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Circularly Polarized Retrodirective Antenna Array

for Wireless Power Transmission
P. D. Hilario Re, Student Member IEEE, S. K. Podilchak, Member IEEE, S. Rotenberg, Student Member IEEE,

G. Goussetis Senior Member, IEEE and J. Lee

Abstract—A retrodirective antenna (RDA) array for wireless
power transmission (WPT) is presented. Applications include the
wireless charging of mobile phones and other handheld devices.
The reported RDA defines an active high-power transmitter
module which retrodirects a received beacon tone back to a
mobile unit by circularly polarized (CP) free-space radiation. In
addition, this RDA architecture uses a network of 4 sub-arrays,
defined by a total of 16 radiating patch elements, in an effort to
boost the transmit gain while also reducing the supporting RF
hardware requirements when compared to a more conventional
RDA. Measurements and simulations in the reactive near-field of
the system are in agreement in terms of the tracking capabilities
of the high-power CP-RDA. Power levels in excess of 27 dBm
were measured at 2.4 GHz at a receiver module, and when this RF
power was rectified, more than 350 mW at DC was observed. To
the best knowledge of the authors, this is the first demonstration
of a WPT system using a mixer-based analog-RDA. Previous low
power demonstrations were more complex computer-controlled
systems which did not offer any real-time tracking ability. Other
applications for the proposed RDA include target tracking, sensor
charging, and other WPT systems.

Index Terms—Arrays, heterodyning, planar arrays, retrodirec-
tive antennas, retrodirectivity.

I. INTRODUCTION

Cutting the last wire between the power source and the

device-under-charge (DUC) with flexible mobility and efficient

power transfer is the main aim of wireless power transmission

(WPT). This ever advancing technology can be formally de-

fined as the transmission of power from a source to a receiving

device without any physical connection between them. Such

a concept is illustrated in Fig. 1, where we can differentiate

between a wireless charger in the reactive near-field (NF) and a

charger operating in either the reactive NF, the radiative NF, or

the far-field (FF). WPT systems can be further classified based

on the operating frequency where microwave power transfer

(MPT) relates to WPT systems that work at these frequencies,

being the focus of this paper. Some previous MPT research has

also been reported for solar power harvesting and the remote

powering of unmanned aerial vehicles [1]–[3].

The first of the WPT systems shown in Fig. 1(a) is based

on resonant inductive coupling between two coils that are

designed to resonate at the same frequency [4]–[7]. In order to

achieve efficient transfer of power, both transmit and receive

coils must be in the reactive NF region and properly aligned

[8]. This limits the positioning of the DUC to be at an

extremely short distance with respect to the transmitter for

efficient power transfer. Some applications of this type of

NF-WPT system have been applied to the wireless charging

(a) (b)

RDA 
System

Tracking Antenna 

Beam Pattern

Fig. 1. Conventional WPT by inductive coupling (a), and the proposed WPT
approach using retrodirective antenna (RDA) technology (b) where the device
can be tracked and its battery charged in free-space at an increased distance.

of consumer electronics [4], [5], electrical vehicles [6], and

biomedical devices [7].

The limitations, in terms of the distance and positioning

of the charging pad and DUC for this type of WPT (Fig.

1(a)) can be overcome by radiating WPT systems (Fig. 1(b)).

This system permits the DUC to move freely at considerable

distances from the charger when compared to the first ap-

proach. However, more power loss can be observed in the

transmission path due to free-space path losses (FSPLs) for

the radiating WPT system. Even though these losses can

be partially compensated by the use of high gain antennas,

the resulting directive beam patterns can lead to alignment

requirements, but at the same time, increased levels of received

power at the DUC.

One technology that can be adopted for this radiating WPT

antenna system, as in our proposed work and in an effort to

circumvent these problems, is a type of self-steering, or track-

ing retrodirective antenna (RDA) array where the beam pattern

maximum for the transmitter is directed towards the receiver.

In particular, one of the main advantages when considering

RDAs for WPT is the near-field-focused beamforming that

they can provide which is mainly due to the phase conjugation

of an incoming beacon signal incident onto a receiver array,

and then, re-radiation back to the DUC, as in the adopted

scenario. This is important for WPT systems since a power

focal point can be constructed at the location of the DUC since

the contributions of the individual transmitter RDA elements

can be summed in phase.

