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Circular rogue wave clusters
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Using the Darboux transformation technique and numerical simulations, we study the hierarchy of rational
solutions of the nonlinear Schrödinger equation that can be considered as higher order rogue waves in this model.
This analysis reveals the existence of rogue wave clusters with a high level of symmetry in the (x,t) plane. These
structures arise naturally when the shifts in the Darboux scheme are taken to be eigenvalue dependent. We have
found single-shell structures where a central higher order rogue wave is surrounded by a ring of first order peaks
on the (x,t) plane.
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I. INTRODUCTION

The notion of rogue waves first appeared in studies of deep
ocean waves [1–3] and gradually moved to other fields of
physics such as optics [4], capillary waves [5], superfluidity
[6], Bose-Einstein condensates (BECs) [7], etc. There are
various approaches in these studies, starting from linear wave
analysis [8], which can explain some of the phenomena that
involve high amplitudes. However, the most comprehensive
approach is based on nonlinear physics [1].

In particular, deep ocean waves, as described by the nonlin-
ear Schrödinger equation (NLSE) [1], have specific solutions
which are localized in both space and time. Such localization is
exemplified by the Peregrine soliton, which has been studied
both theoretically [9,10] and experimentally [11,12]. There
is now growing interest in identifying higher order rational
solutions [13–19], which are also doubly localized. Recent
publications by Matveev’s group significantly developed
the technique of obtaining multirogue wave solutions and
presented explicit forms for these higher order structures
[15,17–20]. However, the complexity of these solutions does
not allow for easy manipulation, despite being provided in
analytical form. Even plotting them does not reveal all the
intricate features of the solutions. We estimate that a large
amount of work still has to be done in the analysis of
multirogue wave solutions.

To derive expressions for compound rogue waves and
visualize them, there are currently two main procedures in
favor: a method based on Wronskian determinants developed
by Matveev’s group [15,17–20], which has seen success in
reaching the sixth order solution analytically [21], and the
Darboux method [22–24], which we employ in this investiga-
tion. Most attempts thus far have assumed the free parameters
in the solution to be zeros. In this case, all components of the
higher order structure are aligned perfectly at one point and the
field has a single high maximum. However, here, we deviate
from this assumption. This has already been done to a limited
extent and has produced the “rogue triplet” solution [15,20,25].
In this work, we extend this investigation to higher order
solutions using both symbolic computation and numerics, and
present surprising clustered structures reminiscent of an atom
with a shell of electrons. Perfect geometrical patterns obtained
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here clearly demonstrate that the world of NLSE solutions is
significantly richer than we thought before.

We begin by writing the NLSE in the dimensionless form,

i
∂ψ

∂x
+ 1

2

∂2ψ

∂t2
+ |ψ |2ψ = 0. (1)

The wave function |ψ(x,t)| in Eq. (1) commonly describes the
wave envelope. In fiber optic applications [11], the variable x

is the distance along the fiber, while t is the retarded time in
the frame moving with the pulse group velocity. On the other
hand, in water wave applications [12], x is the dimensionless
time, while t is the distance in the frame moving with the group
velocity. This difference is related to conventions and traditions
in each field, rather than to any particular physical meaning.
A simple linear transformation with the variable involving the
group velocity allows us to change the equation and variables
from one form to another. Generally speaking, the linear
relation between the two variables in this transformation may
be one of the essential points for understanding the unusual
results of our work; namely, the high level of symmetry in the
(x,t) plane.

There is a class of first order solutions to Eq. (1) that can
be described by a complex eigenvalue l with imaginary part
Im(l). This whole class has been previously presented [26]. If
0 < Im(l) < 1, the solutions are periodic in t and localized in
x. They are presently known as Akhmediev breathers (ABs)
[27–30]. An example is shown in Fig. 1(a). If Im(l) > 1, the
solution is localized in t and periodic in x. The solution is
known as a Ma soliton. It is shown in Fig. 1(b). In the limit of
l → i, the period in both x and t goes to infinity and a solution
involving rational terms arises. This first order wave function
is known as the Peregrine soliton [9]. Due to localization both
in space and time we can also call it a “wave that appears from
nowhere and disappears without a trace” (WANDT) [13].

