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Circular RNAs (circRNAs) are non-coding single-stranded covalently closed circular RNA,
mainly produced by reverse splicing of exons of precursor mRNAs (pre-mRNAs). The
characteristics of high abundance, strong specificity, and good stability of circRNAs have
been discovered. A large number of studies have reported its various functions and
mechanisms in biological events, such as the occurrence and development of cancer. In
this review, we focus on the classification, characterization, biogenesis, functions of
circRNAs, and the latest advances in cancer research. The development of circRNAs as
biomarkers in cancer diagnosis and treatment also provides new ideas for studying
circRNAs research.
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1 INTRODUCTION

CircRNAs were first discovered in RNA viruses in 1976 (1). Subsequently, it was discovered in
eukaryotic cells and humans (2–4). CircRNAs are covalently closed ring structures with 5 ‘and 3’
ends directly linked together, which makes them more stable than linear RNA. They were originally
thought to be the product of splicing errors during low abundance transcription. With the
development of high-throughput RNA sequencing technology and bioinformatics algorithms, a
new understanding of circRNAs has emerged. The functions and mechanisms of new types of
circRNAs during biogenesis have been identified. CircRNAs have been found to act as ceRNA or
miRNA sponges and bind to proteins. As well as some newly discovered functions, such as
regulating parental gene expression, regulating pre-RNA splicing and potential translation
templates for proteins (5). Many circular RNAs have been discovered to be biomarkers that
impact the onset and growth of malignancies in recent years, attracting a lot of attention. They have
been identified in lung cancer (6), hepatocellular carcinoma (7), gastric cancer (8), colorectal cancer
(9), and so on. However, the molecular mechanisms and early diagnosis of cancer are not well
understood. And, diagnosis and treatment based on circRNAs are still lacking. Therefore, it is
urgent to explore new molecular mechanisms and effective biomarkers for the diagnosis of cancer.

In this review, we focused on the biological characteristics, functions, mechanisms, and detection
techniques of circRNAs associated with cancer, and discussed their potential application as
biomarkers and therapeutic targets. Thus, provide valuable clinical information for the diagnosis
and timely treatment of cancer in the future.
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2 CircRNAs

2.1 Classification and Properties of
CircRNAs
According to the formed sequence, circRNAs can be divided into
six categories: exonic circular RNAs (ecircRNAs), circular
intronic RNAs (ciRNAs), exon-intron circular RNAs
(EIciRNAs), intergenic circRNAs, anti-sense circRNAs, and
tRNA intronic circRNAs (tricRNAs) (10).

CircRNAs have no ends so it is highly stable and have specific
spatiotemporal expression patterns. Numerous circRNAs usually
express in specific tissues and specific developmental stages (11).
CircRNAs were found to be evolutionarily conserved in diversity
and the conservation is different in different tissues, among
which the most conservative in the brain (12). Jeck et al.
identified over 25,000 different circRNAs in human fibroblasts
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(13). In addition, circRNAs are widely distributed and have been
reported in thousands of animal cells, such as humans, mice, and
nematodes, and expressed in high abundance (11, 14). Rybak-
wolf et al. found that circRNAs are abnormally enriched in the
mammalian brain and are specifically and dynamically expressed
in neuronal differentiation (15). New classification methods such
as differences in length, stability, function, and characteristics of
circRNAs still need to be continuously explored.

2.2 Biogenesis of CircRNAs
CircRNAs are derived from the reverse splicingmechanism of pre-
mRNAs to form a single-stranded closed loop (16). However, the
biogenesis mechanism has not been fully elucidated, circRNAs can
be derived from exons, introns, 3’UTR, 5’UTR, intergenic regions,
or antisense sequences (Figure 1). As early as 2013, Jeck et al.
proposed two circRNAs cyclization models: Lariat-driven
A

B

FIGURE 1 | Biogenesis and function of circRNAs (A) Biogenesis of circRNAs. (a) Pre-mRNA splicing removes introns to form mature linear mRNA. (b) The introns
removed by pre-mRNA splicing form circularization to form a stable ciRNA. (c) Circularization of pre-mRNA exons into ecircRNA. (d) pre-mRNA exons and introns are
circularized into ecircRNAs. (e) removal of pre-tRNA introns, release to form triRNA and tRNA. (f) form antisense circRNAs from non-coding regions of pre-mRNA.
(g) from two different intergenic sequences to form intergenic circRNAs. (B) Functions and of circRNAs. (h) circRNAs translation protein with similar IRES sequence.
(i) circRNAs as protein scaffolds. (j) circRNAs bind to RBPs. (k) circRNAs as sponges for miRNA. (l) circRNAs interact with RNA polymerase II to regulate gene
expression. (m) circRNAs are packaged into vesicles and released outside the cell to perform biological functions.
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circularization and intron-pairing-driven circularization (13).
Lariat-driven circularization, also known as exon skipping, is
connected by non-adjacent exons as donors and acceptors to
form a lasso structure. Then the introns in the lasso are removed,
resulting in ecircRNAs. The biogenesis of circRNAs is mainly
studied in ecircRNAs, other types of circRNAs are rarely studied.
EcircRNAs account for 80% of identified circRNAs (17). The
biogenesis of eicircRNAs is similar to ecircRNAs. In some cases,
the intron portion is completely sheared to form eicircRNAs.
Another model is intron-pairing-driven circularization, also
known as direct reverse splicing. This model is based on the
direct base pairing of the flanking introns, and then the introns are
removed to form a ring structure (17). Zhang et al. reported a class
of intron-derived circRNAs, namely CiRNAs (5). The formation
of ciRNAs depends on the 7 nucleotides GU enrichment element
near the 5’ splicing site and the 11 nucleotides C-rich element near
the branch site. Zhang et al. believed that the exon cycle depends
on the complementary sequences of the flanking introns.
Intergenic circRNAs are formed from genes outside known
genetic loci (11). TricRNA is formed by intron excision of the
pre-tRNA by the tRNA splicing mechanism, followed by intron
release and binding into tRNA and TricRNA (18).

In addition, multiple factors are involved in the biogenesis of
circRNAs. Zhang et al. reported that the exon cycle depends on
the complementary sequences of the flanking introns (19). Some
RBPs play an important role in reverse splicings, such as MBL
(splicing factor muscleblind), QKI(Quaking), and FUS(fused in
sarcoma), binding to both sides of the flanking intron sequence
enhances exon cycling by tightly linking the 3 ‘and 5’ ends of
circRNAs. Thereby promoting exon circulation. Muscleblind is a
splicing factor for MBL-derived genes and MBL in Drosophila
promotes the production of circRNAs from the second exon of
its own pre-mRNA by binding to flanking introns (20). The QKI
of the STAR family is a tumor suppressor protein with three
isoforms, all of which have the same KH domain but have
different 3’UTRs. Among them, QKI-5, the most abundant
nuclear isoform, acts on circRNAs during splicing. QKI
dimerizes through its N-terminal Qua1 domain and binds to
two-part sequence motifs that can be located on the same or
separate RNA molecules (21). The investigation of PAR-CLIP
cross-linking in human embryonic kidney cells (HEK293T)
indicated that the majority of QKI binding occurs within
introns and is responsible for circRNA synthesis, which limits
proliferation and EMT during human cancer (22). In addition,
Conn et al. also introduced consensus binding sequences for QKI
in flanking introns to enable circRNAs to be generated from
exons that normally only undergo canonical linear splicing (21).
A recent study showed that overexpression of circ-SHPRH in
cadmium-transformed BEAS-2B cells promoted the expression
of QKI and significantly inhibited cell proliferation, EMT,
invasion, migration, and non-anchored growth. Conclusions of
Conn et al. (23). FUS was first reported to be involved in
circRNA generation in the nervous system in 2017 (24). Cao
et al. recently discovered that the nematode homologous gene
FUST-1 promotes the creation of numerous circRNAs while
having no effect on the analogous linear mRNA, regulating exon
Frontiers in Oncology | www.frontiersin.org 3
skipping and reverse splicing, surprisingly, CLIP-seq results
suggest that FUS attaches to stem-loop secondary structure
rather than particular sequences (25).

