualitatively 
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Figure 5. CD plots and CIDS of Spirillum serpens membranes. 

Normal CD measurement is solid line. CD(FDCD) 

measurement is the forward scattering cone. 

Curves labeled "CD(FDCD) side scattering" are 

two different measurements of the sample at 

right angles. The back-scattering cone is de

picted by xxxxxx. From Chiu, Maestre and Glaeser, 

unpublished. 
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Figure 6. Electron micrograph of Spirillum membranes. 

It shows both sheet-like membranes and tubular 

arrangements. Magnification is -40,000. Pre-

sumably it is the cylindrical arrangement that 
~ 

gives the measured CD scattering. (Chiu, Maestre 

and Glaeser, unpublished.) 
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Figure 7. Total scattering and CIDS plots of a helix with 

geometrical parameters similar to those of the 

rods of Spirillum serpens as seen in the electron 

microscope (Figure 6). Pitch= 2.6 nm, radius 

= 208 nm, 6 turns and wavelength = 260 nm. The 

label CD/MAX indicates that the calculated values 

of CIDS have been scaled to 1.00; the actual 

maximum value calculated is 6.7 x 10- 3 . 
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compared. The computed and experimentally observed scatter

lng patterns agree well in the angular dependence as well as 

in the magnitude of the signal. It is clear that even the 

simple model discussed here can be usefully applied to bio

logical structures. 

We think that the theory of CIDS for chiral structures 

as developed in Chapter 2, in addition to the conclusions 

drawn in this chapter, justifies a serious effort to imple

ment more refined techniques to measure the CIDS as a func

tion of angle and wavelength for oriented samples. 12 In 

Chapter 6, a general theory of total and differential form

scattering for unoriented samples will be presented. It is 

expected that this theory would provide information on biolo

gical chiral structures in solution. 

VI. Conclusions. 

In this chapter, numerical and analytical calculations 

of the total and differential scattering of an oriented 

helical s true ture have been pre sen ted. The numerical cal cul a

tjons were carried out as a function of the scattering angle 

in each layer line (if the pitch and the length of the helix 

are large compared to the wavelength of light) or at different 

altitude angles, if no layer lines exist. The scattering pat

terns have been found to be extremely sensitive to changes in 

the geometrical parameters of the helix. The sign of the 

CIDS signal is opposite for chiral objects of opposite handed-
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ness. therefore CIDS can be a useful technique to determine 

the sense of chirality of these objects. 

For values of pitch and radius greater than the wave

length, the CIDS will show lobes that alternate in sign, for 

most layer lines; this lobular structure disappears when 

either pitch or radius is less than the wavelength. For 

the first case we have presented approximate expressions 

that govern the dependence of the number of lobes on the 

structural parameters of the helix as well as on the layer 

line that is being considered. These expressions show that 

the lobe structure of the differential scattering patterns 

is linearly proportional to the ratio of the radius to the 

wavelength of light. In general, the number of lobes decreases 

with increasing order of the layer line. The dependence 

of the number of lobes on the ratio of pitch to wavelength 

is weak in most layer lines and absent in the zeroth layer 

line. The overall symmetry of the scattering patterns is 

comprised of two factors: the positions of the zeros that 

determine the lobes are governed by the Bessel functions, 

whereas the envelope of the pattern is mostly determined by 

trigonometric functions of the scattering angle, ~. The 

signs of the lobes and the positions of the zeros (the scatter

ing pattern) will not he affected by the usual experimental 

difficulties associated with light scattering. Dust and other 

nonchiral contaminants can change the magnitudes, but not 

the general pattern of scattering. 

It is possible to find specific directions for which 
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the CIDS vanishes at a given ratio of pitch, P, and radius, 

a, of the helix, to the wavelength of light. We have derived 

an expression relating the ratio of P/a as a function of 

wavelength of light at which differential back scattering 

(differential reflection) vanishes. This geometrical condi-

tion constitutes a point of inversion of sign of the differ

ential reflection. 

A wide range of samples have been experimentally studied 

with values of CIDS ranging from 1 (liquid crystals) 4 to 10- 4 

10 
(macromolecular aggregates). Qualitative interpretation 

of these results can be made from our simple model. One 

application to rodlike structures observed in membranes of 

Spirillum serpens is discussed. We think that measurement 

of the differential scattering of polarized light and X-rays 

can become a very useful method for structure determination 

in macromolecules. 
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Chapter 4 

THE GENERAL POLARIZABILITY TENSOR 

AND ANOMALOUS SCATTERING 

I. Introduction. 
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All the theoretical work and the calculations pre

sented so far on the CIDS of chiral structures have been 

restricted to the case of an oriented helix with a uni

axial (tangential) polarizability. As pointed out before, 

this particular choice of the polarizability has a twofold 

effect: 1) the values of the circular intensity scattering 

were independent of the magnitude of the polarizability, in 

particular of its wavelength dependence, and therefore the 

model could not take into account any absorptive phenomena; 

2) all differential scattering patterns were symmetric 

around the direction of incidence of light (see Chapter 2). 

In this chapter, numerical computations of the CIDS of 

a helix possessing a triaxial polarizability along the 

main axes of the tensor, as a function of the geometrical 

parameters of the chiral scatterer and the wavelength of 

light, are considered. The analytical expressions for the 

case of a biaxial polarizability will be derived and a 

careful analysis of the symmetry rules involved will be 

done. The last part of this chapter involves a discussion 

of the dispersion dependence of the differential scattering 
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intensities for the particular case of a Lorentzian-shaped 

polarizability. 

II. Numerical Calculations. 

1) Equations and results. 

In the numerical calculations presented here, Equa-

tions 33, 34, and 36 of Chapter 2 have been used. Since 

these equations give the amplitude and the intensity of the 

scattered electric field for a tangential polarizability, 

equivalent equations along the other two main axes of the 

polarizability have been derived. The derivation follows 

the same lines as in Chapter 2. Here we only write down 

the additional results. Perpendicular axis, incidence : 2 , 

polarization :
1 

E (r') 

00 

= _P_ K • { L:X l: J (Qa) (PT S (Z) - (1rT ) - 1 ) • 

27TM2 -P 47T n=-oo n n n n 

n.Q, 
·(-1) ]e 

-1 

- [iP ~ J (Qa)S (2) (-l)n.Q,]:z 
4TI n n n=-oo 

+ [ai ~ J (Qa)S (1)(-l).Q,(n+l)]e} 
2 n n -3 n=-oo 

perpendicular axis; incidence :
2

, polarization :
3 

(1) 
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E (r') 
00 

=a K ·{[I_ L: J (Qa)S (1)(-l),Q,(n+1)]e 
M7 ~P 2TI n=-oo n n -1 

00 

- [f_ l: J (Qa)PT S (1)(-1).e,(n+1)]e 
2TI n n n -2 n=-oo 

(2) 
00 

[a L: J (Qa) (TIT ) - 1 (-l)n,Q,]e
3

} 
n n -n=-oo 

where 

K :::: a BF 
-p p -

B = AhM 

F = (1-kk/k
2
)(k

2
/r') E

0 
exp(ikr') 

where £ is: the number of turns of the helix as before, Qa 

and M have the same definition as in Chapter 2, Ah the 

cross-sectional area of the helix, and ap is the value of 

the polarizability along the perpendicular axis defined in 

Equation (15) of Chapter 2. The equation for the scattered 

fields associated with the normal axis are: normal axis, 

incidence e
2

, polarization e
1

: 

00 

E (r ') J (Qa) (PT S (Z) + (TIT ) - 1 ). 
n n n n n =- oo 
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00 

+ [~=-ooJn(Qa)Sn ( 2 )(-l)n~J: 2 }sin(P~~kz/2) (3) 

with K = a BF 
_n n -

We assume now that the electrons in the scatterer are 

harmonically bound, so that their response to an external 

field can be simply expressed as: 1 

f 

where f is the strength of the absorption band centered at 

wavelength ~O and ~~ is equal to its width at half-height. 

In the numerical computations we have used polarizability 

tensors with two or three principal values along principal 

axes oriented tangent to the helix, t; normal to the helix, 

~; and perpendicular to these axes, p (Chapter 2). Total 

and differential scattering patterns were calculated as a 

function of the pitch and radius of the helix, the wave

length of incident light, and for various strengths (f), 

widths (~~), and positions (~ 0 ) of the absorption bands 

along the axes defined. Figure 1 shows the results of the 

total and differential scattering for the case of a tri-

axial polarizable helix of pitch= 3.6 and radius= 1.1; 
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Figure 1. Polar plots of intensity versus scattering angle 

w showing the +1, 0, and -1 layer lines (LYR) of 

the CIDS and total scattered intensities (SCATT 

Y) for light incident along the y-axis (from 

right to left along 270° on the 0 layer line). 

The parameters are: pitch P = 3.6, radius R = 

1.1, wavelength W = 1.0, length L = 20 turns and 

a triaxial polarizability, with a tangential 

absorption band AOt centered at 1.0, a perpendic

ular band AOp = 1.5, and a normal band AOn = 2.0. 

The strengths of the bands are all 1.0 and their 

half-height width chosen equal to 0.15. Heavy 

and light lines indicate negative and positive 

values of CIDS, respectively. 
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the wavelength A = 1.0, and centers of bands are AOt = 1.0, 

\On = 2.0, AOp = 1.5, with strengths, f = 1 and widths, 

6A = 0.15. Figure 2 shows the total scattering and the 

CIDS for a helix of the same dimensions, but with uniaxial 

(tangential) polarizability. In both cases, +1, 0, and -1 

layer lines are shown. The main feature of the general 

polarizability results is that the differential scattering 

patterns are now asymmetric when the wavelength of the 

incident radiation is within an absorption band of the 

polari zabil i ty. T.his contrasts with the uniaxial model 

where the 270°-90°-axis (see Figure 1) is a c2-axis for 

each of the layer lines. For a general polarizability, 

only the zero layer line has this property. The asymmetry 

is seen both in the C.IDS and in the total scattering; it is 

called anomalous scattering in X-ray diffraction. One sees 

in Figure 1 that the +1 and -1 layer lines are the mirror 

images of each other. A second feature of these general 

polarizability calculations is that the lobes of differen

tial scattering have decreased in number (compared to the 

ones appearing in the uniaxial patterns) as well as having 

become sharper and restricted to smaller domains of the 

scattering angle ~. Apparently each polarizability pro

duces its independent pattern; the superposition of these 

patterns produces sharper and more localized lobes. 

We found that the use of purely real or purely imagin

ary polarizabilities had·the effect of producing total and 
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Figure 2. The corresponding polar plots of the same helix 

as in Figure 1 but having a uniaxial polariza

bility along the tangential direction with Aot = 

1.0, band strength = 1.0, and width = 0.15 as 

before. Notice that both the CIDS and the total 

scattering away from the zero-layer line have 

regained their symmetry across the 270°-90° axis. 

As in Figure 1 the negative values are depicted 

with heavier lines. 



P•3.S0 R•l. 10 

W•l .00 L•20.0 

C!OS y 

P•3.S!IJ R•I.I!IJ 

W•l .00 L•20.0 

'P•3.S0 R•1.10 

W= I .00 L•20.0 

30. 

C!DS Y 

18(11.00 LYR• I .00 

0.00 

10.00 

180.00 

123 

P•3.S0 R•I.IQJ 

W• I .00 L•20.0 

sc.ur v 190.00 LYR• 1.00 

P•3.80 R•l.10 

W• I .00 L•20.0 
0.00 

P•3.S0 R•l.10 

W•l .00 L•20.0 

SCATT Y ISQI.00 

XBL 8012-12859 



129 

differential scattering patterns symmetric about the 270°-

goo axis. This is shown in Figure 3 for a helix of the same 

dimensions of those used in Figure 1 and with the polariza-

bilities at = Re a ap "' Re ap' and a "' Re an. It should 
t' n 

be pointed out that the number of lobes for the zeroth-layer 

line in Figure 3 is the same as in the corresponding layer 

in Figure 1, but here, three negative lobes are too small 

to be seen in the figure. As discussed in Chapter 3, the 

number of lobes of the CIDS pattern is determined by the 

geometry of the scatterer and not by the values and direc-

tions of the transitions in the scatterer. 

In order to gain a better understanding of the symme

try laws involved in the patterns of total and differential 

scattering, the theory of CIDS for helical molecules is 

explicitly applied to the case of a biaxial polarizability. 

It will be shown that by writing the polarizabilities in 

the form a= R exp (iy), a phase change is introduced in 

the angular dependence of the scattering intensity, which 

is equal to the difference in the complex phases between 

the polarizabilities involved; this phase change is respon

sible for the antisymmetric properties observed. A detailed 

analysis of the symmetry of the scattering patterns will 

show their relations to the dispersive and absorptive prop-

erties of the polarizabilities. 



Figure 3. Polar plots for the same helix as in Figure 1, 

with a triaxial polarizability but with 
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at = Re at, ap = Re ap, and an = Re an. Every

thing else in the calculation was the same as in 

Figure 1. The CIDS and the total scattering are 

completely symmetric across the 270°-90° axis. 
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2) A biaxial polarizability. 

We choose a biaxial polarizability with principal axes 

along ~ and t. We can define the scattering matrix for the 

helix as:
2 

(where A= (k
2

r')AhM E
0
exp(ikr')) 

AA 

S = A(l-kk) (2) 

where k = k/lkl is a unit vector along the direction of 

scattering, F includes constants and distance dependent 

factors, Q, is the number of turns of the helix, a.t and a.n 

are the magnitudes of the principal polarizabilities, and r 

is the vector position of the segments in the scatterer. 

Now the scattered field can formally be written as: 

~scatt (r') = S ~incident 

The electric field of the scattered light for right 

circularly polarized light and left circularly polarized 

incident light with polarization vector defined by c:3 + 

iel) and c:3- iel)' respectively, and incident wave-vector 

~O along : 2 (y-axis) is: 

(3) 
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The plus sign gives the scattered field for right circu

larly polarized light and the minus sign for left circularly 

polarized light, with ~~ = ~ - ~o· For a helix oriented 

along e (n•e = 0), we can write the terms that must be 
-3 - -3 

added to the ones calculated with the purely tangential 

polarizability (see Chapter 2) to obtain I1 -IR. These 

additional terms are: 

2 * = 4A {J!Im(at ilik • (r- r 1
)) ( • t 1 ) 

an e - - - n 

(t' ·e ) (n·e )dede' 
- -3 - -1 

A 

(n'·k)(n'·e )dede'} 
- - - -1 

(4) 

where Im means the imaginary part of the expression should 

be used, and where the limits of integration have been 

omitted for simplicity. To perform the integrations indi

cated in (4), we rewrite the polarizabilities at and an as 

at = Rte
1
Yt and an = Rneiyn where Rt, Rn' yt' and yn are 

real numbers. 

The integration of Equation (4) allows the calculation 

of the contributions of the cross-terms involving both the 

tangential and normal axes of the polarizability, to the 

differential scattering. The terms that depend only on t 
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have been presented in Chapter 2 whereas in taking the dif

ference the terms inn cancel as seen in Equation (4). The cor

rection terms for IL-IR for a biaxial polarizability along 

t and n axes are therefore -

-(2J J -J J )cos(~'-6)] n n-1 n+2 n+l 

+J +lJ sin(w'+c) 
n n 

-J 1J 
2
cos(w'+5)) 

n- n-
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with o=yt-yn and the arguments of the Bessel functions, which 

are Qa, the angle ~~ , and the constant M have the same 

definition as in Chapter 2, and kz and kx are the ~ 3 and ~ 1 

components of the scattered wave-vector, respectively. 

III. Symmetry Analysis. 

In this section, an analysis of the symmetries involved 

in the scattering pattern of an absorptive chiral structure 

is carried out. It is clear that since the coefficients 

appearing in Equation (5) are different for each term, each 

one of them in turn must show all the symmetry behavior of 

the overall scattering pattern. Therefore it will be suf-

ficient to do the analysis for only one of the terms in 

expression (5). Here we will do this for the term: 

k k P
2 

X Z 

4
n2M2 [Jn3n-2 sin( 2 ~'+(yt-yn))-JnJn+2 

(6-1) 

sin(2~'-(yt-yn))] 

(6-2) 

(6) 



136 

In all the correction terms, the use of a general 

polarizability has the effect of introducing phase changes 

(yt-yn) in the trigonometric functions of the scattering 

angle~ and related angles~~. These phase shifts are 

related to the scattering patterns which show differential 

scattering intensities in more restricted and smaller 

domains of the scattering angle ~ as discussed above. It 

is therefore clear that the new symmetry properties must be 

contained in the crossed terms of t and n, and consequently, 

our analysis does not have to consider the contribution to 

the scattering intensities of the purely tangential solu

tion given in Chapter 2. Figure 4 shows a diagrammatic 

description of the symmetries involved in the differential 

and total anomalous scattering. The lines drawn from the 

scatterer to the plane A represent actual directions of the 

wave vector of the scattered light. Any point in the plane, 

therefore,where nonvanishing differential or total scatter-

ing is observed, can be described completely by the coordi

nates (kx,kz), its sign of polarization (in the case of the 

differential scattering), and the observed intensity at 

that point. One sees that the point 0 represents an inver

sion point for the pattern in plane A, the differential or 

total scattered intensities of the point (k , k ) 
X Z 

being the 

same as that of (-k -k) x' z ' 
<.tnd that of (- kx 'kz) being the 

same as that of (kx,-kz). Through our symmetry analysis of 

the differential scattering~ we should be able to show the 



Figure 4. Graphic depiction of the antisymmetry involved 

in the anomalous scattering of plane or circu

larly polarized light by a chiral structure. 

The plane A can be a photographic plate, for 

example. The point 0 labels the direction of 

forward scattering and it represents an inver

sion point for the intensities recorded at the 

plate. 
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existence of the following properties: (a) when the polar-

izabilities are purely real or imaginary, the patterns must 

be invariant for a change of k + -k and will also be 
X X 

invariant for a change kz + -kz; (b) when the polarizabili-

ties are complex, the equations should be invariant only 

for a simultaneous transformation of k + -k and kz + -k · 
X X z' 

(c) the zeroth-layer line is completely symmetric to inde

pendent changes of k + -k and to changes of k + -k 
X X Z Z 

regardless of the use of complex polarizabilities; (d) the 

total scattering shows the same asymmetric behavior as the 

differential scattering. Equation (6) can be rewritten as: 

k k 
x z pz {(J J J J ) sin2''''coso+ (J J +J J ) 

4n2M2 n-2 n- n n+Z o/ n-2 n n n+Z • 

(7-1) (7-2) (7) 

cos21/J' sino} 

Equation (7) has the general form: 

where C stands for coefficient, P for phase (sin21JJ' or 

cos21/J' in this case) and B for the combination of Bessel 

functions. 

For light incident along ~Z (see Chapters 2 and 3), 

the argument of the Bessel functions (Qa) is given by: 
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* * Now, when k + -k then ~ + 180 - ~ and ~ + 180 - ~ . So 
X X 

we see that Qa and therefore the Bessel terms (B's) are 

invariant to changes of k + -k . The transformation 
X X 

k + -k implies n + -n but since this term appears squared z z 

in the expression above, Qa is also invariant to changes 

of k
2 

+ -kz. However, the transformation k
2 

+ -kz has an 

effect in the term B through the order n, n-2, n-4, etc., 

appearing in each of the Bessel functions. Finally, since 

* 
~~=~ +n/2 then the transformation kx + -kx will certainly 

affect the term P although it will be invariant to the 

transformation k
2 

+ -kz. In what follows we will analyze 

the transformation properties of expression (7) when 

k + -k and k + -k 
X X Z Z. 

1) term 7-1: fork + -k 
X X 

a) clx + -clx 

b) Clz + +C12 (invariant). 

c) B
1 

+ B
1 

(invariant). 

d) Since: sin 2~ I = sin 2 

and: when k + -k then 
X X 

* we have -sin 2~ =-sin 2 

So: P
1 

+ -P
1 

for k + -k 
z z 

* * 
(~ +n/2) = -sin 2~ 

* * 
~ "' 180 - 1fJ 

* * 
(180-~ ) = sin 2~ . 
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a) clx + clx (invariant). 

b) Clz + -Clz 

c) P
1 

+ P
1 

(invariant). 

d) Since n = 0 is the zeroth layer line, we take, 

for example: 

k : n "" 1 z 

-k : n = -1 
z 

term 7-2: for k + -k 
X X 

a) Czx + -Czx 

b) c
2

z + c2z (invariant) 

c) B
2 

+ B
2 

(invariant) 

* * d) Since: cos 2~' =cos 2 (~ + n/z) = - cos 2~ 

* * and: kx + -kx ~ ~ + 180 - ~ 

* * then:- cos 2~ +-cos 2~ 

So: P1 + P1 (invariant) 

for k + - k z z 

a) c2x + c 2x (invariant) 

b) c2z + -czz 

c) P
1 

+ P
1 

(invariant) 

d) k : n "" 1 z 

-k : n = -1 
z 

J 1 .J- 1 + J 33 1 

J_l.J-3 + 3 t 3 -1 

So: B
1 

+ B
1 

( im·ariant) 
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It can be shown that the above term, under the double 

reflexion (x + -x; z + -z), transforms as: 

(8) 

where the terms affected by changes of k + -k are shown z z 

in square brackets while the ones affected by changes of 

kx + -kx are shown in parentheses. From expressions (8) 

and (7) we see the term (7-1) is symmetric with respect to 

changes of k + -k as well as to changes of k + -k , 
X X Z Z 

whereas (7-2) is antisymmetric with respect to either of 

these transformations. This different behavior of the two 

terms is responsible for the asymmetry observed in the dif

ferential patterns. When the polarizabilities are purely 

real, then o = 0, and the asymmetric term vanishes, leaving 

only the term (7-1) invariant to changes kx + -kx as well 

as to changes in k + -k . Similarly, when purely imagin-z z 

ary polarizabilities are used, this means that Yt = 

(2nt + l)n/2 and Yn = (2nn + 1)n/2 for nt' nn = 0, 1, 2 

therefore the difference o :: yt-Yn = Z(nt-nn)n/2 and 

sin 0 :: 0, leaving also in this case only the symmetric 

terms. When the polarizabilities involved are complex, it 

is clear from (7) that the term will still be symmetric for 
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the simultaneous transformation (k ~ -k ; k ~ -k ). 
X X Z Z 

Finally, in the zeroth-layer line, even though the polariz-

abilities might be complex, this term vanishes, either 

because k = 0 in the zeroth layer line, or because the 
z 

Bessel term B evaluated at n = 0 vanishes. Expression (7) 

contains, therefore, all the antisymmetric properties 

depicted by the differential scattering pattern. The other 

terms in Equation (5) can be analyzed in an identical fash

ion as was the term of Equation (6). All of them show the 

same antisymmetric behavior for the simultaneous reflexion 

(kx ~ -ky; k
2 

~ -kz). In what follows, we indicate the 

symmetry transformation of the terms of expression (5) 

under this double reflexion. 

The k2 - term transforms: 
X 

The k k - term transforms: 
X y 



The k2 - term transforms: y 

The ky k
2 

- term transforms: 

The k- independent term transforms: 

From the above results, therefore, it is clear that 

all the terms in Equation (5) show the same antisymmetric 

behavior under the simultaneous reflexion (k ~ -k ; 
X X 

k + -k ). Their symmetry diagrams characterize uniquely z z 
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the reaction of the helix to opposite circularly polarized 
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light near the absorption band. Essentially, the same 

findings are applicable to the symmetry properties of the 

total scattering (see Figure 1). The correction terms fo~ 

the total (I1+IR) scattering can be obtained from expres

sion (3). Squaring the amplitudes of opposite circular 

polarization and adding them, after some algebra, we obtain 

a formal expression for the correction term as: 

[n. (1- kk) ·n 1 ] de de' - -
(9) 

(n 1 ·e ) [n' • (1-kk) ·t] dede'} 
- ~1 - - -- -

where n 1 and n indicate the dependence of the normal axes 

with respect to variables 8' and e, respectively. 

Equation (9) shows that the total scattering involves 

a cross-term of the values of the polarizability along the 

two axes t and n, and includes the phase difference o = 

(yt-yn); this accounts for the antisymmetry shown by the 

total scattering patterns. Clearly, if the polarizability 

is spherically symmetric, then the phase changes (yt-yn)' 

(yt-yp), etc., will all vanish and the patterns will regain 

their symmetry. This behavior is indeed shown in Figure 5, 
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Figure 5. Polar plots for the total scattering for a helix 

with the same structural parameters as those of 

Figure 1 but possessing a spherically symmetric 

polarizability with AOt = Aop = Aon = 0.85; band 

strengths = 1.0; and band widths = 0.15. The 

CIDS patterns are all zero. The total scatter

ing appears symmetric as expected (see text). 
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where all three principal values of the polarizability are 

identical. The total scattering patterns appear symmetric, 

while the differential scattering patterns vanish as 

expected from our discussion in Chapters 2 and 3. 

All the results obtained in this section are com

pletely general and independent of the particular choice 

of the polarizability. In the following section, an analy

sis will be presented on the dispersion dependence of the 

differential scattering intensities for the case of a 

Lorentzian-shaped polarizability. The asymmetry of the 

polarizability will be related to the position of the 

absorption band with respect to the wavelength of the inci

dent light. 

Although the details of the expansions are only valid 

for this particular case, most of the conclusion will be 

valid for a Gaussian-shaped band as well. 

IV. The Dispersion Dependence of the Scattering 

Intensities. 

We have shown above that the use of complex polariza

bilities, i.e., allowing for the scatterer to possess 

absorptive as well as refractive properties, has the effect 

of producing scattering patterns which are quite asymmetric. 

Indeed, the axis defined by the direction of incidence of 

light is a c
2
-axis only for the zeroth layer line; the 
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remaining layer lines have lost their biaxial symmetry in 

the direction 270°-90° (see figures). 

In all the computations we have presented, the simple 

harmonically bound electron model has been used for the 

dispersion properties of the polarizability. Here, start-

ing from expression (1), we will derive the wavelength 

dependence of the scattering intensities for this 

Lorentzian-shaped polarizability. Expression (1) can be 

rewritten as: 

fCL 1 ) I [ cL 1_)2 /::,A2 
a = 

A2(A6 
] 

A2 ;:z A2 A2 (~A) 2) 2 
0 0 (1 0) 

ift,A 
I 

1 l_)2 /::,A2 

A(Az - ellA) 2) 
[ (- -

Az(A~ -
] 

A2 A2 (/::,A)2)2 
0 2 0 2 

From this expression we see that in resonance, ;. 0 = A, and 

the polarizability becomes purely imaginary. In view of 

the results presented above, for wavelengths of light cor

responding to the center of the absorption band, completely 

symmetric scattering patterns must be observed for I
1

-IR as 

well as for I1+IR' if the polarizability has a single 

absorption band common to all axes. Away from the absorp

tion band the anomalous behavior of the scattering disap-

pears. We must show, therefore, that the phase difference 

0 = ( y - y ) responsible for the ant isymmet ry of the patterns, 
t n 



vanishes at wavelengths far outside the absorption bands. 

To demonstrate this we compare the polarizability 

a = R(cosy - i siny) with Equation (10) to obtain an 

expression for the phase angle y: 

tan y = 
A (A -

0 
[~A/2] ) 

Since ~A/2 << A
0

, then 

tan y = 

Away from the absorption band we can expand around 

tan y 

(away from the absorption band) 
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Again ~AlA << 1. since, in general. the width of the bands 

spans over a restricted domain. 

(y -y ) = ! (~A -~A ) ~ 0 
t n A n t -

(11) 
(away from the absorption band) 
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This is the result we were seeking. It predicts that far 

away from the absorptive band the antisymmetric terms 

(proportional to sino) vanish, rendering compeltely sym-

metric patterns of scattering. Figures 6 and 7 show in 

fact that this is the case. (See details in figure cap-

tions.) By using essentially the same approximations, it 

can be shown from Equation (10) that away from resonance: 

Rea"" 
f 

~ f (1 + 

And in a similar fashion: 

- f /:!,\ 

Im a = 

(1 + 

Comparing the last two expressions, we obtain: 



Figure 6. Plots of CIDS and total scattering for the +1, 

0, and -1 layer lines for a helix of P = 12, 

152 

R = 0.6, L = 20 turns. The wavelength of light 

W = 6.0 coincides with the center of the tangen-

tial band (AOt) and is close to the perpendicular 

AOp = 6.20 and the normal band AOn = 5.00. The 

band strengths are 1.0 for all three bands and 

the width is 0.30. Notice that the +1 and the 

-1 layer lines are asymmetric for the CIDS as 

well as the total scattering. 
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Figure 7. Equivalent plots to those of Figure 6 for the 

same ratios of pitch/wavelength and radius/ 

wavelength and the same band positions. How

ever, the wavelength of light is W = 10.0, i.e., 

away from any of the absorption bands of the 

scatterer. The widths and strengths of the bands 

are the same as in Figure 6. CD/MAX indicates 

that the CIDS intensities have been normalized 

to 1.0 in this case and therefore cannot be com

pared to the CIDS values of Figure 6 on a quan

titative basis. The patterns as discussed in 

text are all symmetric. 
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Im a. Re a. (12) 

From this last expression we see that in a first approxima-

tion, away from resonance, the contribution of the imagin-

ary part of the polarizability to the scattered fields is 

of the order of A- 4 times smaller than that of the real 

part. Therefore the imaginary part will not contribute sig

nificantly to the scattering for regions of the spectrum 

outside of the absorption band. 

