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Abstract 

Background:  Autosomal-dominant Alzheimer’s disease (ADAD) is caused by pathogenic mutations in APP, PSEN1, 
and PSEN2, which usually lead to an early age at onset (< 65). Circular RNAs are a family of non-coding RNAs highly 
expressed in the nervous system and especially in synapses. We aimed to investigate differences in brain gene expres‑
sion of linear and circular transcripts from the three ADAD genes in controls, sporadic AD, and ADAD.

Methods:  We obtained and sequenced RNA from brain cortex using standard protocols. Linear counts were 
obtained using the TOPMed pipeline; circular counts, using python package DCC. After stringent quality control (QC), 
we obtained the counts for PSEN1, PSEN2 and APP genes. Only circPSEN1 passed QC. We used DESeq2 to compare 
the counts across groups, correcting for biological and technical variables. Finally, we performed in-silico functional 
analyses using the Circular RNA interactome website and DIANA mirPath software.

Results:  Our results show significant differences in gene counts of circPSEN1 in ADAD individuals, when compared 
to sporadic AD and controls (ADAD = 21, AD = 253, Controls = 23—ADADvsCO: log2FC = 0.794, p = 1.63 × 10–04, 
ADADvsAD: log2FC = 0.602, p = 8.22 × 10–04). The high gene counts are contributed by two circPSEN1 species 
(hsa_circ_0008521 and hsa_circ_0003848). No significant differences were observed in linear PSEN1 gene expression 
between cases and controls, indicating that this finding is specific to the circular forms. In addition, the high circPSEN1 
levels do not seem to be specific to PSEN1 mutation carriers; the counts are also elevated in APP and PSEN2 mutation 
carriers. In-silico functional analyses suggest that circPSEN1 is involved in several pathways such as axon guidance 
(p = 3.39 × 10–07), hippo signaling pathway (p = 7.38 × 10–07), lysine degradation (p = 2.48 × 10–05) or Wnt signaling 
pathway (p = 5.58 × 10–04) among other KEGG pathways. Additionally, circPSEN1 counts were able to discriminate 
ADAD from sporadic AD and controls with an AUC above 0.70.
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Background
Alzheimer’s disease (AD) is the most common cause of 
dementia; approximately 5.8 million Americans suffered 
from AD in 2019 and, by 2050, it is projected that 14 mil-
lion individuals in the United States will be affected by 
AD [1]. AD is characterized by pathological changes in 
the brain: accumulation of amyloid-beta plaques (extra-
cellular deposits of amyloid-beta peptides) and neurofi-
brillary tangles (NFTs, intraneuronal fibrillar aggregates 
of hyperphosphorylated tau). Clinically, AD is defined 
by gradual and progressive memory loss [2]. AD can be 
categorized as sporadic AD or Autosomal Dominant AD 
(ADAD) [3]. ADAD is caused by mutations or duplica-
tions of the amyloid precursor protein (APP), mutations 
in presenilin 1 (PSEN1), or mutations in presenilin 2 
(PSEN2), an autosomal dominant inheritance within fam-
ily members for more than two generations, and an onset 
earlier than 65 years old [4, 5]. More than 400 mutations 
have been reported on these three genes, but PSEN1 har-
bors the most mutations, which are also associated with 
the youngest age at onset with affected individuals typi-
cally being 30–50 years old [4, 6–8]. In fact, PSEN1 muta-
tions have also been reported in late-onset AD [9]. Even 
though ADAD is rare (< 0.5% of all AD cases) [10], these 
cases have provided unique insights into the pathobiology 
of the disease, especially the formulation of the amyloid 
hypothesis: that accumulation of amyloid-beta aggregates 
initiates the pathologic process of AD. All three ADAD-
causing genes are part of the amyloid-beta processing 
pathway. However, neuropathological studies have shown 
that there are common and distinct pathological char-
acteristics [11]. Both ADAD and AD present neuronal 
loss, neurofibrillary tangles, amyloid plaques and cerebral 
amyloid angiopathy among others, but ADAD show, for 
example, cottonwool plaques, more severe cerebral amy-
loid angiopathy, more common intracerebral hemorrhage 
or higher abundance of Lewy bodies [5, 12].