Besides, negative regulators destroy the stability of intron
interactions, thereby reducing the cyclization efficiency, such as
adenosine deaminases acting on RNA 1 (ADAR1) reduces the
efficiency of cyclization by disrupting the base pairing between
flanking introns through the A to I RNA editing mechanism
(15). ADAR is an adenosine deaminase that is widely expressed
in humans and can be applied to RNA modification. ADAR
systems are used for programmable RNA editing in vitro and in
vivo by recruiting ADARs to target RNA sequences using ADAR
recruitment guide RNAs (adRNAs). Two recent studies have
designed circRNAs that can recruit ADARs to improve RNA
editing efficiency. Katrekar et al. engineered a highly stable
circular ADAR-recruiting guide RNA (cadRNA) to recruit
endogenous ADARs, improving the efficiency and durability of
RNA editing (26). The engineered circ-arRNAs designed by Yi
et al.’s LEAPER2.0 system have much higher editing efficiency
than the corresponding linear arRNAs, which greatly improves
the efficiency and robustness of RNA editing (27).

Interestingly, UAP56 and URH49 proteins can assist the
transport of circRNAs from the nucleus to the cytoplasm (28).
This discovery is novel, however, many of the regulatory factors
involved in circRNAs biogenesis remain unclear and require
more research. A better understanding of the biogenesis
mechanism of circRNAs will lead to a better understanding of
their specific roles in cancer development. Future studies can
explore the levels of specific key factors that regulate the
biogenesis of circRNAs, which will also provide innovative
strategies for cancer treatment and prevention.

2.3 Biological Functions of CircRNAs
In addition to its unique way of formation, how circRNAs
participate in the process of biogenesis has also deepened our
understanding of circRNAs. However, the functions of most
circRNAs are still unknown. Recent studies show that the
functions of circRNAs are mainly ceRNA or miRNA sponging,
binding with proteins, regulation of pre-RNA splicing, regulation
of parental gene expression, and potential translation templates
for proteins or peptides (Figure 1).

2.3.1 Acting as CeRNA or MiRNA Sponging
MicroRNAs (miRNAs) are a class of small non-coding RNAs,
which play a regulatory role in various cellular activities
including cancer by pairing regulatory genes with mRNAs
target bases. Hansen et al. first proposed the concept of
miRNAs sponges in 2013 (29). There are miRNAs response
elements on circRNAs, which can competitively bind to
miRNAs, eliminate the inhibitory effect of miRNAs on target
genes, and regulate the expression of related genes. They
demonstrated for the first time that circCIRS-7 (CDR1as) can
be a sponge of miRNAs. CIRS-7 promotes the progression of a
variety of tumors. There are more than 70 miR-7 sponge binding
sites on CIRS-7. CIRS-7 inhibits miR-7 and participates in
various events in tumorigenesis, such as cell proliferation,
April 2022 | Volume 12 | Article 845703
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migration, invasion, and differentiation (30). With the
development of scientific research, more and more circRNAs
have been found to act as sponges for miRNAs. This mechanism
affects cell proliferation, migration, invasion, and blood vessel
formation, and has been widely reported in the cancer field. For
example, the combination of circSATB2 and miR-326 regulates
the expression of FSCN1 and further promotes the proliferation,
migration, and invasion of NSCLC cells (31). In addition, some
circRNAs have also been found to combine multiple miRNAs to
act on different systems. For example, cirMAT2B can be
combined with miR-515-5p to increase the expression of HIF-
1a and promote the growth of gastric cancer (32). Moreover,
circMTO1 can also combine with miR-541-5p to inhibit the
progression of liver cancer (33).

2.3.2 Interaction With Proteins
Another function of circRNAs is to directly bind proteins to
participate in physiological and pathological processes
(Figure 1). More than 800 RNA-binding proteins (RBPs) have
been identified in the human genome (34). RBPs play a role in
circRNAs splicing, processing, folding, stabilization, and
positioning. For example, CircFoxo3 is formed by Foxo3 exon
2 and has a wide range of complex biological functions, which are
related to cell differentiation, apoptosis, and cycle. It has been
reported that in the cytoplasm, the senescence-related proteins
ID-1, E2F1, FAK, and HIF1a interact with circFoxo3 and no
longer exert their anti-aging and anti-stress effects, leading to the
promotion of cell senescence (35). CircFoxo3 can also bind to
cyclin cells cyclin-dependent-kinase 2 (CDK2) and cyclin-
dependent kinase inhibitor 1 (p21) to form a ternary complex
to inhibit the binding of CDK2 and p21, and in the G1 phase
inhibits the cell cycle progression (36). In addition, circMBL can
bind to mannose-binding lectin (MBL) protein to control excess
MBL protein (20). Two circRNAs, KIRKOS-73 and KIRKOS-71,
are able to regulate the exosomal metastasis of p53 expression in
recipient cells, and p53 plays a key role in metastasis and
tumorigenesis (37). CircAgo2 transfers HuR protein from the
nucleus to the cytoplasm, stabilizing the binding of mRNA and
AU-rich elements in UTR (38). CircPABPN1 competitively
binds to HuR, prevents HuR from binding to PABPN1 mRNA,
and subsequently inhibits the translation of PABPN1 (39). The
above studies have proved that the interaction between circRNAs
and proteins plays an important role.

2.3.3 Regulation of Pre-RNA Splicing
CircRNAs may affect the splicing of pre-RNA and can compete
with pre-RNA for splicing sites. For example, circUBR5 may be
involved in the RNA splicing regulation process, it can be
combined with the splicing regulator QKI in the nucleus,
NOVA alternative splicing regulator 1 (NOVA1), and U1
small nuclear RNA (snRNA) (40). CircSMARCA5 regulates
VEGFA mRNA splicing and angiogenesis in glioblastoma
multiforme through the binding of SRSF1 (41).

2.3.4 Regulation of Gene Expression
EIciRNAs and ciRNAs are circRNAs with intron sequences, which
are mainly located in the nucleus. Experiments have shown that
Frontiers in Oncology | www.frontiersin.org 4
EIciRNAs and ciRNAs can regulate gene expression. For example,
the knockdown of circEIF3J and circPAIP2 can cause the
transcription level of EIF3J and PAIP2 to decrease (42).
EIciRNAs can promote the transcription of their parental genes
in cis by interacting with U1 snRNA, revealing a new regulatory
strategy for gene expression in RNA-RNA interactions (43). Li
et al. found that ci-ankrd52 shows a different open structure
conformation from pre-mRNA with the same sequence, which
can replace pre-mRNA to form more stable R-loops (44). It can be
seen that ci-ankrd52 plays a potential role in promoting
transcription elongation. However, the effect of EIciRNAs and
ciRNAs regulation still need to study in-depth.

2.3.5 Translation Templates for Proteins or Peptides
Although circRNAs have long been considered non-coding
RNAs that cannot translate proteins, recent studies have
shown that circRNAs do not rely on conventional translation
modes and have translation potential. Previous studies have
found that some circRNAs have internal ribosome entry (IRE)
site sequences or open reading frame (ORF) translatable proteins
such as circMAPK1 and circMBL3. CircMAPK1 encodes a new
protein with a length of 109 amino acids that competitively binds
to MEK1 to inhibit the phosphorylation of MAPK1 (45).
CircMBI translates to a small peptide in the head of a fly (46).
However, recent studies have found that circRNAs lacking this
sequence can also translate proteins. The N6-methyladenosine
(M6A) modification allows circRNAs to be translated in a cap-
independent manner (47). In addition, bioinformatics tools have
been developed to predict translation potential, but the accuracy
needs to be verified. Although these new discoveries are exciting,
the function and efficiency of these translated proteins or
peptides need further research (48, 49).

