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CIRCULAR UNITS OF FUNCTION FIELDS

FREDERICK F. HARROP

Abstract. A unit index-class number formula is proved for subfields of cyclo-
tomic function fields in analogy with similar results for subfields of cyclotomic
number fields.

Let m be a positive integer and let C,m = exp{2ni/m). Let Km - Q{Çm)
denote the mux cyclotomic field, and F+ its maximal real subfield. The ring
of integers in Km (resp. Km) is Z[Çm] (resp. Z[Çm + Ç~']). In [2] Sinnott
showed that the index of circular units in the full group of units of Q{Çm ) equals
the class number of Z[£m + Cm'] multiplied by a power of 2 which depends
exclusively on the number of prime factors of m. Sinnott [3] subsequently
generalized this result to an arbitrary abelian field.

There is a parallel setup for function fields of characteristic p. Let ¥q be the
finite field with q elements, let RF = ¥q[T] be the ring of polynomials over
¥q (with F transcendental over Fi), and let ¥q{T) be the field of rational
functions over ¥q . To each polynomial M e RF one can associate an extension
KM, called the Afth cyclotomic function field, which enjoys properties analogous
to those of the cyclotomic number field Km . In particular, Galovich and Rosen
[1] proved the analogue of Sinnott's theorem in this setting. The purpose of this
paper is to extend this unit index-class number formula to an arbitrary subfield
of KM.

Let k be any subfield of the Afth cyclotomic function field (Af monic), G
the Galois group of k over ¥q{T), k+ the maximal subfield of k in which oo
splits, Ok{Ok+) the integral closure of ¥q[T] in k{k+), and 0*k the unit group
of Ok . In §3, we define a subgroup C of Ok , which we call the circular units
of k. Our main result is that C has finite index in Ok , and that this index
may be written in the form

[Ok':C] = h(Ok+)'4,
where h{Ok+) is the class number of Ok+, and ck  is a rational number whose
definition does not involve h{Ok+).

We now briefly describe the contents of the rest of this paper. In §1, we
present the relevant definitions and facts in the function field setting. We also
state the analytic class number formula. In §2, we review ordinary distributions
on ¥q{T)/Rr, discuss an index notation, and obtain a preliminary result on
the structure of a certain module. The circular units are introduced in §3 and
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406 F. F. HARROP

the main result of this paper is proved. The last section is devoted to the
determination of a factor of the index formula in special cases.

Since the arguments in the function field case closely follow those of the
number field case, we will frequently refer the reader to Sinnott's paper [3] for
the details.

We would like to thank the referee for several helpful suggestions.

1. Subfields of cyclotomic function fields

For the convenience of the reader, we begin this section with a rapid review of
the theory of cyclotomic function fields. We also describe some basic notation
used throughout this paper.

For any commutative ring F, let R* denote the unit group of F. If F is a
Dedekind domain, then C{R) represents the ideal class group of F .

For any set X, \X\ will denote the cardinality of X.
For any two fields F and F such that F ç E, the Galois group of E over

F will be denoted Gal(F/F).
Let oo stand for the prime divisor of ¥q{T) corresponding to 1/F, and

ordoo the associated normalized valuation.
We now describe the F/--action on the algebraic closure F9(F)ac of ¥q{T).

Let u e ¥q{Tfc and M e RT. Then set
uM = M{q> + ß){u)

where the operators <p and // on F?(F)ac are defined by tp{u) = uq and
//(«) = Tu. The action u »-» uM gives the additive group of F9(F)ac the
structure of an F/--module. The following properties hold:

(1) If the degree of Af is d, then A^ = {X \ XM = 0} contains qd elements.
Moreover, AM is a cyclic Fj-module, isomorphic to Rj/{M), for every Af ^
0 in Fr.

(2) The field KM = ¥q{T){AM), the extension of ¥q{T) in F9(F)ac ob-
tained by adding the points of Am to ¥q{T), is an abelian extension of ¥q{T).
The Galois group G m of Km over ¥q{T) can be canonically identified with
the multiplicative group {RF/{M))* by the correspondence A ^ aA, where
aA{X) = Xa for each X e AM. Let 4>(Af) denote the order of (Fr/(Af))*.

(3) Let J = {aa e Gm \ a e ¥*}, and let KM denote the fixed field of /.
Then [Km '■ KM] = q - 1 . KM is the maximal subfield of Km in which P^,
splits completely, and consequently is called the maximal real subfield of KM ■

(4) Let Af = Pr, where P is a monic irreducible polynomial and r is a
positive integer. In the extension Km every prime divisor except (F) and oo
is unramified.  {P) is totally ramified in Km ■

(5) oo is tamely ramified in KM ■ More precisely, oo splits into <P(Af)/(#-l)
prime divisors in Km , each of which has ramification index q - 1 and inertia
degree 1.

(6) J is both the inertia group and decomposition group of each infinite
prime of Km , and so every infinite prime of KM ramifies fully in Km and
KM is the decomposition field of the infinite prime oo of ¥q {T).