V. Discuss ion. 

The asymmetry observed in the scattering patterns is 

the result of having chosen for the scatterer a general 

polarizability. As discussed in Chapter 2, this choice 

implies that in calculating the CIDS, the dispersion depen

dence of the polarizability cannot be cancelled when the 

CIDS ratio is taken . The effect is to make the calcu-

lated differential scattering intensities, as well as the 

total scattering, dependent on the absorptive properties 

of the scatterer. This behavior is a manifestation of 

"anomalous scattering" described in crystallography. 3 

Thus, Friedel's law of symmetry of the scattered intensi

ties above and below the equator of the diffraction pattern 

is violated when the wavelength of the incident radiation 

falls inside the absorption band of some of the scattering 
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elements in the lattice. As the wavelength of light moves 

away from the absorption band, the asymmetry gradually dis

appears to eventually recover the symmetry of the pattern 

far away from resonance. However, the antisymmetry shown 

by the absorptive helix is a property peculiar to the geom

etry and symmetry of the scatterer studied. In this way, 

whereas the symmetry of the scattering patterns is a gen-

eral manifestation of anomalous scattering, the antisymme-

try shown by the patterns is peculiartothe highly symmet

ric chiral scatter discussed. 

It is well known that the phenomenon of anomalous 

scattering is used in crystallography as a method to deter

mine the absolute configuration of the scatterers and to 

recover the phases of the scattered fields. 4 In Figure 8 

the CIDS of a left-handed helix for layer lines +1, 0, and 

-1 is depicted. It should be compared with the correspond

ing layer lines in Figure 1. It is seen that the total 

scattering has a reflection plane defined by the direction 

of the incident light, and perpendicular to the plane of 

the figure. The CIDS, on the other hand, gets reflected 

through this plane and also changes sign when a transforma

tion from a right- to a left-handed helix is done. This 

effect is important, since it can immediately be used to 

determine the sense of the helix. Shown in Figure 9 is 

the effect on the scattering of light incident perpendicu

lar to the helix axis and plane polarized first along this 
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Figure 8. The effect of going from a right- to a left

handed helix can be observed by comparing this 

figure to Figure 1. A left-handed helix is 

obtained by using a negative pitch (P = 3.6 in 

this case). Everything else is the same as in 

Figure 1. The total intensities get reflected 

through a plane containing the 270°-90° axis and 

perpendicular to the plane of the figure, whereas 

the CIDS is reflected and has changed sign. The 

zero layer line is the same in both the CIDS and 

the total scattering but the sign of the CIDS is 

changed .. 
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Figure 9. The figure illustrates the fact that plane 

polarized light can be used to determine the 

handedness of an oriented scatterer when the 

wavelength of light falls within an absorption 

band. Only the +1 layer line is shown. The 

zero layer lines are symmetric and indistin

guishable for right- and left-handed helices. 
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axis (IPOLZ) and then perpendicular to it (IPOLX). Again 

here the scattered intensities are asymmetric and differ

ent for the two different polarizations. For a left- handed 

helix the patterns invert as expected. 

Anomalous scattering is a phenomenon known to be inde

pendent of the state of polarization of the incident radiaa 

tion, and therefore independent of the symmetry properties 

of the polarizability. On the other hand, we have shown 

that the assumption of spherically symmetric polarizabili

ties in our case eliminates all the anomalous behavior of 

the scatterer. The reason for this apparent conflict is 

that anomalous scattering is independent of the symmetry 

properties of the polarizability only when some, but not 

all, of the scattering elements of the unit cell are anoma

lous scatterers. If all of them are anomalous scatterers, 

then the violations of Friedel's Law will take place only 

if the polarizability of the scatterers is nonspherically 

symmetric. 5 This last case corresponds to our choice for 

the helix. It must be pointed out that the model of absorp

tive scattering that has been described above must still be 

described as FORM-CIDS,
6 

since no asymmetrically coupled 

radiation elements have been included in the model. 

Qualitatively, the asymmetry observed in the scatter

ing patterns is the result of a breakdown in the symmetry 

of the form contribution to the scattering. By allowing 

absorption bands to be present along the optical axes of 
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the polarizability, the helix scatters with a different 

efficiency, according to the position of the point in the 

scatterer excited by the front wave of the incident radia

tion. The symmetry observed in the nonabsorptive case cor

responds to equal scattering efficiency of the points on 

the scatterer. The dispersive equations derived for the 

CIDS in this paper should give information about the handed

ness of the helical (chiral) structure as well as about the 

symmetry properties of the polarizability. 
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Chapter 5 

CORRECTION OF THE INTERNAL FIELD 

BY DIPOLE-DIPOLE INTERACTION 

I, Introduction. 
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In Chapters 2 to 4 the theory of the form-contribution 

to the CIDS of chiral molecules has been presented along 

with numerical calculations for different parameters of the 

scatterer. In Chapter 2, form-CIDS is obtained by using the 

first-Born approximation in the internal field, 1 i.e., by i

dentifying the internal field at any point in the scatterer, 

with the incident field. It was also shown that combining 

this approximation with the use of a uniaxial polarizability 

along a helix predicts a form-CIDS independent of the posi

tion and shape of the absorption bands of the scatterer. In 

Chapter 4, we were able to account for absorption band ef

fects by using a general triaxial polarizability. Here, u

sing a uniaxial (tangential) polarizability for a helix, we 

will correct the internal field, by taking into account the 

interaction among the dipoles induced in the scatterer. It 

will be shown that, in this case, the model will depend on 

the position and shape of the absorption bands. 

In order to compare the results with those obtained in 

the preceding chapters, the calculations will be made for a 

helix of defined radius and pitch. However, an essential 
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difference between this model and those in the previous chap

ters is that, due to the nature of the dipole-dipole inter-

action, the distance between the dipoles must remain finite 

for the interaction to remain bounded. Therefore, a dis-

continuous helical array of point dipoles equally spaced 

will replace the continuous scatterer of before. 

II. The dipole-dipole interaction. 

In Chapter 2, we saw that the scattered electric 

field at a point in space is given by the superposition 

of the radiation fields of the dipoles induced in the 

scatterer. In all derivations then, the effective per

turbing field at a given point-polarizable group was assumed 

to be the incident field EO(r.). This is the first Born 
~ -1 

approximation for the local field. A rather more realistic 

approach to describe the mutual actions between the incident 

field and the polarizable points in the scatterer must 

take into account the energy of interactions between the 

dipoles induced along the field. This energy takes the form:
2

'
3 

A A 

r .. r .. 
v .. 

1) 

l 
"" ]J .• [--

-1 3 
r .. 

- 3 -lJ -lJ]· 5 ]J. 
r. . -J 

lJ lJ 

where r .. is the unit distance vector between the two 
-lJ 

dipoles ]J. and 1J·· Expression (1) has the form:
4 

-1 -J 

V .. = ]J.•T .. •]J. 
lJ -1 ::;1) -J 

(1) 
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where T. . is called the dipole interact ion tensor. V .. 
~1J 1J 

can be interpreted as the potential energy of dipole i in 

the field created by dipole j: 

V .. = J.l-•E.(r.) 
1J -1 -J -1 

(2) 

From the last two expressions, we obtain: 

E.(r.) = T. ··J.l·· 
-J -1 :::1) -J 

(3) 

Our next step is to write the induced dipole at group i as:
5 

where a. is the polarizability tensor of group i, E(O) (r.) 
:::1 - -1 

is the applied field at position r. and EJ.(r.) has the 
-1 - -1 

meaning given above. Substituting (3) in (4), 

(5) 

Strictly speaking, Equation (S) constitutes a set of N 

linear equations, whose simultaneous solutions render the 

dipole induced in group i. In practice, the dipole induced 

at group j is approximated by: 
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so that (5) becomes: 

(6) 

The term in parenthesis in Equation (6) is the ucorrected 

field" we were seeking. It says that the "effective" field 

atgroup i is given by the linear combination of the applied 

field and the fields caused by the electric dipoles that 

were induced at all the other groups, by the same initial 

field. The result is therefore to go from an external field 

to a "local" field description. 

It was shown in Chapter 1 that the scattered electric 

field is proportional to the induced dipole and therefore 

from Equation (6) we can write: 

~scatt 

(7) 

A helical array of point dipoles can be described by: 

(8) 

The polarizability of each group is defined now in terms of 

axis tangential to the helical array of these point dipoles, 

so that: 
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and 

where M is a normalization constant defined in Chapter 2. 

e0 is the angular separation between each polarizable point 

along the helix, and n = 1, ... , N. In the case of the con-

tinuos scatterer, the polarizability (at) was defined per 

unit length. Accordingly, to define a polarizability for 

a point dipole we must set: an = ate
0

M , where e
0

M is 

the distance between two dipoles expressed in radians. By 

writing r. = r. - r , Equation (7) becomes: 
-Jn -J -n 

E 
-scatt 

L: a a. 
j~n n J 

with 

2 ~. 1 2 -ik ·r. 
( t . · E 

0 
) ( t · T . • t . ) e 

0 
"v e - 0 - J n ] } 

- J - -n :::nJ - J 

From Equation (8) , an expression for T. can be obtained 
?:-]n 

and used with Equation (9) to get: 

t ·T . ·t.:: 
-n "'nJ -J 

A. 
Jn 

1 2 P2 
= -D {a cos e. + 

Jn w 

} 

(10) 

(11) 



where e. = (j-n)e
0 

and 
Jn 

Equation (11) allows us to write the summation on j in 
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Equation (10) in terms of eJ.n and the distance vector r .. 
-Jn 

This summation contains the interaction between each dipole 

and all the other dipoles induced in the scatterer. Next 

it can be easily seen that except for a few dipoles at both 

ends on the scatterer, the interaction of each dipole with 

all other dipoles is the same regardless of its position 

on the scatterer. This is true because of the symmetry 

of the array and because the dipole-dipole interaction, 

being a l/r3 interaction, is short-ranged enough so that 

not too many dipoles at both sides of a given group must 

be considered when the summation in j is evaluated. Here 

we will explicitly neglect those "end effects" and regard 

the second summation in Equation (10) as independent of n. 

This approximation is of course valid if N >> 1. In the 

limit of N + oo, the neglect of the end effects does not 

involve any approximation. The important point for us 

here is that neglecting the end effects amounts to separating 

the two summations in Equation (9). This is of great value 

for performing numerical computations. Equation (10) then 

becomes: 

m<<N 
E 
~scatt 

}. a a.(t.•E
0

) 
·J q J -J ... 
Jrq 

(12) 
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where the second summation has been evaluated for say n = q. 

The first term in (12) has been already derived before in 

an equivalent way for the continuous helix. Here we will 

make use of (8) and (9) and write down the correction terms 

for the scattereed fields (second term in (12)). 

For incidence along ~ 2 , polarization along ~ 1 : 

Eint 
~scatt 

m 2 
I A. a 

j =1 )q 

jfq 

For incidence along ~ 2 , polarization along ~ 3 : 

Eint 
~scatt 

= 

2Tiai sin(j8
0

) 

m 2 -----~-------I A. a e 
j =1 J q 

jfq 

One final remark should be made here about Equation (12). 

This equation shows that the scattered field has the form 

of a linear plus a quadratic term in the polarizability, 

so that when these fields are squared and the CIDS ratio 

(13a) 

(13b) 

taken, the actual value of the polarizability will not cancel, 



and the CIDS will depend on the position and shape of the 

absorption bands in the scatterer. 

III. Numerical Calculations. 

1) The transmission band. 
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A general result of the form-CIDS theory developed in 

Chapters 2-4 is that the CIDS in the forward direction is 

always zero, regardless of the geometrical and electronic 

properties of the scatterer. This result is still true when 

a general polarizability is used and the wavelength of light 

is within an absorption band of the scatterer. As explained 

in Chapter 2, when light interacts with, say, two groups, 

i and j, two effects take place. First, each of the groups 

is perturbed by the incident field and in turn radiate or 

"scatter" light in all directions. Second, phase shifts 

between the wavelets originated in different groups in the scat

terer introduce a diffraction phenomenon in this scattered 

field. This interference effect is a function of the relative 

position of the two groups, and is more pronounced as the 

wavelength of light approaches the distance between the 

scattering groups. In Figure 5 of Chapter 2, it was shown 

that the phase difference responsible for the interference 

i(k-k )•r phenomenon is given by the term e - -0 - appearing in 

all scattering equations. Indeed, (~-~ 0 )·E is the path 

difference traveled by light scattered from two different 

groups. Clearly, in the forward direction ~-~ 0 = 0 and 
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the phase difference vanishes. As a result, no diffraction 

phenomenon of the scattered fields takes place along the 

direction of the incident light. Since form-CIDS is a 

diffraction phenomenon, in the forward direction CIDS is 

unable to differentiate between two opposite handed struc

tures. Indeed, let i and j be two similar groups in the 

scatterer. The scatterer field for incident right circularly 

polarized light can be written (through a proportionately 

constant c): 

where ~R is the amplitude of the incident field. For left 

circularly polarized light the scattered field is: 

In the forward direction ~k = k-k = 0 and it can be shown that: 
- -0 

[(Escatt)(Escatt)* _ (Escatt)(Escatt)*] = 0 L L R R forward 

(14) 

Result (14) shows that the forward form-CIDS obtained within 

the frame of the first-Born approximation lacks any diffraction 

contribution and therefore cannot give any information regard

ing the chiral array of the dipoles in the scatterer. 



On the other hand, in the dipole coupling case of 

Equation (12), the scattered field for incident right (R) 

and left (L) circularly polarized light is of the form 

(for groups i and j): 

Escatt 
-R,L 

il\k•ri -ik •r·. } 
e - - a· T .. • a.E R L e - 0 _1 J - ••• 

~ zlJ ~ , 
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(15) 

Again, for forward scattering 6~ = 0; however, the dipole

dipole interaction has introduced in expression (15) a 

phase difference proportional to the vector distance between 

group i and j. When r1-IR is obtained from (15), it can 

be shown that the expression is not zero. The result is 

that within the dipole-dipole approximation to the local 

field, interference in the forward direction is present 

and forward scattering should give information on the 

relative position of the dipoles. In particular, forward 

CIDS values carry information on the relative chiral orienta

tions of the scattering dipoles. 

2) Forward CIDS vs. CD. 

An important point to make clear here is that the 

forward differential scattering intensities predicted by 

the dipole coupling model must not be interpreted as cir-

cular dichroism, since it is present regardless of the exis

tence of an absorption band in the scatterer. Forward CIDS 
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is a purely diffraction phenomenon carrying an equivalent 

information to that given by CD, but not involving, as the 

latter, a differential absorption. Equation (12) shows 

that the phase difference responsible for the forward inter

ference has the form: 

2n "' 
i ~ lr. I (k

0
•r. ) 

1\ ~]q - -Jq 

where """ label unit vectors. Clearly for A >> l~jql, this 

phase difference tends to zero and the forward CIDS should 

vanish in the limit of A ~ very large. On the other hand, 

if A is large the terms corresponding to groups very far 

apart so that lr. I - A will not contribute significantly, 
-] q 

since the dipole-dipole interaction term a.•T .. •a. dies 
-1 -lJ -J 

off quite fast with the distance between the dipoles. The 

two arguments presented above are the rationale of why, in 

most cases, the CD signal measured in the forward direction 

will not be perturbed by a sizeable CIDS contribution. Only 

when the wavelength of light is not too large as compared 

to the distance between the groups, would the forward-CIDS 

contribute significantly to the observed CD. Some molecular 

6 arrays such as cholesteric liquid crystals or macromolecular 

7 aggregates seem to fulfill these requirements, showing huge 

ellipticities in the forward direction. When circularly 

polarized X-rays become available, forward CIDS intensities 

would be a powerful technique to determine the structure in 

chiral molecules. 
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3) Programming strategies. 

Numerical computations to correct the scattering fields 

for a dipole-dipole interaction were carried out in the com-

puter center of the Lawrence Berkeley Laboratory. In these 

calculations, Equations (13a) and (13b) were used, together 

with equivalent equations for the non-interacting fields of 

point dipoles in a helical array. The summations on n in 

these equations were carried out to n = 360 to obtain reason-

ably symmetric patterns. The summation on index j, label

ing the range of dipole-dipole interation, was carried out 

from j = -10 to j = +10. This last choice was proven to be 

good enough, since the angular distance between the discrete 

dipoles was never smaller than e0 = .3 radians or - 18 de

grees. 

The program called COCO was set to obtain the value of 

the CIDS and total scattering for varied values of the scat

terer's parameters and polarizabilities. (A listing can be 

seen in the appendix). The polarizabilities were chosen uni

axial along the tangent to the helical array. In all cases 

computed, a Lorentzian-shaped polarizability of the form: 

a = 

was used, where f and AO are the strength and position of 

the absorption bands, respectively (see Chapter 4). 
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4) Results. 

Figure 1 shows the total scattering and the CIDS for 

a helix of pitch P = 5.0, radius R = 1.0 and for wavelength 

of light A = .5 and AOt = 3.0. The light is incident along 

the 270°-90° axis (~ 2 -incidence). Only the zeroth layer 

line is shown. The strength of the band was chosen to be 

f = .10. The angular distance between the point dipoles is 

e0 = .3. As predicted by the theory, forward differential 

scattering is observed in the zeroth layer line. According 

to the discussion in the last section, the magnitude of 

the forward scattering depends on the relative size of the 

correction term with respect to the non-interaction part 

of the field. Figure 2 illustrates this effect for a helix 

of the same parameters as in Figure 1, but with the band 

strength f = .5. 

When f >> 1 the dipole-dipole interaction term dominates 

and the scattering pattern becomes spherically symmetric. 

This result is general and valid for any combination of 

the structural parameters of the scatterer. For moderate 

values of the strength of the band, both terms in the field 

contribute to the scattering behavior. 

In Figure 3 the effect of reducing the wavelength of 

light to the size of the distance between the dipoles in the 

scatterer is shown (see figure captions for details). It 

can be seen that the ratio R/A (in this case, greater than 3) 

still controls the number of zeros of the scattering pattern, 



Figure 1. Polar plot of CIDS corrected for dipole-dipole inter

action of a helix made out of discrete points, polariza

ble along the tangent to the helix and separated by an 

angular distance e0=.3 radians. The helix parameters 

are: pitch = 5.0, radius = .1, wavelength = .5, the 

band position Aot= 3.0 and the band strength f = .1. 

The main feature is the existence of a non-vanishing 

forward CIDS. There are many lobes alternating in sign 

but the negative ones in this case are too small to be 

seen in the figure. 
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Figure 2. Polar plot for the same helix as in figure 1, but with a 

band strength of .5. This means that the interaction 

term has grown in magnitude as compared to the contribu

tion of the pure field. Notice that many zeros have 

disappear and the pattern moves towards the spherical 

symmetry found when f >> 1 (not shown here). In the for

ward direction, the CIDS has increased significantly 

with respect to figure 1. 
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Figure 3. Polar plot of a helix of pitch= 10.0, radius= 1.0, wave

length = distance between the polarizable points = .3. 

Notice the number of zeros of the scattering pattern 

which correlates with the ratio of radius/wavelength. 
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&s found before for the form-CIDS. 

In all cases studied, when f << 1, the form-CIDS 

contribution dominated. This served as an internal check 

1n the program. 

The effect of going through an absorption band is 

shown in Figure 4. The +1 and -1 layer lines are shown 

(the structural and electronic parameters are described in 

the caption of the figure). It can be seen that the anti

symmetry described in the last chapter as characteristic 

of anomalous scattering is also present in this case. 

The results presented here are preliminary and by no means 

complete. Clearly, thorough analytical and numerical studies 

must be carried out to characterize the influence of the 

dipole~dipole coupling in the CIDS of a molecular system. 

5) Liquid crystals. 

In Chapter 2, the equations to describe the form-CIDS 

contribution of a helix for light incident along the helix 

axis were presented. The corresponding numerical computa-

tions, however, were not presented in Chapter 3. This case 

is of particular interst, for it can model some of the most 

striking effects observed in the optical activity of choles-. 

teric liquid crystals. 
8 

Program PAN (see listing in appendix) 

was used to perform the calculations. For P/A = 1 and 

incidence along the helix axis, only three scattering directions 

in space are allowed: 1) in the back direction (reflexion), 

2) the scattering perpendicular to the helix axis, and 3) in 



Figure 4. Polar plot of the CIDS of the same helix as in figure 1 

but now with the wavelength of the incident light with

in the absorption band of the scatterer. Notice that 

the pattern is asymmetric but shows the anomalous anti

symmetry for layer lines equidistant from the in-plane 

scattering (zeroth layer line). 
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the forward direction (transmission). The latter is not 

present for the CIDS within the first Born approximation. 

When the pitch of the helix matched the wavelength 
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of light, it was found that only one of the circular polar

izations of the light was reflected. The other polarization 

was not reflected at all. The polarization reflected 

matched the handedness of the helix, so that CIDS in the 

backward direction is -1 for a right-handed helix (see 

Figure 5) and +1 for a left-handed helix. This effect is 

unique for the ratio P/A = 1 but is independent of the radius 

of the helix, which seems to affect only the relative size 

of the perpendicular intensities. The reflexion effect 

described above is precisely what is found in cholesteric 

liquid crystals 8 (see also Chapter 1) for the reflexion 

band, when P/A = 1. In the cholesteric mesophases the 

radius R has no meaning, of course, which is equivalent in 

our model to the independence of the result on the radius 

of the helix. The total scattering for the case just des

cribed can be seen in Figure 6. This figure shows that only 

three layer lines exist. The back scattering is found to be 

SO% of the forward scattering when P/A = 1. Since: 



Figure 5. Polar plot of the form CIDS of a helix for light incident 

along the helix axis. This is a plot of intensities vs. 

the polar angle, for a fixed value of the azimuthal an

gle (~). The plane of the plot is therefore perpendicu

lar to the plane of the polar plots of figures 1 to 4. 

The pitch of the helix is 1.0, radius= 2.0 and the wave

length matches the pitch of the helix. Notice that 

CIDS = -1 for a right handed helix in the reflexion band. 

No form-CIDS is obtained in the forward direction. 
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Figure 6. The total scattering corresponding to the case of figure 5. 

It shows that the transmitted intensity is twice as much 

as the reflected intensity. This result is only valid for 

P/'A = 1. 
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i.e., the polarization that matches the handedness of the 

helix is scattered in the forward and backward direction 

with the same intensity in the first Born approximation. 

1~ 

The equivalent transmission effects in liquid crystals, 

in which one of the polarizations of light, depending on 

the handedness of the helix, is mostly transmitted while 

the other is not at all, cannot be described by form-CIDS. 

Atthis point, we have made no calculations for the dipole 

coupling model of light incident along the helix axis. 

IV. Conclusiorts. 

In this chapter a correction of the internal field by 

a term of dipole-dipole coupling in the total and differ

ential scattering of a helix has been presented. The scat

terer was assumed to be made out of groups in a helical array, 

each one characterized by a uniaxial polarizability, tangential 

to the spatial curve described by the array. 

In calculating the dipole correction, the number of 

dipoles affecting the local field at a given group was 

truncated. Furthermore, it was assumed that,due to the 

symmetry of the array, the field is independent of the 

position of the group, except for a few dipoles at both ends 

of the array, whose different behavior was effectively 

neglected in the model. This simplification was necessary 

in order to obtain simpler equations as well as to reduce the 

cost of the programming. The number of dipoles considered 
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at each side of a given group was 10. Under these conditions 

it has been found that the dipole-coupling correction of 

the internal field allows for diffraction phenomena of the 

scattered fields to occur in the forward direction. This 

appears as a phase shift in the correction terms, which 

does not vanish when ~ = ~o· The result is that finite 

CIDS values in the forward direction are predicted by this 

model. For wavelengths of light large compared to the 

distance between the coupled dipoles, the corresponding 

phase factors become very small and the forward CIDS vanishes. 

Numerical computations of the CIDS along the axis of 

a helix and within the first Born approximation show that 

for values of the pitch close to the wavelength of light, 

reflexion of only one of the polarization occurs, giving 

CIDS reflexion bands of ±1 depending on the handedness of 

the helix. This phenomena~ observed in cholesteric liquid 

crystals seems therefore to be a purely form-effect. On 

the contrary, the corresponding transmission bands cannot 

be observed within the first-Born approximation used in the 

computation. These results are preliminary and the basis 

of more careful characterization of the "local field" 

corrections to the total and differential scattering of 

chiral molecules. 
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Chapter 6 

SPATIAL AVERAGING OF DIFFERENTIAL 

AND TOTAL SCATTERING 

I. Introduction. 

195 

In the main body of this thesis, our objective has 

been to characterize and derive analytically the equations 

to describe the Circular Intensity Differential Scattering 

of a chiral molecule. As a result, we have shown the pos

sibility of interpreting the measured differential scat

tered intensities in terms of the structure of the chiral 

scatterer. Indeed, we think CIDS will become important as 

a new technique to probe chiral regions in biologically 

relevant structures. 

The effort to obtain analytical solutions from which 

we have learned some of the physical properties and symme

try laws involved in the total and differential scattered 

intensities imposed certain limitations in the treatment 

of Chapters 2 and 3. The main one has been that the scat

terer was assumed to have a fixed orientation in space. 

Clearly, the experimental difficulties in orienting the 

samples to be studied greatly limits the potential capabil

ities of CIDS as a useful technique. It is therefore of 

prime importance to obtain spatial averages of the total 

and differential scattered intensities so as to provide the 
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theoretical basis for the interpretation of data obtained 

from the analysis of samples in solution. This objective 

will be accomplished in this chapter. 

Since the measured signal at the photomultiplier for a 

tumbling sample is< IL- IR >av' our goal will be to obtain 

the corresponding averages for the differential and total 

scattering. 

The total scattering intensity for a given sample is 

the same regardless of the two independent, orthogonal 

states of polarizations used to describe the incident radia

tion. Therefore, instead of deriving the averaged total 

scattered intensity for right and left circularly polarized 

incident radiation (i.e.: IL + IR), we will derive I0+ I
1 

where r
11 

and IJ.. are the scattered intensities for incident 

light polarized parallel and perpendicular to the scatter

ing plane, respectively. There are two reasons for this 

choice: first, the derivations of IL+ IR are more involved 

than those of 1
0 

+ 11 , and second, choosing these polariza

tion states, it is easy to calculate also < I
11 

- 1
1 

>av 

from which the quantity < 10 .., . I1 >av/ < Ill .. + I1 >av' often 

called the dichroic ratio, can be obtained. 

II. Averaging of IL - IR. 

1) The molecule-fixed and the space-fixed coordinate 

systems. 

The field scattered by a set of polarizable groups in 

space, for a given incident field ~ 0 , can be written as: 
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-ikr' AA iflk • rj 
E(r') = C e (1-kk).L.e ~a: .E

0 -- j :::J (1) 

h th . t. t f . th d f" d . w ere r. 1s e pos1 10n vee or o group J e 1ne 1n a 
-J 

suitable molecular frame, a. is the polarizability tensor 
:;J 

of the jth_group and Cis a constant of proportionality 

containing some inverse distance factors. As before, 

6k = ~- ~ 0 , i.e., the momentum transfer vector and k and 

~ 0 are the wave-vectors of the scattered and incident radi

ation, respectively. k is a unit vector in the direction 

of the scattered light. 

