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Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of
treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review
highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma pa-
tients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clin-
ical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of
these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor
cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers.
It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers.
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Gliomas are the most common type of primary brain tumor and
have an invariable fatal outcome and dismal prognosis. Each
year, �200 000 patients are diagnosed with a glioma world-
wide.1 Gliomas are subdivided into astrocytoma, oligodendro-
glioma, and oligoastrocytoma based on immunophenotypical
similarity to a cell of putative origin. The tumors are assigned
malignancy grades according to WHO criteria.2 Gliomas usually
recur and tend to increase in malignancy grade over time
(Fig. 1). Glioma progression is accompanied by extensive neo-
vascularization, and the newly formed blood vessels are
leaky, which is reflected by tumor enhancement on MRI. Glio-
blastomas (GBMs) represent astrocytomas of the highest ma-
lignancy grade (WHO grade IV) and are the most common
gliomas and the most aggressive primary brain tumors in
adults, with a median survival of only 14.6 months.3,4 Various
molecular aberrations of gliomas (eg, the combined loss of
chromosome arms 1p and 19q, the presence of isocitrate dehy-
drogenase 1(IDH1) mutation, epidermal growth factor receptor
(EGFR) amplification, copy number aberrations of chromo-
somes 7 and 10, and MGMT promoter hypermethylation) har-
bor diagnostic, prognostic, or predictive information.5 – 8 The
molecular tests are carried out on tumor biopsies or resection
specimens. Mutant IDH1, MGMT promoter methylation, and
loss of 1p and 19q can also be detected in serum and cerebro-
spinal fluid (CSF) of glioma patients, and efforts to trace these

aberrations in circulating tumor cells or circulating DNA are on-
going.9 – 13

Therapeutic modalities for gliomas include surgical resection,
radiotherapy, and chemotherapy. The gold standard for measur-
ing the effects of treatment in patients with gliomas is the appli-
cation of the Response Assessment in Neuro-Oncology (RANO)
criteria to the radiological appearance of the tumor on MRI.14,15

There is considerable variation in the radiological presentation of
gliomas and their recurrences.16 A notorious problem in measur-
ing the effects of treatment is so-called pseudoprogression, a
treatment-related response of brain tissue to chemotherapy
and radiation. Glioma pseudoprogression causes an increase in
enhancement and edema on MRI that mimics true tumor pro-
gression.17,18 This condition is probably induced by
treatment-related local inflammation, resulting in edema and in-
creased abnormal vessel permeability. There is a need for diag-
nostic discrimination because combined chemotherapy and
radiation (the standard of care for GBM) may induce pseudoprog-
ression in �30% of cases.19,20 Unfortunately, there are no reliable
radiological techniques to distinguish between pseudoprogres-
sion and tumor recurrence or progression.21,22 The identification
of proliferating tumor cells in tissue biopsies taken in situations of
pseudoprogression may be troublesome, and the significance of
the presence of scattered cells with morphological or molecular
characteristics of the original lesion is disputable (Fig. 2).
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Currently, there are no biomarkers or radiographic or clinical mo-
dalities to reliably distinguish glioma recurrence from radiation
necrosis or to monitor tumor response to therapy. Objective mea-
surable parameters for the presence of tumor, tumor activity,
and response to treatment would be a welcome addition to
the currently available diagnostic arsenal.

Recently, advances in “omics” based technologies, including
genomics, transcriptomics, proteomics, and metabolomics, have
led to an explosion of activity in the field of biomarker research,
particularly related to cancer. The general definition of a bio-
marker is “a characteristic that is objectively measured and eval-
uated as an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic inter-
vention”.23,24 Cancer biomarkers include a broad range and
level of biochemical entities such as nucleic acids, proteins, sug-
ars, lipids, and small metabolites, and cytogenetic and cytoki-
netic parameters as well as whole tumor cells and exosomes
(microvesicles). The advantage of biomarkers present in blood
or CSF is their relatively easy accessibility, which facilitates repet-
itive measurements with obviously better monitoring of disease.
In order to evaluate and compare tumor biomarkers, the “Tumor
Marker Utility Grading System” has been proposed by the Nation-
al Comprehensive Cancer Network (NCCN).25,26 In this system,
potential tumor markers are evaluated for their diagnostic, prog-
nostic, or predictive performance as reflected by overall survival,
disease-free survival, quality of life, or cost of care.25–27 In the
NCCN system, levels of evidence have been applied to several po-
tential glioma biomarkers including IDH1 mutation, MGMT meth-
ylation, loss of 1p/19q, BRAF fusion, and CpG island methylator
phenotype (CIMP).26,27 Among these biomarkers, only 1p/19q
testing has been credited for the highest level of evidence
because of its ability to improve clinical decision-making and
predict patient outcome (IA level).26,27

Because of its anatomical proximity to the CNS, CSF is a
promising source of biomarker discovery for diseases of the

Fig. 1. Astrocytoma in low-grade (A) and high-grade (B) stages. (A) Low-grade astrocytoma (H&E; 200 x; bar¼ 100 micron). The infiltrating
low-grade astrocytoma is composed of genetically altered glial tumor cells that infiltrate into brain tissue and are surrounded by reactive
astrocytes (arrows), oligodendrocytes, and microglial cells. The tumor vasculature at this stage is inconspicuous and will be recruited for
sprouting angiogenesis. (B) High-grade astrocytoma (grade IV or glioblastoma) (H&E, 200x). The advanced tumor grade is reflected by high cell
density, polymorphism of the nuclei of the tumor cells, proliferated blood vessels (“microvascular proliferation”; MVP) and necrosis (NEC). The
proliferated blood vessel walls are associated with breakdown of the blood-brain barrier causing leaking vessels, which is represented by
enhancement on CT and MRI.