It should also be mentioned that some other works have
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applied different beam-steering technologies, and with the

noted WPT application in mind. For example, in [9], a tracking

system was shown using digital beam forming, while in [10],

an RDA was also used as a transmitter. That work focused on

how to optimize the number of receiver rectennas and how to

maximize the overall efficiency. In both of these papers, no

complete antenna system results were reported. In addition,

RDAs have been developed for other applications including

spatial encryption, radar, and microwave imaging [11]. Given

that RDAs can operate either in the NF [12], [13] or in the FF

[11], [14], there can be some considerable advantages over the

traditional reactive NF wireless chargers while also providing

more convenience for the user.

In a classical two-dimensional (2-D) M ×N RDA, for ex-

ample, which operates by heterodyne mixing (a Pon structure

[15]), every antenna element is typically associated with an

individual mixer, an amplifier, and a circulator (see Fig. 2(b)).

This enables 2-D self-steering in the θ̂ and φ̂ directions; i.e.

the retrodirected power is related to the steered realized gain

pattern, |G(θ, φ)|, due to an incoming beacon signal. If we take

into account the number of supporting RF circuit components,

the costs can increase, especially when considering WPT in

that a significant number of radiating elements and high power

amplifiers are required to circumvent the aforementioned FS-

PLs.

In order to reduce these associated implementation costs,

while maintaining the highest possible received power levels

at the DUC when compared to a system which uses a more

conventional Pon RDA (Fig. 2(a)), an alternative architecture

is proposed in this work. In particular, we design and measure

a novel CP-RDA for WPT applications by exploiting sub-

arrays at transmit (see Fig. 2(c)), mainly to simplify and reduce

the number of active components needed for the RDA and

therefore minimizing costs. For example, circulators are not

required for our proposed RDA due to having independent

transmit and receive antennas, and amplifier-mixer pairs are

not needed at each radiating element. This comes at a cost of

NF focusing in one plane only and reduced scanning capability

in the φ = 90° plane when considering the FF; i.e. the

retrodirected pattern is defined by G(θ) only (and not G(θ, φ)
when compared to the conventional 2-D RDA). Regardless of

this trade-off, it will be shown in the paper that self-steering

is still effective for the proposed WPT application while also

offering reduced implementation costs.

To the best of our knowledge no similar demonstration of

WPT using an analogue mixer-based RDA for received power

levels as high as 350 mW and based on an adapted version of

the classic Pon RDA, has not been reported in the literature

previously. In particular, the proposed RDA demonstrates a

transmitted output power of 36 dBm by retrodirecting and

amplifying the received beacon tone which was generated by a

voltage controlled oscillator (VCO) with a power level of 6.6

dBm. Moreover, when considering operation for the proposed

WPT system, we define the proposed RDA as the transmitter

module. When this retrodirected RF power is received in the

reactive NF and rectified at the DUC (defined as the receiver

module considering 50 cm of radial separation between the

RDA and DUC in our antenna system), more than 350mW

were measured at DC using the rectifier reported in [16] which

had demonstrated RF-to-DC efficiency values of more than

75%.

The paper is organized as follows. In section II, an overview

of different RDA architectures is discussed and a cost compari-

son study is reported where an alternative design is developed

which uses sub-arrays. Details of the proposed RDA archi-

tecture are also given. Section III discusses the simulations

and measurements of this RDA and its operation within a

WPT system while a comparison is made with other relevant

structures found in the literature. To conclude, Section IV

summarizes the important findings of the present work.

II. RDA DESIGN OVERVIEW CONSIDERING WPT

Classic RDAs can be defined as an array of transceivers

that are able to self-track objects by conjugating the relative

phase difference received at each antenna element [17]. These

antenna systems require a large number of radiating elements

when considering WPT applications; for example, when charg-

ing remote mobile phone batteries in the FF. In addition, high

gain RF amplifiers are of vital importance to boost the power

delivery to the DUC.

A. RDA Architecture Selection and Design

RDAs can be divided into two main subgroups: Pon [15]

and Van Atta [18] structures. Passive Van Atta structures are

defined by an even number of antennas connecting one antenna

to its symmetric pair with respect to the phase centre of the

array and introducing a phase delay of 180◦ between them

whilst typically using transmission line connections. Active

Van Atta RDAs generally also require a supporting circuit

arrangement of amplifiers and circulators, or just bi-directional

amplifiers [19] which can make the structure high-cost for

implementation in an antenna system for WPT.

On the other hand, Pon architectures provide retrodirectivity

by phase conjugation using RF mixers [11] where an M ×N
schematic is shown in Fig. 2(b). The underlying principle of

phase conjugation for the Pon structure [15] can be further

understood by studying the product of two cosines, defined at

the input RF of a mixer and the local oscillator signal (LO).