Recently, studies screening the whole genome, or the 
brain transcriptome have been instrumental in eluci-
dating downstream genes and pathways implicated in 
disease, highlighting the importance of studying AD 
beyond the amyloid pathway [13–18]. However, most 
of these studies have been focused on sporadic AD, so 
their findings cannot always be extrapolated to Mende-
lian forms of AD; differences between these two forms 

of the disease are well known [5, 12, 19]. Several studies 
focused on ADAD have been limited to genetic studies 
focused on families [6, 20, 21] and animal studies aiming 
to understand the amyloid cascade hypothesis [22]. Stud-
ies involving large diverse ADAD cohorts are limited.

Circular RNAs are a family of non-coding RNAs that 
result from backsplicing events (the 3’ end of the tran-
script links covalently to the 5’ forming a loop) [23, 24]. 
The knowledge of circular RNAs is still limited, but it 
is thought that they are implicated in the regulation of 
microRNAs via sequestration, leading to a loss of func-
tion of the microRNA [20, 23–25]. Circular RNAs are 
highly expressed in the nervous system and especially in 
synapses [20]. Dysregulation of circular RNAs has already 
been shown for several central nervous diseases, includ-
ing AD, Parkinson’s disease, and traumatic brain injury 
[20, 25–27]. CircRNA were systematically screened in 
brain samples from AD compared to controls [20]. They 
successfully identified more than 100 circRNAs associ-
ated with AD status and disease severity measured by 
Braak neurofibrillary tangles (NFT) and Clinical Demen-
tia Rating (CDR®) [28]. When subsetting the analyses to 
ADAD, 236 circRNAs were found to be dysregulated; 56 
of them independently of the severity measured by Braak 
NFT The circRNAs associated with both ADAD and AD 
showed larger effect sizes in ADAD than in AD. However, 
no specific analyses regarding the circular forms of the 
ADAD genes were performed. In this study, we used bulk 
RNA-seq to postmortem parietal cortex samples from 
controls, sporadic AD, and ADAD, we investigated the 
gene expression profiles of linear and circular transcripts 
of the ADAD genes to determine their possible involve-
ment in the pathobiology of ADAD.

Methods
Study population
The discovery phase included bulk RNA-seq data 
from parietal cortex samples from non-Hispanic white 
(NHW) participants: 17 ADAD participants from the 
Dominantly Inherited Alzheimer Network (DIAN) (14 
PSEN1 and three APP mutation carriers), 59 sporadic 
AD participants and ten control participants from the 
Knight-ADRC at Washington University in Saint Louis. 
The replication phase included four ADAD cases from 
DIAN (two PSEN1, one PSEN2, and one APP mutation 

Conclusions:  Our findings show the differential expression of circPSEN1 is increased in ADAD. Given the biological 
function previously ascribed to circular RNAs and the results of our in-silico analyses, we hypothesize that this finding 
might be related to neuroinflammatory events that lead or that are caused by the accumulation of amyloid-beta.

Keywords:  Autosomal-dominant Alzheimer’s disease, Circular RNA, Circular PSEN1, Differential expression, In-silico 
functional analysis, Pathway analysis, Neuroinflammation, Amyloid beta pathway
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carriers), and 194 sporadic AD cases and 13 controls 
from the Knight-ADRC. Demographic information can 
be found in Table  1, and neuropathological character-
istics of the included brains is specified in Additional 
file  1: Table  S1. Finally, we leveraged the Mount Sinai 
Brain Bank (MSBB) dataset (syn3157743) for repli-
cation of the sporadic AD findings (Additional file  1: 
Table  S2). MSBB contains brain RNA-seq data from 
different brain regions. From Brodmann area (BM) 10 
(frontal pole): 143 AD, 29 Controls; from BM22 (supe-
rior temporal gyrus): 134 AD, 26 Controls; from BM36 
(parahippocampal gyrus): 123 AD, 24 Controls; from 
(BM) 44 (inferior frontal gyrus): 132 AD, 25 Controls.