Now we define a molecule-fixed coordinate system, 

whose orthogonal unit vectors are~~, J', and~~ (see Fig

ure 1). The polari zabi li ty tensor of the j- group can now 

be written as (see Figure 1): 

a.= a.t.t. 
:J J-J-J 

where the sub index j labels the group. The t' s are unit 

vectors in the molecular coordinate system whose three com-

ponents along this frame determine uniquely the axes of the 

polarizability of group j. Since this frame is defined 

arbitrarily, we orient it so that (see Figure 1): 

t. = .f..k' + s.i' 
-1 1- 1- (Za) 
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Figure 1. The molecule-fixed coordinate system with basis 

vectors i', j', k' is shown. The frame is orient-
- - -

ed so that the polarization vector ~i of the group 

ith is in the plane (i', k') and the polarization 
- -

vector t. of the group jth is in the plane defined 
-J 

by k' and 1!. The unit vector T' is shown in the 
-J 

plane (i', j'). Notice that R .. , the distance 
- - -1J 

b . th d • th • 1 k 1 vector etween groups 1 an J , 1s a ong . 
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and 

t. = .t.k' + s.T! 
-J J- J-J 
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( 2b) 

with 1! a unit vector perpendicular to k'and defined by: 
-J 

Clearly 

.e.~ + s~ 
1 1 

"' 
1 ! == mi ' + nJ. ' 
- J -

2 
= l. 

J 

2 
+ s. 

J 

( 3) 

( 3a) 

Furthermore, we require that the k' axis of the molecular 
A 

frame is oriented along the distance-vector R.. between 
lJ 

groups ith and jth, with R .. = lr. - r.l (Figure 1). 
lJ -1 .... J 

We define also a space-fixed coordinate system whose 

orthogonal unit vectors are labeled ~' ~' ~· This frame 

is oriented so that one of its axes (in this case the c-

axis) is along the momentum transfer vector of the light, 

6k = k - ~o· Additionally, the frame is rotated around 

this axis so that ~ and ~O are in the ~' ~ plane (see Fi

gure 2). From Figure 2~ then: 

6k = 4n/A sin6 c 

( 4) 

k = cos8 b + sinS c 
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,, 

Figure 2. The space-fixed frame ,with basis vectors ~' ~' ~ 

is oriented so that ~k = ~-~ 0 is along the direc

tion 6£ the basis vector c. The wave-vectors of -
light (~, ~ 0 ) are in the plane (~, :) that coin

cides with the scattering plane. The polariza

tion vectors of the incident light are defined 

parallel and perpendicular to this pl.ane (See 

text). 
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k-k 

b .... 
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where """ 

" 
k = cosS b - sinS c 
-0 

indicates that these vectors are unit vectors 
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along the incident and scattered directions of propagation 

of the light. From Figure 2, it is easy to derive the 

right and left circular polarization unit vectors of the 

incident light: 

EO A + 1'B --L,R = - [a ± i (sinS b + cosS c)] (5) 

Using the last expression, the scattered electric field for 

the opposite circular polarizations of the incident light 

can be obtained, from which the differential scattered 

intensity for left and right circularly polarized light 

takes the form: 

it;k•(r.-r.) 
2 - -J -1 

= 2iC l.:L:e a.a.*[(A x B)•(t. x t.)] 
J 1 - -J -1 ij 

(6) 

From (2) we find: 

t. x t. = xk' + yT' 
- J . -1 

(7) 
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A 

where t' is a unit vector perpendicular to k'and defined 

by: 

Similarly, from (5): 

A x B = 1 (sinS c - cosB b) 
! 

(8) 

(9) 

It should be clear that the somewhat particular choice 

of the molecule-fixed and space-fixed frames has the advan

tage of rendering !i' ~, and ~O as two-component vectors in 

their respective frames. 1 This will simplify the deriva-

tions. In the next section a more important justification 

for this choice will be made clear. 

2) The Euler transformations. 

Our task is to perform the spatial averaging of Equa

tion (6). The space integrations involved in the averag

ing process can b~come very difficult due to the term 

iL.\k.(r. - r.) · · h d f f' d e ~ -J ~1 compr1s1ng t e pro uct o a space- 1xe 

vector llk and a molecule-fixed vector (r. - r.: R .. ). Our - -J -1 -lJ 

choice of orienting the space-fixed coordinate system with 

one of its axes along L.\k and the molecule-fixed frame with 

one of its axes along R •. 
-lJ 

can now be understood. 
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Indeed, with this choice, the product R ... ~k is a cons
-lJ -

tant for any orthogonal transformation between the two 

coordinate systems, with the exception of the transforma-

tion involving the angle between the polar axes (~' and c) 

of these cartesian systems. In this way the factor 

ei~~·~ij can be dealt with in the last step of the spatial 

integrations evaluated in the averaging process. 

In what follows we will use the three orthogonal 

transformations proposed by Euler and frequently called the 

Euler angles 2 (see Figure 3) to relate the space-fixed 

quantities to the molecule-fixed expressions appearing in 

expression (6). 

The transformation matrix between these frames, often 

called the Euler-matrix, allows us to express any product 

between space-fixed and molecule-fixed basis-vectors, in 

terms of the three Euler angles. The Euler matrix relates 

these basis vectors by: 

e' = t,; e 

where ~~ and~ denote a space-fixed and a molecule-fixed 

basis vector, respectively. The matrix t,;, for the three 

3 
successive transformations in Figure 3, takes the form: 

(1 0) 
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Figure 3. The three orthogonal transformations that define 

the Euler angles between the space-fixed and the 

molecule-fixed coordinate system, are seen in suc

cession. In the text c and k' are called the po

lar-axes of these frames. 
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(a) 

(b) 

(c) 

XBL 8012-12959 
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a b c 

i' 
cos a cosx cos~ sinx cos~ - sine cosx 
- sinx sincp + cose cosx sincp 

~ j I 
- cose sinx cos~ cosx coscp sine sinx 

(11) = - cosx sin~ - cose sinx sincp 

k' sine coscp sincp sine cos a 

The spatial averaging involves the integration over 

the three Euler angles of the quantity to be averaged. 

Indeed, the averaging of any function f (e, x, <P) can be 

accomplished by: 

'IT 2n 2n 
<f(e,x,<P)> = J J J f(e,x,<P)sinededxd<P/ 

av 0 0 0 

'IT 2n 2n 
J J J sinededxd<P 
0 0 0 

3) Averaging of IL - IR. 

(12) 

In expression (6) there are two terms that must be 

averaged. First, the nontransversal term, which with (9) 

and (7) becomes: 

(A X B) . (t. X t.) "" l[x sinS (c • k') - xcosB(b•k') 
-J -1 2 - - ... -

A 

+ y sin8(C•T 1
) 

A 

- y cosS(b•T')] 
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Using the Euler-matrix, it can be shown that the only term 

that does not vanish in the process of averaging is the 

first of the right-hand side: 

<(C•k') illk•R .. 
- - e - -1J >av 

'IT 

= f 
0 

sinecose eiqcosede 
2 

(13) 

where q w ~'IT Rij sinS and jl is the first-order spherical 

Bessel function 4 and is defined as: 

j 1 (q) 

Next we average the transversality term in expression (6): 

<(Ax B) • (t. x t.) (t. ·k) (t. ·k) eiqcos~ 
-J -1 -1 - -J - av 

After expanding this expression in terms of (2), (7), and 

(9), we obtain: 

1 A 

<-z {xsinf3 (~·~') - xcosB(b•k') + ysinS(~e~') 

A A 

+ sisj(~' k) C~j·~)} 
iqcos 8 

e > av 



where T'::(s . .t.i'+.t.s.j') 
- l J- l J-
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It can be shown that only a few terms of this product sur-

vive the averaging process. The demonstration is tedious 

and here we will write down the terms that do not vanish 

along with their corresponding average-value: 

1) < _21 x.t . .t.sinS(c.k') (k' .k)Zeiqcose>~v 
1 J - ~ ~ - ~ 

2) < 1 • Q( k')("j kA')(Ai kA) iqcose -
2 

xs.s .s1n.., c. 1 . T.. e >av 
l J - - - - -J -

3) - 1 x.t . .t.cosS(b.k')(k'.k) 2eiqcose> 
< 2 1 J - - - - av 

= - x.t . .t.(sinB - sin 3B)i j 2(q)/q 
l J 



4) < _ 1 Q(b k') c·! kA) (AI kA) iqcose ! xsisjcos~ _._ ~ ._ !j·- e 

S) < l ysinS(c.~')(~.T')(~.k')eiqcose 
2 ~ - - - - -

> 
av 

1 fl ( • 3 = -
2 

s.-t-.y ps1n S 
1 J 

6 ) <- l ycosS(b.~')(~.T')(k'.~)eiqcose> 
2 - - - - - - av 

= 
- 1 2 

-
2 

ysinScos S[.t.s. (pm + gn) + s . .f..p] 
1 J 1 J 

> 
av 
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( 14) 

where j
1

(q) is, as before, the first-order spherical Bessel 

function and j 
2 

(q) is the second-order spherical Bessel 

function defined as: 

j_,(q) =(3/q3 
... 

2 
- 1/q) sinq - 3 cosq/q ( 15) 
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In performing the above averagings, integrals of the form: 

for n = 1, 2, 3 must be found. In the appendix at the end 

of this thesis some of the integrals used in the averaging 

of r
1 

- IR and In + 1
1 

are written along with their solu

tions. 

It is possible to relate the coefficients such as ~.s. 
1 J 

or ~.~., etc., to the parameters of the scatterer. We will 
1 J 

simply list the main results needed to express the answer 

in terms of the scatterer parameters: 

x- (t. x t.)•R .. = -s.s.n 
"'J "'1 -lJ 1 J 

yp :; ns. Jl,. 
J l 

yg = s.~. - ms.~. 
1 J J 1 

(16) 

A A 

9 •.. !1,. = (t.•R .. )(t.•R .. ) 
1 J --1 ~lJ -J --1] 

A A 

s 
1
. sJ· m = (t. x R .. ) • (t. x R .. ) 

-1 -lJ ~J -lJ 

Replacing expression (16) in the results (14) and (13), we 

can make use of (6) to write down, after some algebraic 



manipulations, the result for the averaged I1 - IR 

> av 

A 

2:2: a~a.(t. x t.).R .. {[(t .. t.)(j
2
/q -j

1
) 

= ij 1 J -J -~ lJ ~1 -J 
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(17) 

-(t .. R .. )(t .. R .. )(Sj
2
/q -j

1
)J(sin8 + sin 3

8)} 
-1 lJ ~J 1) 

The argument of the spherical Bessel functions is q as 

before. Expression (17) is the result we were seeking. 

Notice that the whole expression is multiplied by a 

common factor : 

A 

(t. X t.).R .. -
~J -1 -1J 

A 

(t. X R .. ).t. 
-1 -1) -J 

This is a form-factor that resembles the expression for the 

rotational strength in optical activity theory5 : t.x R .. is 
-1 -1J 

the magnetic dipole (m.) associated with the transition di
-1 

pole t. so that : 
-1 

(t. xt.).R .. = m .. t. 
-J -1 -1) ~1 -J 

The last expression is the product of a pseudo-vector with 

a vector. Pseudo-vectors or axial vectors transform by chang-

ing sign when an inversion of their coordinates is done , 

whereas pure or polar vectors (such as t. ) do not 
-J 
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change sign under inversion. The common factor to Equation 

(17) will therefore have opposite sign for two molecules 

that are the mirror images of each other. This feature 

makes CIDS more sensitive to structure than total scatter-

ing. 

Equation (17) is only a function of angle B, while 

every other directional property of the incident and the 

scattered radiation has disappeared in the averaging. The 

differential scattering pattern in space is given by a 

"ring" structure of constant intensities, like the powde-r 

patterns observed in crystallography. 6 A careful limit 

analysis can be performed on Equation (17). The result is: 

~im<I 1 - IR>av = 0 
q-+0 
S-+0 

(18) 

I.e., there is no forward CIDS signal for a tumbling (spa

tially averaged) sample. The same is true for B = 180° 

(reflection band). It should be clear, however, that the 

above equation has been derived assuming no interaction of 

the induced dipole elements (transition dipoles) in the 

scatterer, i.e., by using the first Born approximation 7 in 

the local field. 

The conclusions drawn from expression (18) will not 

be true if actual coupling of the radiating elements is 
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allowed. In this case, forward and backward CIDS should be 

predicted. 

From the definition of q = 4TI R .. sinS 
r lJ 

we see that as 

When R .. >.A, 
l.J 

R .. grows relative to .A, q also increases. 
lJ 

then q>>l and j
2
/q <<1, then we can neglect the j

2
/q vs. 

the j
1 

in Equation (17). In these conditions, the j 1 spher

ical Bessel function controls all the angular behavior of 

the CIDS, since the other factors, sinS, sin 3s, etc., vary 

monotonically with respect to S. We can apply Equation 

(17) to the simplest system showing differential scatter

ing. This is clearly a dimer. Figure 4 shows six possible 

dimer structures. Here we will analyze their CIDS when 

allowed to tumble freely in solution. 

Case 

a) 

b) 

c) 

d) 

> av 

0 

0 

0 

0 

> av 

non chiral structures 

-j
1

) (sinS + sin 3S) 

(19) 

where e is the angle between t. and t. 
-1 -J 
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Figure 4. The figure shows 6 possible geometries of a di

mer, to which Equation 19 (See text) is applied. 

t. and t. are the polarization vectors of groups 
-1 -J 

ith and jth and Rij is the distance between the 

centers of these two groups. a), b), c) and d) 

are the non-chiral geometries, and <I
1

-IR>av for 

these four cases is zero. 

which the angle between R .. 
lJ 

The angle between t. and t. 
-1 -J 

e) A chiral dimer in 

and t. and t. is 90°. 
-1 -J 

is e in the equations, 

f) A chiral structure in which R .. is not ortho
lJ 

gonal to either t. or t .. 
-1 -J 
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Case Structure 

t· 
J 

(a) 

t· I 

t. 
I 

(b) 

(c) 

(d) 

(e) 

R·· t. lj 
J 

t· I 
(t) 

XBL 8012-12960 



where ois a unit vector defined by: 

t.x t. = sin8o 
-J -1 

A 

and ~l and ~ 2 are the angles between ~l and ~ 12 and 
A 

~ 2 and ~ 12 , respectively. 
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Equation (19) can be used to calculate the CIDS of 

a dimer such as that of Figure 4e, in solution. This is 

shown in Figure 5 for R .. = A and e = 60°. As predicted 
lJ 

be fore, zero CIDS is obtained in the backward and forward 

directions. The pattern possesses a c
4 

axis perpendicular 

to the plane of the figure. The many zeros observed are 

mostly controlled by j 1(q), since for R12 /A = 1, then 

0 ~ q ~ 12 and j
2

/q <<j
1 

~ over the entire range of q. 

Notice that most of the CIDS of a randomly oriented sample 

of dipoles is observed at right angles from the direction 

of incidence of light. A more complicated behavior is pre-

dieted for a trimer, a tetramer, etc. Numerical computa·-

tions must be done to handle a randomly oriented sample of 

a polymer. 
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Figure 5. Polar plot of <IL-IR>av for the dipole of case d) 

in figure 4. The angle between the two polariza-

tion vectors t. and t. is 60°. R .. =.A=l. The graph 
~1 -J lJ 

depicts intensities vs incre~ents of .1 radians 

in the angle e. 
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It is of interest to obtain an asymptotic expression 

for< I1 - IR>av' valid for the case in which A>>Rij" 

Under these circumstances, 

4TIR .. sinS<<l 
q = ---x 1J 

Expanding the spherical Bessel functions in terms of powers 

of their arguments, and keeping only the first few, we 

obtain: 

lim jl (q) 1 (q 
3 

- q /10) 
::::: 

q+O 3 
and 

lim jz(q)/q 1 
3 

(q - q /8) 
q+O "' IT 

Replacing in (17) the above limiting expressions, we arrive 

at: 

* A 1 A A 3 
2: L:a . a . ( t . x t . ) . R . . { o- ( t . . R. . ) ( t .. R. . ) q 

= ij 1 J -J ~1 ~1J 0 -1 ~1J -J ~lJ 

30 

- 4 (t .. t. )q} (sinS + sin\~) 
-1 -J 

If the first term is neglected as compared to the second 

one, the above equation becomes: 



* A 

= -zrr a.a.(t.xt.)•R .. (t.•t.)TIR .. 
ij 1 J -J -1 -l.J .,.]. -J .::.!1. 

15 A 
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where the definition of q has been used. Notice that for 

R .. /A << 1 the asymptotic expression is still an even func
IJ 

tion of B. 

III. The Averaging of the Total Scattering. 

The scattering intensity due to a collection of polar

izable points in space, each characterized by a polariza-

bility tensor a. = a.t.t., is: 
~1 1-1-1 

iqcose * A* A "'* 
L: e a.a.[E 0•t.t.•t.t.•Eo- E

0
·t.t.•kk• 

. . 1 J - -1-1 -J-J - - -1-1 l,J 

t.t.·E0J 
-J -J -

(21) 

where a. , a. , t. , t. , k, q, and e have the same meaning as 
1 J _1 -J -

A 

before. ~O is the incident electric unit vector. For 

light polarized perpendicular to the scattering plane (see 

Figure 2): 

(22a) 

and for light polarized parallel to the scattering plane: 



~O = cosSb + sinSc 

The scattered intensity for light perpendicular to the 

scattering plane is: 

A 

(t.•k)(a•t.)] 
-J - - -J 
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(22b) 

(23) 

Using Equation (2), the average of the first term in Equa-

tion (23) becomes: 

A 

+ s . .R-.(a•i')(a·k') + s.s.(a·i')(a·T~)> 
1 J - - - - 1 J - - - -J av 

After using Equations (3) and (4) in this expression, only 

the following terms survive the spatial averaging: 

< .R, • .R,. (a·k')2 eiqcose > = .R,
1 
. .R,J. jl(q)/q 

1 J - - av 

A 

< s.s.(a•i')(a·'T!) 
1 J - - - -J 

(24) 

-jl(q)/q 



rhe averaging of the second term in Equation (23): 

A A 

< (a.t)(a.t)(t .. k)(t .. k) > 
- ~ ~ - -1 - -J - av 

is tedious and only a few terms do not vanish when the 

average is performed. We will omit the details of the 

derivation and will write down only the results. These 

will be included in the final averaged value of the scat

tered intensity perpendicular to the scattering plane: 
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ms . s . ( j 
0 

- j 
1 
I q) ] t . • 

1 J -1 

+ mt.t. s.s.[j
1

/q + 1/2 sin
2
S(l6 j 2/q-

1 J 1 J 

(25) 
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where the arguments of the Bessel functions have been 

omitted for simplicity. In reducing the above expression, 

the relations (3a) have been used. 

Our next task is to obtain the equivalent average for 

the scattered intensity of light incident parallel to the 

scattering plane. From Equations (21) and (22b), the quan

tity to be averaged is: 

7 
= l: 

ij 

- l: 
ij 

iqcose * 
e a..a.. [sin 26(b.t.)(b.t.)(t .. t .. ) + cos

2s 
1 J - -1 - -J -1 -J 

(c. t.) (c. t . ) ( t .. t . ) + sinS cos S (b. t. ) 
- -1 - -J -1 -J - -1 

(c.t.)(t .. t.) + sinScosB 
- -J -1 -J 

(c. t . ) (b. t . ) ( t .. t . )] 
- -1 - -J -1 -J 

iqcose * 2 A A 

e a,.a.. [sin B (b.t.) (t .. k) (t .. k) (b.t.) 
1 J - -1 -1 - -J - - -J 

+ cos
2s (c.t.)(t .. k)(t .. k)(c.t.) 

- -1 -1 - -J - - -J 

A A 

+ sinScosS (t .. k)(t .. k)[(b.t.) 
-1 - -J - - -1 

(c.t.) + (b.t.)(c.t.)] (26) 
- -J - -J - -1 

Here again, only the results will be presented. The 
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relations (3b) have been used in the reduction of tne 

* 2 2 . 2 
(t .. t.)- n:a.C\. {2.t.l.[(J

1
/q -4j

2
/q) + 

~1 -J ij 1 J 1 J 

-j
1
/q)] + 1/2 .t . .t.s.s.m 

1 J 1 J 



In order to rewrite these expressions in terms of the 

parameters of the scatterer we need the following rela-

tions: 

A 2 A 2 
= (t .. R .. ) + (t .. R .. ) 

-1 -lJ -J -1J 

= ct .. cR. .. xt.))
2 

-J -1J -1 (2 8) 

These expressions, together with Equations (16) are used 
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to write down the spatially averaged total scattered inten-

sity as the sum of Equations (25) and (27): 

* A A 

L: a.a. {(t .. R .. )(t .. R .. ){[(j
0 

-j
1
/q) + 

:::: ij 1 J -1 -lJ -1 -1J 

- j
0
)](t .. t.)-2(t .. R .. ) 

-1 -J -1 -lJ 

(t.xR .. ) {1/2 [(j
0 

+j
1

/q) + sin
2su 0-zj 1/q)] 

-J -lJ 

(t .. t.) + 1/2 
-1 -J 

A A 2 
(t .. R .. ) (t .. R .. ) [(16j

2
/q 

-1 -lJ -J -lJ 
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2 A 2 
-.3j

2
/q )]} (1- 1/2 ((R .. xt.) + 

-1J -1 

A 2 2 2 
(R .. xt.) )) [(Sj

2
/q -j

1
/q) + sin S(j

0
-j

1
/q)

-1J -J 

4 2 A A 2 
sin S(j

0 
-.3j

2
/q )] + ((t.xR .. ).(t.xR .. )) 

-1 -1J -J -1J 

[ 1/8 
. 2 

s1n S 

A 2 2 
2j

1
/q +3j

0
)] +(t .. (R .. xt.)) [1/8 (Sj

2
/q + 

-J -lJ -1 

(29) 

in a similar way, the qu~ntity I"- 1
1 

can be obtained 

from Equations (25) and (27). Due to lack of space we will 

omit it here. 

Equation (29) gives, therefore, the total scattering 

as a function of the scattering angle (2S) for an ensemble 
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of scatterers (each described by a set of point polarizable 

groups), adopting all possible orientations in space. 

Notice that in the expression for total scattering 

intensity, only three spherical Bessel functions contribute: 

j 0 , j 1 , and j
2

. This fact is important in determining the 

symmetry of the scattering intensities as a function of 

the angle i3. 

Indeed, the spherical Bessel functions have the pro

perty:4 

Since q = 4n R .. sinS, clearly if S+- i3, then q+-q. x- lJ 

Now, there are two things to notice about Equation 

(29). First, only the oth, 2nd, and 4th powers of sinS 

appear in the equation and these factors are even on S. 

Second, all the Bessel functions appearing in Equation(29) 

have the form jn/qn which behaves also as an even function 

of the angle, i.e.: 

Therefore, the whole expression (29) is even on s. This 

means that the scattering patterns must be symmetric at 

both sides of the direction of incidence of light. Fur-
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thermore, since the only trigonometric functions appear

ing implicitly or explicitly in this expression are sines, 

and 

sinS = sin(l80-S) 

the pattern is also synunetric at both across the 270°-90° 

axis (see Figure 5). As in the case of< I 1- IR>av' the 

in-plane scattering pattern has a c4axis of symmetry per

pendicular to the plane. 

Equation (29) is the equivalent to the sp~tially aver

aged scattering of a collection of point polarizable groups, 

originally devised by Debye
8 

for the case of unpolarized 

incident radiation. 
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Appendix A 

1) Friedel's Law. 

The scattering power of an atom is described in crystal-

lography by the atomic scattering factor: 

il:lk·R· 
f. = f t p.(R.)e - _J dR. 

J a om J -J ... J 
(A-1) 

where pJ.(R.) is the electron charge density at point R. in 
-J -J 

the atom. In the limit of short wavelengths the electric 

charge density appearing in the above expression can be 

formally derived from the atomic polarizability. 

If p.(RJ.) is spherically symmetric (centrosymmetric), 
J -

its Fourier transform (fj) is a real function. Near an 

absorption band the electron density is not spherically 

symmetric and therefore, in resonance f. is in general a 
J 

complex quantity: 

(A-2) 

where f? and ¢· are real. 
J J 

Let us suppose a group of atoms on which external 

radiation incides. The scattering amplitude at a position 

in space in which a diffraction maximum exists, labelled by 

the components of the vector l:lk (h,k,l) is: 

(A- 3) 
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Away from the absorption band, fj is real and the correspond

ing centrosymmetric point in space scatters with the amplitude: 

\ -i(hx·+ky·+lz·) 
L f. e J J J 
. J 
J 

(A-4) 

Then from (A-3) and (A-4): 

and 

This is called Friedel's Law. It states that the intensities 

of the diffraction maxima corresponding to centrosymmetrically 

related points are equal. 

2) Breakdown of Friedel's Law. 

If one of the atoms in the group, say atom nth, is in 

resonance with the frequency of the incident radiation, then, 

It is clear that: 

and 
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so that Friedel's Law is violated. On the other hand, if 

all the atoms are anomalous scatterers: 

and 

but 

and 

Fhkl I f~ i(hx·+ky·+lz·) ei<Pj 
"' e J J J 

j J 

F--- I f~ -i(hx·+ky·+lz·) i¢· 
"' e J J J e J hkl 

j J 

1Fhkll2 = Y:? f~f~ ei(h(Xj-Xi)+k(yj-Yi)+ l(zj-Zi)) 

J 1 

Since all of the atoms are in resonance for the same 

frequency, then: 

and again: 

f( O) i"'. . e '~'J = 
l 

i.e., Friedel's Law holds in this case. 
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Appendix B 

In performing the averages of Chapter 6, the following 

integrals are encountered: 

k 

f 
n l·axd · n n (-1) n(n-l) .... (n-k+l) ( +k) 

x e x = elax[~ + L x n ] 
la k=l (ia)k+l 

These integrals appear commonly in the spatial averaging 

of optical properties. A list of those used in the obtain

ing of the equations of Chapter 6 follows: 

'IT • 

I e lq cose . d . COS8Sln8 8 ::::: 1 

0 

JTieiq cosecos 28sl·nede = ( · ( ) 2 · C )/ ) 2 Jo q - J1 q q 
0 

(continued) 

appear in 



The spherical Besel functions (j 's) are: 

sin q 
q 

=~ 
q 

cos q 

q 

( 3 1). 3 = ~ ~ - s1n q - -z- cos q 
q q q 
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(continued) 

appear in 
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Appendix C 

Here follows a list of the programs VINO, PAN and COCO, 

used in the CIDS computations. Only a few remarks are made 

before the listing since the comment cards in each program 

made themselves explanatory. 

I. PROGRAM VINO. 

Calculates CIDS = r1-IR/I1+IR and total scattering= 

I1+IR for a helix of arbitrary dimensions whose axis is o

riented along the z c:3) direction of an arbitrary coordi

nate system. Light of both circular polarizations is incident 

along the positive y c: 2) direction. No restriction is im

posed to the ratio of pitch of the helix/wavelength of 

light. The results are printed and plotted in the form of 

polar plots (intensities vs. azimuthal angle) at a fixed 

polar angle (or layer line). 

Deck set-up: 

(1) Control cards 

Program SCATTER (version 1) 

(2) Program 

Subroutine POLAR 

(3) Input deck 

(4) End-of-job-card 



VlNOw12e!DDo550DOo~4931coeCST-~A~T£ 
141 NO STAGE 
SFI.oHOODDo 
FTNioo 
FETCFFSwSA~OlAoSANOwSA~~liBo 

FETC~GS,IOOS/ULIBXwOATE=D1NOV1~o15~1~. 

FETCMPS,GPAC9~7.GPACwSCBNo 

I.IN~oF:LGO,P:ULIBX,F:GFAC,P:SA~[,X,PF:ti.C:500001e 

EXIT. 
DUHI=oOo 
FETC~FS,IOQS,SV"TABoSV~TAE~. 

G~U~P,P=ZZZZSV~,P=SYMTAEo 

FINo 
REWlfi.C HIUO 
COP'f CF:tll'oOIJTI 
REWl~CHH.MI 

COP'f «F IU'of'IORE I 
DXSFOSE,FII.M=31',11='1f • 
DISFCS~o~OR~:3,.,M:~r. 

DIS~CSE,CUT:MFoi'=I'IE. 