In the remainder of this paper we assume that Af is a fixed monic poly-
nomial. Let k be any subfield of Km ', without loss of generality, we may
suppose that Af is the monic polynomial of smallest possible degree satisfying
this property. The Galois group Gal{KM¡k) is a subgroup of Ga\{KM/¥q{T)),
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CIRCULAR UNITS OF FUNCTION FIELDS 407

which can be considered as {RF/{M))*. So Ga\{KM/k) can be considered as
a subgroup I of (Fr/(Af))* and the Galois group G = Gal{k/¥q{T)) as the
quotient group (RF/{M))*/I.

In analogy with the maximal real subfield of an abelian field, we call k+ =
k n KM the maximal real subfield of k; k+ is the maximal subfield of k in
which oo splits. It is easy to see that C7+ = Gal(Ä:/A:+) ̂ IJ/I S J/J n /.
Moreover, every infinite prime of k+ totally ramifies in k . Finally, /// n / is
the inertia group of any infinite prime of k .

The field ¥q{T)x , the completion of F?(F) at the infinite prime, plays the
role that the field of real numbers plays classically.

Definition. Let x e ¥q{T)x = ¥q{{l/T)). We call x monic in ¥q{T)ao if
x/(l/F)ord~* = 1 (mod(l/F)).

The notion of "monic in F9(F)oo " is exactly analogous to that of "positive
in E".

Let Ok (resp. Ok+) denote the integral closure of Fj- in k (resp. k+).

Proposition 1.1. Let ßo = [Ok : Ok+]. Then ßo ¿s a positive divisor of q - 1.
Proof. Let s e Ok . For each aa e J/J n I, consider ua = aa{e)/e . Obviously
uaeOk , and for any infinite prime ty of k, ordsp(e) = ord<p(era(e)). This im-
plies that ua is a unit at every prime divisor of k , and so ua e F*. Therefore,
if j is a generator of J/J n I, then e h^ e1--' = s/j{e) induces an inclusion
Ok/Ok+ «-> ¥*, so that ßo is a positive divisor of q - 1. This concludes the
proof of the proposition.

Let S? and S denote the set of infinite primes of k and k+ , respectively.
Let 2Ü{5?) (resp. 3>°{S)) be the group of Ac-divisors (resp. /c+-divisors) of
degree zero generated by 5? (resp. S). Both of these groups are free abelian
of rank r = [k+ : ¥q{T)] - 1. Let 3°^) (resp. 3°{S)) denote the group
of principal k-divisors (resp. /c:+-divisors) divisible only by the primes in 5*
(resp. S). We set R{k) = \3*{3>) : &>{&)] and R{k+) = [3>°{S) : 9>{S)].
The indices, which are both finite, are called the regulators of k and k+ . The
following lemma exhibits the relation between the two regulators:

Lemma 1.2.  R{k) = R{k+)\J/J nl\r/Qo.
Proof. We split up the index [3¡®{S?) : ̂ {S)] in two ways. First,

\9S\SP) : 3°{S)] = \QS*{&) : &>(&')][&>( f) : &{S)\ = R{k)Q0.
Second,

[3f° : {&) : &>(S)] = [&°{^) : 3r°(S)][3f°(S) : &>(S)] = \J/J n I\rR{k+)

as each infinite prime of k+ totally ramifies in k . This completes the proof.

We close this section by stating the analytic class number formula. (See [1]
for details.)

Let Ck+ denote the group of rc+-divisor classes of degree zero and h{k+)
its associated order. Then h{k+) = h{Ok+)R{k+), where h{Ok+) is the order of
the ideal class group of 0¿+.

Let x be a primitive Dirichlet character whose conductor, Fx (a monic
polynomial), divides Af. Call x a rea¡ character if x(a) = 1 f°r aU a e¥*.
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408 F. F. HARROP

If A is a monic polynomial of degree less than dx = deg{Fx), set m{A) =
{dx - 1 - e){q - 1 ) - 1 if A has degree e . Denoting the trivial character by xo
and recalling that r = [k+ : ¥q{T)] - 1, we find that

h{k+) = {q-l)-rH \Y,m{A)x{A)\ ,
XÏXo V A I

where the product is taken over all real nontrivial characters of G and the sum
is taken over the monies A of degree less than dx which are prime to Fx .

2. Distributions
A function u: ¥q{T)/RT - {0} —> C is called an ordinary distribution on

¥q{T)/RT if

A mod N      x '

for any polynomial 7Y ̂  0 and any r e ¥q{T)/RT . The sum here is taken over
a complete residue system modulo N.

The ordinary distribution that we will concentrate on was constructed by
Galovich-Rosen [1]. Let x = A/N e k/RT, where A, N e RF and deg(^f) =
e < d = deg(yV). Define (p{x) = {q - \){d - e - 1) - 1 . Then <p is an ordinary
distribution on ¥q{T)/RT.

Let x be a primitive Dirichlet character with conductor Fx , a monic poly-
nomial, such that x i1 Xo and x(a) = 1 for ah a e ¥*. If F is a monic
polynomial divisible by Fx , let

<Pf{x)=     £    x{A)<p{A/F).
A mod F
(A,F)=\

One can verify that
fwiX) = 9Ft0t)H(l -X(Q))

Q\F
where the product is taken over the monic prime polynomials which divide F .

