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Abstract—A concentric circular slots coupled hemispherical dielectric resonator antenna fed by a
modified microstrip line for circular polarization is investigated. By adjusting the position of the
hemispherical dielectric resonator antenna and the slots properly, the resonances of the slot and the
antenna are merged to obtain wider axial ratio bandwidth. Parametric studies have been done on the
effect of changing the DRA position on impedance band and axial ratio band. The circular polarization
achieved by the antenna offers a very good 10 dB impedance bandwidth of 27.379% and a 3dB axial
ratio bandwidth of 640 MHz. The maximum gain in the operational band is 7.3 dBi. The antenna is
suitable for Wi-Max applications.

1. INTRODUCTION

Dielectric resonator antennas (DRAs) have received tremendous attention from researchers over the
past three decades. DRAs have numerous attractive features such as design flexibility, wide bandwidth,
high radiation efficiency, low conductor loss, ease of excitation, and small size. DRA acquires wider
impedance bandwidth than microstrip patch antenna because the whole DRA surface acts as an
efficient radiator except the ground part, whereas only two narrow radiation sides act as a radiator
for microstrip patch antenna [1]. For a long time, studies on DRAs have been concentrated on linear
polarization. Circular polarization (CP) is useful in wireless (e.g., mobile and Wi-MAX) and satellite
communications due to the insensitivity to transmitter and receiver orientations, effective coverage
area, weather penetration, and reduced multipath reflection [2]. A number of excitation methods like
coaxial probe, direct microstrip, aperture coupled microstrip, waveguide, coplanar waveguide, etc. have
been applied to DRAs [3–6]. Among different excitation schemes, aperture coupled microstrip feed
line is most commonly used as it enables direct integration with a printed feed structure and avoids
spurious radiation from the feed network. In 1985, Haneishi & Takazava presented the first circularly
polarized DRA, using geometrical variation in DRA [7]. A complicated DRA structure with a simple
feed excitation has been presented in [8] which produces CP fields when two opposite corners of the
DRA are removed at 45◦. However, deformation in the DRA shape is difficult to achieve. Oliver et
al. [9] and Esselle [10] obtained CP DRA by using a conventional rectangular DRA, with the coupling
slot inclined at 45◦. A rectangular slot coupled dielectric resonator antenna array making 45◦ with the
slot is also used to produce CP [11]. A CP cylindrical DRA array integrated with helical exciter is
proposed in [12]. Single probe feeds are used to obtain CP DRAs [13]. Split ring resonators inside a slot
antenna are rotated and fed by a microstrip open-loop feed to produce CP [14]. CP DRA for handheld
RFID reader is obtained in [15]. However, the axial ratio bandwidth obtained is small in all cases.

Received 24 February 2020, Accepted 24 April 2020, Scheduled 4 May 2020
* Corresponding author: Arunodayam Radhakrishnan Anu (aranu17@gmail.com).
1 School of Engineering, Cochin University of Science and Technology, Kochi 22, Kerala, India. 2 MES College, Marampally, Kerala,
India. 3 NSS College, Rajakumari, Kerala, India.



22 Anu et al.

Several designs of circularly polarized DRAs employing multiple and single feed methods have
been introduced in the literature. A complicated feed structure like a quadrature strip-fed method is
used to excite a pair of degenerate modes in a dual/wide-band CP cylindrical DRA [16]. In many CP
DRA designs, frequency mismatching occurs between impedance bandwidth and axial ratio bandwidth.
In [17], an aperture-coupled stair-shaped DRA with a wide impedance bandwidth of 36.6% but having
only a 3-dB axial ratio bandwidth (ARBW) of 11% is implemented.

It is still a challenge to obtain wide impedance and axial ratio bandwidth simultaneously for
designing a wideband and good performing CP DRA. Single-feed or multiple-feed configuration can be
used to obtain circular polarization. The single-feed configurations are simple and require less space on
the feed substrate. The feed losses in the single-feed configuration are less than those in multiple-feed
configurations. A single feed circularly polarized DRA has less complexity and is desirable in situations
where it is difficult to place dual orthogonal feeds. In this structure, a hemispherical dielectric resonator
antenna (HDRA) is excited by three concentric circular slots etched in the ground plane of an FR4
substrate with a modified microstrip line on the other side. CP is obtained by accurately positioning
three rings. The three slot rings together with the modified microstrip line offer good coupling and
bandwidth improvement between the microstrip line and HDRA.

