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RESEARCH ARTICLE Open Access

Circulating cell-free DNA-based epigenetic
assay can detect early breast cancer
Natsue Uehiro1, Fumiaki Sato1* , Fengling Pu2, Sunao Tanaka1, Masahiro Kawashima1, Kosuke Kawaguchi1,

Masahiro Sugimoto3, Shigehira Saji2,4 and Masakazu Toi1

Abstract

Background: Circulating cell-free DNA (cfDNA) has recently been recognized as a resource for biomarkers of cancer

progression, treatment response, and drug resistance. However, few have demonstrated the usefulness of cfDNA for

early detection of cancer. Although aberrant DNA methylation in cfDNA has been reported for more than a decade,

its diagnostic accuracy remains unsatisfactory for cancer screening. Thus, the aim of the present study was to

develop a highly sensitive cfDNA-based system for detection of primary breast cancer (BC) using epigenetic

biomarkers and digital PCR technology.

Methods: Array-based genome-wide DNA methylation analysis was performed using 56 microdissected breast

tissue specimens, 34 cell lines, and 29 blood samples from healthy volunteers (HVs). Epigenetic markers for BC

detection were selected, and a droplet digital methylation-specific PCR (ddMSP) panel with the selected markers

was established. The detection model was constructed by support vector machine and evaluated using cfDNA

samples.

Results: The methylation array analysis identified 12 novel epigenetic markers (JAK3, RASGRF1, CPXM1, SHF, DNM3,

CAV2, HOXA10, B3GNT5, ST3GAL6, DACH1, P2RX3, and chr8:23572595) for detecting BC. We also selected four internal

control markers (CREM, GLYATL3, ELMOD3, and KLF9) that were identified as infrequently altered genes using a public

database. A ddMSP panel using these 16 markers was developed and detection models were constructed with a

training dataset containing cfDNA samples from 80 HVs and 87 cancer patients. The best detection model adopted

four methylation markers (RASGRF1, CPXM1, HOXA10, and DACH1) and two parameters (cfDNA concentration and the

mean of 12 methylation markers), and, and was validated in an independent dataset of 53 HVs and 58 BC patients. The

area under the receiver operating characteristic curve for cancer-normal discrimination was 0.916 and 0.876 in the

training and validation dataset, respectively. The sensitivity and the specificity of the model was 0.862 (stages 0-I 0.846,

IIA 0.862, IIB-III 0.818, metastatic BC 0.935) and 0.827, respectively.

Conclusion: Our epigenetic-marker-based system distinguished BC patients from HVs with high accuracy. As detection

of early BC using this system was comparable with that of mammography screening, this system would be beneficial

as an optional method of screening for BC.
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Background
Breast cancer (BC) is the most prevalent cancer and the

leading cause of cancer deaths in women all over the

world [1]. Currently, mammography is the standard

method for early detection of BC in many countries.

However, false-positive recall rates vary according to age,

breast density, and postmenopausal hormonal therapy,

among others [2, 3]. For women with dense breasts, the

accuracy of mammography is decreased. As the breast

density of Asian women is relatively high [4], there is an

unmet need for the development of accurate BC screen-

ing methods. It is reported that ultrasonography helps to

improve the sensitivity of detection in young Japanese

women; however, there are some technical hurdles for

standardization [5].

Blood-based methods for monitoring of BC have been

in development for several decades. Conventional tumor

markers, such as carcinoembryonic antigen (CEA), can-

cer antigen (CA)15-3 [6–8], and circulating tumor cell

(CTC) count [9], are clinically available. However, their

usefulness is mostly limited to patients with advanced

and metastatic BC (MBC). Recently, circulating cell-free

DNA (cfDNA) has received considerable attention as a re-

source of cancer biomarkers. Dawson et al. demonstrated

that cfDNA-based markers (cancer-derived gene muta-

tions) were more useful for monitoring metastatic BC

than conventional tumor markers and CTC count [10]. As

the cfDNA is thought to contain DNA derived from

tumor cells in the whole body, tumor evolution can be

also monitored by profiling the DNA mutation pattern.

Somatic gene mutations are highly specific events in

cancer and precancerous lesions that can be useful in

detecting cancer using remote samples. Technological

approaches to quantifying tiny amounts of mutated

DNA have been developed, such as digital PCR and bar-

code next-generation sequencing. However, in terms of

cancer screening, next-generation sequencing is too ex-

pensive, and has a throughput capacity that is too low to

process a large number of samples. In addition, detecting

unknown mutated genes in cfDNA by a PCR-based

method is difficult because mutation sites vary, even in

highly mutated genes.

DNA methylation is an epigenetic system that regu-

lates gene expression, and aberrant DNA methylation is

associated with various pathologic events, including

tumorigenesis and aggressive phenotypes of cancer.

Since Silva et al. detected a methylated DNA fragment

of the p16 promoter region in plasma samples from

patients with BC [11], many reports have shown

aberrantly-methylated DNA in plasma and serum

[12–20]. However, the detection rates of these DNA

methylation markers in the blood are low even in

cases of advanced disease, and are therefore inad-

equate for early detection of BC [12, 13, 16–18]. In

the present study, we aimed to develop a highly sensitive

cfDNA-based system for early detection of BC using epi-

genetic biomarkers and digital PCR technology.

Methods

Detailed information on the materials and methods used

in this study is provided in Additional file 1.

Cell culture

The cell lines used in this study are listed in Additional

file 2: Table S1. Cells were grown according to the dis-

tributors’ recommended conditions.