2.4 Identification of CircRNAs
Early RNA sequencing did not identify circular RNAs without a
ployA tail, and non-linear fragments were often considered errors
and were ignored. This section introduces some traditional
circRNAs detection techniques and emerging technical methods
(Table 1). Northern blot, qRT-PCR, RNA-seq, and Microarrays
are examples of traditional circRNA detection techniques (63).
However, previous RNA analysis methods are also difficult to
study circRNAs. RNA-seq detection of RNA detection efficiency is
low, so many low abundance circRNAs may be missed. And
microarray technology has been used to detect linear RNA for a
long time. The detection efficiency of circRNAs microarray is
much higher than RNA-seq because it contains probes that target
the head-to-tail connection (51). But it produces data that is
difficult to compare between studies. Therefore, there is an
urgent need to develop simple, effective, and sensitive new
methods to study circRNAs.

Recently, a newly reported exome capture RNA sequencing
technology can detect and characterize circRNAs in more than
2000 cancer samples (64). In addition, Zhang et al. developed a
new method for quantitative detection of circular RNA with high
sensitivity and specificity (56). The two cleverly designed DNA
probes can be precisely connected by using ligase at the
connection site of circular RNA. Distinguish circular RNA
April 2022 | Volume 12 | Article 845703
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from corresponding linear RNA. Liu et al. proposed a reverse
transcription-rolling cycle amplification (RT-RCA) process that
can selectively amplify target circular RNA (57). Zhang et al.
designed a pair of Stem-loop primers (SLPs) based on loop-
mediated isothermal amplification (LAMP), an excellent nucleic
acid amplification method, that could accurately recognize
circRNA junction sequences, thereby establishing an SLP-
induced dual amplification system (58).The exponential
amplification method makes circRNA detection simple and
accurate. Additionally, Li et al. designed an electrochemical
method for the recognition and capture of circRNAs with
hairpin probes, avoiding additional RNase R treatment, and
the method exhibited good sensitivity and selectivity (62).

According to the characteristics of circRNAs, some detection
methods for circRNAs have been developed, including
traditional detection methods and newly developed methods,
which have their own advantages and disadvantages. However,
the way forward is clear, and the detection method of circRNAs
still needs to be developed or improved, so that its sensitivity,
specificity, rapidity, and convenience can be applied to
biomedical research and clinical detection. All these make it
possible for circRNAs to become diagnostic tools and
therapeutic targets.

2.5 Online Database for CircRNAs
Research
In recent years, with the intensive study of circRNAs, researchers
have developed many high-quality online databases. This section
introduces some databases that can be used for circRNAs
research in Table 2. These artificially established databases are
of great significance to the study of the biological functions of
circRNAs. In addition to the online database listed in the table, in
2022, the University of Padova developed a circRNA function
prediction software CRAFT, which can predict circRNA
sequences and molecular interactions with miRNAs and RBPs,
as well as their coding potential (81). Nevertheless, the existing
circRNAs collection is largely limited to certain well-studied
species, such as humans and mice. In addition, the current
annotations and naming are rather incomplete. Most databases
only use one or two resources for annotations. Searching for the
same circRNAs has different naming methods in different
databases, which increases the difficulty of studying circRNAs.
3 ROLES OF CircRNAs IN CANCER

To date, a large number of reports have found that circRNAs are
abnormally expressed in tumor tissues, and more and more
evidence shows that circRNAs play a critical role in the
occurrence and development of tumors (82, 83). Most of the
abnormal circRNAs discovered are the sponges or proteins of
miRNAs (Table 2). In addition to affecting cancer cell
proliferation, migration, invasion, and escape from apoptosis
and angiogenesis. CircRNAs can also regulate these cancer
markers by regulating signal pathways such as Wnt/b-catenin
(7), PIK3/AKT (84), and MAPK/ERK pathways (85). Among
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TABLE 2 | Database for circRNAs research.

Function Refs

Searched for circRNAs sequence (14)

Organized human circular RNA data in the CircBase database, and performed protein-coding
potential and miRNA interaction prediction analysis based on sequence information

(48)

n Fully annotated circRNAs and Assessed the relevance of circRNAs to various diseases (49)
Associated circRNAs with cancer clinical symptoms and diseases (64)
Predicted the binding of circRNAs to RBP or miRNA and designed PCR primers and circRNAs
specific siRNA

(65)

Predicted the binding of circRNAs to RBP or miRNA (66)
Analyzed miRNAs-circRNAs interactions to find potential microRNA targets (67)
Collected circRNAs related to human diseases and predicted the interaction between miRNA and
human protein-coding genes, lncRNA and circRNAs

(68)

Retrieved disease-related circRNAs information (69)

Annotated the multi-line function-related information of CircRNAs/LncRNAs (70)
An abundant circRNAs data volume, focusing on tumor-specific circRNAs expression and predicted
potential full-length and open reading frame sequences of circRNAs

(71)

Annotated and identified circRNAs/miRNAs/piRNAs, etc. and their expression patterns (72)

Annotated circRNAs (73)

Searched for the TFBS of circRNAs can help discover the transcriptional regulation mechanism of
circRNAs

(74)

Retrieved circRNAs information expressed in peripheral blood exosomes (75)
Identified new circRNAs and integrated the circRNAs-miRNAs-mRNAs interaction network (76)
Searched for the relationship between
circRNAs and disease in the literature

(77)

(78)
Assessed the clinical and biological significance of circRNAs and predicted circRNA-miRNA
interactions and circRNAs translatability

(79)

Collected viroid-like circular RNA sequences (80)
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Database URL Specie

CircBase http://www.circbase.org/ Human, Mouse, Caenorhabditis elegan,
Latimeria

Circbank http://www.circbank.cn/help.html Human

CircAtlas http://circatlas.biols.ac.cn/ Human, Macaque, Mouse, Rat, Pig, Chicke
MiOncoCirc https://mioncocirc.github.io/ Human
CircInteractome http://circinteractome.nia.nih.gov/ Human, Fruitfly

CircRNADb http://reprod.njmu.edu.cn/circrnadb Human
StarBase http://starbase.sysu.edu.cn/ Human, Mouse, Elegan
Circ2Traits http://gyanxet-beta.com/circdb/ Human, Mouse, Elegan

CircRNA
disease

http://cgga.org.cn:9091/circRNADisease/ Human

CirclncRNAnet http://app.cgu.edu.tw/circlnc/ Human
CSCD2 http://geneyun.net/CSCD2 or http://gb.

whu.edu.cn/CSCD2
Human

Deepbase http://rna.sysu.edu.cn/deepBase/ Human, Mouse, Chicken, Pan troglodytes,
Gorilla, Macaca mulatta, Bos Taurus

CIRCpedia http://www.picb.ac.cn/rnomics/circpedia/ Human, Mouse, Rat, Fruitfly, Worm,
zebrafish

TRCirc http://www.licpathway.net/TRCirc/view/
index

Human

ExoRBase http://www.exoRBase.org Human
CircNet2.0 https://awi.cuhk.edu.cn/∼CircNet. Human
CircR2Disease http://bioinfo.snnu.edu.cn/CircR2Disease/ Human, Mouse, Rat

CirComPara2 https://github.com/egaffo/CirComPara2
circMine http://hpcc.siat.ac.cn/circmine http://

www.biomedical-web.com/circmine/
Human

ViroidDB https://viroids.org viroids

http://www.circbase.org/
http://www.circbank.cn/help.html
http://circatlas.biols.ac.cn/
https://mioncocirc.github.io/
http://circinteractome.nia.nih.gov/
http://reprod.njmu.edu.cn/circrnadb
http://starbase.sysu.edu.cn/
http://gyanxet-beta.com/circdb/
http://cgga.org.cn:9091/circRNADisease/
http://app.cgu.edu.tw/circlnc/
http://geneyun.net/CSCD2
http://gb.whu.edu.cn/CSCD2
http://gb.whu.edu.cn/CSCD2
http://rna.sysu.edu.cn/deepBase/
http://www.picb.ac.cn/rnomics/circpedia/
http://www.licpathway.net/TRCirc/view/index
http://www.licpathway.net/TRCirc/view/index
http://www.exoRBase.org
https://awi.cuhk.edu.cn/&sim;CircNet
http://bioinfo.snnu.edu.cn/CircR2Disease/
https://github.com/egaffo/CirComPara2
http://hpcc.siat.ac.cn/circmine
http://www.biomedical-web.com/circmine/
http://www.biomedical-web.com/circmine/
https://viroids.org
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them, CIRS-7 is widely studied in cancer and is usually up-
regulated in cancer cells. It has been described to be expressed in
liver cancer, lung cancer, gastric cancer, colorectal cancer, breast
cancer, and other cancers (30). The miRNA regulated by CIRS-7
are miR-7 (86), miR-135a-5p (87, 88), miR-1270 (89), miR-26a-
5p (90) and so on.