2. ANTENNA CONFIGURATION

Figure 1(a) shows the geometry of the suggested circularly polarized concentric ring aperture coupled
HDRA. The dielectric resonator is made of alumina material (Al2O3) having permittivity εr = 9.8. The
HDRA of radius 12.7 mm is located at an offset position ay = 11 mm along the positive Y direction and

(a)

(b) (c)

Figure 1. (a) Configuration of the proposed CP HDRA. (b) Top view of prototype antenna. (c)
Bottom view of prototype antenna.
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an offset position ax = 18 mm along the positive X direction in the ground plane. An FR4 substrate
with a thickness of 1.6 mm, length and width of 80 mm × 80 mm is used as the ground plane. The
HDRA is excited by three concentric ring slots etched on the ground plane of the dielectric substrate.
The centers of the ring-shaped slots are at (6 mm, −6mm, 1.6 mm). The innermost slot has an inner
radius of 2.5 mm and width 0.5 mm. The middle slot has an inner radius of 3.5 mm and width 0.5 mm.
The inner radius of the outermost slot is 5.55 mm and width 0.45 mm. The feed line is composed of a
50 Ω input impedance microstrip line and a stub line etched on the other side of the substrate. The
microstrip line has length lm1 = 5 mm, width Wm1 = 3 mm, and the stub line is continued after the
microstrip line which has length lm = 36.7 mm and width Wm = 2.85 mm. The top and bottom views
of the fabricated structure are shown in Figure 1(b) and Figure 1(c).

The HDRA of radius 12.7 mm based on the above material specification will resonate at 3.5 GHz
with TE111 being the dominant mode when given an appropriate feed. The design of a simple HDRA
geometry is given as below.

fr =
4.775 × 107Re (ka)

(εr) a
(1)

where ‘fr’ is the resonant frequency, ‘εr’ the dielectric constant of the HDRA, ‘a’ the radius of the
hemisphere, and ‘ka’ the wavenumber in the dielectric [18].

The slots are accurately positioned so that two near-degenerate orthogonal modes of equal
amplitude and 90◦ phase quadrature are excited at frequencies close to the dominant TE111 mode
of the HDRA. By adjusting the DRA position with respect to the slot, the resonances of the slot and
the DRA can be merged to obtain wider axial ratio bandwidth. The resonant frequency of the slot away
from that of the DRA is brought near the DRA resonance by proper excitation of the two orthogonal
modes. The electric field distribution observed inside the HDRA and the slots at different phases, 0◦,
90◦, 180◦, and 270◦ are shown in Figure 2. The circularly polarized field of the proposed antenna has
been confirmed by the rotation of E-field in the HDRA. It is observed that the electric field lines take

(a) (b)

(c) (d)

Figure 2. Simulated electric field distribution at four different phase angles, (a) 0◦, (b) 90◦, (c) 180◦,
(d) 270◦ at 3.31 GHz.
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a complete rotation in fundamental mode TE111. At phase angle φ = 0◦, electric field lines are equal
in magnitude and opposite in direction to that at φ = 180◦, and the same is the case when φ = 90◦
and φ = 270◦. It is observed from Figure 2 that if the phase is shifted from 0◦ to 90◦ the rotation
of E-field inside the HDRA is also shifted from right to left and confirms the formation of orthogonal
modes. The electric field vector undergoes rotation with an advance in phase. Rotation is observable in
both clockwise and counter-clockwise directions explaining the presence of both right-handed circular
polarization (RHCP) and left-handed circular polarization (LHCP). The direction of rotation of the
electric field vector is clockwise as the direction of view chosen is from +Z-axis, and the sense of
polarization is confirmed as RHCP. The direction of rotation of the vector is counter-clockwise as the
direction of view chosen is from the −Z-axis, and the sense of polarization is confirmed as LHCP.

3. PARAMETRIC ANALYSIS

The parametric analysis has been carried out by CST microwave studio for proper tuning of degenerative
modes. The position of the DRA with respect to the slot, which is responsible for circular polarization,
is varied along X and Y directions with respect to the ground plane. The effect of changing the DRA
position on impedance bandwidth and 3 dB axial ratio bandwidth are studied to detect the amount
of coupling and circular polarization. The number of concentric circular slots was chosen based on
the parametric study conducted on the dimension of the circular slots. Detailed analysis shows that
on adding three slots one by one, the impedance bandwidth as well as axial ratio bandwidth can be
improved.

