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Abstract

Epithelial-mesenchymal transition (EMT) of adherent epithelial cells to a migratory mesenchymal

state has been implicated in tumor metastasis in preclinical models. To investigate its role in

human cancer, we characterized EMT in circulating tumor cells (CTCs) from breast cancer

patients. Rare primary tumor cells simultaneously expressed mesenchymal and epithelial markers,

but mesenchymal cells were highly enriched in CTCs. Serial CTC monitoring in 11 patients

suggested an association of mesenchymal CTCs with disease progression. In an index patient,

reversible shifts between these cell fates accompanied each cycle of response to therapy and

disease progression. Mesenchymal CTCs occurred as both single cells and multicellular clusters,

expressing known EMT regulators, including transforming growth factor (TGF)–β pathway

components and the FOXC1 transcription factor. These data support a role for EMT in the blood-

borne dissemination of human breast cancer.

Most cancer-related deaths are caused by metastasis, the dissemination of cancer cells from

the primary tumor through the blood to new organ sites (1). Aberrant activation of epithelial-

mesenchymal transition (EMT) has been implicated in this process, based on studies with

human cancer cell lines and mouse models (2, 3). Immunohistochemical approaches to
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identify EMT in tumors is complicated by the presence of reactive mesenchymal stromal

cells (4, 5), and analysis of circulating tumor cells (CTCs) has been hampered by reliance on

epithelial markers to separate cancer cells from surrounding hematopoietic cells of

mesenchymal origin (6, 7). To address these technical challenges, we optimized microfluidic

capture of CTCs with epithelial- and tumor-specific antibodies, and we then used this

technology to analyze EMT in CTCs from breast cancer patients.

We established a quantifiable, dual-colorimetric RNA–in situ hybridization (ISH) assay to

examine tumor cells for expression of seven pooled epithelial (E) transcripts [keratins

(KRT) 5, 7, 8, 18, and 19; EpCAM (epithelial cell adhesion molecule); and CDH1 (cadherin

1)] and three mesenchymal (M) transcripts [FN1 (fibronectin 1), CDH2 (cadherin 2), and

SERPINE1/PAI1 (serpin peptidase inhibitor, clade E)]. These probes were validated in cell

lines to confirm differential expression in epithelial versus mesenchymal cancer cells and

the absence of expression in blood cells that contaminate CTC preparations (table S1 and

fig. S1A). After validating the E/M RNA-ISH analysis in mouse xenografts of epithelial or

mesenchymal breast cancer cells (fig. S1B), we applied the assays to primary human breast

cancer specimens.

Among the majority of E+ cancer cells, and distinct from the M+ stromal cells, we detected a

small number of biphenotypic E+/M+ cells with clear epithelial histology, both in primary

tumors and in draining lymph nodes (Fig. 1, A and B). Dual–RNA-ISH staining for M

markers and a tumor-specific marker (HER2) confirmed the identity of such mesenchymal

cells as tumor-derived (Fig. 1C). We scored tissue microarrays (TMAs) containing multiple

primary breast cancers of various histological subtypes for the number of dual E+/M+ cells.

Using this assay, we found that benign breast tissue (N = 6 cases) and tumor cells in pre-

invasive ductal carcinoma in situ (DCIS) lesions (N = 7 cases) were exclusively epithelial,

whereas reactive stromal cells were exclusively mesenchymal. In contrast, we found that all

three major histological subtypes of invasive breast cancer contained rare tumor cells with

epithelial morphology that stained with both E and M markers: ER/PR+ subtype (mean =

3.3%, range 0 to 10%, N = 20 cases); HER2+ subtype (mean = 2.7%, range 0 to 10%, N = 9

cases); and the triple negative (TN) (ER−/PR−/HER2−) subtype (mean = 12.1%, range 0 to

45%, N = 16 cases) (Fig. 1D). The higher number of M+ tumor cells in primary TN breast

cancer is consistent with this type of breast cancer being enriched for mesenchymal markers,

including vimentin (8, 9). Some TN cases contained clusters of cells in the middle of the

tumor mass that were strongly positive for both E and M markers, yet were histologically

indistinguishable from the neighboring E+ tumor cells (Fig. 1D). Thus, human primary

breast tumors contain rare cancer cells that co-express mesenchymal and epithelial markers.