Collection of clinical samples

All blood and tissue samples were provided from a

multi-institutional biobank project, the Breast Oncology

Research Network (BORN)-Biobank, which was initiated

and is maintained by the Department of Breast Surgery,

Kyoto University. Blood samples from patients with BC

were obtained after they received a traditional diagnosis of

BC. In this study, BC stage 0-I was considered early BC.

Laser capture microdissection (LMD) of BC tissue

specimens

Individual 10-μm-thick formalin-fixed paraffin-embedded

(FFPE) specimens of surgically resected BC tissue were

placed on Leica foil membrane slides, and immunohisto-

chemically stained by pan-cytokeratin antibody cocktails

(AE1/AE3, Dako, Glostrup, Denmark, M3515). Histo/

Zyme (Diagnostic BioSystems, Pleasanton, CA, USA;

DBS-K046-15) was used for antigen retrieval, and VEC-

TOR Red Alkaline Phosphatase Substrate Kit (VECTOR

Laboratories, Burlingame, CA, USA; SK-5100) was used

for visualization. LMD of the stained FFPE slides was per-

formed using LMD7000 systems (Leica microsystems,

Wetzlar, Gemany). Cancer cell clusters from the BC

samples were selectively microdissected (Additional file 3:

Figure S1). Normal samples obtained from adjacent nor-

mal mammary epithelia and intraductal papilloma epithe-

lia were also microdissected. Adjacent normal epithelia

from 10 patients were pooled as a single sample.

Comprehensive DNA methylation profiling

Using an Illumina Infinium Human Methylation 450

BeadChip Assay (Illumina, San Diego, CA, USA), we

conducted comprehensive DNA methylation profiling of

56 laser-microdissected FFPE samples (38 luminal, 4

luminal human epidermal growth factor receptor 2

(HER2), 1 HER2, and 11 triple-negative (TN) types of

BC, one pooled normal epithelia sample, and one intra-

ductal papilloma sample), 34 samples of DNA from 31

cultured cells (4 luminal, 3 luminal HER2, 2 HER2, and

18 TN types of BC, 1 unknown type of BC, and 3 non-

BC cells), and 29 white blood cell DNA samples from
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healthy volunteers (HVs), as listed in Additional file 2:

Tables S1-S3. The peak bias in β-values of the two differ-

ent probe types was corrected by an NIMBL toolbox

[21] for MATLAB software.

At the selection of candidate markers, we attached im-

portance to the difference of the methylation patterns

based on the BC subtypes. To build a generalized multi-

marker mathematical model for BC detection and avoid

over-fitting, it is important to use several types of vari-

ables. Thus, we decided to select candidate markers

from subtype-specific methylation loci, not only from

loci commonly methylated in BC.

The mean β-values of the non-BC samples (meanNC),

all BC samples (meanBC), and the luminal-type (mean-

Lum) and TN-type (meanTN) of BC samples, were cal-

culated. We selected the candidate markers from array

probes with meanNC <0.05. The additional selection

conditions of the candidate markers were as follows; (a)

top 20 loci of the widest gap between meanBC and

meanNC; (b) top 20 loci of the lowest meanNC with

meanBC >0.6; (c) top 50 loci with the largest values of

meanLum – meanTN; and (d) top 50 loci with the largest

values of meanTN – meanLum. We referred to (a)

and (b) as common BC markers, (c) as luminal-dominant

markers, and (d) as TN-dominant markers. As the propor-

tions of the cell lines and FFPE samples were different in

the luminal and TN samples, direct calculation of the

mean by sample type would be biased. To avoid such a

bias, the mean β-values of each group were calculated as

an average of the mean of the cell line samples and the

mean of the FFPE samples. To evaluate the statistical sig-

nificance of these markers, we calculated the p values

using the Welch t test (Additional file 2: Table S4).

Screening of DNA methylation markers using real-time

quantitative methylation-specific PCR (MSP)

We used the Taqman-based MSP method in this screen-

ing step. To save screening costs and time, we utilized

the Universal Probe Library (UPL, Roche Diagnostics

GmbH, Mannheim, Germany) to design Taqman-MSP

primers and probes. As the sequence variety of UPLs is

limited, we designed primers and probes as close as pos-

sible to the candidate loci selected by the methylation

array analysis (Additional file 2: Table S4). The MSP re-

action mix consisted of 10 μl of FastStart Universal

Probe Master (ROX) (Roche Diagnostics GmbH), 1 μl of

primer mix for MSP (finally 0.5 μM), 0.4 μl of UPL

probe, 2 μl of template bisulfite-treated DNA, and H2O

up to 20 μl in total. The PCR reaction was performed

using the StepOnePlus Real-Time PCR System (Applied

Biosystems, Foster City, CA, USA) as follows; one cycle

at 95 °C for 10 minutes, fifty cycles at 95 °C for 15 sec

and 60 °C for 1 minute. A standard curve was generated

using serially diluted, fully methylated DNA synthesized

by SssI methyltransferase (New England Biolabs, Ips-

wich, MA, USA), and methylation values were normal-

ized by MSP values of the ACTB gene as previously

described [22].

Primers were selected on the basis of the following: (1)

the efficiency of MSP was >70% and <110%; (2) methylation

was detected in one or none of the samples of blood DNA

from HVs; (3) methylation was detected in more than one

sample of the DNA from the cultured cell lines; (4) methy-

lation was not detected in the DNA derived from FFPE

samples of adjacent normal epithelia; and (5) expression of

the related genes was regulated by DNA methylation.