Library preparation and sequencing
The data generation for the discovery dataset has been 
previously published [20, 21]. We followed the same 
protocol to generate the replication dataset. Briefly, 
total RNA was obtained from frozen parietal cortex 
tissue using the Tissue Lyser LT and RNeasy Mini Kit 
(Qiagen). After quality control, libraries were gener-
ated using TruSeq Stranded Total RNA Sample Prep 
with Ribo-Zero Gold kit (Illumina). Eighty million 
2 × 150  bp reads were generated on average for each 
sample using an Illumina HiSeq 4000. For the replica-
tion dataset, we obtained the RNA from frozen brain 
tissue with the Maxwell RSC simplyRNA tissue kit 
(Promega). After quality control, TruSeq Stranded 
Total RNA Sample Prep with Ribo-Zero Gold kit (Illu-
mina) was used to generate the libraries. Thirty-five 
million 2 × 150 bp reads were generated on average for 
each sample using an Illumina NovaSeq 6000.

RNA‑seq quality control, alignment, and circular RNAs 
detection
Both datasets were processed and aligned separately follow-
ing similar pipelines to the ones previously published by our 
group [20, 21]. Genome reference and gene models were 
selected following the TOPMed pipeline (https://​github.​
com/​broad​insti​tute/​gtex-​pipel​ine/​blob/​master/​TOPMed_​
RNAseq_​pipel​ine.​md). Reference genome GRCh38 and 
GENCODE 33 annotation, including the addition of ERCC 
spike-in annotations were used. We excluded ALT, HLA, 
and Decoy contigs from the reference genome due to 
the lack of RNA-seq tools that allow proper handling of 
these regions. To obtain the linear counts we followed 
standard guidelines. Briefly, the raw reads were aligned 
to the human reference genome (GRCh38) using STAR 
(v.2.7.1a) [29]. We evaluated the quality of the align-
ment using sequencing metrics such as reads distribu-
tion, ribosomal content or alignment quality provided by 
STAR [29] using Picard tools (v.2.8.2) [30]. Gene expres-
sion was quantified using Salmon (v.1.2.0) [31] and the 
GENCODE reference genome (GRCh38). All transcripts 
or genes with less than ten reads in more than 90% of the 
individuals were removed.

To obtain the circular RNA counts, all raw reads were 
first aligned to the human reference genome (GRCh38) 
using STAR [29] in chimeric alignment mode. The 
remaining alignment parameters were selected spe-
cifically for circular RNA detection as suggested by the 
developers of the circular RNA calling software DCC 
[32]. Circular RNA detection, annotation and quantifi-
cation was performed using DCC (v.0.4.8). We excluded 
any circRNA that had missing counts in more than 25% 
of the samples. As part of the general quality control, 

Table 1  Demographic characteristics of the discovery and replication datasets

ADAD autosomal dominant Alzheimer’s disease, AD sporadic Alzheimer’s disease, PSEN1 presenilin1, PMI post-mortem interval, CDR® clinical dementia rating. Age 
at Death, Age at Onset, and PMI are expressed as the median value with 95% Inter Quartile Interval; CDR® at Death is expressed as the median value with 75% Inter 
Quartile Interval

Discovery Replication Joint dataset

ADAD AD Controls ADAD AD Controls ADAD AD Controls

Sample size 17 59 10 4 194 13 21 253 23

Age at death 
(years)

52.0 
(38.8–88.2)

84.0 
(72.0–96.1)

92.5 
(75.7–103.4)

58.0 
(42.1–75.6)

83.0 
(68.0–98.0)

87.0 
(80.0–101.0)

54.0 
(39.0–88.0)

83.0 
(68.0–98.0)

90.0 
(79.1–104.0)

Sex (% males) 71% 49% 30% 75% 39% 38% 71% 41% 35%

Age at onset 
(years)

39.0 
(28.6–76.0)

75.0 
(58.8–90.2)

– 62.0 
(52.1–71.9)

73.0 
(55–92.0)

– 51.0 
(28.9–75.8)

73.0 
(55.5–92.0)

–

PSEN1 muta‑
tion (% of 
carriers)

82% 0% 0% 50% 0% 0% 76% 0% 0%

PMI (hours) 9.0  
(4.2–30.8)

11.6 
(4.4–22.5)

10.5 
(5.1–19.4)

10.3 
(4.7–14.9)

12.1 
(4.0–23.0)

9.1  
(3.8–16.2)

9.0  
(4.5–26.5)

12.0 
(4.0–22.7)

9.5  
(4.5–20.5)