Fig. 2. Histology of a glial tumor with effects of radiation therapy. (H&E;
200 x; bar¼ 100 micron). The radiation therapy has caused
homogenization of vascular walls (BV), edema of the neuropil, and
proliferation of reactive astrocytes. The glial tumor cells cannot reliably
be distinguished from reactive astrocytes because nuclear
polymorphism (circles) may be present in both.
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CNS. CSF samples are used for traditional cytology and have
also been recently used for detecting brain metastasis by em-
ploying sensitive techniques such as flow cytometry, fluores-
cence in-situ hybridization (FISH), and PCR/reverse
transcription PCR.28,29 The relative low protein concentration
of CSF (100–400 times lower as compared with serum) allows
rapid screening, low sample consumption, and accurate identi-
fication or profiling by proteomic technologies, which have been
facilitated by the recent publication of the normal human CSF
proteome.28,29 Under pathological conditions, one may find al-
tered levels of normal constitutive proteins or proteins that are
usually absent from normal CSF. These proteins may have en-
tered the CSF due to disruption of the blood–brain barrier or in-
trathecal secretion, or shedding by tumor cells of primary brain
tumor or metastasis, and/or their microenvironment. By now,
various candidate protein biomarkers for gliomas have been
found in CSF.30 – 51

In this review, different categories of tumor-associated cir-
culating biomarkers, which have been identified in blood and
CSF of glioma patients, are addressed including circulating
tumor cells (CTCs), exosomes (microvesicles), circulating nucleic
acids (DNA, RNA and miRNA), proteins, and metabolites.

Circulating Tumor Cells
CTCs are detected when diagnosing metastatic disease or tumor
recurrence and may be used to monitor disease progression and
therapeutic response. CTCs are found in the peripheral blood of
patients with advanced stages of solid cancers with or without
clinically detectable metastasis.52–56 It has been shown that the
presence of CTCs is related to tumor response, progression-free
survival, and overall survival in patients suffering from various
tumor types and that the presence of CTCs may hint at the ex-
istence of a hitherto undiscovered primary tumor.57 –59 Only one
cell per 109 cells represents a CTC in the blood of patients with
metastatic cancer, and the specificity and sensitivity of CTC
detection is a technical challenge.60 Various detection technolo-
gies have been recently developed including microchips, filtration
devices, quantitative reverse-transcription PCR assays, auto-
mated microscopy systems, and telomerase promoter-based
assays.61 –64 CTCs are particularly valuable for tumor character-
ization in situations in which tissue biopsies are unavailable or
the collected tissue is of poor quality and/or insufficient quanti-
ty.63 To what extent CTCs represent the cell population in the
solid tumor part remains questionable. Because CTCs reflect
the molecular heterogeneity of the tumor, they are important
for therapeutic strategies. CTCs are probably not only released
from the primary tumor but also from metastatic sites. However,
most cancer cells are rapidly destroyed in the circulation, and the
metastatic potential of CTCs seems limited.65–67 Current clinical
investigations of CTCs focus on their molecular characterization
and the classification of heterogeneous subsets in relation to
treatment resistance. CTCs are subjects of investigations in
basal processes of epithelial-mesenchymal transition (EMT), col-
lective cell migration and more, with the aim being to better un-
derstand the mechanisms of tumorigenesis, invasion, and
metastasis.63,64,68,69

Until recently, the spread of glial tumor cells outside the
brain was considered to be a rare event. However, many isolat-
ed cases of metastasizing glial neoplasms have been

reported.70 – 81 Several cases of transmission of metastatic
GBM from donor to organ transplant recipients further supports
the notion that appearance of glioma cells in the circulation is
not as rare as previously believed and that occurrence rates
may match those of other solid tumors.82 – 89 Novel sensitive
imaging techniques contribute to higher detection rates. So
far, data on circulating CTCs associated with brain tumors are
limited, and the use of CTCs as biomarkers in glioma patients
is just beginning. The identification of CTCs was carried out by
using markers for neural lineage in one study,90 and a telome-
rase promoter-based assay was used for the detection of these
cells in another study (Table 1).64 There are limitations in the
use of lineage markers for the identification of CTCs because
of overlap in marker expression of tumor cells and normal
cells. Further characterization of CTCs at the DNA, RNA, or pro-
tein level will improve the identification of true CTCs and their
subfractions from other circulating cells.

Circulating Tumor-derived Exosomes
Exosomes (microvesicles or extracellular vesicles) are 30–
100 nm in diameter and are released into the microenvironment
of cells or into surrounding body fluids by both normal and can-
cer cells, where they perform a variety of functions.91 – 93 Exo-
somes can be taken up by particular host cells and thus
provide signaling between various cell types including cancer
cells.94 – 96 Circulating tumor-derived exosomes contain a vari-
able spectrum of molecules representative of the parental cells
including proteins, nucleic acids, lipids, metabolites, and other
molecules. Cancer cell exosomes carry molecular signatures
and effectors of diseases such as mutant oncoproteins, onco-
genic transcripts, microRNA, and DNA sequences. Their contents
can help identify the cells of origin for the exosomes, thereby of-
fering the opportunity to identify biomarkers or therapeutic tar-
gets in body fluids.91–93,97,98 Circulating exosomes in the body
fluids of brain tumor patients may be used to decipher molecular
features of the neoplasms or measure their responses to thera-
py.96,97 So far, various tumor-related molecules with altered ex-
pression patterns have been found in circulating exosomes of
glioma patients including EGFRvII,96,99 EGFR,99 podoplanin
(PDPN),99 phosphatase and tensin homolog (PTEN),12

miR-21,100 and mutant IDH1 mRNA (Table 1).9,99 Exosomes
may carry substantial amounts of bound antibody-recognizing
tumor antigens (autoantibodies), which can be used to reveal
the presence of tumor antigens; exosome-based immunothera-
py is under development.96,97,101,102 Although exosomes are
promising targets of biomarker research, their tracing and quan-
tification in clinical samples remain challenging.103,104 New tech-
nologies, such as ExoScreen, are being developed for eventual
clinical use.103

Circulating Tumor-associated Nucleic Acids
Circulating nucleic acids (CNAs) have been identified in blood
and other bodily fluids of patients with various diseases.108,118

CNAs are promising targets for development as tumor biomark-
ers (circulating tumor-associated nucleic acids [ctNAs])
because of the possibility to profile tumors at the genomic
and transcriptomic levels. Nucleic acids appear in body fluids
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Table 1. Circulating tumor cells, tumor-associated nucleic acids, and exosomes in glioma patients

Reference Biomarker Source Time of Take Methodology n Tumor Type Treatment
Response

