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Abstract—This paper studies different circulating current
references for the modular multilevel converter (MMC). The
circulating current references are obtained from the instanta-
neous values of the output current and modulation signal of
the phase-leg. Therefore, determination of the amplitude and
phase of the output current is not needed, which is a significant
improvement compared to other methods such as those based on
injecting specific harmonics in the circulating currents. Among
the different methods studied in this paper, a new method
is introduced, which is able to reduce the capacitor voltage
ripples compared to the other methods. A closed-loop control
is also proposed which is able to track the circulating current
references. With the discussed methods the average values of the
capacitor voltages are maintained at their reference while the
voltage ripples are kept low. Experimental results are presented
to demonstrate the effectiveness of the proposed and discussed
methods.

Index Terms—Modular multilevel converter, Circulating cur-
rent control, Arm current, Capacitor voltage ripple.

I. INTRODUCTION

MULTILEVEL converters have attracted significant inter-

est for medium/high power applications. Among vari-

ous multilevel converter topologies [1], the modular multilevel

converter (MMC) [2]–[6], offers several salient features which

make it a potential candidate for various applications including

high-voltage direct current (HVDC) transmission systems [7]–

[9], flexible alternating current transmission system (FACTS)

controllers [10], photovoltaic generation [11], wind turbine ap-

plications [12], and motor drives [13]–[15]. The most attractive

features of an MMC are (i) its modularity and scalability to
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different power and voltage levels, and (ii) its relatively simple

capacitor voltage balancing task [9].

Capacitor voltage balancing of an MMC does not have the

limitations and complexities associated with other multilevel

converters [16], [17]. However, it is mutually coupled with

the circulating currents within each phase-leg of the MMC.

Analysis of the circulating currents of an MMC has been

reported in the technical literature [18]–[20]. Improper control

of the circulating currents can have adverse impacts on the

ratings of the MMC components and power losses. In [21], a

closed-loop control strategy based on eliminating the second

order harmonic of the arm currents was proposed. Similarly

in [22], two control strategies were introduced to eliminate

the ac components in the circulating current. Although these

strategies reduce the rms value of the arm currents and

therefore the power losses of the MMC, the capacitor voltage

ripples can be reduced further. It should be remarked that

reducing the capacitor voltage ripples is an important target

because it enables the use of smaller capacitors [23]. This

eventually helps reduce the cost of the MMC due to the large

number of capacitors integrated in the topology. In [24], a

second harmonic is injected into the circulating currents of

the MMC to achieve a reduction in the capacitor ripples. The

injection of a fourth harmonic in addition to the second one

is also considered in [25], [26]. The main drawback of these

methods is that they rely on the determination of the amplitude

and phase of the output currents of the MMC and the use of

an extensive look-up table. Determination of proper references

for the circulating currents obtained from instantaneous mag-

nitudes is shown in [27], [28]. These methods only require

the use of the instantaneous values of the output current and

the reference signal of the phase-leg for the determination of

the circulating current. Although minimum capacitor voltage

ripples are not achieved, the results obtained are very close to

the optimal ones.

The inclusion of a higher frequency circulating current

component in coordination with a zero-sequence injection

to the reference signals helps attenuate the low frequency

ripples in the capacitor voltages [13]–[15]. However, this high

frequency zero-sequence signal may produce a zero-sequence

current depending on the application and grounding connec-

tion of the MMC. Additionally, in a grid-connected converter

operating at 50 Hz or 60 Hz, the injected component has to

be at a relatively higher frequency (above 1kHz). Injection of
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larger arm voltages for the control of the circulating currents

due to the higher impedance of the arm inductors at this

frequency is required. This is why the method in [13]–[15]

is especially interesting for motor drive applications when the

motor operates at a low speed/frequency, and it not convenient

for grid-connected applications.