In the literature, spherical [20] and cylindrical [21] Pon RDA

structures have also been reported, but planar and more low

profile architectures may be preferred for consumer electronics

and WPT applications.

When the beacon signal for tracking is sent by the DUC

and received at the RDA, it gets mixed at each RF mixer

(heterodyning) which share a common LO, enabling phase

conjugation of the output [15]. In particular, this phase con-

jugation will induce an inverted progressive phase difference

between consecutive array elements, resulting in a wave-front

with the same direction as the received one. As this phenomena

happens in real-time for an analog-based antenna system, beam

tracking of the DUC is therefore based on the incoming beacon

signal.

Some practical challenges can also come about when select-

ing the transceiver design frequencies for the RDA and when

employing circulators to isolate the signals with conventional
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Fig. 2. Comparison of a more conventional CP-RDA (a-b), defined by a 2-D planar array of corner-clipped patches and heterodyne mixing (i.e. a Pon
architecture where RF amplifiers, circulators and mixers are required at each antenna element, as in (b)) to the proposed RDA (c-d). In both cases, a total of
16-elements (4×4) are illustrated for the transmitting part of the RDA.

RDAs. For example, typical isolation values between non-

consecutive ports are from 20 to 40 dB for off-the-shelf

circulator components. When considering high-power WPT

applications, as in this work, an unwanted feedback loop

(for the high-power re-transmitted signal) can potentially be

induced due to circulator leakage causing unwanted mix-

ing within the RF chain and parasitic radiation. This can

also overload some active components and cause permanent

damage to high gain amplifiers. In addition, circulators are

typically bulky and expensive, making them not a preferred

option when considering low-profile and low-cost WPT system

implementation for consumer electronics.

B. Cost Considerations and Maintained Performance

When considering RDAs, self-steering in 3-D space or

within two distinct angular directions is generally more pre-

ferred. This is because the re-radiated gain pattern can be

steered in the θ̂ and φ̂ directions which typically requires a 2-

D array (see Fig. 2(a-b)). The cost for this type of Pon RDA

architecture can increase significantly due to the number of

antenna elements as well as the supporting RF circuit hardware

(see Table I).

This is where the benefits of the proposed RDA can be

further appreciated. In this work, we are seeking a compromise

between 2-D self-tracking performance, received power at the

DUC, and overall antenna system implementation cost. This is

because it can be expected that the majority of the costs in a

2-D RDA system (see Fig. 2(b)) are related to the number of

active devices (i.e. mixers, amplifiers, etc.), perhaps making

RDA development challenging for WPT applications when

self-tracking in two angular directions is required.

To circumvent these issues, the proposed RDA architecture

is a hybridization between 1-D and 2-D arrays. This concept

is further illustrated in Fig. 2(c-d) where a network of sub-

array elements are employed instead of one radiating element

for each RF mixer-amplifier pair as in a more conventional

2-D RDA. It should be mentioned that the proposed RDA,

can be considered more as a 1-D RDA since tracking is only

in the y-z (φ = 90◦) plane with a steered re-radiated pattern

defined by G(θ). At the same time our proposed RDA, with

16 (= 4×4) radiating elements, can reduce the costs by almost

2 times when compared to a more standard 2× 4, 2-D RDA

whilst offering similar power levels. This is further examined

in Table I. This single-plane scanning, may be appropriate

because of its minimal reduction of received power when the

DUC is within the main tracking plane and near broadside.

The impact of this power loss (when away for the main

tracking plane) is further examined in Fig. 3 where the

scanning of a 1-D array is compared to that of a 2-D array.

Moreover, the aim of the study in Fig. 3 is to compare the

simulated power loss of the proposed design to that of a full

2-D RDA along the φ = 90◦ plane. This comparison is also

illustrated in Figs. 2(a) and (c) for the RDA architectures. It

should also be mentioned that for both cases, the dimensions

of the transmitting arrays are 4 × 4, employing CP patches

that operate at the working frequency and are spaced λ0

/

2.

In Fig. 3, the red solid line represents the normalized gain

of the transmitting array for the proposed RDA, in the FF,

for each position of the DUC from 0◦ to 90◦ along the non-

tracking plane (φ = 0◦). As it can be seen, the normalized

pattern will stay fixed with its maxima pointing at broadside.

Conversely, for the comparative 4×4 2-D RDA, tracking is

still observed in that plane as it is shown in the solid blue

line since power levels for 2-D tracking systems are higher

than that of the 1-D one. This solid blue line represents all

the maximums of each of the patterns that would be generated

by the full 2-D RDA in the FF. Also, some of the individual

FF patterns are also shown in Fig. 3 (dashed gray lines).