<EOP > 

I=P CGRAI" SCATn R ( H-PL T • CCHU'I'o T,A!:![5: INPUT • UPEEi=CU'~'PU'I' ,F !1.14) 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 4 T~IS F~OGRAM CC~PVTES T~l ICTAL A~C THE. OIFF!FE~TIAL SCATTE~XNG FD~ ~ • 
C4 HtLICAL SCATTE~EF OF AFSIT~A~Y PITCH, ~AOIUSt A~D LE~GTH. AND ~oc A~EI • 
C 4 T~ARV F.AT!O CF PliCHILA~B~A. IF PITCH IS G~EAlEF TH~N LAMEDA IT CALCLLA • 
C•T~S T~E SCATT~R;NG I~TE~~ITlES AT EACH LAYER LINE. IF PITCH IS S~tLLEF • 
c•T~A~ LAMBDA IT CALCULATlS T•E SCATTi~I~G INTE~SITIES AT FIXED ANGlfS IN"' 
C13SFACE. "' 
C•T~E I~PUT PIFAMETiRS AR£ TMEFEFCR~ WAVILENGT~e PITC~, RAO!USo ANGLf • 
C"'Of AI.TPIJDl CF SCATTHUG "' 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c 
c 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C"'MEFt hE OfCLA~E AlL ~ARJAEL~S AND ARRAYS USEO I~ THIS PROGRAM AND A(SC "' 
C"'T•E ALLCCATICN FOR MEI'ORY I~ CONE 4 

c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CC~~CN F~TTtF~FPoFM~NoTECoPeD.~3C 

REAl NeD 
DHE.NSHH IN lid o PA 14 D 
~EAL LAMEOToLA~BC~ oLA~EC~ 

QEAI. LENGTH 
CC~PLlX EC3,3.3),~PCN 

COI'PLEX SUM~AI3o!,3) 

CC~PLEX ALPHAi 9 ALfHAN 
CCI'PLEX AI.PMAP 
CC~FI.tX lYZlfAo EYlKIS 
CO~PLEX C1,C2oC3oC!oCZoC3oCST~!oCST~ZoCST~3oCST~1oOST~2oOST~3 

DI~ENS!O~ QAC~OOocO) 

I.E IJELZoeJII 
CO~~CN/G!ANTIBJNC!i.~~OJ 

Ol~ENSJO~ COC~OOt.PSIC~OOtoPSISTRC~OOt,~JC~i) 

DI~E~SIO~ IlMI~«~CODoii.PI~C400DeiLC~00)oi~C~tODo"lOTJLC40J). 

!PLCTI~C!tQOt 

DI~ENSIO~ PlOTSCf400) 
Ifi.TEGER E.XPONioPLI.IC~ 
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c 
c 
c 

RBI. I.'Hi 
~EAI. li.Ml~oii.P!RoLA~B~Aoll.I~ 

OH'ENSIOI\ ANGlf («4CO, 
OI~ENSIOI\ PA~AM(10l 

C¥•••••••••••••••••¥~•~••••••••••••$••••~••••••••••••••••••••¥••••••••••3•• 

C'"Hti<c. H INITIALIZE HE VAlUES NEECE::l FCR COMPUTAT!Ot-. "' 
C10 S lGt-. DETEI<Mit..EST 'I' liE SHS~ Cf THE 1-'EI.XX. SIGN=l.o GIVES A RIGIH HANCED "' 
C•HELIX. SIGN:•l GIVES A LfFT ~ANDEC ON~. "' 
C•F~iT. Ft'FP, HNN ARE:. THl SHEI'GTS Cf TI-E Ut.GE.HIAL • PE!:>PENDlCUI.AR .!\NO " 
C"'NCRPAL SANDS RE:.SPECTIVELY. "' 
C"'L~t'3CTo LAMBCP AND l.~t'BC~ ARE T~E CORRESPCNOI~G PCSlTIONS OF THESE B~t-QS• 

C"'I~ UNITS OF WAVEL~NGTrS. "' 
C"'GAt't'AT.GAt'MAF AND GA~MAN ARE l~E ~AI.F rEIG~T WICTHS OF THE BANOS "' 
c~NAZlt'L IS THE MAX!t'u~ NU~SE~ CF LAYER LINES T~AT EXIST fO~ A GIVEN "' 
C•RATIO CF P/LA~6DA. HE>E A DEFAULT VALUE FOR TrE CCNTI~UOS CASE !S GIV~N "' 
C4 A IS TI-E RADIUS OF TH 1-'fL!)l "' 
C4 PENICC IS THE PITCH CF T~~ rELIX A~D LENGTH THE ~U~BfR OF TUQNS CF T~~ "' 
C"'HE LlX. "' 
c~NCFLOT Will. CEC!Oi' HE I'AXHLf\ NU~eE:R CF PLC'fS TO Bl GENEHTEO BY THE "' 
C"'PNOGRAM. ,. 
C"'I~ITIA CC~TRCLS T~E l~ITIALIZATIC~ OF iHE PCLAR PLOTS "' 
C'"PCLZ=O. GIVES SCAiTE~·t..G CF LlG~T FOLA~IZEO I~ TrE ) CIFECTIC' • 
c•PCL~:O. G~VES SCAiTErl~G OF !.lGHT FOLAPIZED I~ TrE 7 CIPECTIC~ a 

c~oEFAULT GIVlS CIDS "' 
C"'NLYr CETER~lNES T~E ~u~e~~ CF LAVER LI~Es cc~PUTEO "' 
c•LV~ CETERMI~iS THE ~LTErNATI~E PLOTTif\G OF LAVER LINES 0~ ALTITUDE If\ "' 
C"'PCI..AR FLCTS '" 
C .. HCEX CETERMINES THE I"AJ!I~UN CROER OF EESSEI.. fUNCTH.NS US~'D I'll THE SUS • 
C4 FlAG IS ~N CPTIO~ T~Ai WH£~ EQUAL TO 1 CC~TFOLS T~£ PPJ:t-TINS OF ALL 4 

C"'Hii:RHDIARV CALCt'LATIOI'Se H EQUAL TO ZERO Ct..LY TMl FINAL RESULTS HE ~ 

c•P~It-TED 4 

c••••••••••••••••••••••••-••••••••••••••••••••••••••••~··•••••••••4•••••••$ 

3 0'1' CCH !NUt: 

c 
c 
c 

PI=3.1~1:~2c535e~7 

SIGN=l• 
F~TT::::l. 

FI"PP=l.O $FMNN=1.C 
U>f'i30T=1 .o 
LAf'BON:1.0 $ LtMECP: 1.0 
GC.~"'Ai:.30 

Gt.MMAP::. :!0 
Gll~t'A~=.30 

t-.A ZII'!l,;::~ 
NCHOT=2 
FE~ICO=l.O $ /.\=1 f L[NGT~=20 ! LAMeCA= 1 
INITIA=O 
PCL~=l.G~ POLZ=l.O 
NLVf;=1 

t..Hl:::O 

INN Xi:::- ZJ 
It.CEX2=20 
FLAG::O. 

311 CCHINUL 
c••••~• ... •••~···~•••••••••••• .. ••"'"'"'"'"'•••••••••••••••••• .......... ,. .............. . 
C 4 HEP~ THE COMt'ANOS FC~ I~PUT CATA A~E SET • 
c••··~·~ ... ,. ................ ~ .. ,. .......... ,. •• ,. .................. ,.,.,. ..... ,.,. ............ ,.. 
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3 01 

303 
c 

READ 999,(UNIJio~AIJt),J::!o141 

PRINT998oCIIN!JioFACJIIoJ=1o141 
FCR~ATIA~oF9e4oXo31~9.~oF9.~.XII 

f0NMATII,I,~(A9o)of9.~o)l I 

DC 3 0:1. I :d. • It 
IFCINIII.EQ.9~PE~IOC IFERICO::: 
IFCINIII.EQ.9rLA~EOA ILAMEDA= 
IFIIN(I).EQo9HRAC!US lh 
IFCINIII.EQ.9rTA~(E~i ILAMBCT= 
IFCINII).EQo9~NO~~AL ILAMBON= 
IFCINCII.EQ.9HPERFENOICILAMBOP: 
IFIINCil.EQ.9rLE~GTr ILENGTr: 
IF!INIIIoEOo9~tLA~E~ I~CPLCT=l+ 

IFUNUI.£Qo9H·U~H nLVR: 
!FIINCil.EQ.9HSIG~ ISIGN= 
IFtiN(!IoECo9rPQL) IFCL): 
IFUNIII.EQ.9HPOL2 l~CLZ= 

IFCIN!II.tC.9~INClX1 IINDl)l::: 
IF UN Ill oECo91-'INCEX2 I Ho002= 
IF!INIII.EQ.9HSTC~ ISTCP 
IFCINCII.EQ.9rCO~FUTE I GO iC 3G3 
IFIINIIIoECo9rRESTAFi I GO TC 307 
COH If'.iU£ 
GC TO 311 
CCH INUE 

PAC!:) 

PAUl 
PAUl 
PAUl 
PA IU 
PAUl 
PA II) 

PA <I I 
PA II) 
PA (I) 

PAUl 
PACU 
PA (I I 
PAUl 

C H~~~ IS WH~R~ THE SIG~ CF irE HELIX SENSE IS CETE~MlNlD 

P=PERICD"'SIGN 
C S~AX CETEFMI~ES THE ~CR~AL!2ATICh FACTCR FO~ THE TOTAL SCATTE;ING FCR EACH 
C l II"' e C A • IT f"l S T B~ FC l N C ! 1\ Tl-! S C C L 0 C P 

Sl"t.X=OoO 
SI"AXI..::O.O 
St'A)'R:::il. 
CC~'AX=O. 

c 
c 
c 
c••••4•••••••••••4•••••••••••4•••••••••••4•••••••••4••••••¥•••••••••••••••• 
C"'HtFE TH LCRlt-.TZit.N-~1-AHJ HLA"IZA3!LlTIES A~E SE.FHFC "" 
c••4•~••••4••••••••••••••••••••••••••••••~·•••••••••••••••••••••••••••••••• 

IILPHAT:F~TT/((1/ILAI"6DT"'"'2ll•11f(LAH8DA"'•2JI + 1Coo1ol"'GA"~AT/ 
1(L~"'E!DA 4 IILC.~8CT 4 "'21·CIGAM~AT 43 21/41)11 

ALFHAF=F~FP/(11/ILAI"PJP 4 "'211•11/ILAME!OA"'"'21l + itoo1oi•GAM~A 0 / 

1(LtM~OA"'ICLAM30P 45 21•1(GA~MAP••21/~IIII 

c 

AL FHAN::HNN/( ( 11 HAI"BDN"""Zl l • U/ILAME!DA~f¥211 t ( !.. olei•GAI•"'-UU 
11LAME!OA"'I(LA~90N 4 "'21•11GA~MAN 41 "'21/~llll 

TSO:LAM30T ~ P30:LA1"90P i NBO::LAHBON 

IFIHAGel\i:eOl FF.II\'f 1':i0~ 

l~O~ FC~~'AT!• •,6X.•AL~HAT•,f)o 4 ALFrAIIi 4 o&X."'ALF~AP•l 

!F(FLAG.~t.Ol PRI~T ;cs.~LPHAioALP~ANoALP~AP 

c 
c 
c 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C•T~ETA IS TH~ FOLA; A~CI..E CF SCATTERING 4 

C 4 T~ETA IS Ih ~ADIA~S • 
C4 PSI IS THE AZIMUTHAl.. ANGLE CF SCATTERING. IT lS CCMfUTED ~ERE EVE~V • 
C"'D~GREE E!ETWEEN 0 AND 360 "" 
C 4 0ISC~T 0 IS FCR CONTI~LOUS CASlCPERIOD LESS T~A~ LArBCAI, DISC~T=1 IS "" 
C4 FCF CI CRETE. CASE (Pfi\IGD GREATEF TAHt. LAMB'JAI 41 

C•DEL(Z S THE Z PRCJECTICN Of THE VECTOR ~ 8 (Q. ITS M~XIMUN V4LUE I~ "" 
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C"2";:: II LAMBDA 

C"NDZI~L FOP P GREATER CR F~UAL TC LAMBDA IS CALCULATLD HERE 
C"IF CNLY CNE LAVE~ LI~E IS WA~TED SET NAZIMU:2 

.. .. 
C""""""""""""""""'""~""•"""""""""""""""""""""'""""""""""""""""""""""""""""""" 

NANGLE=3EO 
NAI-<GL::NAI\GI.E+! 
DC 11 I= lo NANGL 
PSI II l= (Is1 l"PI11eo. 
ANGLEIIl:PSIC!l"1~0.!PI 

11 CO HI NUt 
DISCRT=O. 
IFIPE~IOC.GEoLAMECAl JISC~T:1.0 

c 
c 
c 
C CCI"FUH THf. I"AXIMLiM ~C. OF Ul'tEI< LINES FOR ::liSCPETf C~St: 

C CCI"FLTE ALSO THE PA~~~ET~P DELTA KZ IN TER~S OF THE PCLAP ANGLE 
IF ( DI SCRT .E Qo! l I'IIH!I"U::: H T (Pf.R !COIL IIMBDHZ I 
SA Ft.T 't=2 ~ 
IF ( N C PI. 0 7 • L E • N A Z l I' U I NA Z II' lJ::: N 0 PI. C T 
CO 30G ITETA:2oN~ZII"~ 

IFISAFETY.LEoNAZli'UlSTOP 
lVI':::!TeTtl•2 
::JC 299 LP=1,2 

C T~IS CCNTROLS THE NU~EE~ JF ~EGATIVE I.AYEP Ll~ES ~0 BE CCI"PUT~~ 

IF <IHTA.(T. !t<LY~ •2l.At-.C.lP.[(;;.zl GO TO 299 
C TFIS ASSU~ES ONLY CN: z~•o !.AVER I.INE COMPUTATIO~ 

IF I L ,:: • E Q • 2 • At; 0 • I Tf TA • E 0 • 2 ) G C T 0 2 g 9 
IFIDISCRT.EQ.OlT~fTA=«Pl12ol•15."1ITETA•2l 4 1~II180ol 

IFIOISCRT.£0•1lT~ETA:ACCSIIITtiA~ZI•I.AM~CAIPE~ICDl 

CHIS CCf"PUHS M.GATI~£ ALTITL!:JE A~GLE F'CR THE CCHIWCUS CA':if 
IF!LP,EQ.2.ANC.Ol~CRT.EC.OlTHETA:(P!/2)+1!•(ITE1A-2)•(PII1801 

C Tr:~ CC~PlTcS ALL NEC~TIV~ lA,~F LINES FOR aiSCRETE CASE 

c 

c 

IF U. P.EQ .2. ANC. 0 ISCP .r Coil Tl"t TA:::PJ-t.COS I UTE. 'fA ·2) "LA"BCAI 
!. PC:f;IODl 

IF ILP.EC:.2.AN.:. CISCI'T. ;:"C:.!I LYR::•l VR 

:J£ LKZ:::(2•PI!(l.AMECAII"CCS ITHf.TAl 
A~CLAF=TrETA 0 18Q,IPI 

c••••••-•••••••••••·q••••4••••••••4•-·¥·~••••4··~~•••••••••••••••••••$•··~· 

C"HF LCCP STHTit<G 11Hf P~C: HC:l\G !1\1 :!.CC CO"Pl'Tf ,.Ht SCATTEt\It<G :NH~SI " 

C"TicS FOR EAC~ PSI A~(l£ A~C fCR A GIVEN VALUE CF T~E ALTITUCEO~ LAVE~ " 
C"LINE. 
C"'H.Gt- IS A PA;;AMET' R HAT LILLC~<~S FCf< THE VARUTIC" Of Ttdt Ff'l.IJ( 0 Ai:'AI'If " 
c•;:cs TC CALCLLATE THE SCATTEf<lNG CF CO,..CE,..TRIC ~EI.!tES OF VAFIOUS PITCY • 
C•HC P.lCIUS. lF ILAM (CE.S HCt' 1 TC 1 Tt<EN ONL'f CH 1-El:::Y rs Ct.LCULAH: • 
c•••¥•••••~•·•4••••$••4•••••••••••••-••••~•••4·~··~·o~•••••••••·$~····-···· 

DC 10(; I=1.36G 
DC 699 II=it3 
cc 698 JJ:::1,3 
JO 697 1(1(:::1,~ 

Sli'MAIII.JJ,I(KI::::(O.C.J.C) 

697 CC~TIMJf 

6<?:3 CCHINUE 
6'39 CCI\T INUE 
c 

c 
c 
c 
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c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 4 CC~FUTE THE ARGUMtNTS OF TrE BESSEL FC~CTIC~S • 
C"'ALSC TPE DIFErENT VALUES OF TrE ANGLF. FSISTR ~EL~TEt 10 THE AZI~UTHAL • 
C"'HGLE PSI oAH: CAlCUlATED Hi:f.i.E • 
C'~'R H HE PROJECTIO'- CF Tl-'~ SCA'f'Tf.~H W~VE liE CTOfl ONTO THE PlANE X-V • 
c•••••••••••••~•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

R:IZ.•P!ILAMBDAI•SI~CTHf.TAI 

QA II • ILA I" I"' 12.0 4 F.I•AtUII'IECA I"'SC=<T U. IJHS H (T 1-'ETid J nz 
1 •2e0 41 Sl~(PSICI,l 4 SI~CTk£TAI l 
~ui"MV1:Q~II.ILAMI 

IFIOUMMV1.EQ.~.) GO TO ZC 
ALFHA= F•A•C~SCFSlCIII/CeCioiLA~I 
IFUII.PHAoHo1eOHC TO 20 

C•TA~~ ~lGATIVe VAI.UE CF FSIST~ ANGLE 
c 

i!:S!SH.I.::h:•ACOSIF"A"COSCFSIUttiQACI oii.At'll 
21 CO~TINUE 

IFIFU\G.eOoOol GC TO 71 

C"''"~"t:. CCf"E HI!: PRH1TII\G STAH.P'&NTS fO~ .... 
c• POLA~ ANGLE. OA. !~D~XJo PSISTFIIIo 

0 ~I~T35,APOLA•,cctiJ.ILA~I.J=eg,g3t,(PSISTRCJi.J=89o9ll 

3~ •c~f"AT ''·"' •,•APCLA~~:•,F!.~.zx.•oA=•.scz x,Fa.~t.zx,•PSisTR=••s 
(2)(,FI!e!.l) 

'~'1 CC~Tif\Ur 

IFIFLAGoECoOol GC iC 11 
0 ~If\T ~ 

1 F(h~ATI"" • "PSI"• S(l(Xo "'OA"'Io/1 
Pf<INT 10 ,ANGLF c:n .all!I.lUIMl 

10 F(kMATI" "'• F8o~o:X,F~oM) 
77 CC~TINUt 

c 
c••••••··~•·•••••••••••••4•••4•••••••••••••••••••••••••·~··•••••¥•••••••••• 

C•~ED: ~E SiAFT GENARATINC T~E FCSITIVl AND NEGATIVE CRCEP ~ESSfl. FUNCTIO~· 

SJN(l,II ••••••••• c •• BJN(41,!looCoCoo••••8JN(~l.II 
J•4Coeeoeoteooee•eeeJGeeooooeeeeeeeaeCeeJ~O 

.. 
$ 

:•·~········¥······-·········~···················-························· 
X=C:ACI.ILA14) 
1.=41 

ALFHA::O. 
CALL 8L~J(X,AI.P~A 9 L.3J.~Zl 

:.... ElJ(1) eeoe&eoeoe&eee8J(&.1) 

c JO ••••••• c •••.•••••• J:.o 
c 

1\1'<::40 

3C cc~r :r.uE 
£ )l t: c ~ r = .. 1 - tm 
L=le2-M; 

3J ~ ( Nt • .II 
~1\:::NN-::. 

If (NN.EQ.J) ~C TC 31 
GC T 0 3 0 

31 COTit.Ut 
DC 2 N=1.41 
!'.N:::f';+i.,Q 

9JHNt .• II ::BJINI 
2 CO~ T !NUf. 
C•H::~ [CME THE PRINTI~G 

c•>:~ AFCLA~. Af'<GLEIII, 
STATE~EI\TS •••••• ! 
C:AIIhoii\OD OF EESSEL FUCTICNS (KU, I:NC 9fSStl. 
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C"' FUt-CTIOIIli\S 
IFIFLAG.fOoOol GC TC 72 
PRINT 3, APOLAR 

3 FC~MATI"' "'• "'APOLARr="'•f6.4o 8C3X,"'JNIXI 10 ),11 
F'l<lNT 10€:. UNGL.E IKLMt ,KL,.=1.81 

106 FCRMAT(/, 10 ANGL.E:~,81~X.F10o7il 

PRINT 6.IOAIKLM,lL.MioKll"::::1 9 81 
6 FGRMATI/o".l:NDEX,Cti: 10 ,<3(!:XoF10.7»1 

JC S K:::l • !H 

t<I..=K-'-1 
P~!NT ~.KL,IBJNIKoKLMioKLM=1,81 

* FC~MAT I "' "' • I~ • ~ (3), t 12.5 )) 
5 COHINU( 
72 CCH INUE 

c 
c 
c•~••••••••••••~·~····-·•4•$••••••••4·-·~•••••~••••4••••••e•••••4•••••-4••• 

c•P~OCEtC TO COMPUTf CCNTIN~CLS CD FOR LIG~T INClDlNi ALONG THF V DICfC"' 
C"'T ICN ,. 
C"'CCMFUit NOW TH~ COMPC~E~TS FC~ tACF OF THE POLARIZATICNS CF THE ELEC "' 
C"'TRIC ~ECTOR EIDICEC1IO~.~CLA~IZATIOhoEAC~ OF T~E T~~EE CCMeD~ENTSI "' 
C"'E'XA~PLE £<2.1. 31 HA~S HHD CCI"FONENT OF ELECTRIC \IECTO~ T~A\IcLLXNG "' 
C"'J~T~Q~I~ES THE CC~FFICIE~TS 0 FO~ SU~MS CC~PL.F.~ fPZ,FM2o FP1, ECT. "' 
C 10 NC~ ALL EESSEL FLNC'I'IC~S AH It--CDFD "' 
c•··~·~··•••••••••••••••••••••$••••••••·-·•~•••••••••••••••••••••••••••·••• 

DC l 000 :I=1• .. 
'JC 10C1 JJ::1,3 

DC 1002 l(l(:::J., 3 

~<II.JJ,KKl=lo.o.o.ol 

111 J t: C CHI ~U£ 
1001 CCHII'.UE 
100C COI\TINUE: 
C"'SL.M OF t.LL CHERS CF CO! FFI(lUITS TIME5 EESSEL Ht.C1ICNS TI'"£5 T!JE CC!;: 0 fS 
C 10 PC~JHG PHAS:: FACTORS. H'CM •INCEY TO +INO:::l( ~<>Ill ~t UNfrAH.'':o 

t.EGI0>= .. 1+IN'Jf )(1 
PLL!I::J)(:::t.ltiNOt )12 
DC 20u t.:NEGI~>t.FLU!Jl( 

Jl t-"' Y:: (- IN- 41 I I P l H C i lt< Zl I 2 • PI l I 

A~2 = OU~MY+ 12.1~) 

IFCIAP2 44 2).Lio1.0t-20l GO TC 1C1 
FF2= Sit.!P•PI•LE~GTr•nP2l/IFl"'A~2) 

GC TO 111 
101 FP2: P•L~IIlGTH 

111 COT It-.Ut 
A~2= CUMP'V•I2.1PI 
IF tiAM2 .... Zl.LT.i.Of-201 GO TC 102 
~"'2=Sii'.IF 4 PI"'LE~GiH 4 A~2)/(PI•A~2l 

GC TO 112 

:02 nz:: P"'LtNGTr< 
112 COT H-UE 

APO= DUM"V 
IFIIAPO ••zJ.LToloOt=20) GO TC 103 
F~O= SIN!P•PI•Ll~GT~"'APOl/IPI•AoQ) 

GC TO 11~ 

:03 FDO:P•LE~(TH 

1 u cor-.r II\Ut. 
APi=OUM~Y+(:J.,/Pl 

!FIIAP1 ...,2loLT.l.0£•20) GO TC lC.'+ 
FFl: SII'.(P•PI•Lti\CT~•AP1l/!FI•AP1) 

GO TO 114 
104 FPi: P"'LENGTH 
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.l.h CCHINUl 
A~1= OUM~V·(.l..IP) 

IFIIAM1 "'"'2loLTo1oOE·?OI GO TC 105 
F~1=SINIF•PI 4 LE~GTH 4 AM111!PI 4 A~11 

GO TO 1H 
105 F~l= P•L~NGT~ 

115 COH INUE 
B=eJNCN oll 

c 
c 
c 

PSIPRr~P!IZoO + FSISi~!II 
:Z: IN-41) "'"S IPPI'I 
XFCN=COS(:ZI+CGeolei•SIN«ZI 
A~:SQRTIA"'A+(P1(2"'Pl11"' 4 21 

IFIFLAG.EQ.OI GC TC ~oc 

c•••4••••••4··~••••6•••••••··~-·••••••••~••4••••••••·~··•••••3••••4••••4••• 

c• "' 
c• HES£ MU ALL PR':I\THG FCUTII'ES "' 

C¥•••••~$•••••••••••••••••••••~•••••~•••••••••••••••••••4•••••••••••••••&•• 

PRINT 49S, N, ~-41 

499 

~DO 

501 

SC2 

503 

.. 0 0 

c 
c 

FC~MA'f(l, l,•cuN~lNG="'• lZo 2X, 4 ACiUAL ORCEP: 4 ,l4) 

"'" a.r 5o o 
FCRI"AT (I.~X 

1 •"' DUMMV AP2 t.M2 AP 1 A1"1 
1 FM2 FP! FP!l FPO"'I 

F"lNi 501, DU~MY,t.PZ,AM2oAP1,AM1oF~2,FM2,FP1,FM!,F~: 
FCRHATI"' •,512XoF~.~~.5«1X,l10e4ll 
P" INT~02 
FCRMATII.~X. "' B 

1 A I""') 
PF!NT 503. Bt PSIFRI"eZo )PQ~ ,AM 

z 

FCFI"Ai("' 4 o212AoFe.~l,1CX,F8.~o2Xo"'l"'•~"9e4•"'•"'•f~.4,"'l"',~v, 

1 Fo.41 
CC 1\T INUE 

C'~'Pj; If\T li\G CF T~E CC~PC~£~T3 CF T~E ElfCi~IC FI~L~ vECTCR 

c 
C !1\CIDENCEV PCLARIZAT!CN Z 
C CC~~t.;H i~E 'fi:RI" E CX.Y,CO"t::CHI\TS 1.2.AND31 

!F( FLAG.£Q.OI GC TC ~OS 

"i<INT SO>. 
504 l=(t<P-'AT(I,• £(2,3,11 I 0::(2,3 0 21 I £(2 9 3.31 I 

1 £(2.1.11 I ;:C2,1o2l I EC 2,1,31"1 
PI' I 1\ T 50 5 • i:. ( 2 • 3 • 11 n I 2 •:! • 2 I oE ( 2 o 3 • :n , E ( 2 • 1o 1 I tE « 2 .io 2 l • E ! 2 • 1 • "I 

scs FC~"'ATI" •.oc:x.~c•.•i.~.•.•.re.~.·~·~~ 

<+05 COH INI.:t. 
c 
c 
c 
C I~CIDEI\CE Y FOL~R:ZA1IOI\ l 

~12o3o11:~!2t3o11+CA 4 PI(~.•P!I)"(0oo1oi"9"(FP1efM11"XPON 

1 "' (ALPHATI(AM"'A~) I 
IF !HAG.t..E.O) 

1 PRINT 50 5 • E (2 • 3 • 11 • E I 2 •:! • 21 oE. ! 2 • 3. 3 I • E ( 2 • 1o1 I oE t 2 ol • 2 I • E (? ,1 • 3) 
fl2o3o1):~(2,~o11 

1+ALPHAP"!A"PII4 4 Fl"AM•A~)I"I0eo•1ol"B 4 IFP1·F~11'~'XPON 

IF!FLAGoi\EeOl 
1 P"' t-. T S 0 5 • E !2 • 3 • 1 It£ C 2 • ! • 2 I ,E I 2 • 3 • 3 I oE « 2 • 1,1 ) .E « 2 oio 2 » • E « 2 • 1 o 3 I 
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c 

EI2,3,21=EI2o3,21+1A~P/(4o•PI11~B~IfP1+F~il 4 )f0~ 4 (Al.P~AT/IA~aA~ll 

If!fl.AG.I'E.OI 
l P" I 1\T ~OS • E 12 • 3 .11 •t I 2, ~ • 2 I.E I 2 • 3 • 3 I oE « 2 ,1,1 I of I Z olo 21, E C 2,1 • '3 I 

E ! 2 • 3 • 2 l =E I 2 • 3 • 2 t 

2 45 

1•ALPHAP•IA•PIC4.•FI•A~·A~II•B•IFPi+F~ii•XPON El2o3o2l 
IF CFLAG. 1\i:" • 01 

1 PRINT 50 5 • E ( 2 • 3 • i I 9 E. I 2 • 3 • 2 I oE I 2 • 3 • 3 I • E C 2 , 1 oil • E ( 2 .1. 2 I • E I 2 o1 • :n 
~!2v3o31:~(2,3,31+(F•P/(4 4 (PI•PIIII•B•IFPCI 4 XPO~ 4 (ALFHATI(A"•AMll 
IF I Fl. AG. 1\C. 0 l 