Survival Radiology Median
Follow-up

Macarthur et al 201464 CTCs Blood Pretreatment TPBA 5 HGG NA NA NA NA
Tumilson et al 2014106 miR-15b CSF NA qRT-PCR NA Glioma NOS NA NA NA NA

miR-15b Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-17–5p Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-20a Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-21 CSF NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-21 Plasma NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-23a Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-31 Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-106a Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-146b Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-148a Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-150 Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-193a Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-197 Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-200b Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-200 CSF NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-221 Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-222 Serum NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-342–3p Plasma NA qRT-PCR NA Glioma NOS NA NA NA NA
miR-548b-5p Serum NA qRT-PCR NA Glioma NOS NA NA NA NA

Salkeni et al 2013109 EGFRvIII Plasma Pre/postoperative PCR 13 GBM Yes NA NA NA
Majchrzak-Celinska et al

201313
Methyl. MGMT Serum Pretreatment PCR 17 AII/GBM NA NA NA NA

Methyl. RASSF1A Serum Pretreatment PCR 17 AII/GBM NA NA NA NA
Methyl. p15INK4B Serum Pretreatment PCR 17 AII/GBM NA NA NA NA
Methyl. p14ARF Serum Pretreatment PCR 17 AII/GBM NA NA NA NA

Chen et al 20139 Mutant IDH1 Serum MVs Intraoperative BEAMng/ddPCR 24 AII/GBM NA NA NA NA
Mutant IDH1 CSF MVs Intraoperative BEAMng/ddPCR 24 AII/GBM NA NA NA NA

Yang et al 2013131 miR-15b Serum Preoperative Sequencing/qRT-PCR 177 AIII NA NA NA NA
miR-23a Serum Preoperative Sequencing/qRT-PCR 177 AIII NA NA NA NA
miR-133a Serum Preoperative Sequencing/qRT-PCR 177 AIII NA NA NA NA
miR-150 Serum Preoperative Sequencing/qRT-PCR 177 AIII NA NA NA NA
miR-197 Serum Preoperative Sequencing/qRT-PCR 177 AIII NA NA NA NA
miR-497 Serum Preoperative Sequencing/qRT-PCR 177 AIII NA NA NA NA
miR-548b-5p Serum Preoperative Sequencing/qRT-PCR 177 AIII NA NA NA NA

Cohen et al 201290 CTCs Blood Pretreatment Cell lineage markers 11 GBM NA NA NA NA
Boisselier et al 2012108 Mutant IDH1 Plasma Posttreatment PCR 80 Astro II-IV NA NA NA NA
Noerholm et al 2012116 Expression patterns Serum MVs Pretreatment Microarray/qRT-PCR 9 GBM NA NA NA NA
Teplyuk et al 2012130 miR-10b CSF Intraop./posttreat. RT-PCR 19 GBM NA NA NA NA

miR-21 CSF Intraop./posttreat. RT-PCR 19 GBM NA NA NA NA
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Baraniskin et al 2012132 miR-15b CSF Intraop./postoperative qRT-PCR 10 AII/GBM NA NA NA NA
miR-21 CSF Intraop./postoperative qRT-PCR 10 AII/AIII/GBM NA NA NA NA

Ilhan-Mutlu et al
2012134

miR-21 Plasma Pretreatment qRT-PCR 10 GBM NA NA NA NA

Wang et al 2012135 miR-21 Plasma Pre/posttreatment qRT-PCR 30 GBM Yes NA NA NA
miR-128 Plasma Pre/posttreatment qRT-PCR 30 GBM Yes NA NA NA
miR-342-3p Plasma Pre/posttreatment qRT-PCR 30 GBM Yes NA NA NA

Balana et al 201111 Methyl. MGMT Serum Intraoperative PCR 37 GBM NA Yes NA 120 weeks
Nilsson et al 2011118 EGFRvIII Platelets NA RT-PCR 26 AII/AIII/GBM NA NA NA NA
Roth et al 2011136 miR-128 Blood cell pellets Postoperative qRT-PCR 20 GBM NA NA NA NA

miR-342-3p Blood cell pellets Postoperative qRT-PCR 20 GBM NA NA NA NA
Lavon et al 201012 1p LOH Serum Posttreatment PCR 70 AII/OII/OIII NA NA NA NA

10q LOH Serum Posttreatment PCR 70 AII/OII/OIII NA NA NA NA
19q LOH Serum Posttreatment PCR 70 AII/OII/OIII NA NA NA NA
Methyl. MGMT Serum Posttreatment PCR 70 AII/OII/OIII NA NA NA NA
Methyl. PTEN Serum Posttreatment PCR 70 AII/OII/OIII NA NA NA NA

Liu et al 201010 Methyl. MGMT Serum Pretreatment MeDIP/PCR 66 AOA/GBM NA Yes NA 11.3 months
Methyl. p16 Serum Pretreatment MeDIP/PCR 66 AOA/GBM NA Yes NA 11.3 months
Methyl. TIMP-3 Serum Pretreatment MeDIP/PCR 66 AOA/GBM NA No NA 11.3 months
Methyl. THBS1 Serum Pretreatment MeDIP/PCR 66 AOA/GBM NA Yes NA 11.3 months
Methyl. MGMT CSF Pretreatment MeDIP/PCR 66 AOA/GBM NA No NA 11.3 months
Methyl. p16 CSF Pretreatment MeDIP/PCR 66 AOA/GBM NA No NA 11.3 months
Methyl. TIMP-3 CSF Pretreatment MeDIP/PCR 66 AOA/GBM NA No NA 11.3 months
Methyl. THBS1 CSF Pretreatment MeDIP/PCR 66 AOA/GBM NA No NA 11.3 months

Wakabayashi et al
2009113

Methyl. p16 Serum Pretreatment PCR 40 Glioma NOS NA NA NA NA

Skog et al 200896 EGFRvIII Serum MVs Intraoperative RT-PCR 25 GBM NA NA NA NA
Weaver et al 2006111 Methyl. p16 Plasma Intraoperative PCR 10 AII/AIII/GBM NA NA NA NA

Methyl. MGMT Plasma Intraoperative PCR 10 AII/AIII/GBM NA NA NA NA
Methyl. p73 Plasma Intraoperative PCR 10 AII/AIII/GBM NA NA NA NA
RARbeta Plasma Intraoperative PCR 10 AII/AIII/GBM NA NA NA NA