Any ordinary distribution u on ¥q{T)/RT induces by restriction a distri-
bution on RF(N) = {1/N)Rj/Rt for any polynomial N ^ 0. We abuse the
notation and also label the restriction u. Recalling that the conductor of k is
the monic polynomial Af, we reformulate the analytic class number formula
of the previous section as follows:

h{k+) = {q - iy    n     (     E      <P(A/M)x{A)\ .
XÏX0      \A€(RT/M)' J

Next we discuss an index notation used in this paper.
Let F be a finite-dimensional vector space over Q, and let L be a Z-

submodule of V. Let V be a Q-subspace of V containing L. We call L a
lattice in V if L is free as a Z-module, L spans V , and rankz L = diniQ V .

If L and L' are lattices in a Q-vector space V , then the index {L : L') is
defined to be

(L:L') = |detM1)|)
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CIRCULAR UNITS OF FUNCTION FIELDS 409

where Ai is an automorphism of V such that A\{L) - L'. The index {L: L')
does not depend on the choice of A] . Moreover, if L' c L, then (L : L') =
[L: L'], the group index of L' in L (if [L : L'] is finite).

For any monic prime polynomial ß, Tq will denote the inertia group of ß,
and e<2 the idempotent in Q[C7] associated with Tq :

eQ = S(TQy\TQ\;

here, for any subset X of G, S{X) denotes the sum in F = Z[G] of the
elements of X.

To any polynomial W prime to Af, the Artin map associates an element
of GM = G{KM/¥q{T)) whose restriction to G = G{k/¥q{T)) will be denoted
{W, k). If x is a multiplicative character from G to C*, we denote also by /
the corresponding primitive Dirichlet character; for W prime to Af we have
the formula x{W) = xW, k)).

Let C[Cr] denote the group algebra of G over the field of complex numbers
C. Let x'■ G -* C* be a character of G. Let p\: C[G] -> C denote the ring
homomorphism

Pk E^CT =Eco*(ff)-

For any polynomial W, let {W ,k)* be the unique element of C[C7] such that

pxk{{w,ky) = x{W),

for all x ■ Here x denotes the inverse of x as a primitive Dirichlet character.
Explicitly, we have

{W,k)* = Y,X{W)ex,
X

where ex is the idempotent associated to x in C[G] :

*-i5rSz('^':
here \G\ denotes the order of G. The uniqueness of {W, k)* follows from
the fact that the characters of G are linearly independent over C. Since the
set of primitive Dirichlet characters whose conductors are prime to W forms
a subgroup of the group of all primitive Dirichlet characters, {W,k)* lies in
Q[C7], and {W, k)* = {W, k)~x whenever W is prime to the conductor, Af,
of k. In particular, if W = Q is a monic prime polynomial, then (ß, k)* =
SgleQ, where Sq is a Frobenius automorphism for Q in G ; 3q is well-defined
modulo Tq .

For any monic polynomial TV, let An be a generator of An , Kn the cy-
clotomic function field ¥q{T){AN), Gn the Galois group of Kn over ¥q{T),
and RN the integral group ring of GN ■ We identify {RT/{N))* with GN
by the Artin map W -* {W, KN). Finally, define the subfield /c/v of k by
kN = k n Kn ■

The next result is the function field analogue of Sinnott's [3, Proposition 2.3].
But first we introduce some notation.
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410 F. F. HARROP

For each monic polynomial 7Y, and each monic polynomial divisor / of
TV, let

af<N = [KN : kNKf]S{Gal{k/kf))l[{l - {Q, k)*),
Q\f

where the product is taken over monic prime polynomials ß that divide /.
Let U be the F-module generated in Q[C7] by these elements aftN (f°r all
monic polynomials N, and all monic polynomial divisors / of N).

Let Af denote the product of the monic prime polynomials dividing the
monic polynomial Af, the conductor of k. For any monic polynomial N
which divides Af, we denote by TN the compositum in G = Ga\{k/¥q{T))
of the inertia groups Tq of k, for each monic prime ß dividing N. Thus
Ti = {l},Tñ = G.

The proof of Proposition 2.1 is so directly analogous to Sinnott's proof in
the number field case that the reader should refer to [3, Proposition 2.3].

Proposition 2.1.   U is generated as an R-module by the elements

s{tn) n (i-(o,*n,
Q\M/N

where N varies over the monic polynomials which divide M.
As a Z-module, U is free of rank [k : ¥q{T)], and so is a lattice in Q[G].

3. Circular units
Let TV be any monic polynomial in RF of degree greater than zero, and

let A be any polynomial not divisible by N. Let An be a generator of An .
Define the circular numbers D of k to be the subgroup of k* generated by F*
and all elements NKfl/kN{AN). Call C = D n Ok , the set of circular units of the
cyclotomic function field k. Clearly C is a subgroup of Ok . We shall show
that C is a subgroup of finite index in Ok .

Observe that al~a = a/a{a) e C, for any a e D and any a e G; this is a
consequence of the fact that A/AA e C for any torsion point A ̂  0, and any
polynomial A prime to the order of A.