CDR® at 
death

2.0 (1.5–3.0) 3.0 (3.0–3.0) 0.3 (0–0.5) 3.0 (2.5–3.0) 3.0 (2.0–3.0) 0 (0–0) 2.5 (2.0–3.0) 3.0 (2.0–3.0) 0 (0–0.25)

https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md
https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md
https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md
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circRNAs that were not present in at least three sam-
ples, with a minimum of three counts in at least one of 
them, were removed. Additionally, we removed any cir-
cRNA with missing counts in more than 75% of the 
samples. Then we proceeded to extract the linear and 
circular forms corresponding to the three ADAD genes 
(APP, PSEN1 and PSEN2) from each dataset. For all three 
datasets, only circPSEN1 could be detected; circAPP and 
circPSEN2 were not detected. Consequently, the analyses 
were focused on linear PSEN1 and circPSEN1. The spe-
cies of circPSEN1 varied depending on the dataset and 
the brain region for the MSBB. Overall, seven circPSEN1 
species were detected by DCC; but four of them (hsa_
circ_0008521, hsa_circ_0003848, hsa_circ_0007013, 
hsa_circ_0002564) were commonly detected in all 
three datasets and most of the brain areas (except hsa_
circ_0008521 for BM10, hsa_circ_0007013 for BM22 and 
BM44).

Statistical analyses
We tested if the levels of circular PSEN1 (circPSEN1) and 
linear PSEN1 were different among groups by compar-
ing AD and control participants, ADAD and AD partic-
ipants, and ADAD and control participants in both the 
discovery and the replication datasets. The same analy-
sis of circPSEN1 was also performed between sporadic 
AD participants and control subjects in the MSBB data-
set (no ADAD participants were available in the MSBB 
dataset). We also investigated which specific circPSEN1 
transcripts were predominant in each group and dataset. 
After normalization of the counts, differential expres-
sion (DE) analyses were performed specifically for 
circPSEN1 and linear PSEN1 using DEseq2 version 1.22.2 
[33] to determine significance. Any association with p 
value < 0.05 was considered significant. All DE analy-
ses were adjusted for postmortem interval (PMI), RNA 
quality as measured by median transcript integrity num-
ber (TIN) [34] and sex. We also tested if circPSEN1 was 
associated to Braak NFT or age at death to investigate if 
our findings were driven by disease severity as previously 
described [20]. Briefly, the variable of interest was added 
to the model to evaluate the effect on the p-value, effect 
size and direction of the circPSEN1 association.

Due to the moderate size of our sample, we combined 
the discovery and replication datasets, since they were 
processed using the same pipeline, and performed a joint 
analysis adding dataset to the model to adjust for possible 
differences in the DE analysis.

In‑silico functional study
To investigate the biological function of circPSEN1, we 
accessed the Circular RNA Interactome website [35] to 
predict which miRNAs have the potential to target any 

of the circPSEN1 species identified in our datasets. Then, 
we used the DIANA mirPath software version 3 [36] to 
identify which genes and pathways were regulated by the 
identified miRNA using the microT-CDS algorithm and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG). 
Finally, we investigated if any of the common genes listed 
in the pathways identified by the DIANA mirPath soft-
ware version 3 were differentially expressed in the ADAD 
cases compared to controls or sporadic AD cases in the 
discovery dataset.

Discriminative ability of circPSEN1
To evaluate if circPSEN1 can discriminate ADAD from 
the other brains, we used three binomial regression 
models built using three different circPSEN1 normal-
ized counts: aggregate counts, hsa_circ_0008521, and 
hsa_circ_0003848 counts to classify ADAD vs. controls, 
ADAD vs. AD, and AD vs. controls in both the discov-
ery and the replication datasets separately. We used the 
discovery dataset to train the models, and the replication 
dataset to validate them. We then evaluated the model 
performance through receiver operating characteristic 
curves (ROCs) and areas under the ROC curve (AUCs). 
The binomial regression models and the receiver operat-
ing characteristic curve analyses were performed using R 
packages stats version 3.5.2 and ROCR version 1.0-7.