In this paper, circulating current references based on in-

stantaneous information of the converter are studied. The

references are derived from a comprehensive analysis of the

MMC based on evaluating the oscillating energy/power in the

arms. Three references are obtained for the circulating current,

the first one injects only a dc component, which is based on

[21], [22]. The second one was already presented in [28], and

it is same one than that introduced in [27], although it was

derived from a different approach. The third circulating current

reference is a new approach introduced in this paper. Based

on the mathematical model of an MMC developed in [18], the

normalized capacitor voltage ripple amplitudes are evaluated

for all operating conditions of the MMC. This information can

be used to size the capacitors of the converter for different

applications and operating conditions. Furthermore, a closed-

loop control scheme for the circulating currents of the MMC is

presented. The effectiveness of the different methods in terms

of reducing the amplitude of the capacitor voltage ripples is

evaluated in an laboratory prototype with five SMs per arm.

The rest of this paper is organized as follows. Section II

presents the common and differential circuits of an MMC

phase-leg. In Section III, the power in the upper and lower

arms is calculated and used in Section IV to define circulating

current references for the MMC. In Section V the inclusion

of a zero sequence into the reference signals is considered.

SM capacitor voltage ripple amplitudes and rms arm currents

are presented and compared in Section VI according to the

different circulating current references. In Section VII, the

results obtained from the circulating current references studied

in this paper are compared and benchmarked against those in

[26]. In Section VIII a circulating current control is introduced.

Section IX reports the experimental results, and Section X

concludes this paper.

II. COMMON AND DIFFERENTIAL MODE CIRCUITS

Fig. 1(a) shows a general circuit representation of an

MMC phase-leg. A three-phase MMC consists of six arms

where each arm includes N series-connected, identical, half-

bridge sub-modules (SMs). Although other SM configurations

have been considered in the literature [29], [30], the most

extensively used is the half-bridge topology because of its

simplicity. Reactors L within the converter arms offer control

of the circulating currents and limit the fault currents. The

output voltage of each SM (vSM ) is either equal to its capacitor

voltage (vC) or zero, depending on the switching states of the

switch pair s1 and s2 in each SM.

Fig. 1(b) represents a phase-leg showing only the activated

SMs in the arms. Since the output voltage of the non-activated

SMs is zero, those SMs do not insert their capacitors in the

arms and they are not included in Fig. 1(b). The common and

differential voltages applied to the extremes of the inductors
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Fig. 1. MMC phase-leg: (a) Circuit diagram and (b) circuit with activated
SMs.
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Fig. 2. Equivalent phase-leg: (a) common and (b) differential mode circuits.

are:

vcomm =
vu + vl

2
and (1)

vdiff =
vu − vl

2
. (2)

Assuming that the phase-leg is connected to a grid voltage

ea through an impedance zout and applying the principle of

superposition, common and differential mode circuits can be

obtained, as shown in Fig. 2(a) and Fig. 2(b), respectively. The

common and differential arm currents are:

icomm =
iu + il

2
=

ia
2

and (3)

idiff =
iu − il

2
. (4)

From (3) and (4) the arm currents can be deduced as

follows:

iu = icomm + idiff =
ia
2

+ idiff and (5)
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Fig. 3. Scheme of the phase-leg with equivalent voltages.

il = icomm − idiff =
ia
2

− idiff . (6)

The two circuits in Fig. 2(a) and (b) can be analyzed

independently of each other. The differential voltage can be

used to control the differential current within the phase-leg,

without producing any distortion to the output current.

According to Fig. 2(b), the differential current will be:

idiff =
1

L

∫ t

0

vdiffdt+ Idiff0, (7)

where Idiff0 is the initial value of the differential current.

In this paper, the differential current is also referred to as

circulating current. This is because it circulates through the

arms of the phase-leg without appearing in the output current

(ia). It is demonstrated in Section III that the differential

current has to contain a dc component (Idc) that is essential to

keep the arms energized; i.e. maintain the capacitor voltages

around their reference value. On the other hand, some ac

current components (idiffac
) can be defined to meet certain

objectives, such as minimizing the voltage ripples in the SM

capacitors or the rms value of the arm currents to improve the

MMC efficiency. Therefore, generally speaking the differential

current will be composed by the following two terms:

idiff = Idc + idiffac
. (8)

III. INSTANTANEOUS POWER IN THE ARMS

The SM capacitor voltages are closely connected to the

energy in the arms. Therefore, it is necessary to analyze the

energy variation in the arms, which is related to the power in

the arms, in order to develop a proper control for the MMC.