Validation of candidate DNA methylation markers with

the public database

To evaluate the universality of candidate markers, we ana-

lyzed the methylation data of peripheral blood mononuclear

cells (PBMC, GSE58888) [23], and BC in The Cancer

Genome Atlas (TCGA) Project [24] generated by the

TCGA Research Network (http://cancergenome.nih.gov/).

Then we showed the methylation pattern of samples with

candidate markers in a heat map format. The distributions

of the β-values for the selected methylation markers were

compared among PBMC samples, all cancer samples,

luminal BC samples, and basal-like BC samples using the

Welch t test.

Pharmacological unmasking of epigenetically silenced

genes

To determine whether the expression of the screened

marker genes was epigenetically regulated, MCF7, T47D,

MDA-MB-231, and Hs578T were treated with the

demethylating agent 5’-Aza-2-deoxycytidine (5’-Aza-dC)

(Sigma-Aldrich, St. Louis, MO, USA) at 1 μM for

48 hours, and both 5’-Aza-dC and histone deacetylase

inhibitor trichostatin A (Sigma-Aldrich) at 300 nM for

24 hours. DNA and RNA samples were then extracted.

The methylation status of each selected marker was

measured by quantitative MSP, as described. The RNA

expression level of each gene was assessed by one-step re-

verse transcription PCR (RT-PCR) using a QuantiTect

Probe RT-PCR Master Mix (QIAGEN, Venlo, Netherlands)

according to the manufacturer’s protocol.

Establishing the MSP assay using droplet digital PCR

To quantify tiny amounts of methylated DNA in cfDNA,

we employed droplet digital PCR. To adjust selected pri-

mer/probe sets to duplex droplet digital PCR format,

custom dual-labeled locked nucleic acid probes with

FAM or Alexa Fluor® 532 dye and Black hole-1 quencher

were synthesized for certain markers (Gene Design Inc.,

Ibaraki, Osaka, Japan). The final sequences of MSP

primers and probes for selected markers are listed in

Additional file 2: Table S5.
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In epigenetic research, a primer/probe set developed

by Eads et al., which targets the upstream region of

ACTB [22], was traditionally used as an internal control

reaction of MSP and also used in marker screening

steps. However, in this study, the amplification efficiency

of this primer/probe set was not sufficient. In addition,

because the amounts of loaded cfDNA samples in droplet

digital methylation-specific PCR (ddMSP) reactions are

unknown and considerably varied, precise quantification

is very important in an assay detection system. Therefore,

we developed a panel of four novel internal control

markers. We selected four internal control genes of which

the copy number alteration ratios were less than 5%, ac-

cording to the cBioPortal database (http://cbioportal.org)

[25, 26]. The primer/probe sets for internal control

markers were designed to target genomic regions contain-

ing no CpG, in order to amplify the region regardless of

methylation status (Additional file 2: Table S6).

Detecting methylated DNA markers in cfDNA by ddMSP

The extraction of cfDNA from plasma was conducted

using QIAmp Circulating Nucleic Acid Kit (QIAGEN)

with a modification of the manufacturer’s protocol to

improve the cfDNA yield. Briefly, 900 μl of thawed

plasma was mixed with 100 μl of PBS, 800 μl of Buffer

ACL (lysis buffer), and 100 μl of proteinase K solu-

tion, and then was incubated at 48 °C for 18 hours

with shaking. The sample was then mixed with an

additional 100 μl of proteinase K solution by pulse-

vortexing for 30 seconds, and was incubated for a

further 6 hours. Finally, approximately 20 μl of cfDNA

solution was eluted.

Following the manufacturer’s protocol, duplex ddMSP

reactions were performed in a T100 thermal cycler (Bio-

Rad, Hercules, CA, USA), and droplet signals were

quantified by a QX100™ Droplet Reader (Bio-Rad). In

total, 278 cfDNA samples from 145 patients with BC

and 133 HVs were analyzed using this ddMSP assay, and

all raw droplet signal data were exported from the built-

in software, and manually analyzed using MATLAB soft-

ware as follows.

Data analysis of ddMSP data and development of the

detection model

First, a sample dataset of 278 cases was randomly di-

vided into a training set (n = 167) and a validation set

(n = 111), each set being in accordance with the propor-

tion of cancer patients and HVs, and with BC stage. Clini-

copathological characteristics of the patients for cfDNA

are shown in Table 1 and Additional file 2: Table S7. A de-

tection algorithm was developed using the training dataset

only. For each marker, optimized lower and upper cutoff

thresholds for droplet amplitude were determined to

maximize the area under the curve (AUC) of the receiver

operator characteristic (ROC) curve as a single marker.

The concentration of the methylated marker DNA frag-

ments (copies/ml) was then calculated for each sample.

The cutoff concentration for each marker was determined

to divide the samples into marker-negative and marker-

positive groups. All marker concentration values were

converted into log10 values. Thus, the whole training

dataset consisted of a total of 15 variables, including the

concentration values of 12 DNA methylation markers and

their mean value, a mean of four internal control markers,

and the number of methylation-positive markers.

We developed a BC detecting model using a support vec-

tor machine (SVM) to distinguish patients with cancer from

HVs. To determine the best variable set for the model, we

tested all of the variable combinations (n = 215− 1). For each

combination, the detection accuracy was estimated by

leave-one-out cross-validation (LOOCV). The model that

achieved the best AUC and coefficients of each variable

that were >0, was then selected as the detection model.