First order solutions are the simplest amidst NLSE so-
lutions. Among more complicated known examples we can
mention multisoliton solutions [23]. Via similar processes to
the construction of this class, we can generate a nonlinear
superposition of multi-AB solutions. This can be done in
various ways, such as by following Wronskian methodology
[17,18]. In this work, we employ an alternative procedure
that uses Darboux transformations [31]. This allows for the
nonlinear superposition of n ABs, each centered at an arbitrary
coordinate (xj ,tj ) and each with a different eigenvalue lj ,
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FIG. 1. (Color online) Various types of NLSE solution with l as
eigenvalue. (a) Akhmediev breather with l = 0.65i. (b) Ma soliton
with l = 1.35i. (c) Peregrine soliton with l = i (or κ = 0).

where j = 1, . . . ,n. Frequencies of modulation are expressed

through the eigenvalues as κj = 2
√

1 + l2
j . For AB solutions,

these are real.

II. LOW ORDER ANALYTIC SOLUTIONS

The Darboux method [31] allows us to present exact
solutions of any order explicitly. The process is described
in the Appendix and elaborated elsewhere [24,32]. However,
generally the method does not allow two AB components to
share the same eigenvalue, otherwise degenerate solutions
arise. In these situations, numerical simulations can also
experience difficulties. One of the ways to overcome such

obstacles is by defining the n eigenvalues in the form κj = jκ

(j = 1,2, . . . ,n) and taking the limit κ → 0 afterwards. The
sequence of calculations has previously been described in
detail [32,33] and will not be repeated here. The rational
solution of order n in general form, depending on x and t ,
can be written as

ψn(x,t) =
[

(−1)n + Gn + i Hn

Dn

]
eix, (2)

where Gn, Hn, and Dn are all real polynomials of x and t .
A nontrivial observation is that higher order rational solu-

tions are nonlinear combinations of the elementary component
in Fig. 1(c). Their relative locations are uniquely defined by
the shifts xj and tj , which effectively serve as coordinates of
origin for each component. Depending on these parameters,
we can have a variety of solutions of the same order n. A further
nontrivial fact is that these shifts are eigenvalue dependent and
need to be considered as functions of κ;

xj =
∞∑

m=1

κ2(m−1)Xjm

= Xj1 + Xj2κ
2 + Xj3κ

4 + · · · ,
(3)

tj =
∞∑

m=1

κ2(m−1)Tjm

= Tj1 + Tj2κ
2 + Tj3κ

4 + · · · ,
where 1 � j � n. The conceptual subtlety here is that,
although the terms with nonzero orders of κ in Eq. (3) vanish
in the κ → 0 limit, analysis and numerics prove that their
coefficients X and T have a crucial effect in defining the
structure of higher order solutions.

In the first order case, n = 1, only X11 and T11 have any
effect on the structure of the wave function in the κ → 0
limit. So, for this (n = 1) solution (Peregrine soliton), we
have

G1 = 4,

H1 = 8(x − X11), (4)

D1 = 1 + 4(x − X11)2 + 4(t − T11)2.

All higher order terms in Eq. (3) can be ignored. These
two constants describe a simple translation of the solution
in Fig. 1(c) relative to the origin. On the other hand, simple
analytic study shows that the second order rational solution
must have X11 = X21 and T11 = T21. Otherwise ψ2 → ψ0 =
eix in the limit κ → 0. Thus because such a requirement only
involves a global shift of origin for all components, we can
set Xj1 = Tj1 = 0 without loss of generality. Analytically,
applying the κ → 0 limit now produces the general second
order (n = 2) solution, described by

G2 = − 1
8 (5x2 + t2)(x2 + t2) − 3

16 (3x2 + t2)

+xxd + t td + 3
128 ,

H2 = −1

4
x(x2 + t2)2 − 1

8
x(x2 − 3t2) + 15

64
x

+
(

x2 − t2 − 1

4

)
xd + 2xttd ,
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D2 = 1

24
(x2 + t2)3 + 1

32
(3x2 − t2)2

+ 3

128
(11x2 + 3t2) + 3

512

−
(

1

3
x3 − xt2 + 3

4
x − 2

3
xd

)
xd

−
(

x2t − 1

3
t3 + 1

4
t − 2

3
td

)
td , (5)

where second order relative shifts are defined by the κ2

coefficients of x1 − x2 and t1 − t2. Specifically

xd = X12 − X22,
(6)

td = T12 − T22.