Fig. 3 represents the steady state voltages generated within the

arms of the MMC. It is assumed that the arm inductors are

small and consequently the voltage drop and the energy in the

inductors are both small. Under this assumption, the power in

the arms will be:

pu = (
Vdc

2
− vac)iu and (9)

pl = −(
Vdc

2
+ vac)il. (10)

The ac component of the reference voltage of the arm (vac),

which ranges in the interval [−Vdc/2, +Vdc/2], and the output

current of the MMC are assumed to be sinusoidal:

vac = vam
Vdc

2
= ma

Vdc

2
cos(ωt) and (11)

ia = Îacos(ωt+ ϕ), (12)

where vam represents the modulation or reference signal

normalized within the range [-1,1], and ma the modulation

index. Substituting (5), (6), (11) and (12) into (9) and (10),

the power in the upper and lower arms become:

pu = −
maVdcÎa

8
cos(ϕ) +

VdcÎa
4

cos(ωt+ ϕ)−

maVdcÎa
8

cos(2ωt+ ϕ) +
Vdc

2
idiff −

maVdc

2
cos(ωt)idiff

(13)

pl = −
maVdcÎa

8
cos(ϕ)−

VdcÎa
4

cos(ωt+ ϕ)−

maVdcÎa
8

cos(2ωt+ ϕ) +
Vdc

2
idiff +

maVdc

2
cos(ωt)idiff .

(14)

In steady state, no dc power component should appear in the

arms, otherwise the accumulated energy in the capacitors will

increase or decrease continuously. Therefore, the differential

current idiff has to contain a dc component able to compen-

sate for the first term in (13) and (14). The other terms show

that there will be power oscillations in the arms and therefore

voltage ripples in the capacitors. These voltage ripples can be

reduced by implementing a proper differential current control.

IV. DIFFERENTIAL CURRENT REFERENCES

A. A dc Differential Current

In order to reduce the power losses in the semiconductors

of the MMC, the rms values of the arm currents should be

minimized. This can be achieved by imposing a differential

current that contains a dc component only (idiffac
=0):

idiff = Idc. (15)

Substituting (15) into (13) and (14), and forcing the dc

power term to be zero, one can deduce that:

idiff = Idc =
maÎa
4

cos(ϕ). (16)

Under this assumption, the powers in the arms become:

pu = VdcÎa
4

cos(ωt+ ϕ)− m2

aVdcÎa
8

cos(ϕ)cos(ωt)

−maVdcÎa
8

cos(2ωt+ ϕ) and (17)

pl = −VdcÎa
4

cos(ωt+ ϕ) +
m2

aVdcÎa
8

cos(ϕ)cos(ωt)

−maVdcÎa
8

cos(2ωt+ ϕ). (18)

Equations (17) and (18) show that the power and energy

in the arms will oscillate with angular frequencies ω and 2ω.

Oscillations of power/energy in the overall phase-leg are given

by adding pu and pl. In this case, pu+pl only includes a second

harmonic term.

The rms value of the arm currents is:

Iurms
= Ilrms

=
Îa

2
√
2

√

m2
a

2
cos2(ϕ) + 1, (19)

which is the minimum value achievable and hence maximum

efficiency of the MMC can be achieved under such operating

conditions.
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B. Injection of a Second Order Harmonic

In addition to the dc current component, a second harmonic

can be injected into the differential current, as follows:

idiff = Idc + Î2cos(2ωt+ ϕ2). (20)

Substituting (20) into the power equations (13) and (14),

one can conclude that the second order power oscillations can

be canceled by injecting the following differential current:

idiff =
maÎa
4

cos(ϕ) +
maÎa
4

cos(2ωt+ ϕ). (21)

Then, the arm powers become:

pu =
VdcÎa
4

√

1 +
m2

a

2
[
m2

a

8
− 1 + (m2

a − 2)cos2ϕ]

cos(ωt+ ϕ′)−
m2

aVdcÎa
16

cos(3ωt+ ϕ) and

(22)

pl = −pu, (23)

ϕ′ = atan
(4−m2

a)sinϕ

(4− 3m2
a)cosϕ

. (24)