To validate the robustness of the selected model, an in-

dependent dataset was used. The validation dataset was

prepared using thresholds of droplet signals and cutoffs for

marker concentration determined by the training dataset.

The best SVM model selected above was applied to the

validation data set. The accuracy of the detection model

for the validation set was assessed using the AUC. Further-

more, we also performed ROC analysis and calculated the

AUC to evaluate the performance of the model within each

stage of BC as a subgroup analysis.

Statistical analysis

Methylation assay analysis, processing of ddMSP data, and

algorithm construction were performed using MATLAB

software. Statistical analyses, such as correlation analysis,

tendency analysis, and t statistics, among others, were per-

formed using R software.

Results

Comprehensive DNA methylation array analysis

According to DNA methylation array data, a total of 140

candidate markers, including 40 common BC markers,

50 luminal-dominant markers, and 50 TN-dominant

markers, were selected. Figure 1 shows the distribution

of meanNC and meanBC among the whole of the array

probes (n = 482,421), and the distribution of meanLum

and meanTN in the array probes with meanNC <0.05

(n = 121,079). The colored dots represent the selected 140

candidate markers. The methylation values of these

markers are shown in a heat map format in Fig. 2. All the

selected candidates had a low methylation status in the

non-BC samples (ß-value <0.05), shown in blue. Some of

the luminal-dominant marker candidates were highly

methylated, even in the TN samples, probably because the
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Table 1 Characteristics of healthy volunteers and patients with breast cancer

Whole set (n = 278) Training set (n = 167) Validation set (n = 111)

Number of samples HVs 133 80 53

Patients with BC 145 87 58

Mean age (range) HVs 45.3 (22–70) 45.8 (26–70) 44.5 (22–66)

Patients with BC 59.5 (36–81) 59.8 (36–81) 59.1 (36–81)

Subtype Luminal 98 58 40

Triple-negative 25 14 11

HER2 10 6 4

Luminal HER2 8 6 2

not assessed (DCIS) 4 3 1

Stage 0 4 3 1

I 47 27 20

IIA 31 19 12

IIB 22 11 11

III 9 8 1

IV 32 19 13

Early BC (Stage0-I) Luminal 36 22 14

Triple-negative 8 3 5

HER2 2 2 0

Luminal HER2 1 0 1

not assessed (DCIS) 4 3 1

HVs healthy volunteers, BC breast cancer, HER2 human epidermal growth factor receptor 2, DCIS ductal carcinoma in situ, Subtype immunohistochemically

categorized subtype

Fig. 1 Methylation array data in a scatter plot format. Colored dots represent 140 candidate loci selected according to methylation array analysis.

a Distribution of the mean β-values of the non-breast cancer (BC) samples (meanNC) and of the BC samples (meanBC) in the whole of the array

probes (n = 482,421). All selected candidate markers had <0.05 of meanNC. b Distribution of mean β-values of luminal BC (meanLum) and of

triple-negative BC (meanTN) in array probes with meanNC <0.05 (n = 121,079). Red dots common BC markers selected by condition (a). Magenta

dots common BC markers selected by condition (b). Green dots luminal-dominant markers. Blue dots TN-dominant markers
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luminal androgen-receptor-positive subtype samples may

be included in these TN samples.

Validation of candidate DNA methylation markers using

the public database

As the number of samples of FFPE tissue specimens was

relatively small, we validated the methylation status of

the candidate markers using relatively large public data-

sets. There were 143 samples of PBMC in GSE 58888

[23] and 610 samples of BC in TCGA [24] datasets using

the Illumina Infinium Human Methylation 450 Bead-

Chip Assay platform. In 610 samples of TCGA data, we

analyzed 213 samples which were linked with subtype

information of PAM50. In the BC samples, the numbers

of samples in the luminal A, luminal B, HER2-enriched,

normal-like, and basal-like subtypes were 140, 46, 14, 5,

and 40, respectively. A heat map generated using these

datasets demonstrated that luminal A/B and PBMC

samples had a similar methylation pattern to our luminal

samples and blood samples (Additional file 3: Figure

S2A). The basal-like subtype in PAM50 and the clinical

TN subtype are not identical but partially overlaped;

they also had a similar methylation pattern in our ana-

lysis. Although the TCGA samples were not laser-

microdissected, the methylation pattern was similar,

which indicated that methylation marker status would

not be affected by the contaminated stromal cells.

Screening of selected candidate markers

The steps for screening the selected candidate markers

are illustrated in Fig. 3. Briefly, the screening steps in-

cluded (1) a primer/probe quality check, (2) quantitative

MSP screening using BC cell lines and normal blood

samples, (3) quantitative MSP screening using laser-

microdissected FFPE samples of normal epithelia, (4)

checking the gene silencing function of candidate

markers, and (5) checking the signal amplitude pattern in

ddMSP reactions. We selected JAK3, Ras-specific guanine

nucleotide-releasing factor 1 (RASGRF1), carboxypepti-

dase X (CPXM1), and Src homology 2 domain-containing

adapter protein F (SHF) as the common BC markers,

Dynamin 3 (DNM3), Caveolin 2 (CAV2), Homeobox

protein Hox-A10 (HOXA10), and B3GNT5 as the

luminal-dominant markers, and ST3GAL6, Dachshund

homolog 1 (DACH1), P2X purinoceptor 3 (P2RX3), and

chr8:23572595 as the TN-dominant markers (Table 2,

Additional file 2: Tables S4 and S5). DNA methylation sta-

tus and a differentially methylated region in the genomic

area surrounding the selected markers are illustrated

in Additional file 3: Figure S3. For the common BC

markers and the luminal-dominant markers, we se-

lected the markers possessing an epigenetic gene silen-

cing function (Additional file 3: Figures S4 and S5).

