CIRCULAR INTERLACING WITH RECIPROCAL POLYNOMIALS

Piroska Lakatos and László Losonczi

Abstract. The purpose of this paper is to show that all zeros of the reciprocal polynomial

$$
P_{m}(z)=\sum_{k=0}^{m} A_{k} z^{k} \quad(z \in \mathbb{C})
$$

of degree $m \geqslant 2$ with real coefficients $A_{k} \in \mathbb{R}$ (i.e. $A_{m} \neq 0$ and $A_{k}=A_{m-k}$ for all $\left.k=0, \ldots,\left[\frac{m}{2}\right]\right)$ are on the unit circle, if there is a $B \in \mathbb{R}$ such that $A_{m} B \geqslant 0,\left|A_{m}\right| \geqslant|B|$ and
holds.

$$
\left|A_{m}+B\right| \geqslant \sum_{k=1}^{m-1}\left|A_{k}+B-A_{m}\right|
$$

If the inequality is strict then the zeros of P_{m} have the form $e^{ \pm u_{j}}\left(j=1, \ldots,\left[\frac{m}{2}\right]\right)$ where

$$
\frac{2(j-1) \pi}{m}<u_{j}<\frac{2 j \pi}{m} \quad\left(j=1, \ldots,\left[\frac{m}{2}\right]\right)
$$

and they are simple (for odd m, in addition to these zeros, $-1=e^{-i \pi}$ is a zero too).
This implies that the polynomial P_{m} (with $A_{m}>0$) and $z^{2 m}-1$ satisfy the circular interlacing condition.

If in the inequality (for the coefficients) equality holds, then double zeros may arise, we discuss how this can happen.

Mathematics subject classification (2000): 30C15, 12D10, 42C05.
Key words and phrases: reciprocal polynomials, zeros on the unit circle, circular interlacing.

REFERENCES

[1] E. M. Bonsall, M. Marden, Zeros of self-inversive polynomials, Proc. Amer. Math. Soc., 3, (1952), 471-475.
[2] A. Cohn, Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise, Math. Zeit., 14, (1922), 110-148.
[3] P. Lakatos, On zeros of reciprocal polynomials, Publ. Math. Debrecen, 61, (2002), 645-661.
[4] P. Lakatos, L. Losonczi, Self-inversive polynomials whose zeros are on the unit circle, Publ. Math. Debrecen, 65, (2004), 409-420.
[5] M. Marden, Geometry of polynomials, Math. Surveys No. 3, Amer. Math. Soc. Providence, Rhode Island 1966.
[6] J. Mckee, C. Smyth, There are Salem numbers of every trace, Bull. London Math. Soc., 37, (2005), 25-36.
[7] G. V. Milovanović, D. S. Mitrinović, and Th. M. Rassias, Topics in polynomials, World Scientific, Singapore-New Jersey-London-Hong Kong, 1994.
[8] T. J. RivLin, Chebyshev polynomials, A Wiley-Interscience Publication, 1990.
[9] A. Schinzel, Self-inversive polynomials with all zeros on the unit circle, Ramanujan J., 9, (2005), 19-23.