Our first lemma gives two basic properties of D.

Lemma 3.1. The group ¥* is a subgroup of C, and the group ¥q{T)* of nonzero
rational functions lies in D. Furthermore, if a e D, then:

(a) a e ¥* if and only if as^ = 1.
(b) a e C if and only if Nk/F<i(T)(a) = a for some a e ¥*.

Proof. Since F* is contained in D and Ok , it is a subgroup of C.
Because

ß = NkQßq(T){NKQlkQ{AQ))

for any monic prime polynomial ß, it follows that ¥q{T)* is a subgroup of
D.

To prove (a), let a e ¥*. Then as^ = a9"' = 1.
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CIRCULAR UNITS OF FUNCTION FIELDS 411

Suppose a5(i/) = 1. For any A e A*N and for any aae J, (NKN/kN{X))a° =
NKN/kNW) = NKN/kAaV • which implies that

a€¥q    J
Thus, for aeD, as<7> =: ±a9~l. If a5(y) = 1, then a«"' = ±1. As F* is the
set of roots of unity of k*, it follows that a e ¥*.

To prove (b), let aeC . Then Nk/¥¡¡{T){a) e R*T = F*.
If aeD and Nk/¥q^T~>{a) = a for some a G F*, then since a'_<T G C for

any a e G,
Nk/fq{T){a) = as^ = a^    (modC).

Hence if Nk/¥ (F)(a) is a unit, so is a^ , and thus so is a.
We next determine D5(G). The statement and proof in [3, §4] carry over

verbatim.
Lemma 3.2. Ds^ is generated by Qj-k:k^ with Q varying over the monic
primes in F 7-. Here Qe denotes the highest power of Q dividing Af ; of course,
e depends on Q.

From this time on we fix an infinite prime ?ß of k. Define /: k* -* Q[G]
by

o€G

The map / is clearly a group homomorphism.
For any monic prime polynomial ß, let ifg = deg(ß). We now scrutinize

the kernel of /.
Proposition 3.3.

(a) ker(/) n C = F* = ker(/) n O*
(b) ker(/) n D = yV, where

yV = ¥*qx\     Y[   Q"Q \nQeZ, nQ = 0for all but finitely many Q,
[ Q monic

prime

l/(«-l)

and ordoo [ Y[Q"Q ) = ~Y.dQnQ = ° \
Q J Q

Proof, (a) Let a e ker(/) n C. Since /(a) = 0, a has no zeros or poles in 5?,
the set of infinite primes of k . Since a e C ç Ok , a has no zeros or poles in
Ok . Thus a e F*. The converse is obvious. Likewise ker(/) n Ok = ¥*.

(b) It is easy to see that yV C Dnker(/). For the reverse inclusion, let a e
Dnker{l). Then for all a eG, a1'" e C and /(a'-ff) = 0. Hence al~" e¥*
for all a eG. Consequently a«-' - g{T) e ¥q{T)*. Since /(a) = 0,

ordoo(£(F)) = - orda-HV){g{T)) = 0.

This completes the proof.
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412 F. F. HARR0P

Proposition 3.3(a) implies that

0*k/C = l{0*k)/l{C).

We will prove that {l{0*)k : 1{C)) = h{Ok+)-ck , where ck is a rational number
whose definition does not involve h{Ok+).

Let F = 1{D) and F0 = {x G F, | 5(G)jc = 0}. Clearly F0 2 1{C) (Lemma
3.1 (b)). In the number field case, Sinnott [3, Lemma 4.2] shows that To = 1{C).
In the function field case, however, the inclusion is proper. It will follow from
Proposition 3.6 that the index [To : /(C)] is finite.

For any Z[C7]-module A , we denote by Ao the set of elements of A anni-
hilated by S{G), and by AG the set of elements fixed by G. Also for any set
X = {..., x, ...} , {..., x, ...) will denote the abelian group generated by the
elements of X.

For any character x of G let

^E *(*)""
be the idempotent in £[G] associated to x •   In particular, the idempotent
corresponding to the trivial character is e\ — S{G)/\G\.

Call k imaginary if J n / = {1} , real if J ni = J.

Lemma 3.4. F0 = Fin(l-ei)Fi. F0 has finite index in Tx; in fact, [{\-ex)Tx :
To] = [h ■ h][TxG : /(F9(F)*)] ', where /, and I2 are the subgroups of Q given
by

h = {...,dP/[kP,:¥q{T)],...)I2 = Z.

Here P ranges over all monic prime polynomials, and, for each P, Pe
denotes the largest power of P dividing the conductor M of k. Finally,
[FG : l{¥q{T)*)] m \{D/¥q{T)*)q^\, where {D/¥q{T)*)q_i denotes the group
of elements of D/¥q{T)* whose order divides q - 1. In particular, if k is real,
then [T? : l{¥q{T)*)] = 1.
Proof. The first assertion follows immediately from the definitions.