Selected subtype-specific methylation markers are sta-

tistically significantly differentially methylated in the lu-

minal and basal subtypes in the TCGA dataset [24]

(Additional file 3: Figure S2-B).

Performance of the internal control marker panel

In this study, we adopted an internal control marker

panel to assess the concentration of cfDNA in the

plasma sample. For precise assessment of cfDNA con-

centration, the markers should not be affected by copy

number alteration (CNA) of the cancer genome. There-

fore, we chose four markers (cAMP-responsive element

modulator (CREM), Glycine N-acyltransferase-like pro-

tein 3 (GLYATL3), ELMO/CED-12 domain containing 3

(ELMOD3), and Kruppel-like factor 9 (KLF9)), for which

the CNA rates were less than 5% in BC, according to the

cBioPortal database. A geometric mean of four markers

a

b

c

d

Fig. 2 Heat map of 140 selected candidate markers. In the heat map, the color of each square represents the methylation level (ß-value) by

methylation array, as a color scale bar (right) indicates. The ribbons (a-d) indicate the selectiong conditions described in “Methods”. BC breast

cancer, TN triple-negative, FFPE formalin-fixed paraffin-embedded
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represented the cfDNA concentration of the samples.

We compared the performance of this internal control

panel and conventional ACTB primer/probe in the

ddMSP assay system, using white blood cell DNA sam-

ples derived from 16 HVs and 16 patients with BC

(Additional file 3: Figure S6). There was good correlation

between cfDNA concentration measured by this panel

and by ACTB. However, the amounts of cfDNA detected

by the panel were significantly higher than by the ACTB

primer/probe set.

Fig. 3 Screening of epigenetic markers. BC breast cancer, TNBC triple-negative breast cancer, MSP methylation-specific PCR, FFPE formalin-fixed

paraffin-embedded, ddMSP, droplet digital methylation-specific PCR

Table 2 Epigenetic markers employed in the ddMSP assay

Gene Name Product length Chr CpG

Common BC markers

JAK3 Tyrosine-protein kinase JAK3 129 19 s-shore

RASGRF1 Ras-specific guanine nucleotide-releasing factor 1 104 15 island

CPXM1 Carboxypeptidase X1 94 20 island

SHF Src homology 2 domain-containing adapter protein F 117 15 island

Luminal-dominant markers

DNM3 Dynamin 3 105 19 n-shore

CAV2 Caveolin 2 141 7 island

HOXA10 Homeobox protein Hox-A10 135 7 island

B3GNT5 UDP-GlcNAc:betaGal beta-1,3-N acetylglucosaminyltransferase 5 97 3 island

TN-dominant markers

ST3GAL6 ST3 beta-galactoside alpha-2,3-sialyltransferase 6 82 3 s-shore

DACH1 Dachshund homolog 1 110 13 n-shore

P2RX3 P2X purinoceptor 3 118 11 island

Chr8:23572595 Intergenic locus corresponding to probe cg23495581, located at chr 8: 23,572,595 in GRCh37 83 8 s-shore

Internal control markers for MSP

CREM cAMP-responsive element modulator 75 10

GLYATL3 Glycine N-acyltransferase-like protein 3 107 6

ELMOD3 ELMO/CED-12 domain containing 3 90 2

KLF9 Kruppel-like factor 9 89 9

ddMSP droplet digital methylation-specific PCR, Chr chromosome, island CpG island, shore CpG shore (region within 2000 bps from CpG island), n-shore/s-shore

northern/southern CpG shore (CpG shore attached to upstream/downstream side of CpG island, respectively), GRC Genome Reference Consortium
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Development of a BC detection model using the ddMSP

system

First, the detection performance of each variable was

assessed by univariate analysis (Additional file 3: Figure

S7A and B). The AUC for methylation markers in the

ROC analysis ranged from 0.56 to 0.71. The AUC of

each internal control surpassed 0.80, and the AUC for

the mean of the internal controls was 0.89. The AUCs

for the mean value of the 12 methylation markers and

the number of positive methylated markers were 0.77

and 0.82, respectively.

Optimization of variable combinations is important to

obtain a detection model with high accuracy. In this study,

we tested all of the possible combinations using 15 vari-

ables (n = 215 − 1) by the LOOCV method. The SVM

model using RASGRF1, CPXM1, HOXA10, and DACH1,

the mean of 12 markers, and the mean of the internal con-

trols had the highest AUC of 0.92, thus, we selected this

variable combination from the detection models. The sen-

sitivity and specificity of this model was 0.91 and 0.83, re-

spectively (Additional file 2: Table S8). The equation of

the selected SVM model is expressed below:

Detection index ¼ 0:62449 � ½RASGRF1� þ 0:78110

�½CPXM1� þ 0:12115� ½HOXA10�

þ0:36760� ½DACH1� þ 0:65288

�½Mean12� þ 2:44704� ½IC�−6:98073

where [RASGRF1], [CPXM1], [HOXA10], [DACH1],

[Mean12], and [IC] represented the log10 concentration

of the methylated DNA fragments of RASGRF1, CPXM1,

HOXA10, DACH1 gene loci, mean concentration of 12

methylation markers, and the mean concentration of four

internal control markers, respectively. According to the

ROC curve analysis, samples with a detection index of

more than −0.07923 were defined as positive for BC. All

the ddMSP data are shown in Additional file 2: Table S7

and are also presented in a heat map format (Fig. 4a and

Additional file 3: Figure S7C). The pattern of IC was similar

to that of the detection index, which indicated that the IC

largely contributed to the detection index. However, their

patterns were not the same. Thus, other epigenetic markers

might contribute to increasing specificity of the model.