3.1. Deviation of DRA Offset along X Direction (ax)

The position of the DRA with respect to the three concentric slots along X direction is varied from
17.6 mm to 18.4 mm keeping other factors fixed. Figure 3(a) shows that as the offset value of the DRA
with respect to the slot is increased along X direction from 17.6 mm to 18.4 mm, the 10 dB impedance
band is shifted towards right. Similarly, Figure 3(b) shows the change in the axial ratio as the position
of the DRA with respect to the slot is increased from 17.6 mm to 18.4 mm. From the plot, it can be
analyzed that at an offset of 18 mm, there is good control of the axial ratio, and the ARBW obtained
is 660 MHz, 18.75% (3.19 GHz–3.85 GHz). The change in offset along the X direction can control the
axial ratio and the shift in the 10 dB impedance bandwidth.
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Figure 3. Parametric analysis by varying the DRA offset along with x-direction. (a) S11. (b) Axial
Ratio.

3.2. Deviation of DRA Offset along Y Direction (ay)

The position of the DRA with respect to the three concentric slots along Y direction is varied from
10.6 mm to 11.4 mm keeping other factors fixed. Figure 4(a) shows that as the offset value of the
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Figure 4. Parametric analysis by varying the DRA offset along y-direction. (a) S11. (b) Axial Ratio.

DRA with respect to the slot is increased along Y direction from 10.6 mm to 11.4 mm, the 10 dB
impedance bandwidth is increased from 17.76% (3.18 GHz–3.80 GHz) to 19.71% (3.20 GHz–3.90 GHz).
Also, Figure 4(b) shows that the axial ratio bandwidth can be controlled as the position of the DRA
with respect to the slot is increased from 10.6 mm to 11.4 mm. The maximum ARBW of 660 MHz,
18.75% (3.19 GHz–3.85 GHz) is obtained at an offset value of 11 mm. Thus we can conclude that the
change in the offset value along X as well as Y direction has good control over the 10 dB impedance
bandwidth as well as the ARBW.

3.3. Effect of Concentric Slots on DRA

The parametric studies on the slot width of a single circular slot (outer slot) on DRA, having inner
radius 5.55 mm and outer radius 6 mm, are carried out where the inner radius of the slot remains the
same, but the outer radius is parametrically changed from 5.9 mm to 6.1 mm, and the corresponding
plots on return loss and axial ratio are depicted in Figure 5 and Figure 6.

In Figure 5, dual bands are obtained. As the outer radius value (slot width) is increased, the 2nd
band shifts towards higher frequency. The axial ratio shows two peaks at 3.5 and 3.7 GHz in Figure 6.
To improve the axial ratio bandwidth, these peaks need to be reduced. It is seen that at outer radius
5.9 mm, the axial ratio bandwidth is less than other two outer radii if the peak at 3.5 and 3.7 GHz is
reduced. On the contrary, the peak value at 3.7 GHz is less at 6 mm than at 6.1 mm outer radius. Fixing
6mm as the outer radius shows more chances to improve the axial ratio bandwidth.
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Figure 5. S11 plot of variation on slot width of
DRA excited by outer slot alone.
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middle slot fixing outer slot value constant.
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Figure 8. Axial Ratio of variation on slot width
of middle slot fixing outer slot value constant.

To enhance the impedance bandwidth and axial ratio bandwidth, one more slot (middle slot) is
included inside the former slot, having inner radius fixed at 3.5 mm and the outer radius parametrically
changed from 3.9 mm to 4.1 mm, and its corresponding return loss and axial ratio plots are as shown
in Figure 7 and Figure 8. There is an increase in the impedance bandwidth, but the axial ratio again
shows two peaks at 3.6 GHz and at frequencies after 3.8 GHz. Henceforth, the value 4 mm is chosen as
it shows more chances to improve the axial ratio bandwidth within the impedance bandwidth.