When the relative shifts (xd and td ) between the components
are zero, the resulting solution is an already known [13,33]
second order rational solution with a single high maximum at
the origin, shown in Fig. 2(a). When xd and td are not zero,
the second order peak breaks apart and, for sufficiently large
second order shifts, forms a set of three first order rational
solutions, the centers of which form an equilateral triangle.
This solution is shown in Fig. 2(b). We have studied this

FIG. 2. (Color online) (a) Second order rational solution with
zero shifts: xd = 0 and td = 0. (b) Second order “rogue wave triplet”
appears when xd = 52 and td = 0.

form in detail [25] and can express the radius of the triangle’s
circumcircle in terms of xd and td :

R ≈ 22/3
(
x2

d + t2
d

)1/6
. (7)

For the sake of comparison, we can relate the parameters γ

and β found via the Wronskian methodology [18] with those
of the current formalism by γ = 25xd and β = −25td .

As mentioned, analytically deriving general expressions for
higher order rational solutions using the Darboux method is
tedious, either by hand or with a computer. The Wronskian
method appears to have had greater success generating these
solutions [18,21]. However, incorporating the relative shift
parameters this way is still difficult and has not been done.

III. HIGHER ORDER NUMERICAL RESULTS

Being a set of algebraic equations, the Darboux method can
easily be converted into a numerical recursion procedure for
any finite order n with eigenvalues and shifts as free adjustable
parameters. It allows higher order rational solutions to be visu-
alized in the κ → 0 limit without presenting the cumbersome
analytic expressions. Algebraic transformations can be done
with high numerical accuracy to make the results indistin-
guishable from the rational solution. In fact, writing down the
exact solutions would require many journal pages [18,21] and
cannot be considered as a convenient way of presenting them.

In Fig. 3, we present higher order rational solutions,
each with a single maximum at the origin, for n = 3,4,5,6.
Analytical expressions for some of them have been presented
earlier [14,21]. The maximum height of an order n rational
solution is 2n + 1 and the structure also has n(n + 1)/2 − 1
local maxima on each side of the x = 0 line. Starting from
large negative x, an observer of its evolution would witness a
row of n small peaks, then a row of n − 1 larger peaks, then
n − 2 peaks, etc., before the central high amplitude solitary
wave appears. The process is then symmetrically reversed in
x so that, at large x, the wave “disappears without a trace.”
Thus, as noted before [21], the number of local maxima for an
order n WANDT is n(n + 1) − 1. For example, from Fig. 3(b)
(n = 4), we see that successive rows have four, three, two, one,
two, three, and finally four peaks.

Naturally, applying shifts changes the profiles. As was an-
alytically evident with orders n = 1 and 2, it is also clear from
numerics that only one coefficient per AB component from
Eq. (3) has any effect on a higher order solution in the κ → 0
limit; namely Xjn or Tjn, where j is the component number
and n is the order of the solution. Here, we limit ourselves
to shifting only one of the components; specifically, we apply
the x shift in Eq. (3) to the first (κ1 = κ) component alone. In
this case, the n = 3 structure is solely determined by the X13κ

4

term, the n = 4 structure by X14κ
6, and so on. In each case, the

coefficients of lower order κ terms must be the same between
all components, otherwise ψn → ψn−2 in the κ → 0 limit. As
for the coefficients of higher order κ terms, they are irrelevant.

The resulting wave functions for orders n = 3,4,5,6 are
shown in Fig. 4. Remarkably, all higher order solutions display
a ring structure. We observe rings with five peaks in Fig. 4(a),
seven peaks in Fig. 4(b), etc. All peaks within the ring are first
order rational solutions, i.e., Peregrine solitons. Naturally, each
individual first order rational solution is always oriented in the
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FIG. 3. (Color online) Higher order rational solutions with zero
shifts, i.e., with its elementary components located at the origin.
(a) The case of order n = 3. (b) n = 4. (c) n = 5. (d) n = 6.

same direction. Generally, the outer shell of an order n rational
solution is composed of 2n − 1 first order rational solutions.
Evidently, the second order rogue wave triplet shown in
Fig. 2(b) is the first in a series of higher order “shell” structures.

Another remarkable feature of these solutions is the
presence of the central peak in each of them. Moreover, the
central peak becomes more complicated with increasing n.
When n = 2, the central peak is absent. When n = 3, the
central peak is the same as the others, i.e., a first order rational
solution. When n = 4, the central peak is more complicated. In
fact, it is the n = 2 solution with zero shifts, i.e., the one shown
in Fig. 2(a). All higher order solutions similarly display a
central structure, which in each case is the order n − 2 rational
solution with zero shifts. For example, the fifth order rational
solution in Fig. 4(c) has a third order WANDT remaining in
the middle of the structure. Likewise, after applying a shift
proportional to κ10, the sixth order rational solution shown in
Fig. 4(d) has a fourth order rational solution in the middle.
Generally, any sufficiently large shift moves 2n − 1 first order
rational solutions to its outer circular shell, leaving in the
middle a WANDT of order n − 2.