Balana et al 2003110 Methyl. DAPK Serum Pre/Intraoperative PCR 28 GBM NA NA NA NA
Methyl. p16 Serum Pre/Intraoperative PCR 28 GBM NA NA NA NA
Methyl. MGMT Serum Pre/Intraoperative PCR 28 GBM Yes NA NA NA
Methyl. RASSF1A Serum Pre/Intraoperative PCR 28 GBM NA NA NA NA

Ramirez et al 2003112 Methyl. MGMT Serum Pre/Intraoperative PCR 28 GBM NA NA NA NA
Methyl. p16 Serum Pre/Intraoperative PCR 28 GBM NA NA NA NA
Methyl. DAPK Serum Pre/Intraoperative PCR 28 GBM NA NA NA NA
Methyl. RASSF1A Serum Pre/Intraoperative PCR 28 GBM NA NA NA NA

Abbreviations: AII, astrocytoma WHO grade 2; AIII, astrocytoma WHO grade III; AOA, anaplastic oligoastrocytoma; BEAMing, beads, emulsion, amplification, magnetics; CSF,
cerebrospinal fluid; CTC, circulating tumor cell; DAPK, death-associated protein kinase 1; ddPCR, droplet digital PCR; EGFRvIII, endothelial growth factor variant 3; GBM, glioblastoma
(or astrocytoma WHO grade IV); Glioma NOS, glioma not otherwise specified; HGG, high-grade glioma; IDH1, isocitrate dehydrogenase 1; MeDIP, methylated DNA
immunoprecipitation; Methyl, methylation; MGMT, O6-alkylguanine DNA alkyltransferase; miR-, microRNA; NA, not available; OII, oligodendroglioma WHO grade II; OIII,
oligodendroglioma WHO grade III; PTEN, phosphatase and tensin homolog; qRT-PCR, real-time reverse-transcription PCR; RARbeta, retinoic acid receptor beta; RASSF1A, Ras
association domain-containing protein 1A; THBS1, thrombospondin1; TIMP-3, metalloproteinase inhibitor 3; TPBA, telomerase promoter-Based Assay; intraop, intraoperative.
All studies listed in Table 1 were observational studies.
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as a sequel of apoptotic tumor cells or tumor necrosis, but they
may also be actively secreted into the circulation.105 Levels of
CNAs are influenced by many factors: the turnover of (tumor)
cell populations, cell degradation rates, filtering processes pre-
sent in the blood or lymphatic circulation, clearance by liver and
kidney, infection, age, sex, treatment, stress on epigenetic
mechanisms, diet, lifestyle, and more.105,106 Although nucleic
acids are valuable as biomarkers because they can be mea-
sured in sensitive high-throughput PCR detection assays, the
identification, quantitation, and validity of ctNAs remain chal-
lenging. In order to link the presence of ctDNA, circulating
tumor-associated RNA (ctRNA), or circulating tumor-associated
microRNA (ctmiRNA) in body fluids of cancer patients to tumor-
specific molecular events, the preanalytic conditions must be
well defined and standardized.58,105

Circulating Tumor-associated DNA

ctDNA may harbor the genetic and epigenetic aberrations pre-
sent in tumors and their metastases including point mutations,
rearrangements, amplifications, and aneuploidy. The aberra-
tions may be highly specific for an individual tumor and may
also represent its molecular heterogeneity.107 ctDNAs have
been detected in patients with tumors of breast, bladder,
colon, liver, lung, ovaries, pancreas, and prostate as well as non-
Hodgkin’s lymphoma and melanoma. ctDNAs have also been
detected in glioma patients, and the aberrations found included
IDH1 mutation,108 loss of heterozygosity for 1p, 10q, 19q12;
EGFRvIII mutation;109 as well as abnormal methylation of the
promoters of MGMT11 – 13,110 – 112, p16,110 – 113 DAPK,110,112

RASSF1A,13,110,112 p73,111 RARbeta,111 PTEN,12 p15INK4B,13

and p14ARF.13 At this point, the clinical utility has not been val-
idated for any of the candidate ctDNAs as biomarkers for glioma
patients. Prospective settings are needed for clinically applicable
tests.

Circulating tumor-associated RNA and microRNA

The characterization of ctRNAs has not been explored to the ex-
tent of ctDNA, and the tumor specificity of these CNAs has been
challenged more vigorously. One reason is that cell-free RNA is
prone to degradation by the ubiquitous presence of RNA-
degrading enzymes, which are generally elevated in the
serum of cancer patients.114,115 Extracellular RNA is usually pre-
sent in the exosomes.116 Aberrant RNA expression has been as-
sociated with stage, progression, and spread of various cancer
types.117 In patients with gliomas, exosomes and platelets
have been used as sources for detecting tumor-associated
RNA profiles, among which are mutant EGFRvIII and mutant
IDH1.9,96,116,118 As with the ctDNAs, the ctRNAs have also not
been validated as biomarkers for introduction into clinical
practice.

microRNAs (miRNAs) are noncoding, single-stranded RNAs
of �22 nucleotides that constitute a novel class of gene regu-
lators and function as tumor suppressors and oncogenes.119

Because miRNAs, unlike RNA, are relatively stable and are pre-
sent in blood and other bodily fluids, they are potential tumor
biomarkers and may be more sensitive and specific for detect-
ing tumors than currently available methods for early diagnosis
of cancer.120 The peripheral blood contains large amounts of

stable miRNAs derived from various tissues, and alterations in
these miRNA have been reported for many tumors including gli-
omas.119 – 129 Deviant miRNA expression patterns in the blood
of glioma patients include miR-10b,130 miR-15b,106,131,132

miR-17–5p,106 miR-20a,106 miR-21,96,130,132 – 135

miR-23a,106,131 miR-31,106 miR-106,106 miR-128,106,135,136

miR-133a,131 miR-146b,106 miR-148a,106 miR-150,106,131

miR-193a,106 miR-197,131miR-200b,106 miR-221,106

miR-222,106 miR-342-3p,135,136 miR-497,131 and miR-548b-
5p.131 Some significant technological pitfalls and limitations
need to be addressed before the miRNAs can be introduced
as clinically applicable glioma biomarkers.124,137