In addition to the circRNAs described above, some circRNAs
expressed in common cancers have recently been discovered, as
shown in Table 3 and Figure 2.

3.1 Lung Cancer
Lung cancer is the malignant tumor with the highest mortality
rate in the world (199). Circ0003222 sponges miR-527 to down-
regulate the expression of PHF21B and its downstream b-
catenin. Thereby promoting the proliferation, migration, and
invasion of tumor cells. Yu et al. (91) discovered a new type of
circHMGA2 (hsa_circ_0027446) molecule through microarray,
which is highly expressed in lung adenocarcinoma (LUAD).
Mechanically, circHMGA2 promotes LUAD cell metastasis
through the miR-1236-3p/ZEB1 axis. Yao et al. (99) found that
circ_0018414 was down-regulated in LUAD tissues and cells,
and inhibited the progression of LUAD through the Wnt/b-
catenin pathway of miR-6807-3p/DKK1 axis inactivation. Some
circRNAs have been described as binding to proteins in lung
cancer. For example, circNDUFB2 (101), which is down-
regulated in non-small cell lung cancer, acts as a scaffold to
enhance the interaction between TRIM25 and IGF2BPs. It
inhibits the growth and metastasis of NSCLC cells by
regulating protein ubiquitination and degradation and cellular
immune responses. In addition, Huang et al. (103)found that
circXPO1 is highly expressed in LUAD through RNA
sequencing. In terms of mechanism, circXPO1 can bind to
IGF2BP1 to enhance the stability of CTNNB1 mRNA, thereby
promoting the progress of LUAD.

The development of new NSCLC-specific biomarkers to aid
in diagnosis and clinical decision-making has always been a
pressing concern. Li et al. found that circ0003222 is related to the
staging, metastasis, and survival rate of patients with non-small
cell lung cancer (NSCLC) (6). Additionally, high expression of
circ 0070354 was demonstrated to be substantially linked to
advanced TNM staging and poor differentiation in NSCLC and
was an independent predictor of poor prognosis. CEA, SCC, and
Cyfra21-1 are the acronyms for CEA, SCC, and Cyfra21-1,
respectively. The AUC of circ0070354, when combined with
the other three mature tumor markers, was 0.730, which was
much higher than the solitary diagnosis (200). According to the
findings, some circRNAs potentially outperform traditional
tumor markers in terms of diagnosis, and the combined
diagnosis has higher sensitivity and specificity for lung cancer
diagnosis and treatment.

3.2 Colorectal Cancer
Colorectal cancer (CRC) is the second leading cause of death
from cancer worldwide (199). Jian et al. (110) tested the gene
expression in 42 pairs of colorectal cancer tissues and normal
tissues adjacent to cancer. The results showed that circ001680
was overexpressed in 71.4% of colorectal cancer tissues. In terms
Frontiers in Oncology | www.frontiersin.org 7
of mechanism, circ001680 promotes the proliferation and
migration of colorectal cancer cells by targeting miR-340. Yang
et al. discovered a new circRNA, circPTK2, and found that
circPTK2 binds to the Ser38, Ser55, and Ser82 sites of
vimentin protein to promote EMT of CRC cells in vivo and in
vitro (112). In addition to interacting with proteins to regulate
the expression of target genes, circRNAs encoding proteins or
peptides have also been found in colorectal cancer, such as
circ0006401 (116), circPLCE1 (117), and circFNDC3B (118).
Among them, circ000641 encoding peptide fragment promotes
the proliferation and migration of CRC and promotes the
stability of the host gene col6a3 mRNA, and thus promotes the
proliferation and metastasis of CRC. The circPLCE1-411 protein
encoded by circPLCE1 combined with the HSP90a/RPS3
complex plays a key role in the NF-kB activation of CRC and
ultimately inhibits tumor proliferation and metastasis in CRC
cells (117). The tumor suppressor circFNDC3B is mainly located
in the cytoplasm and encodes a new protein circFNDC3B-218aa,
thereby inhibiting the proliferation, invasion, and migration of
colon cancer cells (118).

Wang et al. (108) found that circSPARC is highly expressed in
the tissues and plasma of CRC patients, is associated with
advanced TNM staging, lymph node metastasis, and a low
survival rate of CRC. Mechanistically, circSPARC can
upregulate the expression of JAK2 by sponge miR-485-3p, and
ultimately promote the accumulation of phosphorylated p-
STAT3, thereby promoting the proliferation and migration of
cancer cells. The most commonly used colorectal tumor marker
CEA has limited sensitivity in early CRC (201, 202). While
circRNAs can be employed as reliable biomarker complements
for CEA in CRC early diagnosis and treatment monitoring.
According to the ROC curve analysis of Hu et al., the AUC
(0.831 vs 0.657), sensitivity (0.677 vs 0.532), and specificity
(0.915 vs 0.675) values of circ 001659 in the early diagnosis of
CRC were higher than those of CEA as a novel biomarker of
successful treatment and response for cancer tracking thing
(203). These findings indicate that circRNAs can become
potential diagnostic and prognostic biomarkers and therapeutic
targets for the treatment of CRC.

3.3 Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is the third leading cause of
cancer-related deaths. There have been multiple reports that a
variety of circRNAs inhibit or promote tumor progression in
liver cancer. Hu et al. (120) found that circASAP1 promotes the
proliferation and invasion of liver cancer cells by regulating the
miR-326/miR-532-5p-MAPK1 signaling pathway, and then
mediates tumor-associated macrophages by regulating the
miR-326/miR-532-5p-CSF-1 pathway Cell infiltration. The
circRNAs array analyzes the expression of circRNAs in tumor
tissues and normal tissues. In a study by Dong et al. (125), it was
found that 28 up-regulated and 18 down-regulated circRNAs
were found in liver cancer tissues. circMEMO1 is significantly
down-regulated in HCC samples and can act as a sponge of miR-
106b-5p to regulate TCF21 promoter methylation and gene
expression, thereby regulating HCC progression. Li et al. (128)
found that circMRPS35 was highly expressed in 35 pairs of HCC
April 2022 | Volume 12 | Article 845703
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TABLE 3 | Dysregulated circRNAs in common cancer.

ion in
er

Function Refs

ted Promote cell proliferation, invasion, and migration (6)
ted Promote cell metastasis and EMT (91)
ted Promote cell proliferation, migration, and invasion (31)
ted Promotes LUSC progression (92)

ted Promote cell proliferation, mobility, and EMT (93)
ted Promote cell proliferation and migration

Inhibit apoptosis
(94)

ted Promoted cell proliferation and cell cycle progression (95)
ted Promote cell proliferation and invasion

Inhibit apoptosis
(96)

ted Promote cell proliferation,
migration, and tumor growth

(97)

ulated Inhibit cell proliferation, migration, and invasion (98)
ulated Inhibit cell proliferation