To extend our EMT analysis to CTCs, we used the microfluidic HB (herringbone)–chip (10)

to capture CTCs from blood with an antibody cocktail directed against EpCAM, EGFR

(epithelial growth factor receptor), and HER2 (human epithelial growth factor receptor 2)

(fig. S2). Human breast cancer cell lines exhibiting epithelial (MCF7 and SKBR3) and

mesenchymal (MDA-MB-231) characteristics were spiked into blood and captured on the

triple-antibody cocktail-coated CTC-chip to ensure capture efficiencies of 80 to 90%.

MCF10A cells expressing the EMT-inducing transcription factor LBX1 (11) were used to

optimize the quantitative immunofluorescence–based E and M RNA-ISH detection of cells

captured on the CTC-chip (fig. S3). Using this assay, we defined five categories of cells

ranging from exclusively epithelial (E) to intermediate (E > M, E = M, M > E) and

exclusively mesenchymal (M) (fig. S3 and Fig. 2A).

To determine the cutoff for a positive CTC score, we first analyzed samples from five

healthy blood donors. Two mesenchymal cells were identified in one of the five specimens

(median 0, range 0 to 2 cells per 3 ml). To set a conservative threshold, we established 5
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cells per 3 ml as cutoff for a positive CTC score. We next analyzed blood samples from 41

patients at various stages of treatment for metastatic breast cancer. Seventeen patients (41%)

scored positive for CTCs, with EMT features varying according to histological subtype (Fig.

2, A and B). CTCs from patients with lobular type cancers (typically ER+/PR+) were

predominantly epithelial, whereas those from the TN subtype were predominantly

mesenchymal. Interestingly, CTCs from patients with HER2+ breast cancer, whose primary

tumors typically contain few E+/M+ cells, were also predominantly mesenchymal (Fig. 2B).

Of note, standard cytokeratin-based protein staining of CTCs was comparable to RNA-ISH

for scoring epithelial CTCs but dramatically undercounted cases with mesenchymal CTCs

(12).

We next compared CTC features in pre- and posttreatment blood samples from 10 of these

cases. Five patients who responded to therapy showed a decrease in CTC numbers and/or a

proportional decrease in M+ compared with E+ CTCs in the posttreatment sample (Fig. 2C).

In contrast, five patients who had progressive disease while on therapy showed an increased

number of M+ CTCs in the posttreatment sample. We obtained serial specimens from one

index patient with ER/PR+ lobular carcinoma. This patient had initially responded to an

experimental regimen, developed resistance, and then responded transiently to standard

chemotherapy (Fig. 3). A high number of M+ CTCs was evident at the first time point. The

first clinical response to the experimental regimen was accompanied by declining CTC

numbers and a switch to predominantly E+ cells. After 7 months of this therapy, the patient

showed disease progression, which was associated with an increase in M+ CTCs. These cells

declined in number again and switched to an E+ phenotype during a second response to the

chemotherapy regimen. After 3 months, the patient again showed disease progression, along

with a switch to M+ CTCs (Fig. 3).

The increase in M+ CTCs in the index patient was accompanied by the appearance of

multicellular CTC clusters, ranging from 4 to 50 cells, with one cluster having ~100 tumor

cells (Fig. 3, fig. S4, and movie S1). These clusters were absent from specimens with

predominantly E+ CTCs. CTC clusters are seen in patients with advanced cancer (10) and

can be detected with different CTC isolation platforms (13, 14). The CTC clusters were

strongly positive for M markers and weakly positive for E markers by ISH and were stained

weakly with epithelial cytokeratin antibodies (Fig. 3). This observation is at odds with the

prevailing hypothesis that EMT results in highly migratory single cells rather than clusters

of cells bearing mesenchymal markers (2, 3). However, consistent with the recent

observation that platelets bound to tumor cells release transforming growth factor β (TGF-

β), potentially inducing EMT within the circulation (15), staining of CTC clusters showed

an abundance of attached (CD61-positive) platelets (Fig. 3). We detected M+ CTC clusters

of 2 to 20 cells not only in the index patient but in two additional patients, both with ER/PR+

breast cancer (fig. S5).