The difference between the two traces, represents the power

drop in the non-tracking plane for the proposed RDA in

comparison to that of a more conventional 4×4 2-D RDA.

From this comparison, depending on how critical the loss of

power is, in terms of cost and the application, the proposed

RDA may be favored when compared to a 2-D RDA. This

is because the proposed RDA maintains consistent values at

angles close to broadside. Also, power degradations of only

about 5 dB are observed from broadside to θ = 30◦. In terms

of cost, the more conventional 2-D RDA exhibits full tracking

capability and higher received power, but is almost 4 times

the cost of the proposed design. This comparison is further

described in Table I.
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Fig. 3. Tracking power loss comparison when away from the dominant
steering plane (which is defined at φ = 90◦). Reduced power values of only
about 5 dB are observed from broadside to θ = 30◦ in the FF for the simulated
1-D tracking system (which is representative of the proposed RDA defined by
linear 1-D sub-array elements) when compared to a more conventional 2-D
RDA. It should also be mentioned that for both 1-D and 2-D architectures,
16 radiating elements in total were simulated for a fair comparison.

TABLE I
RECEIVED RF POWER AND COST VERSUS RDA SIZE

RDA Array Size Normalized Normalized

(IN / OUT)1 Performance2 Cost3

2×1 / 2×1 1 1
2×2 / 2×2 4.4 1.9
2×3 / 2×3 9.7 2.7
2×4 / 2×4 17.1 3.5
4×4 / 4×4 66.7 6.9

Proposed work (4×1 / 4×4) 16.7 1.8

1 Array Size corresponds to the size of the separated receiving
and transmitting arrays of the RDA given that this compari-
son is made for RDAs that do not use circulators as shown in
Fig. 2(c-d), where IN/OUT refers to size of the input receive
and output transmit antenna array for the RDA operating at
2.5 GHz and 2.4 GHz, respectively. The reported values in
these performance and cost estimations were also obtained
by considering the simulated realized gain of an individual
patch antenna, employed in the proposed design, computed
with the array factor for a λ/2 separation between elements.

2 Normalized Performance corresponds to the received RF
power at the DUC for a 0.5 m distance between the RDA
and the DUC, and normalized, with respect the 2×1 (IN
and OUT) RDA. It should also be mentioned that Normalized

Performance = 15, which is our design goal, and corresponds
to 27 dBm. Moreover, the gains and losses of the active
RF devices to compute the overall performance for each of
the cases was obtained from the datasheets of the employed
circuit components (see Fig. 4).

3 Normalized Cost refers to the total cost of the active compo-
nents needed for each case and normalized with respect the
2×1 (IN and OUT) RDA.

C. Design of the Proposed RDA

The design under study is shown in Fig. 2(c) and the

measured prototype is shown in Fig. 4. It comprises a 4 × 1
input and a 16-element output array which is subdivided into

4 distinct sub-arrays (of size 4 × 1) on each RF chain. In

terms of polarisation, the system exhibits RHCP in the 4× 1
receiver array and LHCP in the 16-element transmitter array so

that there is isolation between the two arrays and orientation

flexibility in the positioning of the DUC which brings high

levels of mobility when considering the intended application

of mobile phone charging.

(a) (b)

BPF
1

BPF
1 BPF

2
BPF

2
BPF

1 BPF
2

(c)

1

1

2

2

3

3

4

4

5

5
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6

7

7

2.4 GHz2.5 GHz

Fig. 4. Picture of the developed RDA system. Front (a), back (b) and
schematic of one of the four RF chains (c). The components used in the
antenna system for each RF chain: (1) 2.5 GHz RHCP corner clipped patch
(part of the 4× 1 receiver array), (2) band pass filter from TriQuint 885009
at 2.5 GHz, (3) mixer from Linear Technology LTC5549, (4) driver amplifier
from MiniCircuits ZFL-2500+, (5) band pass filter from TriQuint 885017 at
2.4 GHz, (6) power amplifier from TriQuint TQP9111 and (7) 2.4 GHz LHCP
4× 1 sub-array (part of the 16 element transmitter array).

The input RF signal to be mixed is chosen to be 2.5 GHz,

the LO frequency is 4.9 GHz, and therefore the IF frequency

is 2.4 GHz requiring the selection of downconverting mixers.

At the output of the mixers, amplifiers are also required in

order to achieve high power levels at the DUC. This makes

the RF chain require a driver and a power amplifier, the latter

being in saturation.