Circulating Tumor-associated Protein
Biomarkers
Efforts have been made over the last decades to identify can-
didate protein biomarkers for gliomas that could be measured
in body fluids (eg, urine, serum/plasma, or CSF) for making a
diagnosis, detecting recurrence, or monitoring tumor activity
following therapy (Table 2).32,33,36 – 39,41 – 43,45,47 – 51,138 – 155 Re-
cent advances in proteomics have led to an explosion of activity
in the field of biomarker research, particularly that related to
cancers. The identification of biomarkers in body fluids such
as serum is difficult due to the large dilution factor and the
abundance of other constitutive serum proteins. Sample en-
richment is necessary to enhance the sensitivity, and extensive
validation of the methodology is necessary to ensure the spe-
cificity of candidate biomarkers.156 Several reports on the anal-
ysis of the glioma proteome, in which tumor tissue, serum,
plasma, CSF or cyst fluids have been implicated.34,36,157 – 161 At-
tempts have also been made to identify biomarkers by using
xenografts in animal models.162

Growth Factors and Angiogenesis-related Biomarkers

Vascular Endothelial Growth Factor

Gliomas are highly vascularized tumors, and the process of an-
giogenesis is progressive throughout tumor development. Obvi-
ously, the newly formed vessels are attractive targets for
antiangiogenic therapy. Vascular endothelial growth factor
(VEGF) is a key molecule for triggering the process of angiogene-
sis in pathological conditions including neoplasms.163 Tumor hyp-
oxia due to increased cell density triggers the angiogenic switch
by upregulating VEGF.164 Given the importance of VEGF in tumor
angiogenesis, several drugs to suppress VEGF signaling have been
developed.165 Bevacizumab is the most well-characterized anti-
angiogenic drug currently being used for the treatment of
human GBM. Bevacizumab is a humanized monoclonal antibody
that binds to circulating VEGF and prevents its interaction with
the VEGF receptor suppressing VEGF signaling.166–172 Antiangio-
genic strategies are targeted to endothelial cells, although the
main sources of VEGF are the glial tumor cells.165,173 Patients usu-
ally become resistant to anti-VEGF therapy after an initial re-
sponse due to various compensation mechanisms.165,169,174 –

176 VEGF has been considered to be a potential protein biomarker
in CSF and serum/plasma of glioma patients, and its elevated lev-
els have appeared to correlate with the microvascular density of
the tumors.38,39,177– 182 Because VEGF levels of serum are also
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Table 2. Potential glioma protein biomarkers in cerebrospinal fluid, serum and plasma

Reference Biomarker Study Type Source Time of Take Methodology n Tumor Type Treatment
Response

Survival Radiology Median
Follow-up

Yamaguchi et al 201330 OPN Obser CSF Pretreatment ELISA 63 GBM/metastases NA NA NA NA
Verschuere et al 2013258 Galectin-1 Obser serum Intraop./

postoperative
ELISA 125 HGG/recurrent HGG NA NA NA NA

Chinnaiyan et al 2012150 IGFBP-5 Inter Phase I plasma Pre/posttreatment ELISA 10 Recurrent GBM Yes Yes NA 5.7 months
PDGF Inter Phase I plasma Pre/posttreatment ELISA 10 Recurrent GBM Yes Yes NA 5.7 months

Li et al 2012149 IGFBP-2 Obser serum Preoperative ELISA 145 Glioma NOS NA NA NA NA
Bemardi et al 2012235 YKL-40 Obser Serum Postoperative ELISA 60 GBM Yes Yes NA 12 months
Iwamoto et al 2011218 MMP-9 Obser Serum Pre/posttreatment ELISA 343 AII/AIII/GBM NA No No 29 to 52 months
Li et al 2011149 IGFBP-2 Obser CSF Preoperative ELISA 94 AGG/carcinomas NA Yes NA 7–24 months
Mittelbronn et al 201132 MIF Obser CSF Pretreatment ELISA 14 HGG NA NA NA NA
Schuhmann et al 201033 OPN Basic CSF Preoperative MALDI-TOF-MS 11 GBM No No NA NA

AACT Basic CSF Preoperative MALDI-TOF-MS 11 GBM No No NA NA
TTHY Basic CSF Preoperative MALDI-TOF-MS 11 GBM No No NA NA
ALB Basic CSF Preoperative MALDI-TOF-MS 11 GBM No No NA NA

Batchelor et al 2010194 VEGF Inter Phase II Serum Pre/posttreatment ELISA 31 Recurrent GBM Yes No No 227 days
PlGF Inter Phase II Serum Pre/posttreatment ELISA 31 Recurrent GBM Yes Yes Yes 227 days
VEGFR2 Inter Phase II Serum Pre/posttreatment ELISA 31 Recurrent GBM Yes No No 227 days
FGF-ß Inter Phase II Serum Pre/posttreatment ELISA 31 Recurrent GBM Yes Yes Yes 227 days
MMP2 Inter Phase II Serum Pre/posttreatment ELISA 31 Recurrent GBM Yes Yes Yes 227 days
MMP10 Inter Phase II Serum Pre/posttreatment ELISA 31 Recurrent GBM Yes No No 227 days
SDF-1a Inter Phase II Serum Pre/post-treatment ELISA 31 Recurrent GBM Yes No No 227 days
Tie2 Inter Phase II Serum Pre/posttreatment ELISA 31 Recurrent GBM Yes No No 227 days
Agn2 Inter Phase II Serum Pre/posttreatment ELISA 31 Recurrent GBM Yes No No 227 days

Sreekanthreddy et al
2010207

OPN Obser Serum Preoperative ELISA+WB 30 GBM NA Yes NA 34 months

Ohnishi et al 2009259 Gelsolin Basic CSF Pretreatment MALDI-TOF-MS 2 AII/GBM NA NA NA NA
Lin et al 2009195 IGFBP-2 Obser Plasma Pre/posttreatment ELISA 196 AGG NA Yes NA 1 year
Ilhan et al 2009182 Ang2 Obser Plasma Pretreatment ELISA 78 AGG/metastases No Yes NA 8 months

VEGF Obser Plasma Pretreatment ELISA 78 AGG/metastases No Yes NA 8 months
PDGF Obser Plasma Pretreatment ELISA 78 AGG/metastases No Yes NA 8 months