Next we show that the index [(1 - e{)T\ : Tq] is defined. Since F0 = F[ n
(1 - ei)Ti, we have

(1 -eOF./Fo* ((1 -ex)Tx + Tx)/Tx * {exTx + Tx)/Tx S exTx/TxG

since {I - ex)Tx + Tx = exTx + Tx and exTx n Tx = F,G .
By Lemma 3.2 we have

J
Jnl ZivAñ)™- J

Jni IiS{G),

where the summation is taken over all monic prime polynomials F, and for
each such polynomial, dp denotes its degree.
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Next we examine the group FG . First we remark that l{¥q{T)*) ç FG , since
¥q{T)* CD by Lemma 3.1. We have

l{¥q{T)*) = £/(F)Z = 1^1 \TdPz\ S{G) = Jnl {ZS{G))

since there are monic irreducibles of every degree. Hence exTx/l{¥q{T)*) =
Ix/I2 and so [(1 - ex)Tx : F0] = [/, : 72][FG : /(F9(F)*)]-'.

As Ix/I2 = F/Z C [fc.F' ,r)]Z/Z,  [fi : 72] is finite.   Consequently, since
FG//(F,(F)*) is a subgroup of exTx/l{¥q{T)*) St J,//2, [FG : /(F9(F)*)] is
finite. Therefore, [(1 -ei)Fi : F0] is finite.

We next prove that [FG : l{¥q{T)*)] = |(D/F?(F)*)9_i|. Let a be an element
of D such that l{a) lies in FG . Then {a- l)l{a) = l{aa~l) = 0 for all a G G.
By Proposition 3.3(a), a"'1 is in F* for all a in G. Now aCT~' is in F* for
all a in G if and only if (a<T_')'S('/) = 1 for all a in G by Lemma 3.1(a);
this is equivalent to the assertion that as^ lies in F^(F)* ; this, in turn, is
equivalent to the assertion that a«-1 lies in F9(F)*. Conversely, if a is an
element of D such that aq~l lies in ¥q{T)*, it is clear that I {a) lies in FG .

Finally, suppose that k is real and let a e D be such that a9-1 G ¥q{T)*.
Let F = ¥q{T). Then E{a)/E is a Kummer extension of E and its Galois
group is clearly given by elements in J. Since E{a) ç k, and k is real, it
follows that the Galois group of E{a)/E is trivial, and so a e E* as asserted.
This concludes the proof of Lemma 3.4.

In order to investigate [To : /(C)] we need necessary and sufficient conditions
for when a given x e D has the property that (a) l{x) G F0 ; (b) l{x) e 1{C).
These conditions are provided by the next lemma. But first we need to simplify
l{x) (mod/(C)) for any x eD.

Write the conductor, Af, of k as Af = []f=i ßf > where Qx, ... , Qg are
distinct monic primes and e, > 1 . Write d¡ = deg(ß,). Let X¡ be a generator
Of   AQe¡  ,     1   <   /' <   g .

Let

*= n n ̂ w^))*^
N monic     A

N¿\       N\A

be any element of D. If XN is a generator of A¿ as an Fj-module where
L is not a prime power, then XN is a unit of 0¿ (see [1, Corollary 1.9]), so
XN is a unit of 0/v > hence NKN¡kN{AN) is a unit of kN, hence a unit of /c,
and, consequently, NKN/kfl{AN) e C. If AN is a generator of A^ as an RT-
module where ß is a monic prime polynomial which does not divide Af, then
KQeQ = ¥q{T){AA), k nKQeQ = ¥q{T), and

NKNikN{^N) = NkNKeQikN(NKflikNK    {AN)) = NktjK    /kN{AN)        " QeQQ
_   M I lA \lKN ■ kNKneQ\ _   / ,  fyAK-N ■ kNK  eQ)
- NKnenl¥q(T)y^N) Q       - (±ß) °     •
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If AN is a generator of A », , where A, > e,, then k », = kQe, and so\¿i \¿i *¿i

N*s/kM) = NkK „JkÁ^KsIksK »,(4)) = NK bi/ke,(^N)"'
[KN:kNK bi]

Q°t' Q''

[KN : kNK b ] [Kn : k^K b ]

= NK   ,k   (NK   /k(fMN) Q'  ) = NK   lk .(AJ)

where t is an element of Ga\{KQe,/¥q{T)). Hence

XkmIIcM) = ((NQ?/kQr{Ai)r)lKN ' ̂ V

where er is an element of G = Ga\{k/¥q{T)). Finally, if XN is a generator of
AQc¡ , where 1 < c¡ < e¡, then kQq ç kQe¡ and so

A A A    \.^N '• ^N^n^i]

Nic/IcA^n) = NkNKQc,lkN{NKNlkNKQCi (A/v)) = NkNK^ikN{XN)

»r /i/íj*" : k"Koc^ »r /Ar ,,vuft : kNKcj]

for some y g Gal(Fß.-,/%(F)) _ Hence

NKN/kN(4) = A*/fc   (Aj) G,   = Ait   /Jfc   {NK   /k.(AD) e<

e," o,'       e," g,'

for some t g G = Ga\{k/¥q{T)). Thus

NKN/kN{kA) = {NK   /k   (X,))
i i

with 6(a) £ Z. Therefore, recalling that aa = a(C) for a e D,

/(Jf)s¿n,/(^x   /fc   (A,))+       E       "ö'(Ö)   (mod/(C))

ß monic prime

for some integers «,, 1 < ¿: < g, and «g , ß \ M, Q a monic prime polyno-
mial. Of course, almost all of the nQ are zero.