1 PI< I NT 50 5, E ( 2 , 3 • 1 I •!; I 2 • 3 • C: I oE I 2 • 3 • 3 l oE I 2 • 1. 11 • E ( 2 oi • 2 l • E ( 2 o1 • 31 
£12.3.31 ::£(2,3.3) 
l+ALPHA~•(A•AICAM•~~~~·e•FFO•XFCN tC2,3,3) 

IF !FLAG.I\.'::.0) 
l,Pf<INT505o El2o3•1loi:l2 9 ! 0 2loE(2,3.3l 0 E(2o1o:l.lotl2o1o2loEl2o1o31 
£(2,3.11:::EI2o3oli"'PCLZ 
E I 2 • 3 o2 l =t: 12, 3, 2) •PCL Z 
El2o3o31:::E!Zo3o31•PCLZ 

C I~ClOENCE Y FOLAR!ZATIOI\ X 
C CC~PLiE THE T£RMS £(2,1,CC~PCNEI\TS1o2ANJ3) 

E!2,1,1l:E(2 0 1vlii(•A"'AI4.1"'8"'CFP2-2"'FPQtFM21"'XFDN 
1 4 (ALPHATI(AM-•21l E(2,1v11 

IF (FLAG .I'.:;:. Ol 
1 PI< It-. T S: 5, E I 2 • 3 • 1 l ,[ < 2 • ~ • 2) ,[ I 2 • 3 • 3 l ot I 2 • lvil oE I 2 o1 • 2 I • E I 2 ,1, 3 I 

E I 2 • 1.1 I ::;: I 2 • 1 • 1 I 
1 +(ALP~A•I~.I·~·c2.•FPO+F~2•F~~~·xPO~ El2ololl 

IFIFLAG.I\E.OI 
1PRINT505, £12,3 9 1) 9 ~ L~.3,Zl vEI2,3,31oEI2oloilofl2o1t21oEI2o1o3l 

c:cz..t.u:::cz,:...l.l 
1•ALPHAP•((PI(~."'FI•A~l1"'"'21"'8 8 (•FP2t2"'F~O-FMti•)PCN EC2o1o11 

IF !FLAG.I\EoOI 
lPRINTSQ5, El2o3olloEI2o3o2l ,f.(2,3,:H,E(2,1o1loEIZt1o2toEI2o1o3l 
E12,1.21=E12,1 9 2It(A•~I'•l"'(0.,1.l•S•(FP2-FM2)•~PCN 

1 "'IALPHAii(AM• 4 211 £(2,1,2) 
IF (FU:.G.I\ieOl 

l P;; I 1\ T S ~ ': , E C Z , 3 • 1 I • E. ( 2 , 3 • 2 I oE C 2, 3 • 3 I , f. I 2 , 1. 1 l oE I 2, 1 o 2 I •!:: I 2, 1 , ~) 

C:l2o1o2l=EI2o1o2l 
1 •(ALPHAN/4o 1"'3°(FPZ-F~21"'XPCN•(Oeo1el El2.!o21 

IF <FLAG. i'E • 0) 
1 P F IN T 5 il 5 , E ! 2 • 3 , 1 l o E ( 2 • 3 • ;: I oE ( 2, 3 , 3 I , E ( 2 , 1 , 1 I oE 4 2 • 1 o 2 t , t: ( 2, 1 o 3 I 

E12.:1.o21::EI2o!o21 
1-ALPHAP•((P/(~."'FI•A~Il•"'21"'1Coo•ioi•B•CFF2·F~21 4 ~PQN Fl2,:,?1 

IF<FLAG.t--E.Ol 
1 P f< IN T!: 0 5 , E I 2 , 3 • 1 l , E ( 2 • 3 • 2 l , E ( ~ • ~, 3 l , E I 2 .1 o1 I ,£ I 2 o1 • 2 I , E I 2, ! • 3 l 

E. I 1:, 1, 3) ::::C: ( 2, 1, 3 I t I A"'::> I ( lo • "'PI) I"' Ul • o 1. l"' 8 • ( F P 1·1' M 11"' )IcoN 

1 • IALPHAT/IA~·A~ll El2,1,3l 
IF (FLt.G.I\r;:. 0) 

1PfiiNT505o E12o3o1lot 12o:!o.Cl,E.12o3o3loEl2o1o1lo£!2o1o21otl2o1o3l 
t: I 2, 1 • 3 I =E I 2, 1, 3 l 

1 +ALP H t, P • (A"' PI (I. • • F I •t. "1"' A~ I ) 4 ( 0 • • -1. ) •'3"' ( F P 1• F ~1 l •) PON E ( 2 • : • ~ l 
IFIFLAG.I\t..Cl 

1 P ,;. l NT SO S , E ( 2 • 3 , 1 l • E ( 2 • :! • 2 I • E ( 2 • 3, 3 I • E ( 2 , 1o 1 I • E I 2 .1 • 2 I • E' ( 2 • 1 • ;_q 
El2,1dl::E(2oltl)"PCLX 

E 12.1,21:::C: 12o1 9 21"PCLX 
E ( 2 • 1 • 3 I :::[ I 2 • 1 • 3 l "PC L )( 
IF (FLAG.ECeOe l GC TC ,.Qf 

P r:; I r, i 5 0 S • E ( 2 , 3 • 1 l • E ( 2 • :! • 2 ) • E. ( 2 • 3 • 3 ) • E ( 2 • 1. :1. I • t ( 2 • 1 • 2 ) , E I 2 • 1 • 3 I 
406 CC H INUE 
2 0 0 COT IIIIU£ 
C4 HIS ACCS THf ELECTRIC FifLCS FOI\ A SE"!ES OF COf>.CE HJ:IC I"EliCE$ W!TIJ OI~'"' 

C 4 E~EI\T PARA~ETERS FC" CNE G!VEI\ A~Gl.S OF SCATTE~It--G. 

c 



DC 7 01 If:::!,3 
DO 702 JF=1 9 3 
DC 703 KF:::1,3 
SU~MA(IF,JF 9 ~Fl:::SLM~~«IFoJF,KF)tf(IF,JF,Kfl 

7 03 COH INUE 
702 CCHINUE 
7C1 CCHINUE 
700 COH INUE. 

DC 70S lh1o3 
DC 706 JJ:1,3 
:JO 707 KK=1 0 3 
EliioJJ,KKI::S~MMS(!IoJJoKK) 

707' CCNHt-oUE 
706 CCNT INUE 
705 CCNT:::NLE. 
c•••••••••••••••••••••~·••••••••••••••••••••••••••••••••••••••••••••••••••• 

C 4 Fl~lSH ALL SL~S 3 

c••••4•••••••••••••••••••••4·~····~••••••••••••••·~~·•••••••$•••••••••-•••• 

c 
c 
c 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C4 CCFRECT FOR TRINSVERSALivv I~ T~I5 SECT~ON • 
C4 DEFI,t-,t: THi;. HIGONOMEHIC \IAlLE.S CF 71-'E C0"1FC~HTS OF iHf SCA'fi(CE'r:: WAllE • 
c•VECTO~ K • 
c••~••••••••··~··••••••••••••••4••••••••••¥•••••••••••••••4•••••••••••··~·· 

SI~PSI=SI~(PS:IIIl 

CCSPSI::CCSIPS!IH I 
SI~TET~SI~IT~~TAl 

CCSTET::CCSITHETAI 
C 4 D~F!~E EVEKIS= K~OT t 12,1. CCtPC~:~TSl~NO EVZETA= KtOT E«Z.~oCO~PSl 

EYZeT~=CCSPSI•SI~TEi 4 ~(2e3o11+S!NPSI 4 SihTET 4 ~!2o3•2l+COST~T• 

:1. t. (2,3.31 
EVEKIS=CCSPSI 4 SI~iET•c 12o1e11+SINPSI•SI~TET 4 EI2o1•2l+COSTET• 

l. E 12o1o3l 
c•F~~~S~ CC~FUTING COlli FCC ALL ~5:1:1 

IF(FLAG.~E.OIP~I~T :11 
317 FCKMATI• •.•EVEKIS•,ax,•£YEZETA•I 

IFCFLAG.M .• tl PRI~T e-;:;, EVEK:S.t.YZETA 
c 
c••••4•••••••••••••¥··~·••••••••••~·•••••3•••••••••••••$••••••••••••••••••• 

C•CC~FUH IL MINUS !R .. 
c•····················4·~··••e•••#········································· 

C1:EI2o~o1l~CCSFSl 4 S!NTET•EYE(lS 

C2=f <2.1.21-S~~P~ l'"S!Nif i"EVE'<IS 
C3=E C2t1o31•CCSTET'"fVt.KIS 
01::::EC2o3el.l•CCSPSJ'"SINTET 4 EYZ~TA 

02=E (2,3.21-SY~PSI•SIN•['UEVZETA 
03=£12t3e31•CCSTET"'EVZ~TA 

CSTR1::CO~JGCC11 

CS TF 2::CO fo.JG I C2 l 
CSTR3=COt-.JGCC3l 
OSTH=CC~JG tD1) 
CSH'2::COf-.JGC02l 
OSH3=CO~JG Hl3l 
IFIFLAGoEO.Oel GC TC -01 

C"' ~~I~Tl~G ROLTINES FCF lNTt~~EDIATE CACULAT!C~S Cf (~ 

PRINT SOE 
506 FCFMAT(Io9Xt 4 C1'"o9Xe 4 CST~1'"•9X,•cz•,gx, 4 CST~2'"e9)o•C3"o9Y, 

1•CSTR3"') 
PFINT 50S, C1.CSTF1,C2,CSTR2oC3.CSfR3 
PFINT 507 
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s or I<CI'MAT 1/, • 

10STP.2 I 

Pf<INT 50~, 

CCH!NUI: 

C1 I OSTIU 
03 I CSTR3 

DioOSTF1oD2oC~TR2oC3oOST~3 

oz I 

IL~IF!II:ICST~1•Ci+CSTR2~02+CST~3 4 C3-CC1•CST~1+C2 9 0ST~2 

1 ~c3•osT~3ll •c z.•(G •• 1.ll 
EZ=Di•DSTR1+02~0~TR2+D3~CSTR3 

Il ii) =E.:Z 
EX=C1•CSTR1tC2•CSTR2+C3"'CSTI'3 
I~<C!I=O 

ILPIRI!l:!Cl•CSTF1+C2~CSTRZ+C3"'CSTR3+01•C~TP1tOZ•OSTR2 

1 + 03"'DST'<31•2. 
COill=IL~IR!IlllLFIF!!l 

IFIHAG.E.Q.Q,) GC TC '511 

Pf.<INT 512. IL~"II'I~l.ILPH t!lo C~!HoiLIII,If<(I) 
512 FCRMATI/,"' "'•"'!L~IR="',E1fo9o2X,•ILPIR=•o~16.~,z~.•Co:•,E1t.q, 

12Xo"'IL="' oE16.9o2x.-I~="'•E16.9l 

PnNT 51C 
'510 FOR~ATCI,/ 9 1 9 /) 

511 COH II\Uf 
100 CC H INUE. 
C• T~IS 1\EXT CCMPUT,TICI\ ASS~PES THAT THE VALUE AT ANCLE OF 360 DEG~EES 
C"' IS THE SAMt MS THAT CF C D~CNEES 

c 
c 

AI\GU:: 136l I: 36:. 
CCI~t1l=CCC1l $ lLP!Ft3€1l~ILPI~11l SIL~I~I3f11=IL~:P11l 

1$ IL1361l=IL(~I ! I~1Jt11=I~I11 

c~•~~~····$•••••••¥·~··~·~··•••••••••$•••••••••••••••••¥~••••••~¥•••••$•••• 

C"' 1-f~E COI"E ~CI<C: PF !NT lNG ~Cl1 INES • 
c••$··············~···~-4~·-·······$-·········-·············4····8····-·e•• 

Pf<II\T qQ7 ,APOLA~.PfRIQC,AoLEI\GT~,LAMBJ~ 

S07 FCI<MAT(I,/,• "'•"' CO ANC iCTAL SCATTER FCf.< APCLA~H ANGLE="'•F 
1 ~.2,2X,qP£FICC:•,F:.2o2Xo"'I<ACIUS=•,F;.z,zx,•LEtGTH:•,Fi0.2o2Xo 

: "'LAM8)A:•,F5.2) 
PI: !1\T 7 

7 FC"~AT!/, • >SI"'• ex,•CC<Il•o12Xo "'lLoi~"'o12X,"'!L+If.<• 

1tl5X,•POLZ"'o1~X,-FQLY 4 1 

DC 57 C=1, NANGL 
AI\GL=PSII<I"'1°0.1FI 
PFII\T 58 , ANGLo CO!~) • ILMI~(Klo ILPI~IKioiL(Kl.IPC~) 

Sf! FCF<14ATC• ... Fll,lt, i+Xo E12o5o toC:.X.£15.8)) 
57 CC~TitHJE. 

c 
c 
c 
C4~··•~•~••••¥•#••••~•••••••••~•••4~•-•4••••••4•••~•••••••••••••••••••-•••~ 

c• OETE~~INE THE MAXl~U~ VALLE FC~ PLCilNG SLE~DLTII\E • 
c-¥~···~····-·~4•4••••~·~~-···~···•~48·--·~··•••••••••••••~••@••@•••••••••• 

DC 109 I=1oNA~GLE 
CD~t.X=AMA)!11AES ( CC (I) I .CCI" AX I 
Si"A~:AM~Xi(!LPIRI II.S~A)!I 

Si"t.XL:AMA~11IL(!I•Si"t.XL) 

SI"AXR=AMAX1 II~ II) tSI'AXI<) 
109 CCI\TINIJE 

IFCCOMAX.GE.0.2) CDI'AX:i. 
DC 1115 J=1• NANGL 
CO!Jl=COCJI/C~MA) 

PLCTSCIJI=ILPI~I JIIS~AX 

PLCTIL!JI:ILCJI/SrA)!L 
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1 !1 ~ 
c 
c 
c 

~LCTI~CJI=IRIJ)I~~~~~ 

COr-TINUE 

c•~•·•••••••••••••••••~···~····~····~···~·••••••••••••••••••••••••••••~¥••• 

c•PL01 SCATTERING VS FSJ FO~ DIFFERI~G APOLAR A"GLES ~ 

C•I~ PLCTING SCATER=Oo ~IlLPLCT CD, SCATER=ioO WILL PLOT !L+I~IMAV!!L+!Rl 4 

C"'SCAT::f<::: 2.0 • PLo· !I.IMUIXU, SCIT£.R:~ • PLCi Il'lt'UURI "' 
C"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"',."'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"',.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,. 

!F ( t>OPt.CT .£Q. G) GC TO 600 
IF<DISCRT.EQ.Ol LVR:::i!IO 
I:< I" jl)t = 1. 0 
IF(POLXo£O.O.CPoFCLZ.~C.Ol GC TC 605 
It-.!TIA:::II\ITU+1 
AFCLA~:9G. • APOLAR 
PNlNT iSl,CDHt.X,AFOLt~ 

151 FC~MAT(t,•GRAP~ CF CDIC(~AX W!TH CGMAX="'of1~.e.•ALT:TVDE=•,F5o21 

AFCLAP:::I~T(APQLA~) 

SCATEF=O 
IF ICOf'AX.LTo1o0) SCt.'!'£~=·1 

Ct.LL PCLA~(ANGL~.CD.~~A)oA~CLAA,P,D,SCAT~~.LIMBLAoLENGT~.LY~, 

1 ::r-n:.:u 
605 COT If'.UE 

1 52 

6GO 
c 

Pi"A)!.:d .• O 
~~;ITit.::"HUt1 

DF.!t-.T 152. SMAX.tFCLA~ 
FCPMATII, 4 PL0r G~APr FCF. TCTAL SCITTEP ClVIC:D SY S~AX:•, 

1 :16o3o2Xo 4 APCltFH :::•, FSe2) 
AFCLAF.:I~i(APCLA~) 

SCATER=l.O 
CALL PCLA~(ANGL£oPLCTSCo~~AX,APCLAR,P,AoSCATE~oLA~30AoLE~GT~, 

::. LYF.,INITIAl 
PRINT 153,SMAYL,AZI~Lr 

FCA~AT!I.~PLOT G~AP~ fCF LEFT SCATTER OIVlCfC 9Y SMAYL=•,£!~.~. 

::. 2X,•t.POLA~:•,FS.cl 

SCATE1<.=2.0 
Ct.LL PCLARIANGLEoFLCT!Lo~~AXoAPCLAF,o,A,SCATE~oLAPADAoLE~CTw, 

::. LH.INITIAl 
PRif\.T 1S~.SMA>~ •• POLA~ 
FC~MAT(t,•PLOT GPAP~ fCF ~IG~~SCATTEP ~IVlDEC 9Y SMAXP=•o:1~.~. 

l cx,•t.PCLAR::•,F~o2l 

SCt.TH=3.0 
CtLL PCLA~(ANGLEtFLcr:~.~PAX,AFOLAR,PoAoSCATEFoLA~BDAoL::I\Gf~, 

~ LH.It-.lTIAl 
CCi'TINUt 

zqg CCHII\U£ 
3 GO CO TINt,£ 

GC TO 311 
src::: 

2C CCH!NUE. 

c 
c 
c 

PSISHIII:::O.O 
GC TO 21 
El\0 

SLBFOUTir-c POLAR(TH.~.F.~A),APCL~~.FF.AT!C.~AOIUS.SCATE~oWoLoLVR, 

1 If\ITIA) 
c••••-••••••••••••••••••••••~••••••·-4··~~··$···~•••••••••••••••••••••••••• 
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c~TriS SUBRO~T!NE MAKES PCLAR G~APHS 
C"'HE. ARGUP'lNT CF' THE FliiiCTICI\S AH MEASURED IN OE.GRHSe 
C"'T~f !~FUT Of THE ANGlLA~ ~AriABLE ~AS TO BE E~Tf~ED It- RACIANS 

c~AI\GLES ARE FCSITIVE I~ iHi CCLNTERCLO~WISE CY~ECTIO~. 

C"'A~ Al\(l£ OF 2cRO IS ~CRIZONTAl ANC TO THE RIG~T. 

"' 
"' .. 
.. 
"' 

c¥••••••••·~~····~·¥~·4~4···~•••••••q¥••••••••••••4•••••~··~·•••$¥$•••••••• 

CC~~O~ F'~TT 9 FMPP,FMI\NoTBOoPBOol\30 

REAl NBC 
CC~~O,../lGSZZZIZI200l 

DHENS!Of>. P(t.OOI , TH!t.Oilh V!it00) 
RE.C.l lo lYR 
IlltHGUI. ST8 9 SPE!,Sf>.B 
O!P'ENSIO" YNEGI4C0) 
EXTERNAl FONT2 
DATA IRC.C/21-fR::/ 
DATA IPITCH/2'HP::/ 
DATA IWAv~/2HW=/ 

DATA ISE~TE/4~AI.T=/ 

DATA ILY~/~HI.Y~:I 

DATA ILli\GH/2 ... 1.:1 
I"TEGE.R ei.ANI( 

CATA EI.A~K/4H I 

DATA IPS13HP8::::/ 
DATA INE/3HNB=/ 
OA H H8/31>1T8:::/ 

OATA LOGL1l/3~LG:/ 

CAT~ ICC~MA/1~,/ 

9~5 FC~MATIA3,I31 

'396 FCF<MAf(t,2,Ft..21 
o~g FC~MAT(M~,F5.21 

!. C G Lt.~= 1 0 
E~COOEI 9,999.LAEELIISE~TE,APCLA' 

IF (1. H • N E.! 0 0 l E. N C (0£ I 9, ~ 'ii go LA 9EL ) IL Y~ ol H 

EI\CCClt E,996.LAEH2l IFITCH,FRAT:C 
E~CC:Et6,996,LABEL3liF<ACoF<ACI~S 

EI·COCE.CE oS9bLA9h~IIWAVE oW 
IF ( L • G T • S g • l L 0 G I.E P..:::: A L C G 1C ( L I 
!FIL.LE.S'3lENCOOEf6,~96,LABE1.6liLf~GH,L 

If IL .GT.<i9lENCCDt l6,9'J5oLA9H6lLOGI.91.,LCGL::f'. 
113 FC~~Ai(F4.2) 

EI\COOE<~.S13,ST81F~TT 

~~CO~t:(4,~13v~P9lFMPP 

fi\C08Et4,~1! 0 Sf'.BJFMI\f'. 

911 FC~MAT(~3,F~.Z.All 

~NC00l(8,911,LAB;LTI!i8oT90.ICOMMA 

OCODt (8o911oLilB£LFl! 0 8oFE!C,ICCt'Mil 

EI\CODE<E.911oLABELf'.IINE,~80,ICCMMA 

112 FCRMAT(~3.A4.~1) 

c 

IF I F f" TT • E G. 0 I ' rl C C Cl I 8 , 9 H • LA E f I. T ) ITS • B I. A M' o I C 0 f" ~:A 
IF ( F f"PP • i;. Q, 0 l t IIJ CC CE I P , 9 12 ol A 8ELP I IP 8 • 9 LANK • I CO Mt A 
: F ( F f"NN. E G. C)[ r. CC Ct. 18 • '312 ,LA E!HN l I 1\8 • BLANK • IC CMI" A 

C HU't IS WLR!. TI"E FQSlHVf VI!U;ES AJ;i. SfPARAHC HCM NEGATIVE VALUfS 

DO 2 0 I= 1, 361 

YI\C.G(Ii:::O.O 
Y(Il::A3SCRIIII 
IF I~ ( I l • L T • 0 o 0 l V I'.E G ! I I "'A E S (I< ( I I ) 

20 CC~TINUt 

c 
c 
c 
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C"II'PC!<T ANT IMFCRTANT H'PCRTAN'I' 
C"HERE IS WHERE THE FLCTTlNG FlTINE G~TS INITIALil~D 'NLY O~CE 

C"""""""•"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""•"""" 
c 
c 
c 
C I~ITIALIZES GRAPH:C ~VSTE~ 

C I~ITIA TELLS PLCTfR TC !NITl~l!Zt ALL FCUii~~S .I~ITIA=i INITIALIZE~ 

!F!INITIA.N£.1) GC iC 23 
C~LL MCDESG«Z.6,4rCIDSl 

23 COTINUE. 
c 
c 

CALL V£CIG(l,fCNT2oOI 
CtLL s£·s~GIZ.S1o1ol 

C S:O i UF V It. I< FORT ""C LEAVE" 21l Pff<CHT BCRDER 
CALL CBJCTG IZ.21lo o21l. o!lOo ,eo.) 

C SET iFlTA AXIS OFFSET 
ZIB5l=9Go 

C D~F;N~ THl SL3JECi SF~CE FOF 90TH RMDIAL AND ~NGLLA~ VARIA3LES 
C~LL FSLEJGIZ.t •• C.,R~A),360.) 

C oqAwS A GFIC CF 3G CEGRE.E3 CF ANGULAR SFACING ANC .2 CF PADIAL UNITS 
C~LL StTS~G!Zo173,Q,QI 

CALL PG~!JGIZ,RM~)/~.o.~G.,u.,C.l 

C s=.rs FOFMAT FCR Lt8ELLI~G 
C~LL SET~t'G IZ •30 ,;::.) 
CALL S£TS~GIZ.~S,2.~) 

I'"~T=5.2 

S L~3~L RADIAL AXIS 
C~LL PCLtGIZoof5,175 •• ~.4M0oEC) 
CALL PCL£GIZo1e0~.175.,~,4HioOOI 

C SET LA~G~ CHARACT:K SIZE 
CALL StT~t'GIZ.~S,3.Gl 

C I~CICATf THE FORMAT FCR THE LABELLING 
Ff"T:6o2 

C LA~EL THETA ~XIS 

CALL PLAELG(Z,l.~C.,Q,ft'Tl 

C~LL SEiS~GIZ.~5,3oOl 

X8=1<~t.X 10 1.:.1 

CALL PCLfGtZ,~8 

xi'::P~.:.x ... :..r 
IF !SCt·TE f<.E a. ~u 

1 CALL ~CL~G(7.,Xi'o13f.,7,7FC0/~AX 

IFISC~TH.£0.0.01 

1 CALL ~CLfG(Z,X7o13E.,7,7HCIDS V) 
IFISCATE~.EQ.1,01 

1 CALL PCLEGIZ.X7o13foo7o7~SCATT VI 
IFISCt.HF.t0.2.01 

1 CALL PCLrG!Z,Xi'o13Eooi'o7hi PCLZ 
IF ISCt.TEFoEO.~eOl 

1 c.::.LL CCL~GIZ.Xi'ol3E.o1o7~! PCLX I 
PF H· T 93E .1.. A BEL o L H'E L2 • LA EE L3 t LA:'! E l 5 • LA BE: L i 

99a FCFMATI 4 •,•H~~E A~£ T~E LABELS •, 614X.A~II 

X3::~ MAX•! • 'f 9 
C~Ll PCLSGIZoj3 o30eo6oLABEL3) 
Xio:::"-MAX"'Z .2 
CALL PCLfG!Zo~4,4S •• 6oLAEEL2l 
XS=R~AJ( 10 2.05 

CALL PCL£GCZoX5 .4~ •• c.LA8EL51 
Xf:::~MAX 10 1.61 
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CALL POLEGiZtY6,~3.o6oLAEEL6) 

IF(FMNN.EO.O.A~O.FMPP.EQ.O) GO TO SO 
XT8=RMA)I"'1• 735 
CALL PCLEGCZoYT8o33g •• e,LAB£LTI 
XPE=RMAX"'1. $1. 
CALL PCLEG(Z,YPBo33Seo8 0 LABELPI 
XN9:::RMAX .. 1.36 
CALL PCLlGCZoXNB.332.oSoLABEl~l 

XS:fB=2.07"'RMAX 
CALL PCLEGCZoXSTE ,32D.,4oSTB> 
XSFB::1,92 4 RMA)I 
CALL PCLCGIZ,)ISPE .~17, 9 4oSPEl 

XSN3:1.71!"'RMA)I 
CAll PCl~G«Z.>SNE .~lZ •• ~.SNEl 

5G COf\TINUE 
C JC!NS WITH A liNE THE PCI~TS THAT ~AVE 9EEN PLCTTEO 

CALL StTS~GIZ.3C,2.l 

CALL PLI~EG(Z,361,Y,r41 

IFISCATE~.GE.!.Ol GC TC ~0 

CALL SE.iS~G!Z,30.~.l 

CAll Pll~~GIZ,361oY~EG.T~l 
.. o CCf\T!NUE 

CALL SETS~G(Z,30,2.l 

C M C Vi. T C NE ~ I= F\ t. ME: 

CALL PAG~G(Z,Go1oll 

C TC t.XH 
CALL E.XITGCZl 
Pf\INT 2!,RMt.X,PRATIC,WoFACIUSol 

21 FCR~AT(• •,•G<APt HtS etE~ PlCTTfD WITH R~AX=•• F 8.b, 
1~X,"'PERICc~•,~10.E,2a,• ~AVELE~GTH: 4 ,F8.~,2Xo•R~DIUS:"',Fe.~ 

~ ,zy, ~L~NGTH:•,f~.~~ 

Rl TURI• 
E t-.C 

' 
c••••••••••••446¥&4••••·~$·•••$•••••••••••••••••••••••¥••••••~•·••••••••••• 

c.. .. 

c••$••·•~•••••••••••••••4••••4•·•~·~•••••••••••••••~··~•¥•••••¥~••••••••••4 

+LA Y E;; ~ • -l t. '1'0 ~ • 
TANCE~T e. PE~FE~DIC €.2 
~rRICC 12. RACIUS Cot €. 
STOe 
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II. PROGRAM PAN. 

This program calculates the CIDS and the total scat

tering of a helix of arbitrary dimension, for light inci

dent along the helix axis. The calculation is made as a 

function of the polar angle of scattering and at a fixed 

value of the azimuthal angle. The results are printed 

and plotted in polar form (intensities vs. polar angle) 

and obtained in microfiche and 35 mm. film. No restric

tions are imposed to the ratio of pitch/wavelength. 

Deck set-up: 

(1) Control cards 
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Program SCATTER (version 2) 

(2) Program 

Subroutine POLAR 

(3) End-of-job-card 



PAN.1ZoJ00.4~S40Z.MAESTNE$8USTA~ANTE 

"USERPR 
"NO STAGE 
MNF4.T • 
FETCHFS,SANOIA.SAN~.SA~LLIS. 

FETCHPSoiOOSoULIB.ULIB~. 