Results
circPSEN1 is more abundant in ADAD than sporadic AD 
and controls
The circPSEN1 normalized counts were significantly 
higher in ADAD cases (N = 17) compared to controls 
(N = 10; p = 3.93 × 10–04, log2FC = 0.80) and sporadic 
AD cases (N = 59; p = 6.17 × 10–03, log2FC = 0.52), but 
did not differ between AD cases and controls (p = 0.21, 
log2FC = 0.29) (Table  2 and Fig.  1A) in the discovery 
dataset. The trend was also observed in the replication 
dataset in all three comparisons (log2FCADADvsCO = 0.72; 
log2FCADADvsAD = 0.74; log2FCADvsCO = 0.17) (Table 2 and 
Fig.  1B). Due to the limited sample size of the ADAD 
group, we do not have enough statistical power to detect 
differences in the replication dataset (24 ADAD samples 
are required to have 80% power with a probability of 
type I error of 0.05). Consequently, we performed a joint 
analysis of the two datasets. A more significant associa-
tion was found in the join analyses than in the discov-
ery dataset, indicating that the higher expression level 
of circPSEN1 specific to ADAD than sporadic AD cases 
and controls (pADADvsCO = 1.63 × 10–04, log2FC = 0.79; 
pADADvsAD = 8.22 × 10–04, log2FC = 0.60; pADvsCO = 0.30, 
log2FC = 0.19; Table 2).

We leveraged the MSBB dataset to confirm that there 
were no differences between the normalized counts of 
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circPSEN1 between AD cases and controls. circPSEN1 
is not differentially expressed in any of the four brain 
regions (BM10, BM22, BM36, BM44) available in the 
MSBB dataset (Additional file  2: Fig. S1 and Additional 
file 1: Table S3), which is consistent with our finding that 
higher circPSEN1 expression is specific to ADAD cases.

Similar to RNA-seq, circPSEN1 total count is the 
result of the addition of all the counts from the different 

species of circPSEN1. We investigated if the differ-
ences observed between ADAD and AD or controls 
were the result of an overall increase or the increase of 
a specific species. Seven circPSEN1 species were found 
in the discovery and replication dataset (Table  3). All 
of them are exon derived except one that is intron–
exon derived (circPSEN1- 73147795–73165413). Con-
sidering the four species commonly detected in both 
datasets, the most abundant are hsa_circ_0008521, hsa_
circ_0003848, and hsa_circ_0002564; all three abundant 
species are significantly different between ADAD and CO 
(p = 2.57 × 10–04, 1.65 × 10–03, 0.036, log2FC = 0.96, 0.87, 
0.70) and ADAD and AD (p = 2.20 × 10–03, 6.97 × 10–03, 
8.00 × 10–03, log2FC = 0.72, 0.62, 0.64). No significant 
differences were found between disease status for hsa_
circ_0007013 (Table  3 and Additional file  3: Fig. S2), 
suggesting that all three circRNA species are driving 
the association. No significant differences were found 
between AD and controls for the two species detected in 
the MSBB dataset in any brain region (Additional file 1: 
Table  S3). We also investigated the relationship among 
these three species using correlation tests. We observed 
high correlation between hsa_circ_0008521 and hsa_
circ_0003848 in the discovery (r2 = 0.80, p < 2.20 × 10–16), 
replication (r2 = 0.31, p = 4.22 × 10–06), and MSBB 
(BM22—r2 = 0.42, p = 3.44 × 10–08|BM36—r2 = 0.58, 
p = 7.79 × 10–15|BM44—r2 = 0.71, p = 2.2 × 10–16) data-
sets. Hsa_circ_0002564 shows weak correlations with 
the other two circPSEN1 species even though some of 

Table 2  Differential expression results

Bold values denote nominal significance (P < 0.05)

ADAD autosomal dominant Alzheimer’s disease; AD sporadic Alzheimer’s 
disease; PSEN1 presenilin 1

Circular PSEN1 Linear PSEN1

log2FC P value log2FC P value

ADAD versus controls

Discovery 0.799 3.93 × 10–04 0.217 0.078

Replication 0.722 0.142 − 0.235 0.361

Joint Analysis 0.794 1.63 × 10–04 0.261 0.062

ADAD versus AD

Discovery 0.522 6.17 × 10–03 0.163 0.126

Replication 0.735 0.113 − 0.137 0.597

Joint Analysis 0.602 8.22 × 10–04 0.128 0.332

AD versus controls

Discovery 0.289 0.208 0.101 0.434

Replication 0.171 0.540 − 0.199 0.172

Joint Analysis 0.186 0.303 − 0.082 0.442

Fig. 1  Comparison of the circular PSEN1 normalized counts in the discovery (A) and replication (B) datasets and the normalized counts for the 
linear forms of PSEN1 in the discovery (C) and replication (D) datasets for Controls (grey), AD (Alzheimer’s disease—ocher) and ADAD (autosomal 
dominant Alzheimer’s disease—blue)
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them are nominally significant (with hsa_circ_0008521 
only in the discovery dataset—r2 = 0.25, p = 0.02, and 
with hsa_circ_0003848 in the discovery—r2 = 0.26, 
p = 0.01 and in the BM22 of the MSBB dataset—
r2 = 0.31, p = 8.15 × 10–05). This results suggest that hsa_
circ_0008521 and hsa_circ_0003848 seem to share the 
same mechanism of dysregulation, which might be differ-
ent from hsa_circ_0002564.