It can be observed that the sum of pu and pl is zero

in this case; this means that there is no power and energy

oscillations within the whole phase-leg. The second order

power oscillations that appear in (17) and (18) are canceled

in (22) and (23). A third harmonic appears instead; however,

it has smaller amplitude. Additionally, the first-order power

oscillation term (ω) has lower amplitude than in the previous

case. These factors lead to a reduction in the capacitor voltage

ripple amplitudes when compared to the case of injecting only

a dc differential current and the rms value of the arm currents

would be:

Iurms
= Ilrms

=
Îa

2
√
2

√

m2
a

2
[1 + cos2(ϕ)] + 1. (25)

The addition of the second order harmonic into the dif-

ferential current increases the rms value of the arm currents

compared to (19) and therefore additional power losses will be

produced. Nevertheless, a proper second harmonic in the arm

currents will reduce the capacitor voltage ripples. However,

according to (21), the amplitude and phase of the output

current need to be determined in order to define the proper

second harmonic for the differential current.

C. Determination of the Differential Current from Instanta-

neous Values. Method 1

In this subsection, the reference of the differential current is

determined from the instantaneous value of the output current

of the phase-leg. The target is the same as in the previous

case, i.e. the injection of the proper value of the dc current

and the second order harmonic given by (21).

In order to produce low ripples to the capacitor voltages,

the arm that inserts fewer capacitors connected in series

(i.e. higher equivalent capacitance) should carry more output

current. This would happen naturally if the inductors L in the

model in Fig. 1(b) were assumed to be zero [18]. Although

it is a simplified representation of the system, the currents

produced in the arms under this assumption will help define

a proper differential current reference.

Let us define the upper and lower phase-arm capacitors Cu

and Cl as the instantaneous values of the total capacitances that

are inserted by the activated SMs in the upper and lower arms.

Consequently, the number of activated SMs at any instant

defines the value of Cu and Cl. If the variables u and l are the

number of series connected SMs in the upper and lower arms,

respectively, the instantaneous values of the arm capacitors

are:

Cu =
C

u
and (26)

Cl =
C

l
. (27)

The phase current ia is shared between the upper and the

lower phase-arms based on:

iu = ia
Cu

Cu + Cl

= ia
l

u+ l
and (28)

il = ia
Cl

Cu + Cl

= ia
u

u+ l
. (29)

The locally averaged value of u and l calculated over a

switching period can be represented by:

u = N
1− vam

2
and (30)

l = N
1 + vam

2
. (31)

For the sake of simplicity, no change in the notation of u
and l when dealing with locally-averaged magnitudes is made.

Substituting (30) and (31) into (28) and (29), the arm currents

become:

iu = ia
1 + vam

2
and (32)

il = ia
1− vam

2
. (33)

Equations (32) and (33) provide the instantaneous references

for the arm currents. Considering (4), the differential term is:

idiff =
iavam

2
. (34)

Equation (34) provides the differential current reference

obtained directly from the instantaneous values of the output

current and the modulation signal. If the reference signal and

the output current are sinusoidal, as it was assumed in (11) and

(12), respectively, the differential current becomes identical to

(21). Note, however, that in this case the current reference

is obtained from the instantaneous values given in (34) and

there is no need to determine the amplitude and phase of

the output current. This represents a practical advantage when

implemented in a real MMC as both instantaneous values are

readily available to the controller.
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D. Determination of the Differential Current from Instanta-

neous Values. Method 2

In this subsection, another way of determining the differen-

tial current reference from instantaneous values is presented.

Assuming high switching frequency, all the SMs in a specific

arm will be operated with the same duty cycle. This is

equivalent to say that all the SMs in the arm will be activated

for some time to represent the activated ones (u and l), even

when looking into a short timespan. Therefore, the capacitors

will be charged/discharged the same because, on average, they

will be exposed to the same amount of current. In other

words, all N SM capacitors of each arm will evenly share

the position of the activated ones within a time interval, as

it is represented in Fig. 4. Consequently, the activated SMs

present an equivalent (or averaged) capacitance larger than C.