FETCHFS,GPAC8~7.GPAC.CCSN. 

LINK.F=LGO.P=ULIBoF=GPACoF=SA~C.~. 

EXIT. 
DUMFoil• 
FETCHPS.IOOS,SY~TAB.SY~TAE~. 

GRU~P.P:OUTPUToP•SYMTAe. 

FIN. 
DISFOSE.FIL~•PL,PE=FE. 

c~•~¥·~¥~~~···$•••••••~•••••••••••-••••••••••••••••••4••-•••¥~·~·•$•••~•·•• 

C"T~IS P~OGPAM CALC~LATES CIDS AND TCTAL SCATTERING FCR AN CRI£NTFO H[L!X • 
c•OF AREITRARY PARAMETEFS WIT~ RESFlCT TC THF DI~E~SICNS OF THE WAVELf~GT~" 

c•OF THE INCICE~T LIGHT. THE LIGHT INCIOES ALONG THE ~XIS 0~ TH: HELIX " 
c•T~f I~PUT PA~AHETERS ARE ~A\ELE~GT~. PITC~. RIDilSo A~GLECF ALTITUDE CF • 
C"'SCATTU<ING ~ 

c••••~$~·~·$•M•~•$••••'••••·~-······-·4•••••••••~••$•••••¥•••••••••••••~··· 

c 

c~·~·~··••••¥•~•••$•••••••••••~•····~~•••••4••~••••••••••¥••$•••••••••••••• 

C"HEFt WE DECL~FE ALL VIRIA3LES AND AR~AYS USED IN THt FROGRA~ AND ALSC "' 
C"'WE "'1\KE THE. .U.LO:tilCf'.. F"C;;. I'E.MORY '" 

c•······$~·~·····~~··············¥··8·¥·-··~·¥····-···-~···~-·-·········$88 

c 

COMPL~X EZEYE. ~ZEXI~ 

"'!:: Al LENGTH 
CO~PLEX t: 13.3.3) .~PCN 

CCI'PLEX CloC2.C3oC1oD2oC3oCSTR1oCSTR2oCST~J.CS 9 F1oDSTR2oDSTQ3 

OII'fNSICI' QACI.OOl 
LEVEL2o8JI\ 
COI'MO~/GlANT/gJN(81o4001 

Dit-fNSIO" COit.OOI. T1-4FH.I'+00l. 9JIC.il 
~I~ENSIOI' IlMIR(4001.ILP!~(400l 

DII'ENSIO~ TCOIC.OOI 
DII'ENSIO~ PLOTSCI~GCI 

IN!EGE~ £~PCN 7 9 PLLIOX 

REAL llM!Rol!.PIR.LAI''lJA 
REAL MID!Lt>' 

0! I"E. NSIO~ ANGLE C4CO I 

c••~••••••••••$···~·$$ij•·~··•••~•••••••~•••••••••••••••••••••••·~·••$•••••• 

C"'I4ERi:: ~E. !NIT IALIZt Hf \it.I.UE.S NH CO FOR C0'1 PUTA HOt... " 
C"'AS THE PROGRAM IS WRITTEN IT CALCULATES THE SCATTOI~G F'CR A HELD' WITK• 
:•A UNIAXIAL TANGENYIAL PC1.4RIZA3II.ITY. I~ THIS CASE THE FOR'1 OF THE PCLAQ• 
:"'I2ASiliTY CA~CELS WHE~ T~S RATIO FOR CIOS IS TAKEN. THE~EFORi THf BI~Q "' 
c•PARA~ETERS DC NOT AP~EA~ "' 
C "'A IS T .-f. R A 0 IUS 0 F T H "'Z L !)' " 

C"'PtPIOC IS THE PITCH CF TI-lt. HL!l< A~J LENGTH THE 1\UMBP.' Ql" TU~NS OF TI-lE " 
C"HELIX. " 
C"NCPLOT WILL CC:CID~ Ht: I<Al(I/'LN Nl;f"BC:R Of PLCTS TO Bl Gr"E~<ATE'J 'JV THE " 
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c•PROGRAM. • 
C""I~CEX CETERri~ES THE ~AXIMUN (ROER Of eESSEL fUNCTitNS US~O IN THE SU~S • 
C""fLAG IS AN OPTION T~AT WHE~ EQUAL TO 1 CO~TFOLS THE PPINTING Of ALL • 
C""HTt:R~fDIARY CALCULATIO~S. IF EQUAL TO ZERO ONLY THl FINAL RESUI. TS AilE • 

C•PRINTED "" 
C""VALUE DETERMINES THE CLITOFF CF SPECIFIC LO::IS IN CICS " 
C•SINCE THE SCATTERING AS A FU~CflCN OF THE AZIMUT~AL A~GLE IS SPHE~ICALLV" 
C""SYMMETRIC, f~E GENERATION ANC PLOTTING OF OATA IS OtNE AT AN SPECIFIED '" 
C•AZIMUT~ALCPSII ANGLE ~HILE T~E POLAR ANGLE T~ETA IS VAFIEC FPC~ C TO " 
C""360 DEG~EES. "" 
C•PCLAR ANGLE THETA IS IN RAOIAr.S " 
C•AZIMUT~AL ANGLE PSI IS ALSO I~ RADIANS " 
C""HGLE IS THE POLAP AHLE THTA UPRESSFO IN CEGPE.~S " 
c••••••••••••••••••••••••~•·••••••••••••••••••••••••••••••••••••••••••••••• 

SMAX:::OeO 
IND£ )(2::::4 C. 
INOEX1==40 • 
FLAG:: C. 

C"'SElt.CT POLAR ANGL:' fC~ FI<It-.TINGS W~EN FLAG=i. 
~INANG=3~q I ~A)(~~G=339 

PI::3o141Sq26S35e~7 

VALUl:::.OCC1 
C•SEL~CT AZIHUT~ ANGLE 

PSI:::PI/2 
NOPLOT:O 
NOPLCT=1 
P£RIOD:l ~ LA~90A:1 ~ A:::1o0$ LENGTH::2000 
LENGTH=2C~O 

P=P::RIOD 
PRAT IO::P ILA"13)A 
NANGL£.::3 E.u 
DO 11 I=1oNANGLE 
THETAIII::1:•11 4 PllioO. 
Ar.GLEIII=THEftiii•l9C.IPI 

11 CO !If INUE 
:: 
A 

v 

c 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••~•••••~··••••••••••• 

DC 13 J=loNANGLE 
~=12."'P!/LAMBCAI 4 SI~ITHLTA(J)I 

R=ABSC>(I 
QAIJ):R.">. 

13 COI\THiUE. 
IFIFLAGefOoOol GC TO 77 
PRINT ~ 

~ FORMATC/,• •.•APCLA~~·. 8(1QX, 4 QA 3 1,11 
DO 18 I=lo NANGLE 
PRINT iOoANGLE(I),QAI:l 

10 FCR~ATI"" •, FP..4,SXoF~.~~ 
18 CCH!NU~ 

77 COt-.T I NU~ 

c 
c 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C4 HERt WE START GENARATING THE FOSITI~E ANO NEGATIV~ CRCEP. ~E~S~L FUNCT:ON• 
C"" Tl-!t ARGUMENT OF THE Bf.SSE.L FUNCTIONS IS NOW F•A " 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

DO :1. I::1.NANGLE 
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c 
c 

X=OA en 
L = lt1 
ALPHA:::Oo 

CALL BfSJ(XoALP~Aolo3J.~ZI 

l'l J 11 » • • • • • • • • • • • • • • BJ 11+1 ) 
JO •••••••C•••••••••J~O 

C ~JNI1oilooe••••••CooBJN(~1.IlooCoCo•••••BJN(8loii 
C J•~Oeeeeeoeo$eee&eooJOeeeoeeeeeeoeoeoCoeJ40 

Nlln;, .. 0 

30 COI\'fl:NUt 
£)1P0Nf=t.laNN 
L:::~2$NN 

!3 J N I NN • I)" ! ( ® 1 • 0 I"'"£)( PONT I"' 8 J I !.1 
NN::NN@1 

IFINN.EQ.Ol GC TC 31 
GC TO 30 

31 CO 1\T INUE 
l'lO 2 11::::1o41 

NN"ilt+ .. O 
3JI\(NNv !1::3J(NI 

2 COH INU~ 
COIIT!NUE 

c 
:~~···¥·$~·~~·~·~44~¥$U~$·~~~~~$~~·········~··········-~··················· 
C"'TI-E'SE: A"<E ALL PRINT HG STATE ~ENTS 
c3•~•~••$••••••~•••~•••••4••$q~~•••••~$~••••••4••••••••••••••••••~••$••$••• 

IFIFLAG.EO.Ool GC TO ~2 

PRINT 3o LENGTH 

3 FCRMA T ("' "'o "'LE NGT .. ="'• F '1 e4 oi:H9X 0 "JN 00 "') o II 

PF<Itf; 10t.!ANGLE.I:i:) o!=lo!ll 
:C6 FCR~"ATCI."ANGLE=~•8(i..X,F10.71l 

"RINT 6, (QA(!I.I:1,S) 
c FORMATII,'"IIItDFX.CA=.,o1 (5XoF10.71 l 

DO '7 K:::1,e1 
KL :::1( -41 
!:!f<INT 4oKL• (?JN(K,!l.I:1,SI 
FOPMAT ( ~ ~ • I~ • R !3X, E 12.5 )) 

5 CO NT! NUE 

72 CONTINUE 
c 
c 

:•~4$~~··4··~··4··~¥~·~·~·~4·~~¥¥~$.44••*•···············4·$·8·4¥¥¥¥······· 
:~P,OCEEC TC CCMPUTF TrE CIJS FOR LIGHT INCID£NT ALON~ THE z OPECTICt>. 
:,. 9JN!41.Il=JISU3Cl OF Af'G(J:I 

C"'CCM~UTf NCW THE CGMPC~E~:s FC~ EAC~ OF TH~ POLARIZATICNS CF THE 
C"'IIE.CTOQ E. IDI~t:CTION.PClAFHATICNo EACH OF H1f COI'PCNt NTSl 
~'"EXA~PLE El3o1o2l "'lA"S TN_ SECOND CCMPONFNT CF ElE.CiRIC 1/~CTO~ 

::;.,Z!'D ALONG TH~'_ )( OIHCT!ON AII.D HAIItlliNG ALCNG 'l'Hl POSIH\1£ 
C"'TICN 
C"'D~TcR~IN£ THE COEFFIClE"TS 

C"'CCMPUTE CIDSI!l FO~ ~LL THETAIII 

DO 100 1"1.360 

1)0 1000 II=1o3 

JC 1001 JJ=1, 3 
l'lO 1002 KK=1o3 

t ( II • JJ • t<K I = ( 0 ~ 0 • C. 0 I 
1 0 0 2 C 0 t-oT I iltJ f 

.. 
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11:1111 COM' INUE 
100 0 CO H INUE 
c•OELKZ IS THE PROJcCTICN OF THE OUTGOING WAVE VECTOR (K) ON THt Z AXIS 
C5 ITS MA~IMUN VALUE IS ·4~PI/LAMBOA 

OELKZ:C2.•PI/ILA~EOAl9 5 CCOSITHETAIIBl•1eDl 

C•SUM OF ALL ORCERS OF COeFFICIENTS TIMES BESSEL FUNCTICNS TI~ES THE CORP.E• 
C•S~O~OI~G FACTORS, FRCM -I~O~X TO t INDEX WILL Bl GENE~ATED 

NEGIOX=41+INO~X1 

PLUIOX:41+INOEX2 
00 20C N:NEGIOXtFLU!CX 
OU~MV=i•(N•411/P)+!OELKZII2 5 PI)I 

AP2 : OU~~Y+ 12./Fl 
IFCAP2oEC.OoOI GC TC 101 
FP2: SINIP 5 PI•LE~ET~•AP21/(Pl 5 A~2) 

GO TO 111 
101 FP2= P•LeNGTH 
111 COM INUE 

A~2= OUMMV•I2o/Pl 
IFI AM2oEGloOoOl fC iO 102 
F~Z=SIN!P•PI•LE~EiH•A~2l/(P! 5 A~2l 

GO TO 112 
102 F~2= P5 LENGiH 
112 CO 1\f INUE 

APO= OU"'MY 

IF CAPO.EGl.OoO) GC iO 103 
FPO: SIN!P•PI•LE~fT~·~PCl/IPI•A~Cl 

GO TO 11~ 

103 FPQ:P"'LE~GTH 

113 COHINUf 
AP1=JL1"1Mh (1 0 /P) 
IFIAP1.E.C.Oo0l GO ro 10it 
FP1: SIN!P•PI"'LE~GT~ 4 AP1)/(PI 5 A~1) 

GO TO 114 
104 FPl:: P5 LENGTH 
114 CO H INUE. 

AM1= OU~~V·Ii.l?) 

If IAMloEQoOoOI GC' iC 10~ 

Fi"1=SIN( F•PI•u· ~GTH"'£."1 )I (PJ:"'A1'1 l 
cc ro us 

105 Fi"1= P•LENGTH 
115 COt-.T' II'>.U£ 

C3=8JNIN.Il 
SINiEi::SI~(THtTACIIl 

COSTET=COS liP!! TA <Ill 
CCSPS l=CCS (PSI l 
SII'.PSI::SI~!PSII 

C"'::JEFINE ANGLf PSP~!I' 

PSIPR~=PSI+IP:12.C) 

Z:(l\•t..11 5 F>SIPr;M 
XPCN:::COS!Z»+!C •• 1.l"S!t-.1Zt 

c 
c 
c 

If'<At-;GLE CH.Gf .MHA~G.A~C.ANGLECH.U.~AXANGI GC TC t.30 

c••••""'""""'•••••••••••"""'•""'"""""'••••••,..•••••••••••••••••••••••••••••••••~· 

c• • 
C"T~ESE ARE ALL PRINii"G "OUTI~ES " 
c• ~ 

c•••••••••••••••••"'""•••••••••••••••••••••••••••••••••••••••••••••••••••••• 
IFIFLt.G.EO.DI GC TC ~oo 

.,.30 CO~T !NUE 

PI<:!: NT 888 • ANGLE I Il 

256 



e88 FORMAT(I,I,I,I,• •,~A~OLA~H:•,FS.2l 
PRINT 49«;1, N9 N-41 

~99 FORMAT(/, 1, 3 PUN~lNG=•• 12, 2Xo 4 ACTUAL C~CER= 4 tl~l 

PRINT 500 
500 FORMAT(I,~X 

1 ,• DUMMY AP2 AM2 AP 1 A~1 FP2 
1 I'M:!. FPi F'U FPC"') 

PRINT 501, DUMMV,AP2,AM2 0 AP1,A~l,FP2,F~2,FP1 0 F~i,FPO 

501 FOR"lAT<• "'dii2X,f'8.1;) ,5 (1)(,!'10.4)) 

PR INH02 
?02 FORMATII,BXo • 8 FSIPRM l X~ON 3 1 

PRINT 50:!, Bo PSli=R!",Z, XPON 
503 FCRMAT<• "'o2(2XoFe ... l,10~tF8.4o2Xo"'l"'oF8o4o"'•"'•f6o4o 3 ) 3 ) 

Pi\! NT 50'-
501+ FORMAT!/,"' E«3,2o11 I £(3,2,21 I EC3,2.3l I 

1 El3do11 I En,1o21 I E< 3o1o:n·q 
PRINT SC~. EC3,2olloFC3 0 2 0 2l 0 EC!o2o3l,~l3.1o11,(3,1,21,E(~,! 

1 • 3) 
505 FOP.MATI"' "',6(1Xo 4 ("',F~ .... •,•,F8.4o 3 l"'l) 

c 
c 
c 

t.OO COHINU£. 

C CCMFUTE ThE TERM E (X,V,C06<!FCI\ENTS 1o2 9 AN03) 

C I~CI~ENC£ Z POLARIZATION V 
E I 3 , 2 • 1 I ::: f ( 3, 2, 1 I + I A "'A I C t.. I ) "" ( J • , 1 • ) "B 3 I F :» 2 -1= ~ 2 I 3 'It P 0 N 
t: ( 3, 2, 2 I =E I 3, 2, 2 l + I A • A I ( 4 •) I "'B"' I 2 •"' F P 0 + F P 2 "" f<' 2 I"')( PON 
E I 3, 2, 3 I ::E ( 3, 2 , 3 I +I A • »I ( 4 • ap I I t "9"' ( F J:> 1 +F f'1 I")( POlio 

c•I~ClDENCE V POLAR:ZATIO~ W 
c•••co~P~TE Thf TERMS El3,1. cor-PONENTS 1.2 •~o 31 

El3o1o1l=EI3olo11+(•A•AI!;oi""B""CFP2•Z.,.FPO+FM2)•XFON 
£(3,1,21:£(3 0 !,21+1A"'AI~.I""(Q.,1.1•S•CFP2-F~2l"'~PCN 
E I 3, 1 , 3) =E ( 3, 1 , 3 I + I A 3 PI ( 4 • 111 P U ) 3 ( ll • • 1. ) "'9 111 

( F P i•f ru I"' I< P,J N 

IF{ANGL£1Il.GCoMli\AI'<G.AIIC.ANGi.EIIIoi.Eo"~AYANGI GC. TO 1+31 

!FIFU.G.t.Q.C.l GC TC -.0& 
431 CCI\TINJ~ 

P F< 1 NT 50 ';, E I 3, 2 , l I of: C 3 • 2 , 2 ) , f ( ~, 2 • j I , E I 3 • 1o l I • ( 3 ,1, 2 I o:: ( ( • 1 
:;. ,3) 

Lo06 COf\TINLi£ 
2 0 0 C 0 f\ T I NU E 
:•FINIS~ ALL Su~S 

C"'Hi::Rc. Ti'E FIELCS HE COHECTEC FCI< f':ANSVC:O:SA UTY 
EZEKIS:CCSPSI•SI~TET"'~I3o1,1)+ S111oFSl•Sif\T~T•EI2.1o21 

l + COSTE.T"'f.(3,1,3l 
EZEVE= CCSPSI"SHTET"':O (3,2.:1.1 + SHPS!"SII\Tt:f"'EC3,2,21 

1 + COST~T"'E(3,2,31 

C 1::: f ( 3, 1 .1 I •CC S P S 14 S I NTE T • E ZE.I<'I S 
C2=E<3,1,21•SINPSI"'SI~TET 3 EZEKIS 

C3:::E !3,1,31 oCCSHT 3 i:.Z::KIS 

Jl::E (3,2.11·CCSPSI 3 SINTET"'ElfVE 
DZ=E! 3,2 ,21 •SI~-<PSI 3 S!t-ATE T"EZEVE 
~3=EI3,2o31·COSTET"'EZZVE 

CSH1=CGI\JGICll 
CST~2=COI\JGIC2l 

CS H 3=C:l f\JG I C:! l 

DSTU=COt-.JG 101 I 
OST~2=CO~JGID2l 

OSTf:'3:::COt-.JG !031 
IFIANGL.t.IIl.:J€.MHA~G.Af\.C.ANGLECil.U.,qll(ANGI GC '1'0 432 

IFIFLAG.EO.O.) GC Hl '<01 

432 CCf\TIIIoUE 
PJ<INT 50E 
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50& FO~MATCI,9~.•ct•,9x.•csr~t•,gx,•cz•,9x, •csr~z·,9~.•C3"'o9~. 

1 4 CSTR3"') 
~'RINT 505, CioCST~i.C2,CST~2.C3oCSTR3 
PRINT 507 

507 FORMAT Uo"' 01 I DSTRi I DZ I 
10STR2 I 03 I OSTR3 ., 

PRINT 505. Dt.OST~1oD2oDSTR2tC3oDSTR3 

401 COI\T INUE 
c 
c••••••••••••••••··~··••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C"'CCMFUTE IL MINUS IR "' 
c•TI'IS GIVES Tl"::. C:>RRECT IL•Hi FOR INCIDENCE ALCNG Z " 
C~~'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'~~'"'"'"'"'"'"'"'"'"'"'"'~~'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'""'""'"'"'"'"'"'"' 
c 

ILMIRII):ICSTF1"'C1+CST~2"'02+CSTR3"'C3•(C1"'CST~1+C2"'0STR2 

l +C3 4 DSTR311 ~c-z.~ca •• i.ll 
ILPIRIII=IC1 4 CSTR!tC2"'CSTR2+C3•CST~3+01 4 0STRi+OZ 4 0ST~2 

l + 03 4 0STRH"'2• 

c••••••••HE~~ CDPRECT FCR SHARF OISCC~TINUITIES DUE TL 2Ef01ZEPO RATICS 
TESTi=ABSIILMIRIIll 

c 

HSTZ=ABS<ILPIRI PI 
H=ioEe1 S 
IFITEST!oLEoH.ANC.TESi2oLEoHoA~J.IoNEo1l GO TO 15~0 

IFITEST1.LE.H.ANC.TEST2oLE.H.A~J.IoNE.21 GO TO 15CC 

CDIII=IL~IRIIli!LP~~~II 

GO TO 1501 
Hll 0 COH INuE 

c 
~ 

"' c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C4 MCRZ PRINTING ROUTIN~S 

c••••PR~NT UNCCRPECTEC DISCONTINUITIES 

PRINT 1550 
PRINT 1550, IH<GLE. (!), IL~Ifi( lloit..PI~I<U 

155~ FCRU.ATCio"' •,•ANGLE="'•F~•'•"'IL•IR=•oE16oSo2~o•It..+IP="'•t1~.~~ 

CD!Ih10C. 
1501 CCHINUE 

IFIANGt..E<IloG;.MI~ANG.ANCoANGt..EliioLE.~AXANGI GC TC 413 
IF<FLAG.fQ.O.l GC TO ?11 

&.33 CO H INUE 
PRII'4T !H2o IL"Ifi<IIoiL~'H< IIlo CJIU 

512 FOR~Aillo 4 •, 4 IL~IP~•.l1G.g.zX,"'ILPIR:•,FiS.~.2),•C~="'tE1~.q) 

PRINT 510 
510 FORMAT ll.ld,/1 

511 COM !NUE 
100 CCHINUE 

c 

C•GET THE MA~IMUN AESOLUTE VALUE OF IL+IR 
MAX ILM=O 
DC 15&0 ~>':1,31)0 

AILPIR: ABSCXLP!~IMII 

MAXILM=A~AX1CAXLFIR.~AXlL~I 

1 ~6 0 COH INUE. 
c•CCR~ECT CIDS FO~ ~ALSE VALUtS 

DC 15£:5 14=1.360 
AILPIR:AeS(IlPIRC~I) 

"' .. 
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c 
c 

·;co~ rO:::CCOH 

FORM=AILPI~IMAXIL~ 

!I' iFOR'i.LT.IIAI.UEI TCDOO:O. 

1565 COI\T INUE 

c~P~INT ~OUTINES 

PRINT 907 9 I.~NGT~ 

907 FCR~ATCI,/,• •,• CD AND TOTAL SCATTE~ FCP ~ELIX LENGTH :•,F 

1 5.2.11 
PR HiT7 

7 FCI\MATII, •APCLAF<I- •, 6Xo~~'COCII•, 6)(, "'Il-If<"'obXo~~'H•IR~~',~X,"' 

1 CORRECTED CD"l 
JO 57' K::: lo NANGLE 
ANGL::: THtTAIKl"'16C.IPI 
IFtCDIKI.FQ,100d CC(I()::: 0.5"'(CJ(K•U+C')(K+Ul 
PRif\;f 58 • ANGLo CDUO • !LI'IIR<Oo IlPIIHKI,TCOtKI 

58 FORI"iiT("' "'• F~.4. 4), E12.So 3« .. X,E15.81) 
57 COH INUE 
c 
c••••JETER'iiNE THE MAXI~Uf" VAL~E FCF PLOTING SUEROUTif\;E 

DO 109 I=1,NAf\;GLE 
SMAX:::AI'IAX1(ILPIR! Il,SMAXI 

1 0 'l C 0 1\ T I f'.U C 
><MAli=1.0 

DC 1115 J=1• NANHE 
PLOTSCIJI=ILP!R( Jl/SMAX 

11n CC 1\T If'.UE 
C"PLCi SCATH.Rrt>G 1/f RSLS T~->.: ~CLAf<. A\/Gl:: 

PJ:;!NT 151, 1\~0., LE~G':'h 

1~1 ~'CP"''AT<I."Pl.O'" GI'API- Wn'ro ~I'&.): .. ,F~.S..ZI(o"LENGTI' :"'•""~.2) 

PRINT 15 2, S~'Ali • Lf II.GTr. 
152 FCP"'AT(I,•PLO" GR~Pi-' 1'(1\ TOTAl. SCATTC:~ CIIIICEO 3Y S"AlCe•, 

1 t16.~o2li,"L~NGT .. ="• FS.2l 
c 
C Pi.Ci Gj:;C.ProS 

c 
c 
c 

c 

If (NOPL.Oi.EO.OI CC TO 600 

SCATEP::O. 

CALL PCI.Af;IANGLE.CQ,F:MA)<.,I.Ef>,GTI-'.PI'.ATIQ,A,SCATEI<I 
CALL PCLA~lA~GLE,TCD.~MAliolENGTH,PRATIO,A,SCATE~) 

SCt.TU::l,O 

CALL PCLAR(ANGll.FLCTSC.R~AX,LfNGTH,PQATIC,A,SCt.TfPI 

~ 0 0 C 0 1\ T I NJ:: 

c 

STCP 
END 

C"'ThiS SWeRCUTINE MAKES PCLA~ G~API-'S 
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C•T~E ARGUMENT OF T~E FLNCTIONS ARE MEASURED IN DEG~ElSe 

c•T~E INFUT OF THE ANGLLA~ VARIABLE ~AS TO BE ENTERED I~ RADIANS 
C 4 A~GLES ARE PCSITIVE I~ T~c CCUNTERCLOKWISE OI~ECTIO~. 

C•AN ANCLE OF ZERO IS ~ORIZONTAL AND TO THE RIGHT. 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

CO~MON/IGSlZZIZIZOOI 

DII'ENSIOI\ RC400l • HitotOOlo '\'14001 
DI~ENSIOI> 'I'NEGI4COI 
EliTERNAL FONT2 
DATA IRAC/2HR::::/ 
DATA IPITCH/4HP/~=/ 

DATA ISE~TE/3HLN=/ 

;)0 20 I=i. 3&0 
YMG!Il=O.O 
VUI,ABS (P(IH 

IFHdUoLToOoOl VNEG(!h:A8SHI.IUI 
20 COHINUE" 
C I~ITIALIZES GRAPHIC SVSTE~ 

CALL MCO~SG!Zo&o4~CIDSI 

23 COHINUE 
CALL V!CIG!Z,FONT2o01 
CALL SETSMGIZt51oiol 

C SET UP A VIE~ PO~T TC L~Vl TEN PERCfNT BOQ;)EF 
CALL OBJCTG<Zo10 •• 1Coe9C.,9Dol 

C SET THETA AXIS OFFSET 
ZU8Sl:9C. 

C SET ANGLE OF ~ AX!S LABtLSt ~~ASURED F~OM T~E HORIZtNTAL 
z Ul!61:: .. s. 