As a validation study, the developed SVM model was

applied to the validation dataset. The AUC, sensitivity,

and specificity of the validation set were 0.88, 0.84, and

0.79, respectively. Using all the data, the sensitivity and

specificity of this model was 0.88 and 0.81, respectively.

In addition, the positive/negative predictive values and

accuracy of the model was 0.84, 0.85, and 0.85, respect-

ively (Additional file 2: Table S8). The ROC curves of

the selected model for the training and validation sets

are shown in Fig. 4b.

Age bias in the detection index in patients with BC

The cells of elderly individuals tend to be hypermethy-

lated, compared to the cells of younger individuals. In

addition, the HVs who participated in this study were

significantly younger than the patients with BC. To de-

termine whether the detection accuracy of this model

was biased by age, we tested correlation between the de-

tection index and age in the BC samples. As shown in a

scatter plot (Additional file 3: Figure S8), there was al-

most no relationship between age and the detection

index (Pearson’s correlation, r = 0.075, p = 0.39). There

was weak but significant correlation between age and 3

out of the 12 markers, and as a single marker

(Additional file 2: Table S9). Among the six variables

employed in the fixed model, only RASGRF1 was biased

by age. This may be the reason why the detection index

was not biased by age as a whole.

Correlation between stage, subtype, and the detection

index

There was a statistically significant trend toward a

higher detection index in advanced-stage BC samples

(Jonckheere-Terpstra (JT) test, p = 0.0087) (Fig. 5). How-

ever, this did not mean that the samples in the early

stages tended to be diagnosed as false negatives. All four

patients with ductal carcinoma in situ (DCIS) and 85%

of patients with stage-I BC were correctly categorized

into the cancer group. For more detail, in 41 of the 47

patients with stage-I cancer, the size of the primary

tumor was recorded; the sensitivity for patients with T1a

(n = 2), T1b (n = 12), and T1c (n = 27) BC was 1, 0.83,

and 0.85, respectively. Furthermore, the AUC of ROC

analysis of early BC was 0.911 in the training set and

0.854 in the validation set, which was comparable with

the AUC for advanced BC, ranging from 0.896 to 0.960

in the training set, and from 0.881 to 0.901 in the valid-

ation set (Additional file 3: Figure S9).

The research aim of this study was to develop a tool

for the early detection of BC. Thus, the detection accur-

acy in these early-stage samples would have significant

impact for future clinical application. As our detection

index correlated with the stage of BC, the index might

indicate the prognosis of patients with BC. However, all

of the cfDNA samples were collected after December

2011. Thus, the follow-up period was too short to derive

any statistical conclusions about survival in BC.

The detection index did not differ among the four BC

subtypes (Kruscal-Wallis test, p = 0.074) (Fig. 6a). In the

TN BC cases, there was also a significant trend toward a

higher detection index in samples from patients in the

advanced stage of BC (JT test, p = 0.021) (Fig. 6c),

whereas there was no such significant trend in the

patients with luminal BC (JT test, p = 0.05) (Fig. 6b).

There was also no trend in the patients with HER2
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and luminal HER2 BC (JT test, p = 0.20 and p = 0.81,

respectively), which is likely due to the small sample

size (Additional file 3: Figure S10).

All the TN, HER2, and luminal HER2 BC samples,

even those at stage I, were stratified into the cancer

group. In contrast, 17 out of the 98 luminal BC samples

(17.3%) were falsely stratified into the non-cancer group,

which contained some advanced/metastatic cases (Fig. 5).

Limited to the early stage, 7 patients (19.4%) were diag-

nosed as non-cancer. In the 17 false-negative patients,

15 had >50% estrogen-receptor-positive cells, and 13

also had >20% progesterone-receptor-positive cells in

primary tumors. Furthermore, the Ki-67 index of 10

false-negative patiets was under 14%. Taken together, the

a b c

Fig. 5 Distribution of detection indexes according to breast cancer stage. Detection indexes of patients with breast cancer were significantly

higher than in healthy volunteers (HVs) both in the training and validation sets. Data are also shown in boxplot format (right). Red line cutoff for

positive/negative diagnosis. MBC metabolic breast cancer

a b

Fig. 4 Droplet digital methylation-specific PCR (ddMSP) data and receiver operating characteristic (ROC) curves of the best support vector machine

(SVM) model to distinguish patients with breast cancer (BC) from healthy volunteers (HV). a ddMSP data (heat map format). Cases are sorted by stage

as the ribbons (left) indicate. In the left heat map, the color of each square represents the log10 concentration of the selected variables in the best SVM

model. In the right heat map, the color of each square represents the detection index. Positive (cancer) and negative (non-cancer) calls from the

detection index are shown in the right side of the detection index in pink and light blue, respectively. b In the ROC curve analysis, cases with a detection

index of more than −0.07923 were defined as positive for BC. Red and blue lines indicate the ROC curve of the training and validation sets, respectively.