As circulators are not used, the antenna system still needs to

aim for minimum electromagnetic coupling between transmit

and receive arrays. This is important for the intended high

power application and for correct RDA operation. The fact

that both antennas are working at similar frequencies (2.5

GHz for the 4×1 receive and 2.4 GHz for the 4×4 transmit)

and within close proximity, any coupling still needs to be

minimized for optimal system performance. This required

the use of a bandpass filter (BPF1) immediately after the

receiving antennas within the RF chain, which exhibited an

out of band rejection of -36.8 dB. This avoids any unwanted

feedback loop between the transmitter and the receiver of the

RDA.

At the input RF port of the mixers some of the input

2.5GHz signal can leak through the mixers, get re-amplified,

re-transmitted, and then coupled back and combined with

the original 2.5GHz received signal. This can slightly mask

the phase difference to be conjugated at the receiver array

elements and can possibly lead to a beam pointing error upon

re-radiation. To minimize this issue, a second BPF (BPF2)

was introduced in the RF chain right after the driver amplifier
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Fig. 5. Schematic of the antenna element within the 2.4 GHz LHCP transmit
array (see Fig. 4(a)).

that will allow the transmitting signal to pass through and

reject any unwanted signal leaked from the mixer. In this case,

an out of band rejection of -31 dB was achieved. Some sim-

ulations where also completed prior to fabrication to quantify

the electromagnetic coupling between the transmit and receive

antenna arrays for both frequencies. These simulations were

defined by just the passive antenna array elements within the

transmitter module. The coupling was below -45 dB and -40

dB at 2.4 GHz and 2.5 GHz, respectively. Given these values

as well as the aforementioned out of band rejection levels and

the RF to IF isolation in the mixer, any coupling between the

receiving and transmitting arrays for the RDA are expected to

be minimal.

The final schematic for one RF chain for the proposed

RDA is shown in Fig. 4(c). The transmitting and receiving

arrays were fabricated using a Taconic TLY-5 substrate, with

a dielectric constant ǫr = 2.2 and a thickness of h = 1.57mm.

As it is shown in Fig. 4(a), the patches of the transmitting sub-

arrays are series-fed, as in [22], with a split of approximately

3 dB for each element. This defines a relative amplitude

ratio distribution of about 1/2, 1/4, 1/8 and 1/8. This series

TABLE II
DIMENSIONS OF ONE SECTION FROM THE PROPOSED SUB-ARRAY

Dimension Millimeters [mm]

l1 24.22

w1 5.74

l2 21.4

w2 2.32

l′
2

21.41

w′

2
1.021

L 40.63

W0 4.71

d 92.75

1 The last antenna element has different dimensions for l2 and w2 for better
matching and termination of the sub-array. For this case, the relevant
variables are l′

2
and w′

2
.
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Fig. 6. S-Parameters of the 4 × 4 transmit (one sub-array) (a) and 4 × 1

receive (b) arrays within the proposed RDA for operation at 2.4 GHz and 2.5
GHz respectively.

feeding approach was employed for each sub-array mainly

due to its simple design which provided suitable gain values

and acceptable side lobe levels. In particular, gain values

approached 19 dBic for the complete transmitter; i.e. 4 sub-

arrays (see Fig. 2(c) and 4) while side-lobe levels (SLLs) were

about 10 dB or below from the main beam maximum (all

results not shown for brevity). Also, for good 50-Ω matching,

two independent λ/4 impedance transformers were placed

between the periphery feed lines and the patches. Also, the

distance between consecutive patches within the sub-array is

such that each one radiates in phase. More details regarding

the dimensions of the elements within the sub-array can be

found in Fig. 5 and Table II.

For CP radiation hybrid couplers were also employed just

before the sub-arrays, which are used to apply a phase offset

of 90◦ between the two feed lines connected to the square

patches. One advantage of using the hybrid couplers is that

depending on the selected input port, it is possible to make

the re-radiated transmission from the RDA to be either LHCP

or RHCP when polarization diversity is needed. Additionally,

50-Ω loads were connected to the isolated ports of the couplers

for proper termination during antenna system integration.



6

Regarding the 4× 1 receiver array, the corners of the patches

were truncated for RHCP, simply allowing for one port per

patch and defining a total of 4 RF chains (see Fig. 4) for the

proposed RDA.

In Fig. 6, the S-Parameters for one of the four transmit 4×1

subarrays and the 4×1 receive array are shown, respectively.

There is a good agreement between simulations and measure-

ments, and the coupling levels between ports at the transmit

frequency in Fig. 6(a) are below 20 dB. Due to the spurious

feed radiation there is an unwanted minimum in the reflection

coefficient at around 2.5GHz; i.e. |S11| < -10 dB which may

be caused by the unbalanced dual-orthogonal feeds of the

square patches [23] with some small and unwanted radiation.