The value of the equivalent capacitor can be found from

an energy point of view. The energy variation of all the SM

capacitors in the upper arm within a time interval [t0, t1] is:

∆ǫCu = ǫCu1 − ǫCu0 = N
1

2
C(v2C1

− v2C0
). (35)

This energy variation has to be the same for the activated

SMs assuming that they have an equivalent capacitance C ′

u

instead of C, as follows:

∆ǫCu = ǫCu1 − ǫCu0 = u
1

2
C ′

u(v
2

C1
− v2C0

). (36)

From (35) and (36), the value of the equivalent SM capacitor

is:

C ′

u =
N

u
C (37)

and similarly for the SM capacitors of the lower arm:

C ′

l =
N

l
C. (38)

Hence, taking into account that there are u and l activated

SMs in the upper and lower arms, respectively, the value of

the equivalent arm capacitors are:

Cuequ
=

C ′

u

u
=

N

u2
C and (39)

Clequ =
C ′

l

l
=

N

l2
C. (40)

According to (28) and (29), the proper distribution of the

arm currents is:

iu = ia
Cuequ

Cuequ
+ Clequ

= ia
l2

u2 + l2
and (41)

il = ia
Clequ

Cuequ
+ Cuequ

= ia
u2

u2 + l2
. (42)

Substituting (30) and (31) into (41) and (42), the arm

currents become:

iu =
ia
2

(1 + vam)2

(1 + v2am)
and (43)

il =
ia
2

(1− vam)2

(1 + v2am)
. (44)
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Vdc/2
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activated
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activated

a

CC

N-u 

capacitors

CC

N-l 

capacitors

Fig. 4. Phase-leg with equivalent arm capacitances.

Equations (43) and (44) provide the instantaneous references

for the arm currents. Considering (4), the differential current

is:

idiff =
iavam
1 + v2am

. (45)

Equation (45) provides the differential current reference

obtained from the instantaneous value of the output current

and the modulation signal. If the modulation signal and the

output current are sinusoidal, as it was assumed in (11) and

(12), and the differential current in (45) is substituted into (13)

and (14), the dc power component is not canceled. This means

that this method does not provide the proper dc value to the

differential current. Nevertheless, this can be compensated by

the use of a proportional-integral (PI) controller. On the other

hand, the ac component provided by (45) leads to a reduction

of the capacitor voltage ripples, as it will be shown in Section

VI.

V. ZERO-SEQUENCE INJECTION

In order to extend the linear operation range of the MMC, a

zero-sequence third-order harmonic can be introduced into the

modulation signals. Hence, the modulation signal for phase a
becomes:

vam = macos(ωt)−
ma

6
cos(3ωt). (46)

The reference for the differential current with Method 1 is

obtained substituting (46) into (34). Assuming that the output

current is sinusoidal:

idiff =
maÎa
4

[cos(ϕ) + cos(2ωt+ ϕ)]

−
maÎa
24

[cos(2ωt− ϕ) + cos(4ωt+ ϕ)], (47)

and the following harmonic components appear in the power

of the arms:

pu, pl = fu(ωt, 3ωt, 4ωt, 5ωt) (48)
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The higher frequency terms are very small and their contri-

bution to the power oscillation is thus little. The fundamental

frequency term (ωt) creates energy fluctuation between the

upper and lower arms.

In Method 2, the reference for the differential current is

obtained by substituting (46) into (45). Assuming that the

output current is sinusoidal:

idiff =
maÎa
2

·

cos(ϕ) + cos(2ωt+ ϕ)− 1

6
cos(2ωt− ϕ)− 1

6
cos(4ωt+ ϕ)

1 +ma[cos(ωt)−
1

6
cos(3ωt)]

.

(49)

In this case, many components appear in the power of the

arms. Nevertheless, like in Method 1, the most significant ones

are those at low frequency.

VI. CAPACITOR VOLTAGE RIPPLES AND RMS ARM

CURRENTS

The capacitor voltage ripple amplitudes produced in the

steady-state operation of the MMC are evaluated in this

section. The following conditions and assumptions apply to

this analysis:

• The capacitor voltage ripples are obtained from the aver-

aged model of the MMC [18],

• the differential current is imposed to the model for the

different cases under analysis,

• because of the nature of the averaged model, ripples at

the switching frequency are omitted, and

• a third-harmonic is injected into the modulation signals

(46) to achieve maximum linear operation range (ma=[0,

1.15]).