Recall that d¡ = deg(ß,) if ß, is a monic prime polynomial which divides
Af, the conductor of k. Likewise, let dQ — deg(ß) if ß is a monic prime
polynomial which does not divide Af.

Lemma 3.5. Suppose
g

(Y      b(a)a)[KN : kNK f,l

/(x) = E//i/(7VV//Vi(A,-))+    Yl   »Q«®)   (mod/(C)),

where each n¡, nQ is in

1=1 ' Q\M
Q monic

prime
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(a) l{x) e T0 if and only if

415

£ [kg : F?(F)] QW
Q monic

prime

(b) l{x) e 1(C) if and only if
[k^:Wq(T)]\(q-\)ni

for i — \, ... , g and the n¡, nQ satisfy the linear equation in (a).
Proof, (a) Since 1(C) ç F0,

S(G)l(x) = ¿ ntS(G)l(NK   ¡k   (A,)) +    E   "ßS(G)/(ß).
¡=i QW

Q monic
prime

But   (NK   /,   (A,-))S(G)   =   (±ß;
[k-k^]

for  /  -   1, ... , g, and   Qs^  =

Q[k-.vq(T)] for QjAf^ g a monic prime. Hence S(G)l(x) = 0 if and only if
/(/) = o, where

g       m[k-kneA
f=f[Ql  q' n o"ei*:F«(r)i.

(=1 ßfM
(2 monic

prime

However, (\/\J/J nl\)l(f) = (-deg(f))S(G). Consequently S(G)l(x) = 0 if
and only if deg(/) = 0. This establishes (a),

(b) There exists c eC such that

/

l(x) = /

\

û(N^/kQe,(Ai))n'■ n q"q

V
Q\M

Q monic
prime

1(C)

J
if and only if

WNKQ,ikQ<Mi)r- n Q"Q = cy
i=i      '    ' et m

Q monic
prime

for some y eJV. From the definition of JV,

Í

y = a

\ 1/(9-1)

gni=ii ßf- n öae

V
QW

Q monic
prime /

where a e ¥* and a,, aQ e
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Let F be any monic prime polynomial and ^J any prime of k lying over
P. We have

/

ordn

\

¡=i
m^/kMù) • n qQ,"   Q

)"Q

V
QW

Q monic
prime

ordv (cy) = ord<p(;p).

I
It is easily verified that

np = ap[kPe : Wq(T)]/{q - 1)
where, of course, Pe is the largest power of F dividing Af. In particular, if
P = Qi for some i, 1 < / < g, then

n, = ai[k^:¥q(T)]/(q-l),

and so [kg :¥q(T)]\(q- \)m .
Conversely, suppose that [kQe, : ¥q(T)]a¡ = (q - 1)«,, where a¡ G Z for

í = 1,..., g, and suppose the «, and «q satisfy the linear equation in (a). If
ß is a prime polynomial such that ß \ M, let üq = (q - 1)atq ■ Then

/(x)=¿k;./(Av,/v(A!-))+   £   Kß/(ß)
1=1

-Ei=i

Ö monic
prime

<z-i -*v
ß monic

prime

ÜQ

Í-1
/(ß)

= ÊW/(,_1))+ E /(ßac/(,?_1))
i=i ÔtA/

Q monic
prime

= / JJßa,/(,-.).     Yl    Q«a/(<?-!)
i=l QfA/

ß monic
prime

(mod/(C)).

Also,
/

ordo ne?'- n Qaai=i QW
Q monic

prime J

g
-J2a¡d'~   E   aQdQ

;=1 QW
Q monic

prime

,=i ikö;' -ff«^^    ßtw
Q monic

prime
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Therefore

f[Q-'/{<,-l) ■   n   ßfle(,-1)e./f
1=1 QW

Q monic
prime

which implies that l(x) G 1(C). This completes the proof of the lemma.

Let E°° denote the set of all sequences ß = (bo, bx, b2, ... , bn, ...), where
the A, 's are elements of the set of real numbers M and all but finitely many
of them are zero. Equipped with the obvious operations of addition and scalar
multiplication, R°° becomes a vector space over E.

Let Lx , L2, and F3 be lattices in R°° which are defined as follows:

Ly = {(...,yp,...)\yp=[k^UT)]Xp   where^Gzj,

L2 = {(... ,yP, ...)\yP = dpxp   where xP e%\,

\, m (q-i)dp , „\L3 = ̂ ...,yp,...)\yp = w-T¥-(fT]Xp   where^GZJ.

Here P runs through the monic prime polynomials of Rj = ¥q[T]. Obviously,
L2 ç Lx and L3 ç Li. Define y/: Lx -> R by y/(...,yP,...) = Y^yp.

Recall that the conductor Af = \\gi=x Qf .

Proposition 3.6.