C O~FINE THt SU9JEC1 SFACt FC~ BOT~ RADIAL AND ANGULA~ VARIABLES 
CALL PSUeJGIZoO.,C.,P~A),360ol 

C D~AWS A G~ID OF 30 DEGRE~3 OF ANGULAR SPACING INC oi CF ~AJIAL UNITS 
CALL PGRI~GIZ.RMA)/iO.Oo30ooCoOI 
CALL SETSMGIZ,4S,1o0l 

C SETS FORM~T FCR LAB~LLI~G 

F~T=S,2 

C LA9EL RADIAL Alii$ 
CALL PLAELGIZ.O.~~AX/5. ,o.F~!l 

C SET LARGE C~ARACT~F SIZE 
CALL SETS~GIZ.~5.3.0l 

C I~OICATE THE FORM~T FCR THE LABELLING 
Fi"T=6o2 

C L~B~I. THETA AXIS 
CALL PLAELGIZ.1,3(.,C,Fi"Tl 
CALL SETS~GIZ.~5o1o0l 

ENCC0£(10o999oLAeELliSE~TEoAZI~Ui 

999 FORMATIA3oF7.2l 
CALL PCL:GIZ,1o0493o170., 9,LAE~L) 

IF ISC:.TE;:; .Ea. Do 0 I 
1CALL POL~GIZ,1o1226.171.,22,22rLIG~T INCIDE~T ALO~G Zl 

IFISCATER.EQo1oOl 
lCALL POLEGIZolo1226o171ooZ2o22~TOTAL SCATTER AL,NG Zl 

Et-.COJf (1Q,997.LAHL2l IFITCH,FR.HIO 
S97 ~O~MAT(A~,FG.~l 

ENC00£!6,99&oLABEl3l!RACoRADIUS 
996 FCRMAT(A2 9 F4.2) 
998 ~O~MAT("' •• "'LABEL=•• UOo 2Xo "'LAE!E.L2=•oA101 

PRINT 99~ • LABELoLA8EL2 
CALL SETS~G!Zo45,2.01 

CALL POLEG!Z,lo92o&Ooo6oLABEL3l 
CALL POL~GIZo1o70t45ot10tLABEL21 

CALL SETS~G!Zo45.1.l 

C JCINS WITH A LINE THE PCI~TS THAT HAVF BE~N PLOTTED 
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CALL S£iSMGIZo30.J.) 
C A Ll Pl. I 1\E G C Z • 3 6 Q ol' • i H I 
IFISCATER.EQ.ieOI GO TO ~0 

CAll PLI~EGCZ.360,YNEGoTMI 
CAll PLII\EG(Z.36CoVNcG.TH) 
CALL PLII\EG«Z,J60,YNEG,T~I 

;., 0 COI\TINUE 
::; TO EXIT 

CALL. UITG!ZI 
PRINT Zlo PM4)( 9 PRATIC 

21 FORMAT(• •.•G~APr HAS eEEI\ PLCTTED WITH ~~AX=•• F e.~. 
1 4X, •PRATIO=~. F10o61 

RETURN 
END 
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III. PROGRAM COCO. 

Calculates CIDS and total scattering for groups of 

point dipoles, forming a helical array, with uni-axial polar

izabilities along the tangent to the helix. The in~ident 

electric field is corrected for dipole-dipole interaction 

among the point dipoles. The input parameters are: pitch, 

radius, angular separation between the groups, length of 

the helix and the band properties of the polarizability. 

Deck set-up: 

(1) Control cards 

Program INTERAC 

(2) Program 

Subroutine POLAR 

(3) Input deck 

(4) End-of-job-card 



ecce. 2.3ooo.ssooo.~~9~12.BUSTAtA~T£ 
•NOSTAGf. 
SCP,A=2900. 
s I'" I, .:1. 0 00 00. 
MNF:.. 
FfTCH~S,SA~CIA,SANO,SA~LI.IB. 

FETC~GS,IDOS/ULIBX,OATE::01NOV7~o15475. 

FETC~FS,GflAC6~7,GPAC,SC2N. 

FSSIZE,SANO=O,~LIBX=O. 
LIN~.f=LGO,P:ULI9X,F:GFAC,P:SA~C,X,PP:{LC:5000DJ. 

uxr. 
OUMF,Q, 
SCP,A::Q, 
FETC~tS,IDOS,SY~TAB,SY~TAE~. 

GRU'-'F, 
FIN. 
SCP, A: 0. 
SFL .• ,Q, 
~EWHC!FlL:-11 

COP~(F!LM.ClT) 

I<.OH~C IF IL~I 
COPV!F!Lt','10Rf.) 
O!S~OS~of!L~::3M,M=Mfe 

D!SFO$E,I"Cf\t=3r-,M=MF • 
D!S~CSE,CUT:~F,I":ME. 

c~•4••••••••3·~4•••~••¥•••4•••••••·•~···~·•4••••••-•••••••••••••••••¥•••••• 

C'*'TI-IS ~f'OGPAI" COMPUTES Hf TC .. AL Al\0 THf O!Hff;EI\T!AI. SCATiFR!NG FOI<: A "' 
c•DISCRETE ARFAY CF PC!"T~ FCF~lNG A ~EL!X INC ~AVl~G A POLA~IZABJLI "' 
C"'TY TA~GENTIAL TO T~~ ~£LIY. T~~ ~ELI~ PA~A~ETERS AR( AP9IT~ARY • " 
C"'TI-E HFUT PtU;,:.M(H RS AC<r Th[J<FF"CI<t WAVHENGTI"t PITCh PADIUS. ANGLE "' 
C"'OF ALTIT~CE C~ SCATTEF!~G A~C TrE ELECTRONIC FAPA~ETE~S OF lHf DCLtP!Z ~ 

C"A3!i.ITY " 
C4 TI-IS >~<OGRA"l CORRc CT~ TI-t HCICft--T FIELD CF TI-E LIGI-T BV !!V A:JDING TC Ii" 

C"T~E RAOIATIC~ FIELD CF ALL CT~ER CIPOLES INDUCED I~ THE ARRA~. " 
C•IF THE PITCM CF THE ~tLI~ !5 GREATER CR EQUAL TC THt ~AVELE~GTH IT CtLCU$ 
C"LATtS THE SCATTERI~G l~TE~SlTlES AT EACH LAVER l!~E. IF P!TCH IS SMAlLE~"' 

C"T~A~ LAMBDA IT CALCULATES TrE SCATTERI~G INTE~SITIE~ AT F!XEC ANGLES IN" 
C"SFAC£, " 
C"'"'."'"'"'"'"'"'"'"'"'"'~"'"'"""'"""'"'"'"'"'"'"'"'"'"""'"'"'"'"'""""""'"'"'"'""'"•"""'"'"'"'"'""'"""'""'•"••••••~• 
c 

c 
c ,.. 
v 

c~·~·•¥4••••¥~•·••••$•~$·····~··¥··$~~·•••••$••$••••••$$••3••••·~~•••$••••$ 

C 4 HcF~ ~t QECLA~E ALL VAR!A~l£S AND A~~AVS USED I~ THlS PPOGRAM AND ALSC "' 
C"TrE ALLOCAT!CN FO~ ME~O~Y I~ OONE "' 
c~·~~~··~··~•¥••$•••••~··•~•••q•$~-·~~4·~·••••••~•···~·•••••••••~••••••·•~¥ 

CO~~CN F~TT,FMPP,FMI\N,TEQ,PEO.N90 

'(£AL N90 
O!i"ENSIOf'. IN(Id • PA(4) 

PEAL LAMEOT,LAMSCf'. oLA~EOf 

REAl LENGTH 
CC~PUX r 13.:>',3) ,)PCf'. 
COI"PLtX XPONTL,S~.c~.TN,XFONl2 
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c 
c 
c 

CO~PLEX CEl3v3o3t 
CC~PLfX S~MMA(J,3,3) 

CO~PLEX ALPHAT 9 ALFHAN 
ccr-ru.x At.PHAP 
CCI'PU.l\ £X PONT 
COI'PLEX EVZETA 9 EVEKIS 
CC~PLEX C1oC2oC3oC1o02oC3oCSTP1oCSTR2oCS!~3.CST~l.DST~2.CSTP3 

!:HI"ti-.SIO~ QA(L.QO,C:Ol 
LEVH2 9 BJN 
COI"I"CNIGl~NTI3JNC81.~DOl 

OH!'t.SIOf\ CDC.;.OOl,PSII4CCl,PSISTRI4!l!J»,BJC41l 
OHENSIOI' ILM!I< ll.t:iOI,ILPHC!oOO»oil(400l,If;(400l ,PU!'fiLI!oOJl • 

1PLCTIF11~COl 

Dli"ENSIOI' PLO!SCIL.OCI 
REAL LVF 
REAL IL~l~.ILPIRoLAI"BOAoiLoiR 

CI~ENSIOI' ANGLECI.COI 
Ol~ENSIC"' PARAI"I1Cl 

307 CCI\T!NUE 
c•••••••••••••••••••••••••···~••••••••••••••••••••••••••••••••••••••••••••• 

C4 HERC: WE. !NIT IALIZt TH VALlJfS NEHt:C FC!\ COMFL TAT:Ot.. "' 
C•SIGI'. OETEF'tit,t:S '!'HE ~US:: Cf THE ldcU:X. SIGf\.::::1, GillES t. F!GI"T HU,CE!: "' 
C"'HEUX. S!Gf\.:::•1 GIVES t. LEFT t-ANCEO OI'.E. "' 
C 4 F~TT IS T~E ~TP.ENGT~ CF TME TANGE~TIAL BAND 4 

C•Ln~~Ci :s TH£ PQSITICI\ CF T~IS BA~C "' 
c•GA~~AT IS ThE HALF ~EIG~T WICTH CF ~~E BAND • 
c•T~E CO,RE~FO~DING ELECT~DNIC FA~A~ETERS FOR T~E CTHLR AXES OF THE PCL'~ • 
C•IZA3ILITY ARE SET 9U1 NCT L~EO IN THE COMPUTATID~S. 4 

C4 !1.AZII"li IS THl ~AX!~U~ NL1'3E.~ OF LAYtP. LINES 'fl-AT DIST FO~ A G::VE t-. "' 
C 4 R~TIC CF P/LA~BCA. ~E~E A CEFAULT ~ALUE FC~ T~E CCNTI!I.UOS CAS~ IS GIVf~ • 
C"'A !S HE. RADIUS OF TH t-El.. D. 4 

C"'P~~ ICC IS Tl-'f: PifCt-t CF Tt-E. H LIX A~:J I.Et-GTH THE f\.U~ :n I< Of TUI:)NS · Cf '!'I-S: " 
C"'MELIXo • 
C4 NCPLCT WILL CECID~ T~& tAXI~Lh hL~S~F Cf PLCTS TC BL GENERATEC 9Y Tid£ "' 
C"'P~CG~A"'• "' 
C"'HITU COP..TFCLS TI-'E HITIALIZATICI'. CF THE PCLAR PLOTS "' 
C"PCLZ~c. GIV£S SCA:T£Fl!I.G Cf LIGHT POLA~IZEO I~ T~E > CIRECTICN " 
C"'PCD::C. G:vr S SCATH f;IM,; Of LIGHT FOLAI<IZED II\ H-E :Z CIHCTIO\ " 
C"'DEF~ULT G!VES CIOS " 
C"NLH CEHRMINES !Ht: 1\Ut'~!::f< Cf LAYEF Lit-.ES Cet'PUTED a 
C"'LVR DETER"~Ht.S THE. illTH~ATII.E HCTiHG OF LAVE'!< LlNfS o~; AL .. I.L'Jf H "' 
C"'PCLAR FLCTS " 
C 4 It-S~X DE.TtRMIN~S THE I"AXI~U~ CROER Of eESSEL FU~CTICNS USED IN T~E SL~S "' 
C"FLIG IS AN CPTION T~AT W1E~ EQUAL TO 1 CO~TFOLS T~E PRikTIN~ OF ALL "' 
C•I~T~~~EDIARV CALC~LATIOt-S. IF ~OL~L TC ZERO 01\LV THL FINAL RES~LTS AI<£ " 
C"'F~I~TEO " 
C"'TfTC IS THE Af\.GULAR SEPA~ATlCP.. EET~EEN T~E OIFOLES IS GIVeN I~ RAOIAI\S " 
c••••••••••••••••••••••••••••••••••••••••••••••• .. ••••••••••••••••••••••••• ... 

FlAG:: C • C 
C HITIHIZE VALUES 

TET0::0.3 
TtTOSO=T~TO"T>TO 

SIG~;=1. 

F~TT=1• 

Ft'PP:::C. I F~N~=D• 
LAP.BOT=3.0 
LA~BON:::l.O $ LAMEOP= loO 
Gllt'1'1AT:::.15 
Gt.P'MAP=.:l5 
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c 
c 
c 

GAI"MAN:::e:!.S 
NAZ!M!.I:::fl 
NOP!.OT=Z 
PEFICD:ioO $ A:::1 ' LfNGT~=ZO ! L.AM9CA: 1 
II\ITIA-:0 
PC!.X=1o0$ POLZ=1,D 
NL'I'R:1, 
l'I'R:::O 
!NDE X:I.=@ZO 
II\OEX2:::2 0 
PI:::3.1~1S9Z65358~7 

3U COfiTlNUE 
c~~··•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C•HEPE T~f CCM~ANDS FC~ I~P~T CATA AP~ SET • 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

READ 999oii!N(J),PACJ)»,J:1,/.i) 
PIU NT 99 6, ( <IN I J) • FA (J) ) • J:o: 1 • &. l 
FORMATIA9,F9.~,X,3(~9,X,F9.~oXtl 

FCRMAT(/,/ 9 ~!A9,X,F9.~oX) I 
DC 31H I=1oi+ 
IF!IN!Il.E0.9HPERIOC lFERICC= 
IFCIN<IIoE.Oe9~!.A~EOA )LAMBCA: 
IFIH.tiJ.E.Q.9t<RACWS lh 
IF <IN III oE0.9t<LZEF:OI'\ )1.111'4801'\= 
IF <INIII.SQ.9~-'lZEI<OP ll.AMBCP :: 
IFIINIIl.bQ.9HLZEFOT ILA~60T::: 

IFIINCII.E0.9t<NC~~Al ILAMeON= 
IF (!N (!I .::0.9~"TH CEII.T ) LAM30T::: 
IFII~!II.~Q.9~F~lT IF~TT:: 

IF UN II) oE.O o9FIF~FF HII'PP::: 
IFIINIII.:Q.9HFM~~ lF~NN: 

IFII~III.~Q.9t<PE~FE~DICilAMBOP: 

IFIINtil.EQ.9~LE~(Tr lLENGTH= 
H!IN(Il.:::a.9r-+UVE~ lt-CPLCT:1+ 
IF(INIII.t.Q.9H·L~VE~ l~lVP: 

IFIIN<Il.E0.9rSIG~ ISIGN= 
IFI!NIIl.:Q.9HP0l) IPC!.X= 
IFliNIIl.EQ.9HPOLZ IFCLZ= 
!F llN!Il .::0.91-'Ht:£)11 llNDEX1= 
IF liN <I I • .;:a.9t-INCtX2 l IMi£X2:: 
IF I I~ II I.E 0.91-'STCF )STOP 

IF O:N<II .E0.9HCCHUH I GC TC 303 
IF liN II l .::0.9HI'H'.~,.A~i ) GO TC 3C7 
CC 1\TINUi 
GC TO 311 

3 03 COT If'.UE 

c 

PAl!) 
P~(I) 

PA (I) 

FA«ll 
Ptdil 

FA en 
PA (IJ 
PA(I) 
PA (I) 
PAU I 
Pjl (!) 

PA (I) 
PAIU 
PA (!) 
PA (I I 
PA (I) 

PA (II 

PA(U 
Pil(!) 

PA !I) 

C fER~ IS Wf"ERE THE SIO CF HE Ht.UX SHSE IS CETE~MlN£0 
P:::PEFIOD .. SIGN 
>'SQ~:: 1P112"'PI ))"~-"c 
>'02PI=PIC2•Pil 
4~:::SQRT<~"'A+(P/(2 .. P!II"'"'2) 

C S~AX CETENMI~£S TI-'E ~CR~ALIZATION FACTCR FO~ THE TOTAl SCATTE~ING FO~ EASH 
C LAMEDA. IT ~~ST Bf FCLND IN T~IS CC LOOP 

S~AX:::O.O 

SI"A)fl:::O. 0 
SI"AXR=O. 
CDI"AX=J• 

c 
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c 
c 
c••••••••••••••••••••••••~•••••••••••••••••••••••••••••••••••••~••••••••••• 

C4 HERE THE L~RlNTZIAN·S~AFEO FCLARIZABILXTV IS OEfi~ED • 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c 

ALFHA1:F~TT/CC11«LA~BCT 0 •2Dt•«ii«LAMBOA 44 21)t tG •• i.l'GAM~AT/ 
1CLAMBDA 4 CILAMBOT 04 Zl·««GAMMAT 44 2t/~ll)) 

ALFHAP:F~PP/((i/(LA~90P 4 •ZII•Ci/(LAHBOA 4 •2)1+ (£oo1oi•GAM~AP/ 

1!LAMEDA 4 C(LAM80P 4 '2l•((GA~MAP••21/4IIll 

ALFHAN=F~NN/((1/(LA~BON 44 211•(1/(LAMBOA 44 21)+ CGoo1oi 4 GA~~AN/ 

4tLA~9DA 4 1CLAM90~-•zl-ltGAMMAN 4 '21/41111 

TSO:LAMSCT ' PBC:lA~BOP ~ NBO:LAMBCN 

IFIFLAG.~E.OI PRI~T 1505 
!50S FCR~AT(// o&Xo 4 ALFHAT•,&~o 4 ALP~AN 4 o6Xo 4 ALFHAP 4 l 

IFIFLAG.~£.0) PRl~T 505oALPHAloALP~AN,AL~~AP 

c 
c 
c 
c•••••••••••••••••••••••••···~··••••~••••••••••••••••••••••••~•-••••••••••• 

C4 THTA lS THE FCLAj;' AHL£ OF SCATTF.r<:~c; 4 

C 4 T~ETA IS I~ FADIANS 4 

C"'PSJ: IS Tl1t. AZ!fAUTHAL ANCL::: CF SCATTERI~G. IT JS CCI'lfl'Tr::!J 1-'EI<E EVE~V • 
C4 DEGRH eETWEH 0 AND 36 C "' 

C4 DlSCRT=O IS FCP COhTl~~CUS CASEIPE~IDC LESS T~AN LA~BCA,, OISCRT:1 !5 4 

C4 FCR DISCRETE CASE IPE~ICD G~EATER TAH~ LAM~OAI 4 

C4 DELKZ IS THl Z PROJECTICh CF THE VECTOR K•KO. ITS ~AX!MUN VALUE IS 4 

C4 2 4 PlllAMeCA • 
C 4 NAZI~t FOR P GR~AYE~ CR ~Q~AL TO LAMBDA IS CALCULATlO HEP.~ 0 

C4 IF CNLY CN~ LAVER LI~l IS WA~TEO SET NAZXMU=2 4 

c••••••••••••••••••••••••••••••••••••••••••••••••••,.,.,.,.,.,.,.,..,.,.,.,..,.,,.44¥•"'•• 
NAI\ Clf:HO 
N.HGL=NAHLEH 

DC 11 I=l.NANGL 
PSI (I 1::: (I •1 I ~~'P I/11:! 0 • 
A~GLECII:::PSI<:I 4 1~0.1~I 

11 CO H lNUf. 

c 
c 
c 
c 

DISCRT:O. 
IF!PERIOC.GE.LAMECA) C!SC~T:l.C 

C CC~FUTC THE ~~XIMVH ~C. OF LAYER LINES FOR DISC~ETE CISE 
C CC~FUTE ALSO THE PARt~ETfR CELTA KZ IN TE~~S OF THE AZI~UTAL INCLE 

IF I D ISCRT oE a. 1l NA Z It'll= I~ T 4 PH !COIL AM BOA+ 2 I 
SAH TY:::2 ~ 
IFC~CPLCT.L[.NAZl~UINAZJPU:hCPLCT 

DC 300 :T~TA=2,NaZI~~ 
IFlSAF~TY.LloNAZl~UtSTCF 

I. YR:::: IH. T A•2 
OC 299 I.P=1t2 

C T~I~ CC~TROLS THE ~U~EE~ OF ~EGATIVE LAYER L!~£5 TO 9E CO~PUTfD 
IF U TE TA • U • ( N LV F: 42 I • A N C • L P ol Q • 2 ) G C T 0 2 ~ q 

C T~:s ASSU~~S ONLY CNE Zt~O LA,ER LINE COMPUTATIO~ 

IFILPoEOo2 .A~O.ITETA.EO.ZI GC TO 299 
IFCDISCRT.EOoCIT~ETA=CPI12oi•15.•CITETA•21"'1PI/180ol 

IFIDISCRToEOoiiT~ETI:ACCSIIlTETA•21 4 LIM~CA/PEFICOI 

C T~IS CCHPLTfS NEGtTIVE ALTITLCE ANGLE FOR THF CD~TI~UCUS CASE 
IF(LP.~0.2oiND.OISCPT.ECoOITHETA=IFI/21t1~•CITETI•ZI•CPI/1BOt 

C T~IS CCHPUTES ALL hECITIV£ LA'E~ LINES FOR ~ISCPETE CASE 
IF!LP.[Q.2.ANO.OISCRTolOo1lT~E1A:PJ•ICOSCCITETA•2)•LA~9CII 
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1 PE.RJ:OOI 

IFILP.EQ.2.AND.DlSC~T.£Q.1) LY~:alVR 

Cf LK Z:: 12"PII! LAMECA I I"COS !THE T.l\) 
APCLAR= IHETA~180.IP! 

c•R IS THE PROJECTIO~ CF TH~ C~TGCI~G K VECTOR ONTO THE X•Y PLANE 
R:(2.•PIILAM8DAI"SI~(THf1A) 

c 
c 
c 
C""""""""""""""~"""'"'""•••""""""""""""'"""""""""""""""""""'""•••"•••••••••&••• 
C"HEP~ ~E INITIALIZ( A~C CAlClLATE T~~ PART OF T~t tL~ClPIC FIELD CC~TFI • 
C•BLTt.C EY THE CIPOLlS. ThiS IS HtH:E~='OPf THE 11\TE.RACUCN TERI". • 
C"J R~PRESE~TS THE MAXlP~~ N~~EER OF NEAREST NElG~eCH~ lNTE~ACTIONS TAKEN • 
C•I~TC ACCOUNT AT EACH SIDE OF A DIPOLE • 
c•••••••••• ... ••••••••••••• ... •••••••••"""'""""'"""'"""""'""•••••••••••••••••••4••• 

s~=co.o.o.Ol§CN:to.c.o.ol n~=«o.o.o.rn 

DO 202 J::1o10 
Tf TJ:J'"TETO 
SI~TEJ:SI~CT~TJI 

CCSTEJ=CCS(TETJ) 
D:2$A'"A"'!1-COSTtJ)+FSQR"lETJ"'TETJ 
AJ~=Cii(C$•1.~1 I~(A"'A"CCSTEJ+PSQP-3•CA 5 A 4 SINTEJ+PSQR"TETJI""21Dl 

ANG2::(2"PI~AILAMECAI"SINTEJ 

c 
c 
c 

S~=S~+tC •• 1.Cl•(D•S!NTtJI"'SINIANG21•AJN•2.0 
C~=CN+ (F112"PI lt"'CCSlh~G21"'AJ~•2.0 

IFIFLAG.tGoU 

c~~4···~~~~·•$••••••··-¥~~·····~·~~~··••••••~·~·•••••••••$••••••••••••••••~ 

C"'f1EP.E CO'E SCI'.:: PRHTlf\G FCLTHES "' 

:4···~···¥·~·······-~-·~·-···4············································· 
1 Pf' n:r s 2:. J 

520 FCI'MATC• •,• CN .... TN • • .. J:: • • I'-
.:. ) 

IF (FLAG.EQ.l) 
1PR!NT SOS,SN,CN,Tf\ 

202 CC~T III.U!: 
c 
c 
c 
:··~······4··~~····$~4-···~·~··4·······················¥·-·············$··3 
c•TrE LCCP ST~FTIN~ H£~E ~11.0 E~li~G IN 100 COMPtTE THL SCATTE~I~G INT~f\SI • 
C•TJE3 FOR E~CF PS: A~CLE ~N( FOR A GrVEN VALVE CF T~E ALTITUOfO~ LAVE~ • 
C "'L! ~t.. " 

C"'ILA~ IS A ?A~AMETfP 1rAT ALLCkS FC~ THE VARIATIO~ OF T~E Ftli) OARA~£ " 
c•T:~S TO CALCLLATl THE SCATTt~lNG Cf CO~CEhT~IC HELICES OF VAI':OUS PITC~ $ 

C"'A~C RADIUS. IF !Lt.M GCES FRCI' 1 TC 1 Tl"fN 01\LY 01\£ HU:X IS CHCUUIHC "' 
c$·~~4··~$4•••4·•~•·••••$•••••••••••$~•••••$•••~•$••••••~••••·-·~•••••••••• 

DC lOO I:!e360 
IF (Flt.G.f'Q.1) 

1 FRINT 521, I. PSI(!I 
521 FCRMATI"' "'•"'l="'•I~.¥ FSI(Il="'• FS.~l 

DC 699 !I:1,3 
DC 69!! JJ=1.3 
cc 6'H' 111<::1, 3 
SU~~A<II.JJ,KKJ:IC.~ ••• Gl 

t97 COHINUE. 
698 CCf\TINL'f. 
699 CCI\TINI.JE 
c 

CD 70 0 ILAM=1o1 
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C PLT PA~AMETE~S FOF ~l~S BET~EEN T~I~ CARD A~C NEXT CA~D 

c 
c 
c 
c•~••••••••·~·~~·~··~•••••••••~··~···~••••••••••••••••••••••••••••••••••••• 

C 4 HE~i i~E DIFFE~ENT VALUtS OF THE A~GLE PSIST~ RELATLD TO TM~ lliMUTHAL 4 

C4 AI\GLE PSio A~E CALCULIIHD 4 

c•••••••~•••••••••••••4•••••••••••••••••••~~••••••••~•••••••••••••••••••••• 

QA(I,ILA~):(2oO~FI 3 AILA~eCAl 3 SCPf(1oO•«SI~CT~ETAII 4 ~2 

c 

1 ~z.O•SI~IPSI«III~SI~IT~ETAI I 
DU~MV1=QAIIoiLAM) 

IF !DU~MV1oECoO.l GO TO 20 
ALPHA= ~ 4 A 3 COS!FS1(IIIIC~II.ILA~I 

!FIALPHA.GTo1oOIGC TO 20 

C TAKt ~fGATIV~ AVLuE FC~ PSIST~ A~GLE 

c 
PSIST~III:•AC05(~ 4 1 4 CCS«FSICIII/QA(l oiLA~II 

21 CC~TX~UE 

IFIFLAGoEOoOol GC TC 71 
C H:R~ CCME THE P~INTI~G STATE~ENTS FCR •••• 
C PCLAR ANGLEo QA, INClXJ. PSISTRIII. 

P~INT35,APCLA~, (C~(J,ILA~I,J=~9,e31,CPSISTRIJloJ=88,931 

35 FC~MATII•• •.·~PCLA~H:•,F6e~t2X.~QA:~,5!2 XoF~o4),2X,•PS!S'~'R:•,~ 

:. czx.~=e.~>>l 

71 CCH !NUE. 
IFIFL~G.:O.Gol GC iO 17 
PF<II\T '3 

'3 FCF<~ATI 3 ~ • 3 PSI•, ~(10Xo 4 0A 4 1,/l 
PRINT l.OoANGLECII,Q~IIo!lAMI 

10 FCRMATI 3 •, Fe.~.SX,Fi.~l 

77 CCH INU£ 
c 
c 
c 
c••4•••••••••••••••4••4••••4•••·~·•••••••4•••••••••••••••••••••4••••••••••• 

C•Pi<OCEfC TO COI"PU'~'£ CCt<Tli\LCI.S CO FOr:? UG>Ii II\ClDtN'!' ALCNG TI-l!': V or::ro::• 
c•TICI\ • 
C•CCMFUTE NOW THE CCMPC~E~TS FC~ EAC~ OF TH~ °CLIRI2ATIC~S CF T~E CO~F[C • 
C"'T!O FliRT CF THf. flECTRIC IJHlOP .• TOlES!: Will et. SIMEOLIZEC ev CE • 
C~T~EY ARE CEIDIFEC1IO~,PCL~FIZ&T!DN,EACH ~~ TNE T~PEE CC~PDNE~TSJ • 
C•EXA~PLE CEI2.1o31 MEAI\S iH:~c CC~FCI\E.NT CF CC~P.ECTI~N FIELD T~~V~Lll~G "' 
C•H TH PCS:::T:VE Y DIJ:;f..CTIO~ FCLHIZE.O IN TH~ X CIRt CTION 4 

c•••••••••••••••••••••4••4e••••••-•••¥••~•••••••••••••••••••••••••••••••••• 

DC 1000 II:1o 3 
DC 1DC1 JJ::::1,3 
DC 1002 KK:o1, 3 

E( I! • JJ • ~ 1< l ::: I 0 • 0 • 0 • 0 I 
CE II!oJJ,KKI:IC.C.C.Cl 

100 2 COoT l"lUC: 
100! COHII'.Ut. 
1 0 0 C C 0 TI NU i. 