To identify signaling pathways within CTCs that contribute to EMT in breast cancer

patients, we subjected these to RNA sequencing, using a single-molecule platform to avoid

amplification bias associated with rare templates (16, 17). Because captured CTCs are

contaminated with abundant leukocytes, we processed each specimen through paired anti-

EpCAM–capture and mock-capture CTC-chips, allowing us to subtract digital gene

expression (DGE) profiles of adherent blood cells from the CTC-enriched cells. DGE

profiles for CTC-enriched cell populations from the index patient at five serial time points

identified 45 enriched genes, compared with similarly processed blood samples from 10

healthy donors used to measure anti-EpCAM–capture background [permutation-based

statistical model applied to each of five time points with a false discovery rate (FDR)

threshold of 0.15] (Fig. 4 and table S3). Enriched transcripts included epithelial keratins

KRT 8 and 19, and breast tumor markers, mammaglobins (SCGB2A2 and SCGB2A1), and
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trefoil factors 1 and 3 (TFF1 and TFF3), the most abundant of which (TFF1) was highly

expressed in both primary tumor and metastatic lymph node from this patient (fig. S6).

CTC-associated transcripts identified 12 signatures in the Gene Set Enrichment Analysis

(GSEA) database, with an FDR < 0.25 (Fig. 4 and table S4). The strongest association was

with a gene signature up-regulated in bone relapse of breast cancer (P = 1.32 × 10−7; FDR =

0.000767), which is noteworthy because the patient had metastatic bone lesions at the time

of CTC analysis.

An additional set of 170 transcripts was enriched in CTCs captured at a mesenchymal

predominant time point, characterized by multiple (>18) M+ CTC clusters (Fig. 4 and table

S5). SERPINE1/PAI1 and FN1, two mesenchymal probes used in the RNA-ISH panel, were

the most and third most abundant CTC cluster-associated transcripts. The GSEA database

identified 717 gene signatures (FDR of 0.25) (Fig. 4 and table S6) with dramatic enrichment

for EMT-related expression changes, including significant overlap with a core EMT

signature (18) (table S7) (11 out of 90; P = 8.1 × 10−8; odds ratio = 9.8). In addition,

enrichment for extracellular matrix (ECM) and ECM-related membrane receptors (including

integrin and interleukin receptors) were potentially associated with the clustering

phenomenon. Signatures reported in invasive ductal and lobular carcinomas, therapy

resistance, and TGF-β, interleukin-6, and WNT (LEF1) signaling pathways were also noted.

Among these, the most significant was TGF-β (P = 2.96 × 10−11), a potent initiator of

mesenchymal transformation (2), directly implicated in platelet-induced EMT (15).

Expression of Snail, Slug, or other well-established transcriptional regulators of EMT was

not detected in the M+ CTC clusters, but Forkhead box protein C1 (FOXC1) (Fig. 4), a

transcription factor that induces EMT in cell culture models (19, 20), was detected. RNA-

ISH revealed FOXC1 expression in CTCs and within localized regions of primary breast

cancer and a tumor-infiltrated lymph node from the index patient and other cases (fig. S7).

Thus, along with TGF-β activation, aberrant expression of FOXC1 may contribute to EMT

in human breast cancer.

In summary, we have provided evidence of EMT in human breast cancer specimens, both in

rare cells within primary tumors and more abundantly in CTCs. These findings are

consistent with results derived from mouse tumor models, including recent studies using

lineage tracing in Kras/Tp53 pancreatic and Her2-transgenic breast cancers (21, 22) and

with the detection of vimentin-stained and/or CK− CTCs in patients with cancer (23–25).

Notably, we found a striking association between expression of mesenchymal markers and

clusters of CTCs, rather than single migratory cells. The expression of mesenchymal

markers by these adherent cells could result from proliferation of a single cell that has

undergone EMT into a cluster of such cells or, alternatively, from the mesenchymal

transformation of preexisting CTC clusters within the bloodstream. The proposal that

mesenchymal transformation of epithelial cells is mediated by TGF-β released from platelets

(15) is supported by our observation of strong TGF-β signatures in mesenchymal CTC

clusters, many of which carry attached platelets. Collective migration of grouped cells that

maintain their cell-cell and cell-matrix connections has been implicated in cancer metastasis

(26, 27), and may involve increased survival signals as CTC clusters circulate in the blood

(17, 28, 29). The clinical importance of EMT as a potential bio-marker of therapeutic

resistance and as a potential drug target in breast cancer warrants further investigation.
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Fig. 1.
RNA-ISH analysis of EMT markers in human breast tumors. Representative RNA-ISH

analysis of pooled epithelial (E) (red dots, arrowheads) and mesenchymal (M) (dark blue

dots, arrows) markers in (A) primary tumor and (B) tumor-infiltrated lymph node of a

patient with ductal ER+/PR+ type breast cancer. (C) RNA-ISH analysis of HER2 (red dots,

arrowheads) and M (dark blue dots, arrows) expression in a HER2+ primary breast tumor.