[(l-ex)Tx:l(C)] = f[[kQel:¥q(T)]-  (f£y)

• [F, : L2 + F3]-1 • [y/(L2) : ¥(L2 n F3)]-' • [y(Lx) : ¥(L3)].

In particular, the index [Fn : /(C)] is defined.

Proof. Notice that y/(Lx)/y/(L2) = Ix/I2 s exTx/l(¥q(T)*), where Ix and 72
are the subgroups of K defined in Lemma 3.4. Let F3 and F23 be the kernel
of y/ on F3 and L2nF3, respectively. It follows from Lemma 3.5 that F3 = To
and F2i3^/(C). Hence

[F3 : L2 n F3] = W(Li) : ^(F2 n L3)] • [F3 : F2,3]
= [^(L3):V/(F2nL3)]-[F0:/(C)].

Since L3/F2 n F3 = L2 + L^/L2, we have

[L¡ + L3 : L2] = [¥(Li) : y/(F2 n L3)] • [F0 : /(C)].

Multiplying both sides by [Lx : F2 + F3], we obtain

[L, : L2] = [Lx : F2 + L3] • [^(L3) : ^(F2 n L3)] • [F0 : L(C)],
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hence

g
l[[kQ? : ¥q(T)] = [Lx : L2 + F3] • [y,(L3) : y(L2 n F3)] • [F0 : /(C)]
i=i

= [Lx : L2 + F3] - [<p(L,) : y/(F3)] • [y(L,) : ^(F2 n L3)]
• [F0 :/(C)] - [î/(F0 : ^(Lj)]-1

= [F, : F2 + Lsllt/ÍL,) : ^(F2)] • [¥(L2) : ^(L2 n L3)]
• [F0 :/(QM^F,) : ^(¿a)]"1

= [F, : L2 + L3] - [7, : I2] ■ [^(L2) : y(F2 n F3)]

.[r0:/(C)].[^(L1):^(L3)r1
= [Lx :L2 + L3].[(l-ex)Tx: F0] • [FG : l(¥q(T)*)]

• [T0 :1(C)] • [y/(F2) : y/(F2 n L3)] • [^(L,) : ^(F3)]"'

—1
[v(L2):W(L2nL3)].[y/(Lx):v(L3)]-1.

= [Lx:L2 + L3].[(\-ex)Tx:l(Q]

Solving for [(1 - ex)Tx : 1(C)], we obtain the statement of the proposition.

Our Proposition 3.7 and Corollary 3.8 are the function field analogues of
Sinnott's [3, Proposition 4.2 and Corollary]. The proofs carry over verbatim.
First, however, we need the following remark.

For any monic polynomial N ± 1, and any infinite prime y$N of Kn =
¥q(T)(AN), we may choose AN e AN such that ord<p„(Ajv) = (deg(A) - 1)
• (q - 1) - 1. (The existence of such a An is guaranteed by [1, Proposition
1.10].) The restriction of the distribution q> introduced in §2 to (l/N)RT/RT
is such that <p(A/N) = m(A) = ord<pN(A^,) whenever N does not divide A.
(See [1, Lemma 1.6].)

Proposition 3.7. Let N ^ 1 be any monic polynomial, and let D be a monic
divisor of N with D ^ N. Let An be chosen as in the preceding paragraph. Let
f = N/D. Then

(1 - ex)l(NKN/kN(ADN)) = (o'[KN : kNKf]S(Ga\(k/kf)) • \{(\ - (Q, k)*)
Q\f

where the product is taken over all monic prime polynomials Q which divide f.
Here

XïXa

where the sum is over the nontrivial real characters x of G.

Corollary 3.8.   (\ - ex)Tx = to'U.

We now state our main result. Recall that F = Z[C7].
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Theorem 3.9. The index [0£ : C] is defined. In fact,

D

419

[0*k:C] = h(Ok+).Qo-\Jnl\2r

nf=.[^:Fg(F)]
UT)*Jq.x

(e+R:e+U)

•i

[k:¥q(T)]
• [L, : L2 + F3]-' . [y/(L2) : </(F2 n F3)]-' . [¥(LX) : y,(L3)].

Proof. The mapping / sends Ok and C to subgroups of the Q-vector space
X = (1 - ei)é>+Q[C7]. X has dimension r = [k+: ¥q(T)] - 1. By Proposition
3.3(a), we have

Ol/C £ l(0*k)/l(C).
Now

œ'U = co'e+UQ,
since w'e+ = &/ and Í7 = i/o + UG [3, proof of Proposition 2.2]. We write
formally

(1(01) ■ 1(C)) = (l(0*k) : e+R0)(e+Ro : e+U0)(e+U0 : (l-ex)Tx)((\-ex)Tx : 1(C)).
We will show that each of the groups appearing on the right is a lattice in X.
This will establish the finiteness of the index [Ok : C].