To ensure that the association was not driven by dis-
ease severity or age at death, we tested if Braak NFT 
score or age at death were influencing the association 
of circPSEN1 with ADAD. We observed no significant 
changes in the results (Additional file  1: Table  S4), sug-
gesting that these findings are not due to pathology 
severity or the age of the individual.

Circular PSEN1 is independent from linear PSEN1
We then investigated if the association between ADAD 
and circPSEN1 was also observed in the linear form of 
PSEN1. No significant differences were found (Table  2, 
Fig. 1C, D).

We then tested the independence of the normalized 
counts for the linear and circular forms of PSEN1. Signif-
icant correlation was observed for the ADAD individuals 
or the controls (Additional file  4: Fig. S3). The correla-
tion between the linear PSEN1 and the circPSEN1 was 
weak (RDiscovery = 0.42; RReplication = 0.20), even though it 
was nominally significant (pDiscovery = 8.20 × 10–04, pRep-

lication = 3.90 × 10–03) in the AD group. To assess if this 

correlation was affecting our results in the AD group, 
linear PSEN1 was added to the differential expression 
analysis as previously described [37]. The changes of 
circPSEN1 were still significant (p = 1.71 × 10–04), even 
when adjusting for linear PSEN1. This result suggests that 
even though the correlation of linear and circular PSEN1 
was nominally significant, the linear and circular forms 
are independent. Similar results were observed for cor-
relation analyses using for PSEN1 species against linear 
counts (Additional file 5: Fig. S4).

ADAD individuals have higher circPSEN1 counts 
independently of the mutation
ADAD mutations are most prevalent in PSEN1 among 
individuals in both the discovery and the replication 
datasets. Thus, we evaluated if the high expression lev-
els of circPSEN1 were unique to PSEN1 mutation carri-
ers. In the joint dataset (Fig. 2A), the normalized counts 
of circPSEN1 between PSEN1 mutation carriers (N = 16) 
and APP mutation carriers (N = 4) are not significantly 
different (log2FC = 0.332, p = 0.354). When compared to 
AD cases (N = 253) or controls (N = 23), PSEN1 muta-
tion carriers showed increased levels of circPSEN1 
(log2FC = 0.634, p = 1.730 × 10–03, and log2FC = 0.787, 
p = 9.010 × 10–04). APP mutation carriers also showed 
higher counts of circPSEN1 when compared to controls 
(log2FC = 0.597, p = 0.049). Due to the limited sample 
size of PSEN2 mutation carriers (N = 1), no statistical test 

Fig. 2  Comparison of the normalized counts of circular PSEN1 (A)/linear PSEN1 (B) between controls, AD, and different mutation carriers in the joint 
dataset—Controls (grey), ADs (Alzheimer’s disease—ocher), PSEN1 mutation carriers (blue), and APP mutation carriers (green)
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was performed. No differences were found among muta-
tions carriers regarding linear PSEN1 normalized counts 
(Fig. 2B).