Based on numerical evidence, we conjecture that the radius
of the shell in the (x,t) plane for higher order structures follows
a similar relation to Eq. (7), viz.

R ∝ (
X2

1n + T 2
1n

)1/[2(2n−1)]
. (8)

However, confirmation of a proportionality constant will re-
quire analytic expressions for the higher order wave functions.
Furthermore, as the number of component shifts xj that we
can take to be nonzero is increased with n, additional relative
shifts may split the central structure and create more shells.

IV. DISCUSSION: ROGUE WAVE “ATOMS”

Comparing our results with those of Matveev’s group
[15,17–20], published recently, our main achievements are as
follows:

(1) We have found the relation between the shift parameters
of the Darboux transformation scheme and the free parameters
of the multirogue wave solutions that control their structure.
These relations are important and far from being trivial.

(2) We have revealed the highly symmetric structure of
multirogue wave solutions in the (x,t) plane. This is also a
highly nontrivial result, as plotting the solutions does not reveal
the symmetry immediately [15,17–20].

(3) We have found that, when we change their free param-
eters, the multirogue wave solutions split into substructures.

One way to interpret the wave functions in Fig. 4 is as atomic
structures in the (x,t) plane with a “nucleus” and “electrons.”
Presently, this analogy is nothing other than visual. First, atoms
are located in real space rather than in the (x,t) plane, unlike
rogue waves of the NLSE. Second, real atoms with several
shells are significantly more complicated. Thus this analogy
still needs careful consideration, which may show that there is
no real basis for it. Nevertheless, we cannot reject this attractive
idea from the very beginning.

In order to see more similarities beyond the visual one,
we note that, in a real atom, the first subshell s can have
two electrons and each subsequent subshell has four more
electrons than the previous subshell. Thus subshells p,d,f,g

can have maxima of 6,10,14,18 electrons, respectively. So
the nth full shell has 2 + 6 + · · · + (4n − 2) = 2n2 electrons.
Likewise, an order n rogue wave for even n has an increasing
number of electrons in the shells. If the core of the rogue wave
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FIG. 4. (Color online) Higher order WANDTs with only the first
component shifted. All X1k = 0 unless specified. (a) Order 3 with
X13 = 54. (b) Order 4 with X14 = 56. (c) Order 5 with X15 = 58.
(d) Order 6 with X16 = 510.

cluster were to be expanded into several rings, it would be
evident that the series in this case is 3 + 7 + · · · + (2n − 1)
with the total number of electrons being n(n + 1)/2. Similarly,

for odd n the sum is 1 + 5 + · · · + (2n − 1) = n(n + 1)/2.
Furthermore, the nature of this electron series is likely related
to the denominator of the polynomial expression for the nth
rogue wave, which is of order n(n + 1) [14].

Curiously, there may also be some link with the nuclear
shell model in that, if nuclear levels are labeled as n =
1,2,3, . . ., then the number of states in level n is also n(n + 1).
Thus the analogies may actually be more profound than at first
consideration. Further study may explain why the NLSE rogue
wave cluster arranges itself in a regular fashion reminiscent of
atomic shell theory.

With regard to experiment, a major application of these
results might be found in optics or with deep water waves.
Indeed, the simplest of these structures, namely the Peregrine
soliton, has been recently observed in each of these cases
[11,12]. These experiments clearly demonstrated that rogue
wave solutions do exist and, moreover, the governing equation
for these waves is indeed the NLSE. Using more complicated
initial conditions in the corresponding experiments may lead
to the observation of higher order structures described in the
present work. Such experiments would confirm to what extent
we can use the NLSE as a model for these waves. There is al-
ready no doubt that rogue wave triplets could be observed with
ease as they essentially consist of three separated Peregrine
solitons. For structures of higher order, such observations are
more difficult but certainly worthy of trial. Taking into account
that the new solutions are highly nontrivial, experiments will
require significant effort to upgrade the capability of both con-
trolled rogue wave production and detection. Nonetheless, we
suggest that a progressive experimental program could feasibly
generate circular rogue wave clusters within the next few years.