MBC metastatic breast cancer
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fixed model had relatively lower detection accuracy for

the luminal A-like subtype [27] of BC samples than that

for the other subtype samples.

Discussion

In this study, we developed a cfDNA-based system for

early diagnosis of BC using an epigenetic marker panel.

Most previous studies of DNA methylation markers in

cfDNA for BC utilized the MSP method by real-time

PCR, and obtained a wide range of diagnostic accuracy,

as shown in Additional file 2: Table S10 [12–15, 17–20].

Generally, methylation markers were detected frequently

in patients with metastatic BC, unlike in patients with early

BC, in whom methylation markers were less frequent.

In comparison with other studies, our study had

unique and advantageous key points. First, we selected

epigenetic markers from genome-wide screening by

array analysis, whereas most previous studies chose

markers in a knowledge-based way. Screening novel

markers from genome-wide analysis required consider-

able effort to identify the final markers; however, this

method may have a better chance of obtaining accurate

marker sets than the knowledge-based method. Further-

more, we validated the results of our methylation array

analysis, using large sample cohorts of PBMC samples

[23] and TCGA BC samples [24]. This validation analysis

confirmed that selected candidate markers were differ-

entially methylated among subtypes in independent

datasets.

Second, we employed the cfDNA concentration data

in the detection algorithm to improve detection per-

formance. The mean IC, which represented the cfDNA

concentration, largely contributed to the high accuracy

of the algorithm. Third, our model was highly accurate

even in the detection of patients with early BC. The sen-

sitivity of detection in patients with BC stage 0-I was

90.0% in the training set and 81.0% in the validation set.

The ROC of AUC for this stage was 0.911 in the training

set, and 0.854 in the validation set. In the previous stud-

ies conducted in the USA, Europe, and Asia, the sensi-

tivity and specificity of mammography ranged from 74.6

to 92.5% and from 83.1 to 99.5%, respectively [5, 28–30].

In addition, the sensitivity and specificity of mammog-

raphy in women aged 40–49 years was lower than in

women aged 50–70 years [2]. Taking into consideration

that 42% of patients (n = 117) in this study was below

50 years of age, the detection of early BC by our model

was comparable with that of mammography. Thus, these

results indicated that our system could be an optional

method in BC mass screening in the future. Finally, we val-

idated the accuracy of the fixed model using a large cohort

(n = 111). We proved that our system could have general-

ized potential to distinguish patients with BC from HVs.

Similar to other reports, each methylation marker in

this study had low-range to mid-range sensitivity. The

low sensitivity is reasonable because we intentionally se-

lected luminal-dominant and TN-dominant markers that

were unmethylated in the other subtypes. In general, the

keys to building a good multi-marker mathematical

model for prediction or diagnosis include avoiding over-

fitting to obtain a generalized model, and covering as

large a variety of data patterns as possible. According to

the results of the TCGA Project [24] and the Carolina

Breast Cancer Study [31], there are some subtypes

a b c

Fig. 6 Distribution of detection indexes by subtype and stage. a There was no statistically significant trend in the distribution patterns of the

detection indexes among the four breast cancer (BC) subtypes. b Distribution of detection indexes of patients with luminal BC by stage. c

Distribution of detection indexes of patients with TN BC by stage. Lum luminal, TN triple-negative, HER2 epidermal growth factor receptor 2
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within the DNA methylation pattern. If we chose

markers only by sensitivity as a single marker, epigenetic

data from these markers would be redundant and would

miss some important features. Thus, we intentionally se-

lected subtype-specific markers, not only common BC

markers. Adding different types of information, such as

mean methylation values and a cfDNA concentration

measured by internal control markers, helped to im-

prove the accuracy of the model. Moreover, the numbers

of variables are important. The model should include

enough data to accurately show the potential variety

without overfitting the model. Sixteen markers, the

number used in our model, would be a reasonable size,

and feasible in terms of clinical application by the PCR-

based assay system, similar to Oncotype Dx [32].

Markers targeting four genes were employed in the fixed

model. Three of the four genes were recognized as tumor

suppressor genes according to previous functional studies.

RASGRF1 activates Ras by stimulating the dissociation of

GDP from RAS protein. RASGRF1/2 regulates Cdc42-

mediated tumor cell transformation and cell motility,

working as a tumor suppressor gene [33]. Hypermethyla-

tion in the promoter region of RASGRF1 has been ob-

served in gastric cancer cells and precancerous tissues of

the gastric mucosae [34]. Our report is the first to show

that the RASGRF1 promoter region is hypermethylated in

both the luminal and TN BC subtypes.

CPXM1, also known as CPX1, encodes a metallocar-

boxypeptidase protein. Although one study reported that

CPXM1 may regulate osteoclastogenesis in mice [35], its

function in human cancer cells remains unknown. Our

analysis indicates that its expression is epigenetically reg-

ulated, and it may act as a tumor suppressor gene in BC

cells. However, further functional studies are required to

confirm its function.

HOXA10 encodes one of the DNA-binding transcription

factors that regulate gene expression, morphogenesis and

differentiation, functioning as a tumor suppressor gene.

HOXA10 is methylated in differentiated CD24-positive

normal mammary cells and luminal BC cells [36], and

the methylation level increases during the progression

of BC from DCIS via a primary invasive ductal carcinoma,

to a metastatic tumor [36, 37]. These data are consistent

with our results, that HOXA10 is a luminal-dominant

marker.