00 200 Nt-.=1,H1 
N:::~N-B1 

SHTI\=SH IN 4 Tt TOI 
CCSTI'.=CCSIN~TfTOl 

ANG3::::QACioiLAMl•CCSI1>4•TETC•PSIS!~IIII• P~TETC•N•ICELKZIC2•PIIl 

XPCNT2::::CCS(ANG31+CO.,l.CI~S!~IA"lG3l 

CE(2o1o1l=CEC2,1,11•(1/(A~"'"'21l•XPCNT2~(ALP"AT 4 •21~1-A 4 SI~TN• 

1 HTO•TETCI•St-. 
Cl C2o1o21=CEI2,1oil•,l11A~~•211 8 XPCNT2 3 (ALPH~T••zl•! A"'CCSTt-.• 

1 HT0 4 TE TCP'SN 
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CE12,1,3l:CE12o1o3l@(1/(A~••zii 4 XPCNTZ•(ALP~AT••z)•(PI(Z"'P!l)• 

.1 H. TO•n: TC "'SN 
CE 12 • 3, 1 l =CE ( 2, 3 ,1) * U I (ll I'! "'"'2 l l'" X PONT 2"' U l FH .liT '114' 2 J "' ( •A"' S II\ TN"' 

1 TETO•TETO'"CI'i 
CEI2,3,21=CE(2,3,21•(111AM"'"'211•XPONT2"'1AlFHAT••21•1A"'C0STNl"' 

1 TETO•TETC•CN 
CE I 2, 3, 3 I::CE ( 2, 3, 31 • 111 U M"' "'2 l »• XPCNT2 • (A L PH AT nz l"' (PI ( 2 •co I I I"' 

1 H TO"'H iO"'CN 
!F (FI.AG.EOoll 

.!.PF!Ni 9i.o0 

9 4 0 F C f.: MAT ( "' ., , "' CE ( 2 , 3 ,1) ( C E ( Z , 3 , 2 • 

c 
c 
c 

1CE<2,3,3l C£<2,1,1) CEI2 0 1,2l 
1CEC2.1,31 "'I 

IF!Ht.G.t0.11 
1 FI'INT 505,CE<2.~.U.CEC<:,3,21,CE«2.3,31 .CEI2o1o1loCEI2.1o2l • 
1CEI2.1,31 

c••~·~~·~$•••••·~··¥··~··~$··44~~··-~-·~•••••••¥~•••••••¥•••••••~•••••••••• 

C"'NC~ CC~E THE CORPESPC~DING SCATTE~ED ELECTRIC Flfi.L WITHOUT THE CD~~Ec• 

C•TIC~. IN~1D1ATELV AFT2RoTHESE FIELCS SC 03TAI~~D ARt COR~ECTES • 
c•FACTC~ IS A CUMMV INCEX THAT CAN EE USED TO ELI~X~ATE THE CCR~ECT!ON • 
C"'Tt-J:T lS FACTCF<=O OR TC Lf'AVE lT TI"E"e THAT IS FACT0~=1 • 
c••~•·¥~••¥••••••••~··~·•q••••••••••-•••¥••••••••••••••·~··••••••¥••••4•••• 

c 
c 
c 

SI~~TC=SI~!N"'TfTCl 

CCSNTC=CCSIN"'TE!Cl 
A~G:QA!IoiLAMl"'CCS(~•TETC®PSIST~IIII+P•T~TO•~•(CEL~ZI«Z"'P!II 

E)FCNT=CCSIANGI+CC •• l.OI"'SINCJ:NGI 

C I~ClCE~CE V FOLARIZAT!O~ l 
~(2,3o11:EI2.~.11+(=A•P112"'P1"'AM•A~ II"'~XPO~T·S~N~TO 

l•tLFHAT•TETO•A~ 

c 

£I 2, 3, 2) ::: C 2, ~, 2 I+ (A"':» I ( 2 "'PI"' .G f" 4 AM I ) "'E XP 01\ T• COSt- T C 
1"'ALPHAT"'1ETO•~~ 

E!2,3,3)~EI2,3,3)+((P1(2"'PI•A~II"'"'21"'EXPC~T 

1"'ALPHAT"'TETG•A~ 

C I~C~3ENCE Y POLARIZATION Y 
C cc~cuT£ T~E TERMS E((,1,CC~PC~E~T~1.2A~031 

E I£ • 1,11 =!: ! 2 • 1. 1 ) t ( I A I A I' I.,. 2 l •u POt- T"' IS I H T 0.,. 2) 
1"'hLPHAT 4 1ETO•hl' 
~(2,1o2l:EI2o!t21+(~1AIA~l•"'zl•cXPCNT"'Sit-~TO"'CO~~TC 

l•ALPHAT"'I[TO•~I' 

E I 2, 1, 31 ::: t: C 2, 1 , 3) H •I! ,. PI ( 2" PI,. I .C.~""'~ 2 ) I I"' S" )(PO 1\ 'f"!:. H NT 0 
1"ALP~AT•TE!0"G~ 

IFIFLt.G.t.O.O.l GC TC '>CE 
IFIFLAG.EQ.U PRI~T 5J4 
P F< ! r, T 50 5 , E I 2 , 3 , 1 l , E I 2 • ~, 2 l t.E I 2, 3 , 3) , E I 2 , 1, 1 l , f I 2 , 1 • 2 I, E ( 2, 1 • 3 l 

4G6 CPTI~Uf 

2CO CC H II\L;E 
FACTOR=!, 
E ( 2 • 1. U ::: F I 2 • 1 , 1 I +C£ « 2 • 1, 11 "'FACT OR 
E 12,1,21 ::;: 12o1.2» +Cf 12,1,2l•FACTOR 
E12,1,31:EI2o1o3J+Cfl2o1,31"FACTCR 
E ! 2 • 3 , 1 I :::: E I 2, 3 , 1 I +C f I 2 • ~ , ll • F A C f 0 R 

E I 2 , 3, 2 I =E I 2, 3 • 2 J +CE ( 2, :! , 2 l "'FACT OR 
!:12,3,3l::E(2,3o3l+CEC2,3,3 I•FACTOf< 
E ( ~, 3, 11 :i. 12, ~, 1 I •P CL Z 
E 12, 3,2) :::[ 12, 3,2 I"PCLZ 
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: ( 2, .) .3 l =f ( 2 d, 3 I •PCI.l 

t !2,1,11:::!: 12olo11'"PCLX 
E 12,1,21 =E.I2,1,2i"'PCLX 
E ( 2, 1.3 l :::E ( 2, lo 3 I '"P CL X 

C P~I~il~G CF i~t CO~PC~E~TS CF THE ELECTRIC FIELD ~ECTCR 

C CCF~ECTEJ ev THE CIFCLEaQIPCLE INTERACTION 
C C:P-~UH THE EI\M f ll\oYoCCI1FC~ENTS 1.2,ANOH 

!F( FLAG.EQ.Ol GC TC ~0~ 

PF HiT 50 .. 

:CO;. FCf.i"'Ai(l," 1£(2,3,11 I E12o3o2) I EC2,3oH I 

.:. El2.1.~1 I EU:o1,21 I E( 2,1,3)-") 
>'f.i :;: Ni 50 5 , C. I 2 • 3, 1 ) , E I 2 • 3, 2) oE I 2, 3, 3) oE C 2, 1o1 I oE « 2 ,1, 2 t , E C 2 ,1 • 3) 

SC5 FC~~Ai(" •,~(~X,•(•,F~.~•'"•'"•Fe.~,•J•)) 

.. c:; COTif\UI:. 
:•r~:s ACCS TH~ ELECTRIC f!ELCS FO~ A SE"IES Of CCf\CE~TFIC ~ELICES WIT~ J!FF 
:•c~~f\i PA~AMEi~RS FCf.i C~t GI~Ef\ ANGLC. OF SCATTER!f\Ge 

:c ru1 I~=1.3 

::::C 702 JF::1,3 
:JC 703 KF:::l.,3 

SL~~>'AI:F,JF,KFI:SLMrti!F,JF,kF)•FI!F,JF.~F) 

703 COTINUE 

;' 02 
~ c :1. 

7G0 

CCf\T!MH. 
CC H !t-.UE. 
CO~TH~UE. 

:c 7J5 ~!::1.3 

~c 7ilt: JJ::::1, 3 
~c 707 1(1(::::1,3 
':: I I! • JJ • K < I :::: S L M IU U I • J J • K tO 

• C7 CC H !f\Ul 
706 cor INU£ 

"C5 CCHH.UE 

c•••••••••••••••••••••••••••••••••••~•·•••••••••••••••••••••••••••••••••••• 

c•FI~ISH ALL SL~S 5 

:·~·············································4·$········4·····5···-····· 
c 
c 
c 
:••4···············¥······¥·4~·····¥~······¥·4·············~··············· 
C'"CC~~ECT FCF ThANSVE~SALI~Y I~ T~IS ~ECTIO~ 5 

c•o:FINE i~E. TCIGONO~Si~IC VALLES CF THE CCMPONE~TS Of THE SCATTEREC WAV~ • 
C'"VECTOf.i K • 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

S ! t- P S I::: S ;: ~ I P S r I I I » 
CCSPS I=CCS IPS: (It I 
S!~TET=S!~ITHfTAI 

CCSTEi::::CCSITHtTAI 
C JUif\E t.'l't.l<l:S::: K~CT EC2olo CC,.PO~Et-TSIJINO EVZETA= K DCTf(Zo3oCOt4PSl 

EVZE.Tk=CCSP~I·SI~TET'"E«2o3o1l+SINP~I'"SI~TET 4 ff2,3,2)+COSTcT• 

1 El2o3,31 

~Y~KIS=CCSPSI•SI~TET'"E«2olo1l+SINPSI 4 SI~TET 4 E«2wioZ,+COSTfT'" 

1 E. 12.1.31 
C F:f\!S~ CO~FUTING CCIIl FOR ~LL PSI!Il 

IF<FLAG.~~.Q)P~I~T ~17 

517 FCNMATl 4 •,•EYE~Is•,e~.•EVEZE.T~•) 

IFCFLAG.~~.OI PRit-T ;l?o EVEKISoEVZETA 
c 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C•CC~FUTE IL ~INUS I~ 4 

c•••••••••••••••••••••-••••••~••••••••••••••••••••••••••••••••••••••••••••• 
C1=E«2o1o1l•CCSPSl 4 ~INT~T•EVEKIS 

C2:E!2ole2l•SINPSI4 SINTET•EYEKIS 
C 3 = E I 2, 1 • 3 l ·C C S H T'l' EVE KI S 
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c 
c 

01=EI2,3,1)*COSPSl•SINTET•EYZETA 
D2:EC2o3o2l*SINPSI•SINTET•EYZETA 
D3=EI2.3,3l•COSTET•EYZETA 
CST~1=COI\JGIC1) 

CSTF<2:COI\JG!C2) 
CSTP3=COI\JGIC3» 
OSTFU=COI\JG 1011 
DSTFI2:::COI\JG!D2» 
DSTR3=COt'-JGID3» 
HIFLt.G.£.Gl.O.l GC TC '>01 

C P~I~Tli\G ROUTINES FCF II\TtR~EDIAil CACULATICNS OF CL 

PRINT SOt 
506 

5 07 

FCRHATII.gx,•ci•.~x.•csTR1•,9x,•cz•,gx, •csrRz•,gx,•c3•,9x. 
1"CSTR3"') 

PRINT 505, C1.CST~i.C2oCSTR2oC3oCSTR3 

PJ;INT 507 

FCiiP-'Ai (1,"' 
1CSTr:< 2 I 

P~.INT 505. 
CC H INUE 

C1 I DSTR1 
D~ I OSTRJ 

D1,CSTF1,02oCSTR2,C3.CSTR3 

I I 

IL~IR€II=ICST~1"'[1tCSTF2"'02+CSTg3•C3•!C1"CST"l•C2 4 DST;2 

1 +C3"DST"'3ll •( z.•!a.,:!..ll 

EZ=D1 4 0STQl+D2•DS1"2tJ3~CSTR3 

I!. II l =U 
EX=C1"'CST;1+C2~C~TR2+C3•CST~3 

I~ (I l =i.. X 
ILPI~<Il=CC1~CST~1+C2•CST~2+C3•CSTR3+01~CSTR1+D2•0STP2 

l + 03 4 DSH3 )"G:, 
CCI I I= Il ~If\! I I I H >'If: I: I 
IF lf'LAG.EO.O.l GC TO 511 
Pf;!NT 5::.2. ILMH(~I.ILPHCI». C~HI>.ILCU.II'II) 

~12 FCR~AT(/, 4 •,•IL~IR:•,(lE.9,2X.•ILPII'=••t16.~.2X.•CQ: 4 ,E1E.9t 

~ 10 
511 
1 0 0 
c 
C IS 

c 

l2Jt • ,.ll""' oE Hi.9, ZAo •IR="'•f.16.C:l 
Pf'INT 5::.0 
FCRf>'AT (1.1 9 1 0 1) 

cc "r ::;t.uE 
COTII'.UE. 

THt SAME .:$ TH~ T 

ll 1\ Gl E 13 C. l ::3 6 0, 
CCC3E.:.l::0(1l ! 

H IL<3611=Il(1) 

CF C CEGf'EES 

IlPIJ:'IH11::ILPIRI1l !IL"'H!3E11=IL"'IRC1l 
f Ild3E:11=IIU11 

c••4·~·····~·~~~-~4¥~4•4••••••$~-·~·••••••••••¥4••¥•4•~···4$$$••$•••••••••• 

C"'HERC.: CCME f'!CF;: PR!I\T li\G Sl.Bf:;CI,;TINES 
c4~··4·4·~··~·N¥4~¥4•·~··~$···~·~$·$~·~~~··••••••••4•••~••••••••••••••~•••• 

P'I"T go? ,APCLA~.Pf~~cc.ll.Ll~GTN.LAHeoA 

907 "C~MAT(I,t,• •,• CC A~C TCTAL SCATTER FO~ APCLA~H ANGLE="'•F 
~ ~.2.2X,• 0 ERICC: 4 oF~.z.zx,•PACIUS="'•F5.2.2Xo 4 LEtGTH:•,Fl0.2.2~• 

"LAME::Jl.='"•F5.2l 
PF!NH 

'! FCI<t't.T(I, • PSI"• !lJI,•CCIIl"•12X. "IL-H\",12\Co"IL+IR"" 

1o15X, 4 POLZ"'•1~X,-POLX"') 

DC 57 1(:::1, NANG!. 

ANGL:::PS:(I()"1AO./PI 
CF<II\T 58 • ANGLo COOO • ILMIO<!I<I, IL.DIR(Kl,lUKI,II((I() 

S8 FCRHAT!" .. , FR.~. 4~, E12o5• 4(*X,f.15o81 I 
57 CCI\T INUE 

c 

271 



c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c• DETE~MINE THE MAXl~U~ ~Al~E FO~ PlOTING SUBRO~TI~E 4 

c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DO 109 I=ivNANGLE 
CD~AX=AMA~1(A9SCCC(!ltoCC~AXI 

S~AX=AMAX11IlPIR« II.S~AXI 

S~AXL=A~A~1CILI!l.S~AXll 

S~AXR:A~AX1li~IIIoS~AXRl 

10q CO~TINUt 

IFCCDMAX.GEoOo2l COMAX=io 
DC 1115 J=1o NAN(L 
CC(Jl=CD!JiiCD~A) 
PLCiSCCJl=IlPI~I Jl/S~AX 

PlCT!l(Jl:IL!JI/S~AXl 

PLCTIRCJl=IRCJl/S~AXR 

111~ CC~TINUE 

C PLOT SCAiTtRING VS PSI FOR CXFFEPI~G AZIMUT~S. 

c 
C PLOT GRAPHS 

c 

IFCNOPLOT.EQ.O) GC TO 600 
IFIDISCRT.EQ.G) LVR:lQO 

C I~ PLCTING SCATE~=O• ~ILLPLCT COo SCATER=1oD WILl PlOT IL+IR/ ~AXCIL+r~l 
C SCtTE~=2.0 • PLOT ILI~AxlrLlo SCATER:3l/o PLCT l~/HAXCIR» 

c 

c 
c 
c 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C•PLCT SCATTE~ING VS PSI FOF CIFFE~I~G APOLAR A~GLES • 
C•I~ PLCTI~G SCAT~R=D• k!LLPLCT CC, SCATER=ioO ~IlL PLOT Ilt!~/MAX(!l+I~I • 
C•SCATEF: 2.0 • PLOT IL/~A~CIL»o SCATE~:! • PLCT l~/~A)(IPI • 
c•••••••4•••••••4••¥•••••••••••••••••••~•••••••••4~~·••4•••••$••••••••••••• 

!f!PCLX.~O.O.CFeFCLZo~O.Ol GO TO 605 
I~ITIA=I~I~IA+1 

AFCLAF=90. • APOLAR 
P~I~T !SloCOMAX,t~GLA~ 

!~1 FC~MAi(/,•G~APH CF CDICC~AX ~~TH CD~AK: 4 ,f16.~, 4 AL~ITUDE=••~S.2l 

APCLA~=I~TIAPCLA~l 

SCAiE~=O 

IFICD~AX.LT.i.CI SCt7~~=-1 

CALl PCLA~(ANC-lEoCOo~MA),APCLAF,P,A,SCATFF,L~~BLA.lENGTH,LVc, 
1 I~ITIAI 

6C5 CC~TI~Ut 

c 
N~AX:1e0 

I~ITIA=I~ITIA+l 

F~I~T 152. SMAX 9 tFOlt~ 

~~2 FCFMAi!/e•PLQ~ GF~P~ FC~ TOTAL SCATTER ClV!CED 9V SYAX=•, 
1 E16.6,2Xo 4 APCLa~~ =•• FS.21 
APCLAF=I~T(~POLA~) 

SCATE~=~.o 

CALL PCLA~!ANGLE.~LCTSCt~~~~.AFOLA~,P,A,SCATE~.LA~9C~.l~~G;~, 

1 lV~oiNIT!Al 
P~INT ~53oSMA)L,aPOL~~ 

153 FC~MAT(/, 4 PLO~ G~AP~ FOR LEFT SCATTER DIVID£C 8~ SMA~L:•,r1E.~. 

1 2X,•APULAR=•,F5o2l 
SCAi£~=2oO 

CALL PCL~FIANGLE.~LCTIL.~~AX,AFOLA~,P.AoSCATE~.LA~~C~.lE~CT~. 
1 LV~oihiTIAI 

PFI~i 154oSMAYF,~POLAR 
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15~ FC~MAT!t.•PLOi G~AP~ fOF ~IGHTSCATTER DIVlDEC B~ SHAXR=•oi16@8, 

c 

1 2Xo¥APOLAR=$•f5.2l 
SCATH.:3.0 
CALL PCLA~!ANGLE,FLCTI~.~~A~ 0 APOLAR,P.A.SCATE~.LA~BDA.LENGTKo 

1 L v ~.IN IT U l 
6 C 0 C C 1\T I t.U E. 

299 COi\T!NUE 
300 CG H II\UE: 

GO TC 311 
STOP 

2G CO~Tif\Uf. 

FSISTI\IIl=O.O 
GC TO 21 
Et-C 
SlE~CUTii\E PDLARITH.F.P~A)oAPCLAR,FAATIC.~ADJUS,SCATE~.w,L,LYP, 

1 HITIA> 
c~·¥······~·$····~····~····3·~·$····~~¥··•••s••···4········$··-~·¥····$·$~· 
c~Trl~ SLBRCUTlNE MA~ES PCLA~ G~APHS • 
c~TFE A~GUMcNT CF THE FlNCTICi\S ARE ~EAS~RED IN DEG~EtS. • 
c•T~f I~FUT OF THE At.GlLA~ VA~IA2LE ~AS TO EE EI\TE~EO II\ RACIANS $ 

C•A~GLES ARE PCSITIVf l~ TH~ CCUI\TE~CLD~WISE CI~ECTXO~. • 
c•A~ ANCLE OF 2ERO !S ~CRI?OI\TAL ANC TO THE ~IG~i. • 
c••~•••••••••••4••4~·····~·~¥-~~···~~···~·····~·····~~~-·~~··$•4•••••••·~·· 

CO~~O~ F~TioF~PP,FM~N.TEO,PEO.NBO 

«EAL N30 

CC~~O~/IGSZZZIZ!iDOl 

OI~ENSIO~ R(4Q0) , Thi400l, YI~OOl 

RE.t.L l.o LVI' 
I~TtGER 5TS,SPB,S~8 

OHt.NSIOt- YNEGI~COI 

::JITE.RNAL FONT2 
'JATA IRACIZHR::/ 
OtTA IPITCH/2~P=; 

DATA IWAv~/2HW:/ 

DATA ISL~Tf/4~All:/ 

DATA li.YF/4HLYk=/ 
O~TA !LE~GH/2~L=I 

II\HGEk Ei.ANK 
O~TA ELA~K/4H I 

0 t. T l. I P 3 13 H P3::: I 

:JATA II\SnHNB:::/ 
Ot.TA ITE/3KTS=/ 
0 AT A l C G L3 L /3 HL G" I 
:JATA ICO~MA/1Mol 

Otit LGF~T/3HLT=I 

995 FC~MAT!A3,I3l 

9~~ FC~MAT(A2oF~.2) 

99~ FC~MATit.4,FS.2) 

LCGLEr-.:::;.C 
£t-.C00t( g,qgq,LAE!Ll!Sti\Tt,APCLA~ 

IF ( L Y ~ • N i. .1 0 0 lEN C (0£ ( 9, ~ 'ii 9, LA ~EL) lL YR • LV c 
ENCCDt.l E.9%,t.b.eEL21 IFITCH,FRHIO 
HCODl (6 • '396. LABH3 l II<AC wRAOIUS 
E~C00e(6,'396,LABEL5ll~AVEoN 

IF (t..Gf.g:j. ILCHH=ALOG1t: IL) 
!F(L.LE.SiltNCOOF!6,996.LABtlcliLE~GH,L 

IFIL.GT.~ 0 lENCOOEC6,995,LA9ELf)I.OGLBL.LCGlE~ 

913 FCRH~TIF4.21 

t~COO&t4,~13.:TBlFMTT 

E~C00E(4,~13,SPBlFHPP 

ENCODl(4,~13o~N3lFM~N 
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911 FCR~ATIA3,F4.2 9 A1l 

ENCODEI8o911,LABELTIITE,TBOoiCCMMA 
E~CODE(8o91ioLABELPII~B,FBO,ICC~MA 

E~CODEI8o911olABflNIINe,~BDoiCOMMA 

IFIF~TT.LToOoOiiLCGF~T:ALCG10lT90l 

IFIFMTToLioOoOiiE~CCDEf8o911oLA~ELTILGF~T.T9CoiCO~MA 

912 FORMATIA3oA~ 0 Ail 

c 
c 

IFCF~TT.EQ.OlENCCCEI8,912oLA2ELTIITB 0 BLANK 9 ICCM~A 
!f(F~PPoECoOI~~CCCEISo912oLA9EL~liF9,BLANK,ICCM~A 

IFIFM~N.EC.OitNCCDEI8o912,LA2ELNli~B,BLA~K,ICCM~A 

C Hi:.~t IS WER.E THE. PCSITIVf VtUES Ar.E SEPA~ATEC F~CI" NFGUIVE VALUES 
DO 20 I=1, 3&1 
VNEG<Il:::O.O 
V(Il::ASSI~(I)) 

IF (I' CD oL T • 0 • 0 I nEG n: I =A ES HU U I 
20 CCHINUE 
c 
c 
c 
c~~~~-·~·····~·••••~··~·····~•••••••••••••••••••••~•••••••••••••••••••••••• 

C4 l:I'FCI'iHNT ltAHRTANT li'PCF i AI\T "' 
:"'~:R~ IS WME~E TH~ PLCTTING FLTI~E G~!S INlTIALIZEC CNLV O~CE "' 
c••4••••~•••••••••~~-4•••4•••~••••••~•·••••••$••••••••¥•3•••••••4•••••••••• 

IFIINITIAoNE.1l GC TC' 23 
CALL MCDESGIZoeo~~C!OSl 

23 ccntM.:l 
c 
c 

CALL VECIGCZoFONT2oGl 
CALL SETS~GIZ.51.1ol 

C SET LP VIEW PO~T TC LEAV! 20 PERCE~T 90RDE~ 

CALL CBJCTGlz.zc.,zc •• sc.,sO.I 
C $£i TFETA AXIS CF~SET 

ZIH51::90. 
C DEFihE THt SLaJECT SFtC~ FC~ EDT~ RADiaL AND ANGLLA~ ~AR:lel~S 

CALL PSUEJG!Z,o.,o.,s~A),JoO.l 

C D~AwS A GRID OF 30 CEGRE~S CF ANGLLAP SPACI~G ANC .i CF P~DltL UNIT~ 

CALL SETS~GIZ.173.~.CI 

CALL PGRlJGIZ,rM~)I~.J.~O.,O.,O.I 
C S~TS FCR~AT FCR LABELll:hG 

CALL SETS~GIZo30o2ol 

CALL SETS~GIZ,45,2.01 

FI'T:::~.2 

C lAELl RADIAL AXIS 
CALL PCL~GIZ,.t5,17~ •• ~.4~0.6Q) 
CALL PCL£GIZ,!o0~.17=••~•4H1.001 

C SET LARGE CMARACT:R ~IZ£ 

CALL $[TS~GCZ.~5o3o0l 

C I~JlCATE TH~ FORM~T FC~ T~~ LASELllNG 
Ff'T:::6.2 

C L'BEL THETA IXIS 
CAll PLAELGIZoi•30ooOoF~T) 
CALL SETS~GCZ,45,3.Cl 

X6=FMAX"'1.41 
CALL PCL~GIZoY8 o211ot 9oLAEEl) 
X7:::1<MAX"'l.7 
IFISCATEF.EQ.~.Q) 

1 CALL PCL~GCZ.X7o13f.,7.7HCDI~AX ) 
IFISCATE~.EQolle 0 

l CALL PCLEG!Z.X7o13Eoo7o7~CICS Yl 
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IFISC~Tl~.EQ.1.01 

1 CALL PCLEG«Z.X7,13Eo 9 7o7HSCATT Yl 
IF<SCATE~.[Q.2.01 

1 CALL POLEG!Z.X7o13E.o7o7HI PCLZ 
IFISCATE~.EQo3oOl 

1 CALL PCLEGiZ.X7o13too7o7~I PCL) ) 
PRI~T998oLABELolAEfL2oLAEEl3oLA9EL5olABELE 

PRlNT9~f.LABElT 0 LABELPoLAEELN 
998 FC~MAT(¥ ~.•HERE ARf T~E LAB~LS •, 614XoA~II 

X3::FMAX 3 1.79 
CALL PCLEGiZo>3 ,30.,e.LABEL31 
X4::RMAX"'2.2 
CALL PCLEGlZoX4o4~ •• 6oLAEEL2) 
X5=PMAX 3 2o05 
CALL PCL~GIZoX5 .4~ •• tolA8El~l 

)(!;:diM A)( ... .1. .61 
CALL PCLEG(Z,>e.~3 •• 6,LAEEL6l 
XTB::RMAX•l.73': 
CALL PCLEGIZo>TB,33~ •• 6,lA8fLTI 
!FIF~NN.~Q.O.A~O.FMFP.EC.Ol GC TO 50 
l\PI'?::RMAX"'l.$4 
CALl FCLEG!ZoXPB,33~ •• e.LABELF) 
XI\E!=RMAX"'1o36 
CALL PCL~G!ZoXN8,332ooBolABEL") 

XST8:2,C 73 Rt-'.A)I 
C~LL PCLEG(Z,XSTE .~zo •• ~.STE!l 
XSP3:::lo'12"'RMAX 
CALL PCLEG!ZolSFE .~17.o4oSF8) 

XS"8"1•7~ ... RI'1A) 
CALL PCLEG!ZoXShe o312oo4oSI'i9l 

50 CC H It\UE 
C JCII'iS ~ITh A LINE THE PCINTS TH~T ~AVE EEEN CLCTTfO 

CALL S~TS~G!Z,3Q,2.l 

CAlL Pi..HEGCZ.36loYo'fl1) 
IFISCATE~.EQ.~l CC TO ~1 

IFISCt.TEF.GE.l.OI GC TO 40 

41 CCf\TIMJf 
CALL S~T5~GIZ,30,Lol 

Ct.LL PLll'ii:.G IZ.361oYI\EG,TI-l 
4 0 CO TI l'iUt 

C~LL SET~~GIZ,30,2.l 

C MCV_ TC NEW FRAME 
C A L L PA Gt G ( Z, 0 o 1, ! ) 

C TC :CX!T 
Cllll EXI~G(ZI 

PRII'iT 21.~MAX,PRATIC,w,~~CIUSoL 

21 FCFMATI"' •,•GPAPt HAS EEEI\ Pi..CTT~O wiTH ~~AX="'• F e.4, 
!~X,"'PtRICC~¥otlOofo2~.• nAVEl£~G;Hg•,F~.~t2Xo"'R~D!US=•.FS.4 

l .2~. •Ll~GTH="'of9.41 

Rt "f'URN 

~f'.C 
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