Promote apoptosis
(99)

ulated Inhibit cell proliferation, migration, invasion, and
autophagy

(100)

ulated Inhibit cell proliferation and migration (101)
ulated Inhibit cell invasion and migration (102)
ted Promote tumor growth (103)
ted Promote cell proliferation, migration, and EMT (104)
ted Promote cell proliferation, migration, and invasion (105)
ted Promote cell proliferation, invasion, and angiogenesis (106)
ted Promote cell proliferation, metastasis, and

angiogenesis
(107)

ted Promote cell migration and proliferation (108)
ted Promote tumor growth (109)
ted Promote cell proliferation and migration (110)
ulated Inhibit cell proliferation Promote apoptosis and

autophagy
(9)

ulated Inhibit cell metastasis and invasion (111)
ted Promote cell proliferation, metastasis, and EMT (112)
ted Promote cell proliferation (113)
ted Promote cell proliferation, migration, and invasion (114)
ulated Inhibit cell metastasis, and invasion (115)
ted Promote cell proliferation and migration (116)
ulated Inhibit cell proliferation and metastasis (117)

ulated Inhibit cell proliferation, migration, and invasion (118)
ted Promote cell invasion and metastasis (119)

(Continued)

Zhang
et

al.
C
ircR

N
A
and

Its
R
oles

in
C
ancer

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

A
pril2022

|
Volum

e
12

|
A
rticle

845703
8

Cancer type CircRNA CircBase ID Mechanism Target Express
canc

Lung cancer circ0003222 hsa_circ_0003222 MiRNA sponge miR-527/PHF21B/b-catenin up-regula
circHMGA2 hsa_circ_0027446 MiRNA sponge miR-1236-3p/ZEB1 up-regula
circSATB2 hsa_circ_0118551 MiRNA sponge miR-326/FSCN1 up-regula
circPVT1 hsa_circ_0085536 MiRNA sponge miR-30d and miR-30e/cyclin F

(CCNF)
up-regula

circCPA4 hsa_circ_0082369 MiRNA sponge miRNA let-7/PD-L1 up-regula
circ0000326 hsa_circ_0000326 MiRNA sponge miR-338-3/RAB14 up-regula

circFOXM1 MiRNA sponge miR-614/FAM83D up-regula
circ100146 MiRNA sponge miR-361-3p and miR-615-5p/

SF3B3
up-regula

circ0000190 hsa_circ_0000190 MiRNA sponge
Regulation of gene
expression

miR-142-5p/CDKs
EGFR-MAPK-ERK

up-regula

circ103820 hsa_circ_0072309 MiRNA sponge miR-200b-3p/LATS2 and SOCS6 down-reg
circ0018414 hsa_circ_0018414 MiRNA sponge miR-6807-3p/DKK1 down-reg

circHIPK3 hsa_circ_0021592 MiRNA sponge miR-124-3p-STAT3-PRKAA/
AMPKa

down-reg

circNDUFB2 hsa_circ_0082730 Protein scaffolds RIM25/IGF2BPs down-reg
circDCUN1D4 hsa_circ_0126569 Protein scaffolds HuR/TXNIP down-reg
circXPO1 hsa_circ_0054899 Protein binding IGF2BP1/CTNNB1 up-regula
circMMP2 hsa_circ_0039411 Protein binding IGF2BP3/FOXM1 up-regula

Colorectal cancer circCSPP1 hsa_circ_0001806 MiRNA sponge miR-431/ROCK1/ZEB1 up-regula
circ001971 MiRNA sponge miR-29c-3p up-regula
circ3823 MiRNA sponge miR-30c-5p/TCF7 up-regula

circSPARC MiRNA sponge miR-485-3p/JAK2/STAT3 up-regula
circCAMSAP1 hsa_circ_0001900 MiRNA sponge miR-328-5p/E2F1 up-regula
circ001680 MiRNA sponge miR-340/BMI1 up-regula
circCUL2 MiRNA sponge miR-208a-3p/PPP6C down-reg

circPTEN1 Protein binding Smad4/TGF-b/Smad down-reg
circPTK2 hsa_circ_0005273 Protein binding vimentin up-regula
circMYH9 Protein scaffolds hnRNPA2B1/p53 up-regula
circPPP1R12A hsa_circ_0000423 Protein code circPPP1R12A-73aa/hippoyap up-regula
circRHOBTB3 hsa_circ_0073431 Protein binding HuR/PTBP1 down-reg
circ0006401 hsa_circ_0006401 Protein code col6a3 up-regula
circPLCE1 Protein code circPLCE1-411/HSP90a/RPS3/

NF-kB
down-reg

circFNDC3B Protein code circFNDC3B-218aa down-reg
circLONP2 hsa_circ_0008558 Transcriptional regulation DGCR8/Drosha/miR-17 up-regula
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TABLE 3 | Continued

Function Refs

te cell proliferation, migration, and invasion
ell apoptosis

(7)

te cell proliferation, colony formation, migration,
asion

(120)

te cell invasion and EMT (121)
te cell proliferation and invasion (122)

te cell proliferation and migration (123)
te invasion (124)
nvasion and metastasis (125)
ell proliferation, migration, and invasion (33)
ell proliferation (126)

te cell proliferation and migration (127)
te cell proliferation, migration, invasion, clone
on, and cell cycle

(128)

te cell proliferation, migration, and invasion
poptosis

(129)

ell proliferation and motility (130)
te cell proliferation, migration, invasion, and
asis

(131)

te cell proliferation, migration (132)
te cell proliferation (8)
te cell proliferation, migration, and invasion (133)
te cell proliferation, Migration, invasion, and
enesis.

(134)

te cell invasion and metastasis (135)
te tumorigenesis and invasion (136)
te cell proliferation, migration, and invasion (137)
te cell autophagy, migration, invasion, and EMT (138)
ell proliferation, migration, invasion, and
sis

(139)

te cell autophagy
ell proliferation, migration, and invasion

(140)

ell proliferation, migration. and invasion (141)
ell proliferation, migration, invasion, and
asis

(142)

ell proliferation and metastasis (143)
ell proliferation, migration, and invasion (45)
ell proliferation, migration (144)
te cell proliferation, migration, invasion, and
asis

(145)

ell proliferation, invasion (146)
ell growth, invasion, and metastasis (147)
ell migration, invasion, and metastasis (148)
ell proliferation, migration, and invasion (149)

(Continued)
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Cancer type CircRNA CircBase ID Mechanism Target Expression in
cancer

Hepatocellular
carcinoma

circ104348 MiRNA sponge miR-187-3p/RTKN2/Wnt/b-catenin up-regulated Promo
Inhibit

circASAP1 hsa_circ_0085616 MiRNA sponge miR-326/miR-532-5p-MAPK1/
CSF-1

up-regulated Promo
and in

circMET hsa_circ_0082002 MiRNA sponge miR-30-5p/Snail/DPP4/CXCL10 up-regulated Promo
circSOD2 MiRNA sponge miR-502-5p/DNMT3a/JAK2/

STAT3/
up-regulated Promo

circRASGRF2 hsa_circ_0073181 MiRNA sponge miR-1224/FAK up-regulated Promo
circ0003998 hsa_circ_0003998 MiRNA sponge miR-143-3p/FOSL2 up-regulated Promo
circMEMO1 MiRNA sponge miR-106b-5p/TCF21 down-regulated Inhibit
circMTO1 MiRNA sponge miR-541-5p/ZIC1/Wnt/b-catenin down-regulated Inhibit
circSETD3 hsa_circRNA_0000567

/hsa_circRNA_101436
MiRNA sponge miR-421/MAPK14 down-regulated Inhibit

circ0003410 hsa_circ_0003410 MiRNA sponge miR-1393p/CCL5 up-regulated Promo
circMRPS35 hsa_circ_0000384 MiRNA sponge