DACH1 encodes a chromatin-associated protein that

regulates gene expression and cell fate determination

during development, and also functions as a tumor sup-

pressor gene. DACH1 is epigenetically silenced in colo-

rectal and hepatocellular carcinoma [38, 39]. In BC,

DACH1 represses aggressive characteristics such as stem

cell function, epithelial-mesenchymal transition, migra-

tion activity, and so on [40–45]. Moreover, DACH1 ex-

pression is higher in the luminal subtype than in the

basal subtype [42, 43, 46]. These facts support our obser-

vation that DACH1 is selected as a TN-dominant methy-

lation marker.

This panel also contained four novel internal control

markers for MSP to measure cfDNA concentration pre-

cisely. The primer/probe sets were designed to target

DNA sequences with no CpGs. In this study, the mean

value of these internal controls had a good AUC, which

largely contributed to the high detection accuracy of the

developed SVM model. This finding was consistent with

previous articles showing that the cfDNA concentration

in patients with BC was significantly higher than that of

HVs [47–50]. However, the methods in these previous re-

sults have not been implemented in BC screening. As the

quantity of DNA was measured by spectrophotometry or

PCR in these studies, the data may not have been accurate

enough to detect early BC. In the present study, we

employed a digital PCR system to enable absolute quanti-

fication of the amount of cfDNA and aberrantly methyl-

ated DNA fragments. The mean of the internal controls

had a high AUC as a single marker, contributing to

the development of a more accurate algorithm by

adding information to cfDNA methylation data. Ac-

cording to the cBioPortal data, the genes of the in-

ternal control markers were mutated, amplified, and

lost in less than 5% of other malignancies [25, 26].

Thus, this internal control panel could be beneficial

for the detection of other types of cancer as well.

On the other hand, this ddMSP-based detection sys-

tem has some limitations. First, there were 23 (15.5%)

false positives among the HVs. Although methylation

markers were selected with an emphasis on specificity,

some methylation markers have low specificity. One ex-

planation is the non-specific elevation of cfDNA concen-

tration. In fact, the cfDNA concentration in the false-

positive HVs was significantly higher than the true-

negative HVs (Additional file 3: Figure S11). According

to the coefficients of the model equation, the contribu-

tion of cfDNA concentration to the detection index is

large. Thus, elevated cfDNA concentration caused by

non-cancerous events such as inflammation or a benign

cell-proliferative lesion may result in a false-positive

diagnosis. Another possible reason is the existence of a

pre-diagnostic malignant lesion, and not only BC. Our

clinical data contained the BC screening results of the

HVs by imaging and physical examination, which could

not deny the existence of pre-diagnostic BC or other ma-

lignancies. Longitudinal analysis using serially obtained

samples is required to check whether false-positive indi-

viduals have such lesions. However, the false-positive rate

in this study was within a comparable level to current BC

screening methods based on clinical breast examination

and imaging, such as mammography and ultrasonography,

with specificity ranging from 6.9 to 19.6% [2, 3, 5].
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Second, there were 17 (17.3%) false-negative patients

with luminal BC, which included some with advanced/

metastatic BC, and 7 (19.4%) were limited to early BC.

The false-negative patients had low mean values of 12

methylated markers (t test, p < 0.0001) and low cfDNA

concentration (t test, p < 0.0001) (Additional file 3:

Figure S11). Ten false-negative patients were categorized

as having the luminal A-like subtype of BC. Due to the

fact that in patients with cancer, cfDNA may consist of

circulating tumor DNA derived from the necrotic or

apoptotic tumor cells and cell-free DNA from cells in

the tumor microenvironment, luminal BC with low pro-

liferation and low activity in its tumor microenviron-

ment might produce relatively low cfDNA, and may

cause false-negative diagnosis.

Pepe, et al., statisticians in the Early Detection Re-

search Network (EDRN), defined five phases of screen-

ing biomarker development, and described the aims,

study design, and evaluation methods for each phase.

According to these definitions, this study was in phase 1

(preclinical exploratory studies) and phase 2 (clinical

assay development for clinical disease) [51]. The useful-

ness of this system in the BC screening setting should be

demonstrated in the later phases. According to our re-

sults, this detection system for BC seems to be worth-

while for advancement into the next phase.

The original objective of this system was early detec-

tion of BC for screening purposes. However, this system

can be applied to clinical uses other than for detection

of BC. Previous DNA methylation studies using cfDNA

demonstrated that methylation status of several genes

was different at baseline in responders and non-

responders to therapy, and the methylated DNA marker

decreased in responders during therapy [16]. In the

present study, as cfDNA samples in the more advanced

stages had a higher detection index, the index repre-

sented tumor burden. Thus, this ddMSP system could

also be a useful tool to monitor the therapeutic response

of metastatic BC. Furthermore, this panel could distin-

guish early TN BC, and could have potential as an alter-

native to screening by magnetic resonance imaging in

patients and carriers of the BRCA-mutation. These is-

sues will be investigated in a further study.

Conclusion

We established an epigenetic marker panel for cfDNA

and a detection algorithm to distinguish patients with

BC from HVs with high accuracy. As the detection of

early BC using this system was comparable with mam-

mography screening, this cfDNA-based detection system

would be beneficial as an option for BC screening. A fur-

ther study is necessary to demonstrate its clinical useful-

ness as an optional method for BC screening.
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