However, this issue is mitigated by the second BPF in the RF

chain. For the receiver 4 × 1 array, good 50-Ω matching can

be achieved at the desired 2.5 GHz receiving frequency (see

Fig. 6(b)) while a high rejection at the retrodirected frequency

is likely since the antenna is not well matched at 2.4GHz.

Moreover, the coupling values between patches are below 25

dB at the 2.5GHz receiving frequency.

In order to test the RDA, an initial tone at 2.5GHz was

generated with one transmitting reference patch antenna. This

tone is received by the RDA and retrodirects the re-amplified

signal at 2.4GHz back towards the receiver module, which is

designed using a 2×1 patch antenna array working at 2.4GHz
and a Wilkinson power combiner as shown in Fig. 7.

III. RESULTS AND DISCUSSION

Regarding the measurement setup, a N9030B PXA Signal

Analyser from Keysight Technologies was used to measure

the received power level at the output of the Wilkinson

power combiner, a N5182B MXG Vector Signal Generator

from Keysight Technologies to generate the 4.9GHz tone for

connectivity to the LO ports of the mixers, and power supplies

were used (in series) to bias the twelve RF active devices for

the antenna system.

In order to test the tracking capabilities of the system,

bistatic and monostatic measurements (see Fig. 7) were per-

formed for the RDA. Measurements were carried out at a 50

cm radial distance between the RDA and receiver module, for

design and system implementation purposes. It is also worth

mentioning that all the measurements were completed in the

reactive NF region. This is because the boundary that defines

the transition into the radiative NF zone is about 75 cm.

For the monostatic case (Fig. 7(a)), transmit and receive

antennas (receiver module) move together around the RDA in

order to record the retrodirected power values at each angle.

However, in order to measure the radiated RDA pattern at a

given angle, bistatic measurements are also needed (Fig. 7(b)).

In this case, the transmit beacon is fixed at a certain angle

making the RDA focus its retrodirected beam to that position.

Then, the receive antenna within the receiver module is moved

around the RDA on a circular arc (with a fixed range) being

able to measure the re-radiated pattern from the RDA.

In Fig. 8 a comparison between the simulated and measured

bistatic patterns is shown. All the patterns are normalized with

respect the maxima for the broadside case. Simulations were
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broadside, -15◦, +15◦, -30◦ and +30◦). Note: the NF results were both
sampled at a range of 50 cm from the RDA.

completed by applying the required relative phase difference

between elements that will make the main beam point to the

predefined angle. It can be observed that there is a small

shift in the measured beam angle position with respect to

the simulated one. This can be caused by the internal phase

noise that the active components within the circuit system can

generate as well as potential uneven power outputs from each

amplifier. There could have also been some small mechanical

misalignment during the measurement trials. Additionally, the

minor differences between the measured and simulated beam

patterns can be related to the fact that simulations were based

on FF patterns and NF data, whereas the measured bistatic

patterns were completed in the reactive NF. Regardless, results

still show tracking capability for different pointing angles
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demonstrating proof of concept.

It should be mentioned that there is a noticeable side-lobe

level (SLL) which is caused by the 0.85λ0 separation between

the sub-arrays within the RDA transmitter. For example, at

θ = -15◦ the measured SLL is -6 dB from the main beam

maximum. This 0.85λ0 spacing is the minimum separation

possible between the sub-arrays given the planar feed network

layout employed to achieve CP, and this distance defines

the angular range where grating lobes are not observed. In

particular, the field-of-view (FOV) for the RDA can be defined

by [24]: θFOV = ± arcsin ( λ

2d
) where d is the distance

between each sub-array element. For the proposed RDA, the

expected FOV is about ±36◦ and this can be observed in

Fig. 8, for the ±30◦ incident angle cases, where the dominant

side lobe increased to about 2 dB below from the steered

maximum. A more compact array for the RDA and feed

network implementation could reduce the SLL, but at the same

time, reduce the broadside gain.

For the monostatic patterns, the flatter the curve obtained,

the larger the half-power beamwidth and the better the antenna

system can be at tracking with minimal power level deviations

from the observed maximum. In Fig. 9, after a certain angle,

the maximum of the retrodirected bistatic beam pattern starts

to have a reduction in power level, mainly due to the beam

steering of the transmit array as dictated by array theory [24].

For example, from about −40◦ to +40◦ the monostatic curve

exhibits tracking, as shown in the red dashed line in Fig. 9,

with a 3 dB drop in the observed maximum at broadside.