Protein code
miR-148a -3p/STX3/PTEN
circMRPS35-168aa

up-regulated Promo
format

circLRIG3 hsa_circ_0027345 Protein scaffolds EZH2/STAT3 up-regulated Promo
Inhibit

circDLC1 Protein binding HuR/MMP1 down-regulated Inhibit
Gastric cancer circLMO7 hsa_circ_0008259 MiRNA sponge miR-30a-3p/WNT2/b-Catenin up-regulated Promo

metas
circFAM73A MiRNA sponge miR-490-3p/HMGA2 up-regulated Promo
circHIPK3 hsa_circ_0021592 MiRNA sponge miR-637/AKT1 up-regulated Promo
circ0110389 hsa_circ_0110389 MiRNA sponge miR-127-5p/miR-136-5p-SORT1 up-regulated Promo
circSHKBP1 hsa_circ_0000936 MiRNA sponge miR-582-3p/HUR/VEGF up-regulated Promo

angiog
circRanGAP1 hsa_circ_0063535 MiRNA sponge miR-877-3p/VEGFA up-regulated Promo
circDUSP16 hsa_circ_0003855 MiRNA sponge miR-145-5p/IVNS1ABP up-regulated Promo
circ0001829 hsa_circ_0001829 MiRNA sponge miR-155-5p-SMAD2 up-regulated Promo
circNRIP1 hsa_circ_0061275 MiRNA sponge miR-149-5p/AKT1/mTOR up-regulated Promo
circRELL1 hsa_circ_0001400 MiRNA sponge miR-637/EPHB3 down-regulated Inhibit

apopto
circCUL2 hsa_circ_0018193 MiRNA sponge miR-142-3p/ROCK2 down-regulated Promo

Inhibit
circCCDC9 hsa_circ_0051667 MiRNA sponge miR-6792-3p/CAV1 down-regulated Inhibit
circMCTP2 hsa_circ_0000657 MiRNA sponge miR-99a-5p/MTMR3 down-regulated Inhibit

metas
circPSMC3 hsa_circ_0021989 MiRNA sponge miR-296-5p/PTEN down-regulated Inhibit
circMAPK1 hsa_circ_0004872 MiRNA sponge miR-224/Smad4/ADAR1 down-regulated Inhibit
circDONSON hsa_circ_0061550 Protein code MAPK1-109aa/MEK1/MAPK1 down-regulated Inhibit

Interaction with proteins SNF2L/SOX4 up-regulated Promo
metas

circMRPS35 hsa_circ_0025733 Protein modification KAT7/FOXO1/3a down-regulated Inhibit
circHuR hsa_circ_0049027 Protein binding CNBP/HuR down-regulated Inhibit
circURI1 hsa_circ_0050333 Transcriptional regulation hnRNPM down-regulated Inhibit
circDIDO1 hsa_circ_0061137 Protein code and Interaction

with proteins
529aa/PARP1,PRDX2 down-regulated Inhibit
c

v

i
c
c

i
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c

t

c

c
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c
t
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t
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TABLE 3 | Continued

Function Refs

te cell proliferation, migration, and invasion (150)
te cell proliferation, migration, and invasion (151)
te cell proliferation and migration (152)
te autophagy and malignant progression (153)
te cell proliferation, migration, and invasion
poptosis

(154)

ell migration and invasion (155)

ell proliferation migration, invasion, and EMT (156)
ell proliferation, migration, invasion, and EMT (157)
e cell growth, invasion, and metastasis (158)
te cell invasion (159)
e cell proliferation and migration (160)
te cells proliferation, invasion, and
enesis

(161)

te cell proliferation
ell apoptosis

(162)

te cell proliferation and inhibit cell apoptosis (163)

e cell viability and inhibit apoptosis (164)
ell proliferation、migration and invasion
te cell apoptosis

(165)

ell proliferation and promote cell apoptosis (166)
te cell autophagy (167)
te cell viability (168)
te cell proliferation
ell apoptosis

(169)

te cell apoptosis and inhibit tumor progression (170)
te EMT and invasion (171)

te cells proliferation, and invasion (172)
te cell proliferation, migration, and invasion (173)
te cell proliferation, migration, and invasion (174)
te RCC metastasis and EMT (175)
te cell proliferation, migration, and invasion (176)
te cell proliferation, and tumor progression (177)

te cell proliferation, migration, and invasion (178)
te cell proliferation, migration, and invasion (179)
e cell proliferation, migration, invasion, and EMT (180)
te cell invasion and proliferation (181)
ell proliferation, migration, invasion, and EMT (182)
ell proliferation and metastasis (183)
ell proliferation, migration, and invasion (184)
ell proliferation, migration, invasion, and
asis

(185)

(Continued)
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Cancer type CircRNA CircBase ID Mechanism Target Expression in
cancer

Breast cancer circROBO1 MiRNA sponge miR-217-5p/KLF5/FUS up-regulated Promo
circBACH2 MiRNA sponge miR-186-5p/miR-548c-3p/CXCR4 up-regulated Promo
circ0005273 hsa_circ_0005273 MiRNA sponge miR-200a-3p//YAP1 up-regulated Promo
circCDYL MiRNA sponge miR-1275-ATG7/ULK1 up-regulated Promo
circSEPT9 MiRNA sponge miR-637/LIF/Stat3 up-regulated Promo

Inhibit
circKDM4B hsa_circ_0002926 MiRNA sponge miR-675/NEDD4L/PI3KCA/PI3K/

AKT and VEGFA
down-regulated Inhibit

circNR3C2 hsa_circ_0071127 MiRNA sponge miR-513a-3p/HRD1/Vimentin down-regulated Inhibit
circNOL10 MiRNA sponge miR-767-5p/SOCS2/JAK2/STAT5 down-regulated Inhibit
circACTN4 Protein binding FUBP1/MYC up-regulated promo
circSKA3 Protein binding Tks5/integrin b1 up-regulated Promo
circEIF6 Peptide code EIF6-224aa/MYH9/Wnt/b -catenin up-regulated promo
circHER2 Protein code HER2-103/EGFR up-regulated Promo

tumori
Hematopoietic
cancers

circRNF220 hsa_circ_0012152 MiRNA sponge miR-30a/MYSM1/IER2 up-regulated Promo
Inhibit

circSPI1 MiRNA sponge
Interaction with proteins

miR-1307-3p、miR-382-5p and
miR-767-5p
eIF4AIII

up-regulated Promo

circ0000370 hsa_circ_0000370 MiRNA sponge miR-1299/S100A7A up-regulated Increa
circ0000094 hsa_circ_0000094 MiRNA sponge miR-223-3p/FBW7 down-regulated Inhibit

Promo
circADD2 MiRNA sponge miR-149-5p/AKT2 down-regulated Inhibit
circ0009910 MiRNA sponge miR-34a-5p/ULK1 up-regulated Promo
circRPL15 hsa_circ_0064574 MiRNA sponge miR146b-3p/RAF1 up-regulated Promo
circADARB1 MiRNA sponge miR-214-3p/p-Stat3 up-regulated Promo

Inhibit
circEAF2 MiRNA sponge miR-BART19-3p/APC/b-catenin down-regulated Promo

Renal carcinoma circPRRC2A MiRNA sponge miR-514a-5p and miR-6776-5p/
TRPM3

up-regulated Promo

circSDHC hsa_circ_0015004 MiRNA sponge miR-127-3p/CDKN3/E2F1 up-regulated Promo
circTLK1 MiRNA sponge miR-136-5p/CBX4 up-regulated Promo
circAGAP1 MiRNA sponge miR-15-5p/E2F up-regulated Promo
circPTCH1 MiRNA sponge miR-485-5p/MMP14 up-regulated Promo
circ001287 MiRNA sponge miR-144/CEP55 up-regulated Promo
circMET hsa_circ_0082002 MiRNA sponge miR1197/SMAD3 up-regulated Promo

Protein binding YTHDF2/CDKN2A
Bladder Cancer circGLIS3 hsa_circ_0002874 MiRNA sponge miR-1273f/SKP1/Cyclin D1 up-regulated Promo

circUBE2K hsa_circ_0009154 MiRNA sponge miR-516b-5p/ARHGAP5/RhoA up-regulated Promo
circ0000658 MiRNA sponge miR-498/HMGA2 up-regulated Promo
circ0001944 hsa_circ_0001944 MiRNA sponge miR-548/PROK2 up-regulated Promo
circST6GALNAC6 MiRNA sponge STMN1/STMN1/EMT down-regulated Inhibit
circACVR2A hsa_circ_0001073 MiRNA sponge miR-626/EYA4 down-regulated Inhibit
circSLC8A1 MiRNA sponge miR-130b, miR-494/PTEN down-regulated Inhibit
circZKSCAN1 MiRNA sponge miR-1178-3p/p21 down-regulated Inhibit
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patients compared with normal tissues. It is worth noting that
circMRPS35 can not only adsorb miR-148a-3p, regulate the
expression of Syntaxin 3 (STX3), thereby regulating the
ubiquitination and degradation of phosphatase and tensin
homolog (PTEN) but can also encode a peptide (circMRPS35-
168aa), this peptide promotes cisplatin resistance in HCC cells.
CircLRIG3 is significantly up-regulated in HCC, forming a
ternary complex with EZH2 and STAT3, promoting EZH2-
induced STAT3 methylation and subsequent phosphorylation,
leading to the activation of STAT3 signal, thereby promoting the
proliferation, migration, and invasion of liver cancer cells.
Reduce cell apoptosis (129).