(1) (l(Ok) : e+Ro). Dirichlet's unit theorem implies that l(Ok) is a lattice in
X, and e+Ro is also a lattice in X. In fact, the r elements e+(a - 1), where
a e G+ = Gal(k+/¥q(T)) and a ± 1, form a Z-basis for e+R0. Let nx,..., nr
be a set of fundamental units of Ok . For any e e Ok , YlaeG or^a-^(v)(e) = ^,
where ?ß is a fixed infinite prime of k . Therefore,

l(»i) = E 0^d<T-'(!P)('/<■)((T", - !)•
OEG
<T¿1

Since IJ/I = 7/7 n 7 is the intertia group of any infinite prime of k,

ord(T-i(«p)(//1) = ordT-l{v)(n¡)   if x = ya

for some y e J/J n 7. Thus we have

7/fa«) 7n7 E OTda-HV)(ni)e+(a  ' - 1).
<J€(?+
<7/l

An easy calculation shows that

det   (ordtf-ifl,) (»/,■))
1=1.r

= F(^) = |F(fc+)|7/7n7|7ß0

where ßo is the "unit index" [Ok : Ok+]. The last equality follows from Lemma
1.2. Hence

Thus
(e+R0 : l(0*k)) = \J/J n I\rR(k) = \J/J n I\2rR(k+)/Q0.

(l(0*k):e+R0) = Qo/\J/Jnl\2rR(k+).
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(2) (e+Ro : e+U0). By Proposition 3.4, U is free abelian of rank [k : ¥q(T)].
Thus e+U is free abelian of rank [k : ¥q(T)]/\J/J n/| =r+ 1 and e+í/0 is
free abelian of rank r. Thus (£+F0 : e+i)o) is defined. Appealing to Sinnott's
[3] proof of Lemma 1.2(a), we have

(e+R :e+U) = (S(G)e+R : S(G)e+U)(e+R0 : e+U0) ;
we have used the fact that (e+A)0 = e+A0 for any Z[G]-module A in Q[C7].
Referring again to Sinnott's [3] proof of Proposition 2.2, we find that  U =
U0 + UG = U0 + S(G)Z. Therefore

(S(G)e+R : S(G)e+U) = \G\ = [k : ¥q(T)],
from which one concludes that

(e+R0 : e+U0) = (e+R : e+U)/[k : ¥q(T)].
(3) (e+Uo : (1 - ex)Tx). By Corollary 3.8 and the fact that œ'U = co'e+U0,

we have (1 - ex)Tx = a>'e+U0 .
Let F : X -> X be the linear transformation defined by F(x) - co'x. Then

F(e+Uo) — (1 - ex)Tx. The computation of det(F) from the expression for
co', together with the analytic class number formula, yields

det(F)= Yl <PFX(X) = (Q - ¡Y Tl \Tm(A)x(A)\=(q-\)2'h(k+),
X^Xo X^Xo   \  A I

where in each case the product is taken over the nontrivial real characters of G
and the sum is taken over monic A of degree less than dx = deg(Fx) which
are prime to Fx . It follows that (1 - e"i)Fi is a lattice in X and that

(e+U0:(l-ex)Tx) = (q-l)2rh(k+).

(4) ((1 - ex)Tx : 1(C)). In Proposition 3.6 we showed that
i

((\-ex)Tx:l(C))=X\[kQe,:¥q(T)]
i=i

D
¥q(T)* q-\

[LX:L2 + L3y

• [W(L2) : y,(L2 n Li)]~l • [w(Lx) : yf(L3)]

and so 1(C) is a lattice in X.
Combining (l)-(4), and the relation h(k+) = h(Ok+)R(k+), we see that

ßo (e+R:eW)
[0*k:C] = \J/JnI\*R(k+)     [k:¥q(T)]

DJl^^^T)]i=i ¥q(T)*

(q-\)2rh(k+)

i

•[Lx:L2 + L3]-i
9-1

W(L2):¥(L2nL3)]-l.[¥(Lx):¥(L3)]

[0*k:C] = h(Ok+)-Qo-\JnI\2r

niilk<#:V9(T)]
U(F)*)_

[k:¥q(T)]
[¥(L2):y/(L2nL3)]-1

q-\

(e+R:e+U)-[Lx :F2 + L3]-'

[¥(LX) : ¥(L3)].
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4. (e+R:e+U)
In this section, we state two results about the F-module U. They are direct

analogues of results in the number field setting (see [3, §5]), and their proofs
carry over almost verbatim to the function field setting.

Recall that Fv, where A is a monic polynomial which divides Af, is the
compositum of the inertia groups Tq as ß varies through the monic primes
dividing N. Let Un be the F-module generated in Q[G] by the elements

S(TA)  J] (l-(Q,k)*)
Q\N/A

where the product is taken over the monic primes ß dividing N/A, and A
varies over the monic polynomials which divide N. Then, in particular,

UX=R,        Uj;=U.

If ß is a monic prime that divides Af, but not N, we have

UNQ = UN(TQ) + (\-(Q,ky)UN,
where Un(Tq) is defined to be the F-module generated in Q[C] by the ele-
ments

S(TAQ)  J] (\-(Q,k)*),
Q\N/A

as A varies over the monic polynomials which divide N.

Proposition 4.2. For any monic polynomial N which divides M, and any a in
Q[G], the index (aR : cxUn) is an integer divisible only by the primes dividing
\Tn\ . In particular, the index (e+R : e+U) is an integer divisible only by the
primes dividing \G\.
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