In‑silico analyses functional annotation
We found the three most abundant species of 
circPSEN1 in our samples to be hsa_circ_0008521, hsa_
circ_0003848, and hsa_circ_0002564, with the first two 
most likely driving the overall signal. CircRNAs have 
been reported to regulate gene expression by seques-
tering miRNA. Because the biological function of these 
circPSEN1 species has not been described, we explored if 
the biological function of circPSEN1 might be elucidated 
by those miRNAs targeted to them. Using the Targets-
can prediction tool [38] from the CircInteractome data-
base [35], we identified 26 miRNAs that could potentially 
target to the three most abundant species of circPSEN1. 
We used them as input in the microT-CDS tool of the 
DIANA mirPath v.3 software to elucidate which path-
ways are potentially regulated by the identified miRNA. 
Several pathways were found significantly associated 
with these 26 miRNAs: axon guidance (p = 3.39 × 10–07); 
hippo signaling pathway (p = 7.38 × 10–07); lysine deg-
radation (p = 2.48 × 10–05); and Wnt signaling pathway 
(p = 5.58 × 10–04) among other KEGG pathways (Addi-
tional file 1: Table S5). We identified 31 genes that were 
common in the top ten KEGG pathways (Additional 
file  1: Table  S6); the counts of two of them were found 
significantly lower in ADAD brains compared to AD 
brains. FZD4 and RAF1 were nominally significant in 
the discovery (p = 0.045; p = 1.07 × 10–03) and replica-
tion (p = 1.55 × 10–03; p = 0.049) datasets. Both genes are 
related to the transmission of chemical signals between 
the cell surface and the nucleus.

Circular PSEN1 normalized counts can discriminate ADAD
The predictive ability of circPSEN1 counts (aggregate, 
hsa_circ_0008521, and hsa_circ_0003848) was evaluated 
using ROCs and AUCs (Additional file 6: Fig. S5). Aggre-
gated and individual normalized counts of circPSEN1 
show no predictive ability for AD vs. CO. However, 
circPSEN1 showed good predictive power for ADAD 
vs. AD. The AUC for the aggregated counts in the dis-
covery dataset was 0.71; that in the replication dataset 
was 0.81. When we evaluated the predictive power of 
the two circPSEN1 species separately, hsa_circ_0008521 
seemed to have slightly better predictive power than hsa_
circ_0003848. Yet, the aggregate counts of circPSEN1 
seemed to show a more robust discriminative power, 
which generated similar AUCs across datasets.

The discriminative power of circPSEN1 increased 
when we attempted to classify ADAD vs. CO, with an 

AUC of 0.81 in the discovery dataset and an AUC of 
0.85 in the replication dataset for the aggregated counts 
of circPSEN1. The trends were very consistent for both 
datasets for all three predictions despite the differ-
ences in sample size. This result suggests that, even 
though the most abundant circPSEN1 species seem to 
have more discriminative power, the less abundant ones 
(hsa_circ_0007013, hsa_circ_0002564, hsa_circ_0008218, 
hsa_circ_0032509) are also contributing since the dis-
criminative power of the aggregate counts is more stable 
in the two datasets.

Discussion
In this study, we provide evidence that the transcrip-
tional signatures differ between ADAD and AD brains. 
By analyzing the largest dataset to date of ADAD brains, 
we have found that circPSEN1 expression is increased in 
ADAD brains but not in AD cases or controls, a result 
which is independent of age and disease severity (as 
measured by Braak NFT score). Our results show that 
this increased expression is not specific to PSEN1 muta-
tion carriers, as similar results were observed in APP 
mutation carriers, or due to linear PSEN1, suggesting a 
biological mechanism specific to the circPSEN1.

A previous study [20], demonstrated that expression 
changes of circRNAs in pre-symptomatic AD, sporadic 
AD, and ADAD are different and not always related to 
severity of the disease. They found more than 100 circR-
NAs dysregulated in the context of AD, demonstrating 
the involvement of circRNA in the pathobiology of AD. 
In fact, they found even more circRNA dysregulated in 
their comparison of ADAD participants versus controls. 
In the present study we add evidence to the importance 
of the dysregulation of circRNAs. Dube et al., identified 
that circRNAs that were dysregulated in both AD and 
ADAD, presented with larger effect sizes in ADAD. In 
here, we found that circPSEN1 that is related to the amy-
loid pathway is uniquely dysregulated in ADAD partici-
pants. This emphasizes the importance of studying not 
only the molecular similarities between AD and ADAD, 
but also the differences.

It has been demonstrated that circular RNAs are gener-
ated through the spliceosome, suggesting that additional 
to the miRNA regulation through their sponge function, 
circular RNA generation is one of the mechanisms that 
regulates the production of linear RNA [39]. On top of 
that, spliceosomal proteins have been reported to aggre-
gate with tau tangles [40] and to be down-regulated in 
the presence of amyloid-beta42 [41]. The production 
of circPSEN1 could be due to the mutations present in 
PSEN1 via spliceosome alterations. Among the PSEN1 
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mutations in this study, p.H163R is located at the bound-
aries of hsa_circ_0002564. This might explain the dys-
regulation of this particular circular RNA. However, this 
mutation was present in only four of the ADAD brain 
samples, suggesting that other regulatory events are 
taking place in the ADAD individuals unrelated to this 
mutation. In fact, previous studies have demonstrated 
that introns regulate the biogenesis of circular RNA. 
Given that most of the PSEN1 mutations are located 
within the exons, it is likely that this might not be the 
biological explanation.