Petrik et al 2008260 AHSG Obser Serum Preoperative SELDI-TOF, ELISA 214 AII/AIII/GBM No Yes NA 2 years
Reddy et al 2008261 PBEF1 Obser Serum Preoperative ELISA 95 AIII/GBM NA Yes NA 8 months
Iwadate et al 2008262 PAI-1 Obser Serum Pre/posttreatment ELISA 57 AGG NA Yes NA NA
Jung et al 2007143 GFAP Obser Serum Pretreatment ELISA 104 AGG/metastases No NA NA NA
Brommeland et al

2007226
GFAP Obser Serum Preoperative ELISA 31 HGG/metastases No NA Yes NA

Todaro et al 2007263 NCAM Obser Serum Pretreatment WB 61 AGG/metastases Yes No NA 1–3 months
Zheng et al 2007155 eNOS Obser Plasma Pretreatment ELISA 115 AGG/metastases NA NA NA NA
Quaranta et al 2007264 EGFR Obser Serum Pre/postoperative ELISA 65 HGG NA Yes NA 13 months
Khwaja et al 200635 Attractin Obser CSF Pretreatment 2-DE + cICAT 47 Glioma NOS/

metastases
NA NA NA NA

Hormigo et al 2006219 YKL-40 Obser Serum Pre/postoperative ELISA 143 HGG NA Yes Yes 4.6 to 22 months
MMP9 Obser Serum Pre/postoperative ELISA 143 HGG NA No No 4.6 to 22 months

Ilzecka et al 2006265 APRIL Obser Serum Preoperative ELISA 25 GBM NA NA No NA

Continued
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Table 2. Continued

Reference Biomarker Study Type Source Time of Take Methodology n Tumor Type Treatment
Response

Survival Radiology Median
Follow-up

Zheng et al 2005198 L-CaD Obser Serum Pretreatment ELISA 57 AGG No NA NA NA
Fukuda et al 2005266 Cathepsin

D
Obser Serum Pre/post-operative ELISA 20 AGG NA NA NA NA

Peles et al 200438 VEGF Obser CSF Pre/Intraoperative ELISA 26 AGG NA Yes NA 652 days
VEGF Obser Serum Pre/Intraoperative ELISA 26 AGG NA No NA 652 days
FGF-ß Obser CSF Pre/Intraoperative ELISA 26 AGG NA Yes NA 652 days
FGF-ß Obser Serum Pre/Intraoperative ELISA 26 AGG NA No NA 652 days

Sampath et al 200439 VEGF Obser CSF Pre/Intraoperative ELISA 27 AII/AIII/
metastases

NA NA NA NA

Recoverin Obser serum Pre/Intraoperative ELISA 24 AGG NA NA NA NA
Zheng et al 200340 L-CaD Basic CSF Intraoperative 2D + MALDI 10 AGG No NA NA NA
Batabyal et al 200337 CEA Obser CSF Pretreatment RIA 22 AGG/metastases No NA NA NA
Ribom et al 200341 PDGF Obser CSF Pre/postoperative Radioreceptor

assay
7 LGG NA NA NA NA

VEGF Obser CSF Pre/postoperative ELISA 7 LGG NA NA NA NA
VEGF Obser Serum Pre/postoperative ELISA 7 LGG NA NA NA NA
FGF-ß Obser CSF Pre/postoperative ELISA 7 LGG NA NA NA NA
FGF-ß Obser serum Pre/postoperative ELISA 7 LGG NA NA NA NA

Tanwar et al 2002256 YKL-40 Obser Serum NA ELISA 65 AGG NA NA NA NA
Fine et al 2000138 FGF-ß Inter Phase II Serum Pre/posttreatment ELISA 39 HGG Yes Yes Yes 80 weeks

VEGF Inter Phase II Serum Pre/post-treatment ELISA 39 HGG Yes No No 80 weeks
Streffer et al 199842 CD95 Obser CSF Pretreatment ELISA 20 GBM NA NA NA NA
Rudenko et al 1996230 CEA Obser CSF Preoperative SFI 83 Brain tumors NOS NA NA NA NA

CEA Obser Serum Preoperative SFI 83 Brain tumors NOS NA NA NA NA
AFP Obser CSF Preoperative SFI 83 Brain tumors NOS NA NA NA NA
AFP Obser Serum Preoperative SFI 83 Brain tumors NOS NA NA NA NA
HCG Obser CSF Preoperative SFI 83 Brain tumors NOS NA NA NA NA
HCG Obser Serum Preoperative SFI 83 Brain tumors NOS NA NA NA NA
CEA Obser Serum Pretreatment SFI 101 Brain tumors NOS NA NA NA NA

Rombos et al 1988141 CEA Obser CSF Pre/postoperative SFI 41 AGG/metastases No NA NA NA
CEA Obser Serum Pre/postoperative SFI 41 AGG/metastases No NA NA NA
AFP Obser CSF Pre/postoperative SFI 41 AGG/metastases No NA NA NA
AFP Obser Serum Pre/postoperative SFI 41 AGG/metastases No NA NA NA

Suzuki et al 198050 CEA Obser CSF Pre/posttreatment RIA 253 AGG/metastases Yes NA NA NA
CEA Obser Plasma Pre/posttreatment RIA 253 AGG/metastases Yes NA NA NA

Miyake et al 197951 CEA Obser CSF Pre/posttreatment RIA 97 AGG/metastases Yes NA NA NA