According to [18], the capacitor voltages of the upper arm

can be represented by:

vCu =
1

C

∫ t

0

iu
1− vam

2
dt+ VCu0. (50)

The capacitor voltages are obtained by imposing iu in (50)

for the particular differential current idiff under study, i.e. a dc

component (16), Method 1 (34), and Method 2 (45). It should

be remarked that, in the case of Method 2, the dc component

provided by (45) has to be substituted by the dc current given

in (16). The capacitor voltage waveform is obtained from

(50) over a fundamental period. Then, the peak-to-peak value

(∆VC) is determined from the voltage waveform.

The capacitor voltage amplitudes are represented by a

normalized magnitude (∆VCn/2), as follows:

∆VCn

2
=

∆VC/2

Irms/fC
, (51)

where ∆VC is the peak-to-peak ripple, Irms is the rms value

of the output current, f is the fundamental output frequency,

and C is the value of the SM capacitor. The arm currents are

normalized to the rms output current (Irms).

Figs. 5-7 show capacitor voltage ripples and rms arm

currents for a dc differential current, Method 1, and Method 2,

respectively. As it can be observed, the injection of only a dc

component in the differential current produces more voltage

ripple amplitudes at large modulation indices than the other

methods. On the other hand, it reduces the rms value of the

arm current, which eventually leads to lower power losses in

the MMC. Method 2 produces lower capacitor voltage ripples

than Method 1, with the exception of some small operating

areas at very large modulation indices. The rms current values

produced by Method 2 are slightly higher than those produced

by Method 1, increasing the power losses.

The information provided in Figs. 5-7 regarding normalized

capacitor voltage ripple amplitudes is very useful for sizing the

MMC capacitors for any given application. For example, let’s

assume that the converter operates with an output frequency

f= 60Hz, the output current is Irms= 100A with variable

power factor, the capacitor voltage reference is V ∗

C= 1000V,

and the modulation index is variable ranging within all the

linear interval (ma ∈ [0, 1.15]). Also, let’s assume that the

MMC operates with Method 2 and we limit the amplitude of

the capacitor voltage ripples to 5% of V ∗

C . From Fig. 7(a),

the maximum capacitor voltage ripple is produced at low

modulation indices, where the normalized ripple amplitude is:

∆VCn

2
= 0.0563. (52)

Therefore, from (51) the minimum capacitor value for this

application would be:

Cmin =
∆VCn

2

Irms

f∆VC/2
= 0.0563

100

60 · 50
= 0.0019F. (53)

This value provides an initial estimation of the capacitance

based on which the converter can be designed to meet other

operating criteria.

The information in Figs. 5-7 can also be used to calculate

the capacitor voltage ripples for an specific operating point

once the value of the capacitors is defined. If in this example

the MMC is operating with a modulation index ma=0.85, from

Fig. 7(a) and (51) the capacitor voltage ripple amplitude would

be:

∆VC

2
=

∆VCn

2

Irms

fC
= 0.0336

100

50 · 0.0019
= 35.4V, (54)

which is less than 50 V (5 % of V ∗

C ) as we would expected.

VII. BENCHMARKING

In order to evaluate the circulating current references studied

in this paper, the results are benchmarked against those in [26].

The references for the circulating currents in [26] consider

two cases; (i) injecting a second harmonic only and (ii) a

combination of second and fourth harmonics. The values were

obtained off-line by evaluating all the possible amplitudes and

angles for the current harmonics injected into the circulating

current. Therefore, this direct minimization method guarantees

that minimum capacitor voltage ripples are achieved and thus

the results can be used as a benchmark for testing the methods

studied in this paper.