Figure 10 also reports the measured and simulated received

RF power versus distance. It is worth mentioning that simula-

tions were completed in CST considering a phased array for

broadside (using the designed simulation model of the patch

array for the RDA transmitter) whilst including all the output

rated amplifier power levels and losses due to the active circuit

elements (see Fig. 4) and transmission line connections. The

minor difference between the measured and simulated values

are related to the fact that simulations were performed by

applying an equal magnitude and phase distribution at each

transmitter element. However, given that the measurements are

in the reactive NF, the elements are not equi-phased (see Fig.

2 from [10] where similar comparisons were reported). These

results are important to demonstrate that the measured RDA

system is able to operate in both the NF and FF regions as

well a conventional phased array.

In Table III, a comparison is made between some other

relevant works and our proposed RDA system. It should

also be mentioned that for [25] only the received voltage is

provided (and the impedance of the load is not detailed), so

we are not able to report in Table III a complete comparison

between [9], [10], [25], and [26]. Regardless, by studying

the ranges and power values in Table III, it is clear that our

proposed RDA has the highest level of received RF and DC

rectified power when compared to all other works found in the

literature. For example, received power levels are well above

27 dBm (which relate to a DC converted value of more than

350 mW) while 13 dBm was reported in [9] being rectified to

10 mW DC.

To provide a more relevant comparison of our proposed

antenna system with other works reported in the literature,

which have less antenna elements, two relevant cases of the

proposed RDA have also been included in Table III. For

example, for the 2×2 array, similar transmit and receive power

levels are achieved when compared to [9]; i.e. received RF

power levels are 13 dBm and 11 dBm for [9] and our work,

respectively, considering a common range of 50 cm and a 26

dBm transmit power level. It should also be highlighted that

the FSPLs at 2.4 GHz are about 8.3 dB lower when compared

to 915 MHz [9]. This implies that the reported 2 × 2 RDA

(our work) is able receive similar power levels to that of [9],

while also, overcoming the related FSPLs. These results are
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also related to the NF focusing property of our developed

RDA system when compared to other approaches, for example

digital beamforming, as in [9].

In summary, our proposed RDA for WPT offers six impor-

tant characteristics that differentiates it from the classical Pon

2D-RDA architecture and the other related retrodirective and

antenna systems as reported in the literature:

1) The removal of circulators. This can reduce costs by

removing these bulky and expensive RF components

typically required for isolation between the receiving

and transmission paths. This can make the design more

planar, whilst reducing the overall costs of the antenna

system. In this work, this has been done by having

separate transmit and receive antenna arrays for the

RDA, as done earlier in [27]. There are also other ways

to avoid the use of circulators, such as using separate

transmit and receive polarizations [28], [29], as done

in our RDA, as well as split frequencies for CubeSat

platforms [30].

2) Employ transmit sub-arrays for the RDA. This will

reduce the number of active elements, minimizing costs

because a mixer amplifier pair is only used for each sub-

array, not at each radiating element as in the classic 2-D

RDA as shown in Fig. 2(a). However, this approach will

reduce the self-tracking capability and the NF focusing

of the RDA to just one plane; i.e. the y-z (φ = 90◦) plane

as previously described and illustrated in Fig. 2(c).

3) Distinct receive and transmit arrays for the RDA. In this

approach, we also employ separated transmit and receive

arrays at 2.4 GHz and 2.5 GHz, respectively. This sepa-

ration can reduce electromagnetic coupling between the

receiver array and the network of four sub-arrays which

are individually realized by one-dimensional (1-D) patch

arrays and with hybrid coupler feeding. However, this

requires two sets of arrays instead of just one, as in

[27]. Regardless, our proposed RDA is not as compact

as one which uses transceivers and proper positioning of

the separated transmit and receive arrays for the RDA,

and the DUC, should be considered.

4) Circularly polarization (CP) offers the added benefit of

orientation flexibility. Moreover, isolation improvement

between the receive and transmit re-radiated fields is

made possible by implementing orthogonal polariza-

tions. In this case, the retrodirected beam exhibits left-

hand circularly polarization (LHCP) whilst considering

right-hand circular polarization (RHCP) for the receiver

array. Apart from WPT [31]–[33], CP is also a well

known approach for satellite communications [34]–[36].

5) Operation in both the NF and FF for high-power WPT.