Abbreviations: AGG, all grade of gliomas; AII, astrocytoma WHO grade 2; AIII, astrocytoma WHO grade III; AACT, alpha-1-antichymotrypsin; ABL, N-terminal residue of albumin; AHSG,
2-Heremans-Schmid glycoprotein; Ang2, angiopoietin2; APRIL, a proliferation-inducing ligand; CSF, cerebrospinal fluid; EGFR, epidermal growth factor receptor; eNOS, endothelial nitric
oxide synthase; FGF-b, basic fibroblast growth factor; GBM, glioblastoma; GFAP, glial fibrillary acidic protein; HGG, high-grade glioma; IGFBP-2, insulin-like growth factor-binding protein 2;
IGFBP-5, insulin-like growth factor-binding protein 5; intraop, intraoperative; L-CaD, low molecular; LGG, low-grade glioma; MIF, macrophage migration inhibitory factor; MMP2/9/10,
matrix metalloproteinase-2/9/10; NCAM, neural cell adhesion molecule; NOS, not otherwise specified; Obser, observational studies; OPN, osteopontin; PAI-1, plasminogen activator
inhibitor 1; PBEF1, pre-B-cell colony enhancing factor 1; PDGF, platelet-derived growth factor; PlGF, placental growth factor; SDF-1a, stromal cell-derived factor 1; Tie2, angiopoietin
receptors; TTHY, transthyretin; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2; Wb, Western blot; YKL-40, (tyrosine (Y), lysine (K) and
leucine (L) and the apparent molecular weight).
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increased in other systemic cancers, including breast can-
cers,183 – 185 lung cancer,186,187 and colon cancer,188 – 190 they
are not specific to glial tumors. In several clinical studies, it was
demonstrated that the serum VEGF levels of cancer patients, in-
cluding gliomas, remained significantly high following surgery, ra-
diotherapy, or chemotherapy.179,191 Moreover, particular
inhibitors of the VEGF receptor tyrosine kinases induce increased
levels of serum VEGF.192 Taken together, the value of VEGF as a
biomarker has not been established in glioma.

Other Growth Factors and Angiogenesis-associated
Molecules

Aside from VEGF, various growth factors and other angiogene-
sis-associated molecules have been used to monitor the effects
of antiangiogenic therapy in gliomas.38,138,155,168,193,194

Growth factors are potential targets for therapeutic strategies
because they are essential for tumor progression. Changes in
plasma placental growth factor, basic fibroblast growth factor
(FGF-b), soluble VEGF receptor 1, soluble VEGF receptor 2, stro-
mal cell-derived factor-1alpha (SDF-1alpha), and soluble Tek/
Tie2 receptor were all used to monitor the effects of cediranib
(a pan-VEGF receptor tyrosine kinase inhibitor) in several clinical
studies.168,193,194 All of these molecules reportedly correlated
with radiological response and overall survival.194 FGF-b levels
related to tumor progression and overall survival were also
evaluated apart from the cediranib trial.38,138 The factors or
molecules evaluated in more than one study include platelet-
derived growth factor (PDGF),41,150,182 insulin-like growth factor
binding protein 2 (IGFBP-2),149,195 and angiopoietin2
(Ang2)182,194 (Table 1). Endothelial nitric oxide synthase
(eNOS), a specific isoform of the nitric oxide-producing enzyme
of endothelial cells (ECs), is a well-characterized marker of
ECs.196 This molecule is activated in the process of angiogene-
sis and vasculogenesis and plays an intimate role in VEGF sig-
naling.197 The blood level of eNOS largely reflects the activity of
cells with endothelial lineage.196,197 The concentration of plas-
ma eNOS is significantly greater in glioma patients as com-
pared with control groups.155 The expression of low molecular
isoform of caldesmon (l-CaD), a cytoskeleton-associated pro-
tein, was also increased in CSF40 and serum198 in glioma pa-
tients. The expression of l-CaD in blood vessels was further
confirmed in tissue sections of glioma patients.199 – 202 A zebra-
fish l-CaD knockdown model further confirmed that this mole-
cule plays a crucial role in vasculogenesis and angiogenesis in
vivo.203 So far, the performance of l-CaD and eNOS as biomark-
ers for glioma has not been tested in additional studies.

Matricellular Proteins

The group of matricellular proteins consists of structurally
diverse glycoproteins that are secreted by tumor cells and
neighboring stromal cells.204 – 206 These proteins are secreted
into the extracellular environment, and they interact with cell-
surface receptors, proteases, hormones, and structural matrix
proteins such as collagens.205 Matricellular proteins are also in-
volved in various aspects of tumor biology such as EMT, angio-
genesis, cell proliferation and survival, motility, and ECM
degradation.204 – 206 Glial tumor cells need to break down the
environmental substances in order to infiltrate diffusely into

the surrounding brain tissue. Among the many proteins that
serve in this context are thrombosponin-1 and-2 (TSP1, TSP2),
tenascin-C (TNC), secreted protein acidic and rich in cysteine
(SPARC), osteopontin (OPN), angiopoietin-like protein 4
(ANGPTL4), CCN family members cysteine-rich angiogenic in-
ducer 61 (Cyr61/CCN1) and CCN6, periostin, and more.204

Some of these proteins have been scrutinized for their value
as glioma biomarkers in CSF and serum (eg, OPN30,33,207 and
tenascin).43 CSF levels of tenascin were reportedly higher in an-
aplastic gliomas as compared with astrocytomas of lower ma-
lignancy.43 Increased expression of OPN has been associated
with the presence of a variety of cancers including breast can-
cer, ovarian cancer, melanoma, and glioblastoma.208 The pres-
ence of metastases was also found to be associated with high
OPN levels.209,210 CSF and serum levels of OPN appeared to be
higher in patients with gliomas as compared with patients with
other primary brain tumors or systemic cancers, and the levels
were associated with worse outcomes.30,33,207 However, no
correlation between the radiographic properties of the tumor
and the OPN level was found. Interestingly, significant differ-
ences in OPN levels between patients with gliomas of WHO
grades II, III, and IV were found, and the survival times of pa-
tients with high serum OPN levels (.20 ng/mL) appeared to be
significantly shorter than those of patients with low OPN levels.
Postoperative levels of OPN were, however, not measured in
these studies.30,33,207 So far, the value of OPN for monitoring
treatment response is unclear. Since OPN levels were reportedly
higher in CSF of patients with atypical teratoid/rhabdoid tu-
mors211 and other tumors,208 OPN is not specific for glioma
and cannot be used as a diagnostic biomarker.