In some physical applications, e.g., optical self-focusing,
both variables are spatial. In such a case, the whole geometric
structure appears in two-dimensional space. On the other hand,
in problems related to wave propagation, the time and space
variables are related through the group velocity and can be
swapped. Thus we can see these solutions either in a (t,t) or
(x,x) plane. Perhaps this is a clearer way of understanding the
beauty of the geometric structure of these formations.

In conclusion, we have studied families of higher order
rational solutions of the NLSE with free real parameters.
We have shown that these parameters are responsible for the
“diffusion” of the central peak of the solution into clusters with
a high level of symmetry. The clusters are arranged in circular
shells, similar to the structure of electron shells in atoms.
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APPENDIX: THE DARBOUX METHOD

The NLSE arises from the compatibility of the following
linear equations:

∂R

∂t
= lJR + UR,

∂R

∂x
= l2JR + lUR + 1

2
V R, (A1)
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with matrices

U =
(

0 iψ∗
iψ 0

)
, V =

(−i|ψ |2 ∂ψ

∂t

∗

− ∂ψ

∂t
i|ψ |2

)
,

J =
(

i 0
0 −i

)
, R =

(
r

s

)
, (A2)

and l as a complex eigenvalue.
Choosing a seeding solution of

ψ0 = eix (A3)

and restricting l to being purely imaginary, the system in Eq.
(A1) is compatible with ψ = ψ0 when r = r1j and s = s1j ,
defined as

r1j = 2ie−ix/2 sin(Ajr + iAji),

s1j = 2eix/2 cos(Bjr + iBji). (A4)

The subscripts r and i refer to real and imaginary parts,
respectively. The functions A and B are then given by

Ajr = 1

2

[
arccos

(κj

2

)
+ (t − tj )κj − π

2

]
,

Bjr = 1

2

[
− arccos

(κj

2

)
+ (t − tj )κj − π

2

]
,

Aji = Bji = 1

2

⎡
⎣(x − xj )κj

√
1 − κ2

j

4

⎤
⎦ , (A5)

where κj = 2
√

1 + l2
j . The j subscript indicates that eigen-

value lj and coordinate shifts (xj ,tj ) are free parameters. For
example, j = 4 refers to the fourth set of eigenvalue and shift
parameters.

A first order solution to the system in Eq. (A1) incorporates
only one chosen set of free parameters and its corresponding
r and s equations from Eq. (A4), denoted by j = 1. The first
order wave function is thus expressed as

ψ1 = ψ0 + 2(l∗1 − l1)s11r
∗
11

|r11|2 + |s11|2 . (A6)

An order n > 1 solution requires higher order versions of
the expressions for r and s. These are recursively generated
[24,32] by

rnp = [(l∗n−1 − ln−1)s∗
n−1,1rn−1,1sn−1,p+1

+ (lp+n−1 − ln−1)|rn−1,1|2rn−1,p+1

+ (lp+n−1 − l∗n−1)|sn−1,1|2rn−1,p+1]

/(|rn−1,1|2 + |sn−1,1|2),

snp = [(l∗n−1 − ln−1)sn−1,1r
∗
n−1,1rn−1,p+1

+ (lp+n−1 − ln−1)|sn−1,1|2sn−1,p+1

+ (lp+n−1 − l∗n−1)|rn−1,1|2sn−1,p+1]

/(|rn−1,1|2 + |sn−1,1|2). (A7)

The p subscript in Eq. (A7) is used purely for enumeration and
does not necessarily refer to a particular set of parameters. For
example, the second order function r21 involves the first order
sets r11, s11, r12, and s12. Similarly, the third order function
r31 involves the second order functions r21, s21, r22, and s22,
which, in turn, are based on r11, s11, r12, s12, r13, and s13

at the lowest order of recursion. This way, Eq. (A7) allows
n sets of free parameters to be incorporated into an order n

solution. The diagram in Fig. 2.2 of the Solitons book [32]
can be of use in representing this sequence of calculations.
Then, the order n NLSE solution is generated through
recursion by

ψn = ψn−1 + 2(l∗n − ln)sn1r
∗
n1

|rn1|2 + |sn1|2 . (A8)

In this work we are mainly interested in the specific case of
the κj → 0 limit. Then all unequal κj are expressed in terms of
a common variable such as κ . The numerator and denominator
from every iteration of Eq. (A8) is then Taylor expanded in
terms of κ and only the lowest order is retained. This results
in “rational” solutions, such as Eqs. (4) and (5).
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