The more classic Pon-RDA was originally considered

for operation in the FF zone [15]. However, the proposed

RDA of this work was measured in both the reactive

and radiating NF, considering the relatively high transmit

powers, as well as the FF (all results not reported for

brevity), defining a diverse antenna system which can

function for varied spatial ranges. Regardless, the RDA

system is able to retrodirect power in both the NF and
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Fig. 10. Retrodirected received RF power at broadside versus distance. Given
the physical size of the RDA, as well as the 2.4 GHz operating frequency,
all values are defined in the reactive NF zone. It should be mentioned that
the measurements were completed considering a constant beacon tone with
an output power of 6.6 dBm generated by a VCO (ZX95-3000w).

the FF zones (see Fig. 8) demonstrating tracking for

various applications in addition to WPT.

6) Near Field focusing and DUC Tracking will only occur

in one plane due to the employed subarrays; i.e. 1-D

making the proposed design suitable for applications

where the DUC moves close to the tracking plane (see

Fig. 2(c)). A comparison between such 1-D and 2-D

tracking systems is shown in Fig. 3 where reduced power

values of only about 5 dB are observed from broadside

to ±30◦. This is also related to the fact that the receiver

for the RDA system is designed with a broad beam

pattern so that the transmitter module can still receive

the majority of the incoming fields from the DUC which

are generated by the beacon signal tone.

IV. CONCLUSION

Most of the conventional systems for WPT employ inductive

coupling with the main disadvantage of mobility limitations

for the user. In this paper, a novel retrodirective antenna

array (RDA) system for wireless power transmission which

circumvents this problem was proposed. Our examined RDA

employs retrodirective operation by phase conjugation of the

incoming beacon signal using RF mixers. We also avoid the

use of circulators by designing independent LHCP transmit

and RHCP receive antenna arrays. Moreover, as the cost of

more conventional RDA systems can be relatively high due to

the number of amplifiers, mixers, etc. at each antenna element,

we propose a hybrid solution (between a 1-D and 2-D RDA)

which uses a 2-D network of linear sub-arrays that can boost

the overall transmitter gain of the system.

The only challenge that this can impose is the loss of NF

focusing and scanning in one plane when compared to the

more conventional 2-D RDA architecture. However, results

show that acceptable power levels are still observed when the

DUC moves reasonably close to the desired scanning plane;

i.e. reduced power values of only about 5 dB are observed over

a ±30◦ angular range away from the tracking plane. In general,

simulations and measurements are in agreement for the RDA
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TABLE III
COMPARISON OF THE PROPOSED WORK TO THE STATE-OF-THE-ART AND OTHER RELEVANT DESIGNS FOUND IN THE LITERATURE

Ref. Freq. Tx Array Tx Beam Distance Field Tx Rx RF Rx DC

(MHz) Size (M × N ) Architecture tracking (m) Range Power (dBm) Power (dBm) Power (mW)

[9] 915 2 × 2 Dig. Beamforming Yes 0.5 NF 26 13 10

[10] 2450 16 × 1 RDA Yes 1 NF 24 - 10

[25] 462.55 - Classic Array No 33.5 FF 36 - 3.3V

[26] 915 1 × 1 CP Patch No 0.4 NF 25 -17.5 0.00514

This Work1 (Calculated) 2400/2500 2 × 1 RDA Yes 0.5 NF 33 / 26 15 / 8 23.7 / 4.7

This Work1 (Calculated) 2400/2500 2 × 2 RDA Yes 0.5 NF 33 / 26 18 / 11 47.3 / 9.4

This Work2 (Measured) & [16] 2400/2500 4 × 4 RDA Yes 0.5 NF 36 >27 >350

1 For a fair comparison to [9], [10], [25] and [26] the proposed RDA2 was scaled down whilst using the estimated performance values from Table I. The transmit power of 33 dBm

〈 26 dBm 〉 was defined to be consistent with the proposed 4 × 4 RDA2 〈with [9] which operated at 915 MHz 〉. Also, received DC power levels were calculated considering

a 75% RF-to-DC rectification eficiency defining values from about 5 mW up to 50 mW.
2 It should be mentioned that the total transmit power of 36 dBm refers to the signal strength at the output of the filters, and the power and driver amplifiers (see Fig. 4) when

considering the 4 RF chains attached to the individual sub-arrays. This defines an array with 16 (= 4 × 4) radiating elements in total. Moreover, this power level of 30 dBm

was measured by sampling the output power for the individual RF chains defined by the connected active and passive components.

and the WPT system demonstrates received power levels in

excess of 27 dBm (and more than 350mW when converted

to DC using the rectifier from [16]) for a reactive NF range of

50 cm. These results make the proposed RDA system a good

alternative for mid-range WPT applications working at 2.4/2.5

GHz for operation in both the NF and FF.
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