Again, in order to enhance the impedance bandwidth and axial ratio bandwidth further, one more
slot inside the first slot and second slot is included, having inner radius fixed at 2.5 mm and the outer
radius parametrically changed from 2.9 mm to 3.1 mm, and its return loss and axial ratio plots are
shown in Figure 9 and Figure 10. There is an increase in the impedance bandwidth as well as axial
ratio bandwidth. Henceforth, the value 3mm is chosen as it shows more improvement towards obtaining
the maximum axial ratio bandwidth within the impedance bandwidth.
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4. RESULTS AND DISCUSSION

The proposed antenna is designed and simulated using CST microwave studio. The input reflection
coefficient is measured by Rohde & Schwarz ZVL 13 Vector Network Analyzer. The measured and
simulated S11 are compared as shown in Figure 11. Two resonant frequencies can be found in the
measured S11 curve. The lower resonant frequency (about 3.55 GHz) and the higher one (about
4.24 GHz) are due to the resonance of the slot. Both the DRA and slot resonances are shifted from
their free resonance values. The resonance depicted in the figure indicates that this resonance is due to
the merging of resonances of the DRA and slot. The measured 10 dB impedance bandwidth is 27.379%
(3.31 GHz–4.36 GHz), and the simulated 10 dB impedance bandwidth is 18.75% (3.19 GHz–3.85 GHz).
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The measured response shows an upward shift of 120 MHz with respect to the simulated response due
to some fabrication errors that include roughness of the DRA and ground plane surfaces forming air
gaps between them [19]. The simulated and measured axial ratios are compared as shown in Figure 12.
The simulated axial ratio bandwidth is 18.75% (3.19 GHz–3.85 GHz), and the measured axial ratio
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Figure 11. Simulated and measured S11 of the
proposed antenna.
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Figure 13. Simulated and measured radiation patterns of proposed antenna at (a) 3.4 GHz, (b) 3.5 GHz,
(c) 3.84 GHz.
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(a) (b)

Figure 14. (a) The radiation pattern measurement setup. (b) Input reflection coefficient measured by
Rohde & Schwarz ZVL 13 Vector Network Analyzer.
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Figure 15. Simulated and Measured gain of the proposed antenna.

Table 1. Comparison of Axial Ratio Bandwidth to previously published antenna structures.

Circular polarized DRA

Ref Shape of DR εr f o (GHz) 3-dB ARBW (%)

[20] Rectangular 9.8 3.57 16.5

[21] Rectangular DRA with inclined slots 15 2.4 7.3

[22] Circular sector DRA 21 2.675 10

[23] Cylindrical DRA 10.2 6.75 15.9

[24] cylindrical DRA with L shaped slot 6.15 9.5 10.5

[25] Slot coupled HDRA with parasitic patch 9.5 3.50 3.4

This work HDRA 9.8 3.84 17.25

bandwidth is 17.25% (3.39 GHz–4.03 GHz).
The simulated E-plane and H-plane radiation patterns of the antenna have been calculated at

the selected frequencies of 3.4 GHz, 3.5 GHz, and 3.84 GHz. The radiation patterns are also measured
in the same selected frequencies. Figure 13 shows the simulated and measured E-plane and H-plane
radiation patterns at 3.4 GHz, 3.5 GHz, and 3.84 GHz. The antenna has a broadside radiation pattern.
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The radiation pattern measurement setup and the input reflection coefficient measured by Rohde &
Schwarz ZVL 13 Vector Network Analyzer are shown in Figure 14(a) and Figure 14(b).

The plot of simulated and measured gains versus frequency are shown in Figure 15. The antenna
attains a maximum measured gain of 7.3 dBi in the operational band. Table 1 illustrates the comparison
of axial ratio bandwidth to other published works in literature. It is noted that the proposed work shows
progress in axial ratio bandwidth within the operational band over prior reported designs.

The 3 dB axial ratio bandwidth of the proposed antenna measured is found to be 640 MHz
(3.39 GHz–4.03 GHz, 17.25%) in the broadside direction (θ = 0◦, φ = 0◦).

5. CONCLUSION

In this structure, a circularly polarized concentric ring slot coupled HDRA has been proposed and
experimentally investigated. The DRA is excited by three concentric ring slots etched on the ground
plane to generate circular polarization. The circular polarization achieved by the proposed antenna
offers a 10 dB impedance bandwidth of 27.379%. The proposed CP HDRA has 3-dB ARBW of 17.25%
(3.39 GHz–4.03 GHz) falling within its 10-dB impedance passband making its entire ARBW usable. The
maximum gain is 7.3 dBi in the operational band. The proposed antenna can be used for the Wi-MAX
application.
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