Fig. 8(a) shows the ratio of capacitor voltage ripples in the

case of injecting only a dc circulating current over the results

obtained by direct minimization [26] when using an optimal
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Fig. 5. A dc differential current: (a) Normalized capacitor voltage ripple amplitude and (b) rms arm current values normalized to the rms output current.
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Fig. 6. Method 1: (a) Normalized capacitor voltage ripple amplitude and (b) rms arm current values normalized to the rms output current.
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Fig. 7. Method 2: (a) Normalized capacitor voltage ripple amplitude and (b) rms arm current values normalized to the rms output current.

set of second and fourth harmonics. As it can be appreciated,

the ratio of capacitor voltage ripples becomes considerably

larger than the unity, especially at large modulation indices (up

to about four times larger in the worst case). This means that

the capacitor voltage ripples are significantly larger compared

to the optimal case. On the other hand, the rms arm current

values are lower for all the operating conditions when injecting

only a dc current into the circulating current, as it can be seen

in Fig. 8(b).

Similar results are shown in Figs. 9 and 10 for the cases of

Method 1 and 2. In both cases, the capacitor voltage ripples ra-

tios are relatively close to the unity, which means that Methods

1 and 2 produce capacitor voltage ripples close to the optimal

ones. Regarding rms arm currents, Methods 1 and 2 produce

lower values than the optimal case [26] for all the operating

conditions. Therefore, the direct minimization method in [26]

provides optimal results regarding capacitor voltage ripples

but at the cost of increasing the rms arm currents and hence

the power losses. One can conclude that Methods 1 and 2

produce capacitor voltage ripples close to the minimum ones

but with lower rms arm currents. Therefore, they provide a

compromise solution between reducing the capacitor voltage

ripples and the power losses in the converter. It should be
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Fig. 11. Scheme of the differential current control.

noted that the implementation of Methods 1 and 2, based on

instantaneous values, does not require off-line calculations and

is significantly simpler.

VIII. DIFFERENTIAL CURRENT CONTROL

As illustrated in Section II, the output and differential

currents can be controlled independently. Therefore, any of the

well-known current control techniques can be applied to the

output current. However, a closed loop current controller for

the differential current is necessary to implement the current

references given in Section IV. Fig. 11 shows the proposed
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Fig. 8. A dc component in the circulating current over the optimal case [26]: (a) capacitor voltage ripple ratio and (b) rms arm current ratio.
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Fig. 9. Method 1 over the optimal case [26]: (a) capacitor voltage ripple ratio and (b) rms arm current ratio.
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Fig. 10. Method 2 over the optimal case [26]: (a) capacitor voltage ripple ratio and (b) rms arm current ratio.

differential current control loop where three inputs are required

for the definition of the differential current reference i∗diff :

• Component (I): The estimated instantaneous reference

current given by (34) or (45). Both current references con-

tain ac and dc components. In the case of Method 1 (34),

the estimated value contains the dc current component

needed to keep power balance in the phase-leg assuming a

lossless MMC. This is therefore a rough estimation of the

required dc current component and hence an additional

control for the dc current is needed. In the case of Method

2 (45), the reference provided for the dc component is not

the proper value and, therefore, the additional control is

also needed.

• Component (II): An extra dc current component to main-

tain the average energy stored in the SM capacitors at

its reference value. To determine this dc component, the

error between the summation of the quadratic capacitor

voltages, which is proportional to the energy stored in

the capacitors, and its reference value is calculated. The

steady-state error is then driven to zero by a proportional-

integral controller (PIdc in Fig. 11).

• Component (III): A fundamental-frequency current com-

ponent. This current component exchanges energy be-

tween the upper and lower arms of each phase-leg;

therefore, it assists in maintaining the energy balance

between the arms. To achieve optimal performance of

the balancing algorithm, this term should be synchro-

nized with the fundamental component of the modulation

signal. Its phase is obtained from the modulation signal

before a zero sequence is added for the extension of

the linear modulation index range (vm1). Since there is

energy fluctuation between the upper and the lower arms,

a low pass filter is required in this loop. The amplitude of

this fundamental component of the circulating current is

determined by a proportional controller with a gain of K1.

A proportional controller satisfies the control objective as

the control action provided by this controller, when the

upper and lower arms are balanced, is zero.