Our in-silico functional analysis predicted 26 miR-
NAs that could bind the three abundant circPSEN1 spe-
cies. These 26 miRNAs are significantly associated with 
several pathways, including wnt, hippo and axon guid-
ance pathways that have been previously related to the 
development of AD and to neuroinflammation [42–45]. 
Among the 26 identified miRNAs, miR-144 has previ-
ously been associated with AD [46]; in fact, miR-144-3p 
targets APP, significantly inhibiting protein expression 
[47]. The overexpression of miR-433 targets JAK2 (janus 
kinase 2) which contributes to the progression of AD 
by inhibition of amyloid-beta-induced neuronal viabil-
ity [48]. Additionally, miR-566 [49] and miR-885-5p [50] 
were also found to be dysregulated in AD. Finally, miR-
655 inhibited the inflammatory response of microglia 
by targeting TREM2 (triggering receptor expressed on 
myeloid 2) [51], which is known to affect amyloid and 
tau pathologies. Our finding adds evidence to the fact 
that AD is not restricted to neurons but involves sev-
eral mechanisms including inflammation [52]. Given the 
involvement of microglia in the inflammatory process, 
axon guidance [53], and the role of wnt pathway [45], 
the presence of circPSEN1 might be originating from the 
microglia. Analyses of circPSEN1 using publicly avail-
able RNAseq data from IPSCs [54] (Additional file 7: Fig. 
S6) showed no differences between mutation carriers 
and isogenic corrected cells. Additionally, previous stud-
ies have shown that the neuronal proportion in ADAD 
brains seems to be lower compared to AD [21]. Together, 
this suggests that the circPSEN1 association described in 
here might not have a neuronal origin. To date, there is 
no reference panel or single-cell circular RNA-seq data 
to test this hypothesis via digital deconvolution or differ-
ential expression analyses. Future studies using these and 
other tools can not only inform of the cell of origin but 
also whether the pathways are involved in vascular clear-
ance, angiogenesis, or blood–brain barrier regulation, 
among others.

circPSEN1 might be a regulatory factor located at 
the top hierarchical levels of the dysregulation of the 

amyloid-beta pathway and leading to the neuroinflam-
matory status. Our results show that circPSEN1 is dys-
regulated in all ADAD cases, independent of the specific 
mutation. However, due to the limited sample size of 
PSEN2 and APP carriers, we cannot disregard the pos-
sibility that this alteration is unique to PSEN1 mutation 
carriers.

Additional analyses to understand the biological 
function of circPSEN1 and its relationship with PSEN1 
are needed, along with the study of circular and linear 
forms of PSEN2 and APP in mutation carriers to elu-
cidate the biological consequences of circular RNAs 
in ADAD in comparison to AD. If further replicated, 
circPSEN1 might be targeted to diminish neuroinflam-
mation in ADAD individuals to delay the onset of the 
disease or slow down its progression.

This study includes the largest sample of ADAD 
brains analyzed to date. However, it is still a study with 
limited sample size, therefore limiting the statistical 
power of this analysis. Although our findings are novel 
and possibly biologically relevant, due to the limited 
knowledge about circular RNAs and their biological 
function, along with the relationship between linear 
and circular forms of the same gene, we cannot claim 
any causal involvement of circPSEN1 with ADAD or 
AD.

Conclusions
In conclusion, our circPSEN1 differential expres-
sion analysis has shown significant differences in the 
expression of circPSEN1 that are unique to ADAD, 
and independent of gene mutation. Due to the biologi-
cal function previously ascribed to circular RNAs and 
our in-silico analyses, we hypothesize that this finding 
might be related to neuroinflammatory events that lead 
or that are caused by the accumulation of amyloid-beta. 
Future studies aimed at understanding the biological 
function of circPSEN1 might lead to a better under-
standing of its pathological involvement with ADAD 
and its potential as drug-target.
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