(D) Quantitation of E and M dual-positive tumor cells (percentage of total tumor cells) in a

TMA consisting of premalignant DCIS (N = 7 cases) and ER+/PR+ (N = 20 cases), HER2+

(N = 9 cases), and TN (N = 16 cases) breast cancers. A representative image from a TN case

is shown on the right. E, red dots; M, dark blue dots; nuclei are stained with hematoxylin,

light blue. Scale bars: (A) to (D), 20 μm; inserts, 10 μm.
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Fig. 2.
RNA-ISH analysis of EMT markers in CTCs from patients with metastatic breast cancer.

(A) Representative images of five types of CTCs isolated from patients with metastatic

breast cancer, based on RNA-ISH staining of E (green dots) and M (red dots) markers. Scale

bar, 5 μm (B) Quantitation of EMT features in CTCs based on E and M RNA-ISH staining

of histological subtypes of breast cancer [lobular, ductal, and U (unknown)], along with

molecular classification (ER/PR, HER2, TN). CTC numbers per 3 ml of blood based on

RNA (E+M) or protein (CK) staining are listed below. (C) Fractionation of CTCs according

to E/M ratios in five patients who were clinically responding to treatment (top) and five

patients who had progressive disease on treatment (bottom). The subtype of breast cancer,

each patient’s treatment regimen, and the number of days on treatment are shown. The drugs

used to inhibit the signaling pathways shown on the figure are as follows: MET + VEGF

(vascular endothelial growth factor), cabozantinib; AI (aromatase inhibitor), letrozole; PI3K

(phosphatidylinositol 3-kinase), BKM120, INK1117, and BYL719; PI3K/mTOR

(mammalian target of rapamycin), SAR245409; MEK (MAP kinase kinase), MSC193639B;

EGFR/HER3 (human epidermal growth factor receptor 3), MEHD7945A. The
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chemotherapeutic drugs used were cisplatin, taxol, and adriamycin. Tumor genotypes are

given in table S2.
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Fig. 3.
Longitudinal monitoring of EMT features in CTCs from an index patient. Plot of CTC

counts per 3 ml of blood based on RNA (E and M markers) detection methods in a patient

with KRAS- and PIK3CA-mutant ER/PR+ lobular breast cancer, who was serially sampled

during treatment with inhibitors targeting the PI3K (GDC0941) and MEK (GDC0973)

pathways, followed by adriamycin chemotherapy. Color-coded quantitation of EMT features

based on RNA-ISH staining is shown above each time point. Treatment history and clinical

responses are noted on the chart. P, disease progression; R, treatment response). M+ clusters

were detected at time points 1, 8, and 12. Images of CTCs staining for E (green) and M (red)

markers and protein staining for CK (red), CD45 (green), or platelet marker CD61 (green)

from different time points are shown below the chart. The number of single CTCs (S-CTC)

detected on the entire CTC-chip upon processing 3 ml of blood and the number of CTCs

within the CTC clusters (C-CTC) are indicated. Nuclei are stained with 4′,6-diamidino-2-

phenylindole (DAPI) (blue). Scale bar, 10 μm. Criteria for disease progression (P) or

treatment response (R) are described in the supplementary materials.
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Fig. 4.
RNA-sequence analysis of transcripts enriched in CTCs. Heat map representing transcripts

enriched in CTCs captured from the index patient, who was sampled at multiple time points

during treatment. A CTC signature of 45 genes was derived by comparing 5 time points

from the patient (rows 1 to 5) with identically processed blood specimens from 10 healthy

donors (HDs) (rows 6 to 15). An EMT-specific signature of 170 genes was derived from

comparing M+ cluster-enriched CTCs (row 4) with E+ CTCs. Red and blue colors indicate

relative high and low gene expression, respectively. Categories of gene signatures in the

GSEA database are shown for both the 45 gene CTC signature and the 170 gene EMT-

cluster CTC signature, with genes contributing to the enrichment highlighted in green. The

number of enriched signatures within each category is given in parentheses.
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