Wei et al. reported that the expression of circCDYL or the
combined expression of HDGF and HIF1AN are independent
markers for distinguishing early HCC, providing the possibility
for the detection and early treatment of liver cancer (204). Yang
et al. found that circFN1 promotes sorafenib resistance by
regulating the miR-1205/E2F1 signaling pathway, which is a
potentially valuable target for HCC resistance (205).

3.4 Gastric Cancer
Gastric cancer (GC) is the fourth leading cause of death in the
world (199), especially in Asian countries, the incidence of
gastric cancer is increasing year by year. Cao et al. found that
circ0008259 (circLMO7) is highly expressed in GC tissues,
circLMO7 sponge miR-30a-3p regulates the WNT2/b-Catenin
pathway and affects the glutamine metabolism of GC cells, and
ultimately promotes the growth and migration of GC (131). Peng
et al. found that the level of circCUL2 in GC tissues and cells was
significantly reduced, and the sponge engulfed miR-142-3p to
regulate ROCK2, thereby inhibiting malignant transformation
and inhibiting tumorigenicity in vivo (140). In addition, Yan
et al. (206) found that circEVI5 was significantly down-regulated
in GC tissues and cells. circEVI5 sponges swallowed miR-4793-
3p and increased the expression level of FOXO1 to inhibit the
proliferation of GC and delay the cell cycle. Wang et al. (148)
analyzed the circRNAs of five pairs of human stomachs and
corresponding non-tumor adjacent specimens and found that
circURI1 was significantly highly expressed in GC and
metastasized in GC. It regulates a small part of genes involved
in cell movement by isolating hnRNPM protein to inhibit GC
metastasis. Zhang et al. (149) found that circDIDO1 is down-
regulated in gastric cancer tissues, and its low level is associated
with larger tumors, distant metastasis, and poor prognosis. In
mechanism, circDIDO1 encodes a new 529aa protein, which
interacts with poly ADP-ribose polymerase 1 (PARP1). Effect
and inhibit its activity. Interestingly, circDIDO1 also binds to
peroxide reduction protein 2 (PRDX2), which promotes the
ubiquitination and degradation of PRDX2 mediated by rbx1,
leading to inactivation of its downstream signaling pathways.

Further, numerous research has explored the clinical utility
of circRNAs as biomarkers for the early detection and prognosis
of gastric cancer. For instance, Song et al. (207) detected the
expression profile of circRNAs and found that hsa_circ_000780
was significantly downregulated in GC tissue samples, and its
level was correlated with the level of tumor clinicopathological
features. Interestingly, circ000780 was also found in gastric juice
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of patients with early GC. In another report, circERBB2 (208) in
plasma can be used as a prognostic biomarker for gastric cancer
patients. CircERBB2 levels in preoperative plasma (high group)
were significantly correlated with lymph node metastasis (P =
0.035), suggesting that it could be used to predict noninvasively
the prognosis of GC.

3.5 Breast Cancer
Breast cancer (BC) is the main cause of cancer in women and the
main cause of death in women. Wang et al. (151) used the
circRNAs microarray data set and found that four circRNAs
were abnormally expressed in TNBC. Among them, circBACH2
is most significantly elevated in BC tissues, and its high
expression promotes epithelial-mesenchymal transition and
cell proliferation and is positively correlated with the
malignant progression of BC patients. Mechanistically,
circBACH2 sponges miR-186-5p and miR-548c-3p, thereby
releasing the expression of C-X-C chemokine receptor type 4
(CXCR4). Li et al. (160) discovered that circ-EIF6 encodes a new
peptide called EIF6-224 amino acid (aa). EIF6-224aa directly
interacts with the oncogene MYH9 in BC and inhibits the
ubiquitin-proteasome pathway and subsequently activates the
Wnt/b-catenin pathway to reduce the degradation of MYH9,
thereby playing a carcinogenic effect. In addition, Wang et al.
reported that circACTN4 can competitively bind to far upstream
element-binding protein 1 (FUBP1) to prevent FUBP1 from
binding to FIR, thereby activating MYC transcription and
promoting tumor progression in breast cancer (158).
Frontiers in Oncology | www.frontiersin.org 12
Some potential circRNAs biomarkers for early diagnosis of
BC and prediction of recurrence and metastasis have emerged
from the detection of clinical samples in the tissues and
peripheral blood of BC patients and healthy controls,
combined with the correlation analysis of clinicopathological
factors and the analysis of prognosis and survival. For example,
CircSMARCA5 can form an R-loop with its parental locus,
causing a transcriptional pause at SMARCA5 exon 15, and
SMARCA5 DNA is involved in chromatin remodeling in
damaged regions.circSMARCA5 may serve as a therapeutic
target for patients with drug-resistant BC (209). The above
studies have provided new insights into the role of circRNAs
in BC.

3.6 Hematopoietic Cancers
According to recent research findings, the involvement of
circRNAs in hematological malignancies is becoming more
widely recognized (210). Among them, aberrant circRNAs
expression might upset the balance between self-renewal and
differentiation of hematopoietic stem cells (HSCs), resulting in
bone marrow failure or hematological malignancies.

Acute myeloid leukemia (AML), the most common leukemia
in adults, is uncommon in children, but has a poor prognosis and
is prone to relapse (211). Liu et al. discovered that circRNF220 is
abundantly and precisely expressed in children’s peripheral
blood and bone marrow using microarray technology.
CircRNF220 knockout can reduce the proliferation of AML
cell lines and primary cells while also promoting cell death
FIGURE 2 | Overview of circRNAs in various types of cancers.
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(162). FLT3-ITD+ AML is a significant subtype of AML, and
Zhang et al. observed that the effect of circ0000370 on the
development of FLT3-ITD-positive AML may be directly
connected to miR-1299 and S100A7A (164). Acute
lymphoblastic leukemia (ALL) is the most prevalent malignant
tumor in children, and circ0000094 has been demonstrated to be
a molecular sponge of miR-223-3p, which can upregulate the
expression of FBW7 by limiting the expression of miR-223-3p,
hence preventing ALL progression (165). Zhu et al. found that
circADD2, as a tumor suppressor gene in ALL, inhibited cell
proliferation and promoted cell apoptosis both in vitro and in
vivo. Mechanistically, circADD2, which can sponge miR-149-5p,
may serve as a potential biomarker for ALL diagnosis or
treatment (166). Interestingly, circRNAs expression profiles
can also clearly distinguish Acute leukemia (AL). For example,
Guo et al. reported circ0001857 and circ0012152 ALL and AML
(212). The recently discovered Circ0009910 can regulate ULK1-
induces autophagy by targeting miR-34a-5p and accelerating the
resistance of CML cells to imatinib (167). High expression of
circ-RPL15 was positively correlated with IGHVmutation status,
which is crucial for evaluating CLL prognosis. MiR-146b-3p-
mediated RAS/RAF1/MEK/ERK pathway inhibition could be
alleviated by circRPL15 overexpression in CLL. CircRPL15
may represent a promising novel plasma biomarker for the
diagnosis of CLL (168). Mei et al. found that the relative
expression of circADARB1 was significantly increased in the
plasma of Natural killer/T-cell lymphoma (NKTCL), which
binds to miR-214-3p and regulates p-Stat3, promotes the
proliferation of NKTCL cells, and inhibits apoptosis (169).
Furthermore, Zhao et al. reported that CircEAF2 inhibited
Epstein-Barr infection positive diffuse large B cell expansion
and advanced apoptosis via the miR-BART19-3p/APC/-catenin
axis (170).