Adding the three above-mentioned components, the differ-

ential current reference (i∗diff ) is fed into the current controller

shown in Fig. 11. Since the current reference contains a dc

term as well harmonics, besides a proportional-integral (PI)

controller, a set of resonant (R) controllers tuned at the main

frequency components of the current reference, i.e., ω, 2ω, and

4ω, can be included. Observe that the harmonic component 3ω
is not tracked although it may appear in the current reference.
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Fig. 12. Experimental setup.

TABLE I
PARAMETERS OF THE EXPERIMENTAL SETUP

Parameter Value

Number of SMs per Phase-Arm, N 5

SM Capacitors, C 3.6 mF

Phase-Arm Inductors, L 3.6 mH

Load Resistor, Ra 36 Ω

Load Inductor, La 5 mH

Dc-Link Voltage, Vdc 300 V

Dc-Link Capacitors, Cdc 3.3 mF

Carrier Frequency, fs 4 kHz

Modulation Index, ma 0.9

TABLE II
CONTROL PARAMETERS

Controller Parameters

Dc-Link Voltage Control, PIdc P=0.011, I=0.07

Arm Energy Balance Control, K1 K1=0.021

Circulating Current Control, PI & R2ω P=0.011, I=0, R2ω=2.1

This is because it would produce a current component in the

dc bus that is not canceled by the other phase-legs [25].

IX. EXPERIMENTAL RESULTS

The experimental evaluation of the proposed current control

and differential current references is performed in a 5-kVA

scaled-down, single phase MMC (Fig. 12) with five SMs per

arm. A single phase, series connected RL load is connected

between the phase terminal and the dc-link mid-point, which is

obtained by two series-connected capacitors Cdc. The control

is implemented using a dSPACE dS1103 board. The control

structure of Fig. 11 is implemented with a resonant controller

tuned at the second harmonic (2ω). The system and control

parameters are given in Tables I and II.

Three differential current references are provided to the

controller, i.e. only a dc component, Method 1 and Method

2. Fig. 13 shows the differential current (idiff ) and the output

current (ia) for the three cases under study. As shown in Fig.

13(a), the differential current is almost constant, whereas in

Fig. 13(b) a second harmonic is also present. In Fig. 13(c),

additional harmonic components in the differential current are

present.

Fig. 14 shows the SM capacitor voltages of the upper

and lower arms. These were obtained operating with the

differential currents shown in Fig. 13. Comparing the results

in Fig. 14(a) (only a dc component) with Fig. 14(b) (Method

1), the capacitor voltage ripples are reduced significantly
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Fig. 13. Experimental results. Differential current (idiff ) and output
current (ia) using the following differential current references: (a) only a
dc component, (b) Method 1 and (b) Method 2.
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Fig. 14. Experimental results. SM capacitor voltages using the following
differential current references: (a) only a dc component, (b) Method 1 and (b)
Method 2.

TABLE III
CAPACITOR VOLTAGE RIPPLE AMPLITUDES

Circulating Ripple Amplitude Normalized Amplitude

Current ∆VC/2 ∆VCn/2

Only dc 1.30 V 0.062

Method 1 1.05 V 0.050

Method 2 0.95 V 0.046

when a second harmonic is added to the differential current.

Additionally, Fig. 14(c) shows that a further reduction in the

capacitor voltage ripple amplitudes can be achieved by using

Method 2. Table III summarizes the values of the ripples

amplitudes for the three cases.
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X. CONCLUSION

In this paper, a comprehensive analysis of the MMC control

has been performed. The instantaneous power in the arms

is studied to determine proper differential current references

for the phase-arms. Three references have been evaluated

and compared in terms of SM capacitor voltage ripples and

rms arm currents; i.e. only a dc component, Method 1 and

Method 2. It has been shown that Method 2 provides the best

results from the point of view of capacitor voltage ripples.

Information regarding capacitor voltage ripples has been pro-

vided in 3D representations using a normalized magnitude.

This information can be used to size the capacitors of the

converter for different applications and operating conditions.

A controller for the differential current has been proposed that

is able to operate with different differential current references.

The controller is not only able to control the circulating

currents following the references provided, but it also regulates

the average capacitor voltages accurately to the reference value

and balances the energy between the upper and the lower arms.

Experimental results from a low power MMC prototype have

shown the good performance of the proposed strategies and

the good agreement with the theory.
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