Some of the circRNAs reported above play a regulatory role in
the occurrence and development of hematological tumors
through various molecular mechanisms, suggesting some
potentials of circRNAs in the research of hematological
malignancies in the future. These findings also aid in the
diagnosis and prediction of hematological malignancies.

3.7 Other Types of Cancer
The abnormal expression of many circRNAs has been verified in
many cancers. In renal cell carcinoma (RCC), Cen et al. found
that circSDHC competitively binds to miR-127-3p, preventing it
from inhibiting the downstream genes CDKN3 and E2F1
pathways, leading to RCC Malignant progress (172). NONO-
TFE3 TRCC (Xp11.2 translocation/NONO-TFE3 fusion renal
cell carcinoma) is a subgroup of renal cell carcinoma. Yang et al.
found that highly expressed circMET accelerates the decay of
CDKN2A mRNA by recruiting YTHDF2, while competitively
binding miR- 1197, Regulates SMAD3 expression (177). In
bladder cancer (BC), Yang et al. (179) used high-throughput
sequencing and RT-qPCR to verify the abnormally high
expression of circUBE2K BC tissue. As a ceRNA, the
expression of ARHGAP5 was regulated by sponge miR-516b-
5p to promote tumor development. The down-regulated
circZKSCAN1 in BC tissues and cell lines up-regulates the
Frontiers in Oncology | www.frontiersin.org 13
expression of p21 through sponge miR-1178-3p, which inhibits
the proliferation, migration, and invasion of bladder cancer
(185). In addition, some circRNAs have also been found to
play an important role in prostate cancer and cervical cancer, as
shown in Table 3.

In short, various studies have shown that circRNAs are
involved in the occurrence and development of various
cancers. However, the role of circRNAs in the diagnosis and
treatment of cancers needs to be further studied.
4 CircRNAs AS LIQUID
BIOPSY BIOMARKERS

There are RNase in human body fluids, and circRNAs can resist
this enzyme, thus being a stable biomarker for the detection of
body fluids such as blood, exosomes, saliva, and urine (213). In
addition, the half-life of circRNAs in the blood is longer than that
of mRNA. Coupled with the high abundance and specificity of
circRNAs, circRNAs are expected to become an excellent non-
invasive biomarker for tumor diagnosis and prognosis. Xu et al.
reported that compared with breast cancer and adjacent normal
tissues, the expression of circRNAs in peripheral blood was
significantly higher than that of host genes (209). This
discovery helps to explore diagnostic biomarkers for
breast cancer.

CircRNAs may be used as biomarkers for cancer diagnosis
and prognosis. It is worth noting that exosomes can protect RNA
RNases from degradation, so circRNAs are also enriched and
stably expressed in exosomes (214). Exosomes derived from
cancer cells can target specific organs to promote the
formation of pre-metastasis niches (215) and tumor
microenvironment (216). Exosomal circRNAs participate in
cell proliferation, invasion, EMT, and metastasis through
intercellular communication. Shang et al. (217) discovered a
new circRNA in colorectal cancer exosomes, circPACRGL,
which acts as a sponge for miR-142-3p/miR-506-3p and
promotes the expression of transforming growth factor-b1
(TGF-b1). It has been reported that exosomal circSHKBP1
inhibits HSP90 degradation and promotes GC progress
through miR-582-3p/HUR/VEGF pathway (134). Recently, Li
et al. used circRNA deep sequencing and bioinformatics methods
to build a circRNA repertoire, and 3 up-regulated serum
exosomal circRNAs (circ0075828, circ0003828, and
circ0002976) could be used to screen for high-grade
astrocytoma (HGA). Five highly expressed exosomal circRNAs
(circ0005019, circ0000880, circ0051680, and circ0006365) were
used as HGA prognostic markers. revealed that circular RNAs in
HGA exosomes are targets for HGA liquid biopsy and prognostic
monitoring (218). At present, progress has been made in the
research of exosomal circRNAs, but the mechanism of circRNAs
entering exosomes and the role of circRNAs in exosomes are
still unclear.

In summary, the prospects of circRNAs as biomarkers for
liquid biopsy and therapeutic targets are promising, but there are
few studies at present.
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5 CircRNAs AND FUTURE
THERAPEUTIC OPPORTUNITIES

CircRNAs are attractive targets for cancer therapy and offer novel
cancer treatment techniques. In this section, we will discuss some
future perspectives on the usage of circRNAs in cancer therapy.

As mentioned above, more and more studies have demonstrated
that dysregulation of circRNAs in cancer can promote or inhibit
cancer (Table 3). While the up-or down-regulation of certain
circRNAs is linked to clinical aspects such as TNM and other
related phases, differentiation, or survival (142, 219). This shows
that circRNAs actions are context-dependent, making it difficult to
categorize circRNAs as oncogenic or tumor suppressors.

CircRNAs rely on the sponge action of miRNAs to promote
cancer progression. In recent years, small molecule inhibitors
(SMIs) and small molecule degradants (SMDs) of miRNAs have
been reported for drug therapy, so whether it is possible to develop
blockers targeting miRNAs to reduce the cancer-promoting
activity of circRNAs (220). Of course, the specificity of the drug
requires other biotechnological validation and the safety of the
drug also needs to be assessed. In addition, when cancer develops,
some critical circRNAs are greatly up-regulated. Can it decrease
cancers by reducing the number of cancer-promoting circRNAs
without influencing the expression of their parental genes? It may
be able to regulate the occurrence of back-splicing events by
focusing on the splicing mechanisms that affect circRNAs. For
example, Tassinari et al. demonstrated that downregulation of the
RBP splicing factor ADAR1, which controls circular RNA
biogenesis, is sufficient to strongly inhibit glioblastoma growth
in vivo (221). This inspires the prospect of a technique that
modulates RBP to suppress circular RNA expression.

Finally, gene editing techniques such as CRISPR/Cas13 has
been applied to RNA editing (222), Whether circRNAs can also
be edited to reduce or increase activity. Recently, Ishola et al.
found that CRISPR/Cas13a-mediated knockdown of
circ0000190 reduced the proliferation and migration of non-
small cell lung cancer cells in vitro and inhibited tumor growth in
vivo (223). This also confirms the potential of the novel CRISPR/
Cas13a system as a cancer therapy tool.
6 CHALLENGES AND PERSPECTIVES

CircRNAs have been considered splicing errors before, but they
have attracted widespread attention in recent years. A lot of
Frontiers in Oncology | www.frontiersin.org 14
innovative research has emerged in the field of circRNAs, but
there are still many challenges and problems that need to be
solved. From the above-mentioned large number of retrospective
reports, it can be seen that the importance of circRNAs is beyond
doubt. However, the function of most circRNAs is still unclear,
whether there are new undiscovered functions. In addition, the
coding potential of circRNAs is often overlooked. And whether
the proteins encoded by circRNAs have the functions of
conventional proteins. Thousands of circRNAs have been
detected, some of them are highly abundant in cancer and
some are low in abundance. The detection method for low-
abundance circRNAs is not yet mature, and their use as non-
invasive biomarkers requires a large number of clinical sample
collections. Moreover, their sensitivity and specificity are
controversial. In addition, packaging circRNAs into cells to
regulate cell activities also requires a lot of research and
exploration, so that these studies can truly produce clinical
application value. Standardization is needed in many aspects,
such as the extraction of differences between detection
technologies and the standardization of naming.

In summary, circRNAs play an important role in cancer and
provide new insights for cancer management, but the
mechanism of action is still in its infancy. The research of
circRNAs still has a long way to go.
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