Matrix Metalloproteinase

Matrix metalloproteinases (MMPs) represent a family of degrad-
ing enzymes involved in the breakdown of extracellular matri-
ces necessary for invasion of tumor cells.212 The zinc- and
calcium-dependent MMP family also plays a role in various
physiological processes such as embryonic development, an-
giogenesis, wound healing, and more.212,213 MMPs comprise a
relatively large and ever-growing family, and more than 20 en-
zymes are now known.212 MMP-2 (gelatinase-A) and MMP-9
(gelatinase-B) are the most abundant MMPs in malignant glio-
mas.214 – 216 In glial tumors, MMP-9 in particular enables tumor
cells to migrate or infiltrate, and its level is upregulated by the
expression of astrocyte elevated gene-1 (AEG-1).217 MMP-9 has
been measured in serum218,219 and CSF220,221 in glioma pa-
tients. Levels of MMP-9 have been measured in the CSF of pa-
tients treated for glioma recurrence, and elevated
concentrations were interpreted to be indicative of treatment
failure.220 The presence of activated MMP-9 also correlated
with positive CSF cytology.221 There are, however, conflicting re-
sults for the value of MMP-9 levels in serum.218,219 In a longitu-
dinal study with a larger patient population, no statistically
significant association was observed between levels of serum
MMP-9 and radiographic disease status, and changes in
serum MMP-9 did not appear to be associated with survival in
a cohort of patients with anaplastic glioma.218 In contrast,
serum MMP-9 levels were associated with disease status and
were inversely correlated with prognosis in 77 GBM and 66 an-
aplastic glioma patients.219 A caveat of these studies is the fact
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that leukocytes secrete MMP-9, and increased numbers of leu-
kocytes in CSF or serum can cause increased levels of
MMP-9.222 – 224 Serum or CSF levels of MMP-9 in glioma patients
may therefore be influenced by concomitant inflammation.
Because MMPs are crucial for angiogenesis, tumor invasion,
tumor growth, and metastatic potential, MMPs are promising
targets for potential therapies.225

Proteins Associated With Cell Lineage

Glial Fibrillary Acidic Protein

Glial fibrillary acidic protein (GFAP) is an intermediate
filament-associated protein, and its immunohistochemistry is
used for revealing astrocytic lineage of glial cells and glial
tumor cells. Serum levels of GFAP have been analyzed in several
clinical studies143,226,227 and were significantly elevated in
high-grade gliomas, as compared with those of nonglial tu-
mors, with 100% specificity for the diagnosis of glio-
mas.143,226,227 Jung et al prospectively examined 50 patients
with GBM, 18 with anaplastic gliomas, 13 with low-grade glio-
mas, 17 with a single cerebral metastasis, and 50 healthy con-
trols.143 Serum GFAP levels were measured by ELISA and were
detectable in 40 of the 50 GBM patients (median, 0.18 mg/L;
range, 0–5.6 mg/L). Only 2 patients with gliomas of low malig-
nancy grade had detectable serum GFAP levels. Serum GFAP
levels in patients with metastases and healthy people were
below the detection limit (≤0.012 mg/L). The GFAP serum levels
correlated with both tumor volumes and estimated volumes of
tumor necrosis in the GBM patients. Brommeland et al found
GFAP serum levels with a broad range from 30 –1210 ng/L
(mean, 239 ng/L) and demonstrated a significant association
between preoperative serum GFAP levels and tumor volume
in 31 high-grade glioma patients by using ELISA.226 An ELISA
has been recently developed for an autoantibody to GFAP, to
be used for detection of glioma.228 The GFAP serum level may
well become a useful protein biomarker. At this point, GFAP
should be validated in appropriate clinical studies.

Embryonic Antigens

Carcinoembryonal antigen (CEA), human chorionic gonadotro-
pin (hCG) and alpha-fetoprotein (AFP) are useful markers for the
differential diagnosis between primary brain tumors and me-
tastases or germ cell tumors (GCTs). The cell adhesion molecule
CEA is an embryonic antigen and is produced in gastrointestinal
tissues during fetal development.229 Levels of CEA were moni-
tored in the serum, CSF, plasma, and tumor cyst
fluid48,50,51,141,230 of patients with primary brain tumors and
cerebral metastases. CEA levels in patients with cerebral me-
tastases and leptomeningeal dissemination were consistently
higher than those in patients with primary brain tu-
mors.37,45,48,51,141 In a study with postoperative follow-up, it
was found that patients with metastatic brain tumors and lep-
tomeningeal tumor spread showed high levels of CEA in CSF
preoperatively (which normalized following surgery).45 These
data support the use of CEA levels in CSF for the differential
diagnosis of primary and metastatic brain tumors.37 The detec-
tion of hCG in serum or CSF supports the diagnosis of intracra-
nial GCTs and proves the presence of trophoblastic cells.231 AFP

is an oncofetal glycoprotein that plays an important role during
embryo- and fetogenesis. Elevated serum AFP concentrations
have been associated with hepatocellular carcinoma and pedi-
atric tumors,231 and measurement of hCG and AFP in CSF or
serum is considered to be of significance in the differential diag-
nosis of GCTs and other tumors including glioma.147,148,231

Miscellaneous Proteins and Circulating Oncometabolites

2-hydroxyglutamate

Cancer-associated IDH mutations produce the metabolite
2-hydroxyglutarate (2HG). Circulating levels of 2HG are signifi-
cantly elevated in patients with cholangiocarcinoma232 and
acute myeloid leukemia.233 In a recent study, it was reported
that the concentration of the metabolite 2HG in serum from gli-
oma patients did not correlate with the IDH1 mutational status
or the size of the tumor.234 More clinical studies are required to
evaluate the clinical utility of 2HG.

YKL-40

YKL-40 (tyrosine (Y), lysine (K) and leucine (L) and the apparent
molecular weight) is also known as chitinase-3-like-1 or human
cartilage glycoprotein-39.235,236 There are indications that
YKL-40 may promote degradation of the ECM and play a role
in cell migration,237 connective tissue modeling,238–240 and in-
flammatory responses.241,242 Serum levels of YKL-40 are elevat-
ed in patients with lymphoma,243 lung cancer,244 leukemia,245

melanoma,246,247 colon cancer,248,249 ovarian cancer,250 – 252

breast carcinoma,253,254 and prostate cancer,255 and raised lev-
els of YKL-40 correlate with shorter survival times. YKL-40 is
highly expressed in tissue microarray studies of gliomas.256 In
multivariate analysis, the tissue expression of YKL-40 was iden-
tified as an independent predictor of survival after adjusting for
patient age, performance status, and extent of resection.257 The
expression of YKL-40 appeared to be associated with loss of
chromosome arm 10q.236 YKL-40 is secreted into the blood-
stream by tumor cells and tumor-associated macrophages
and can be detected by ELISA.256 The value of YKL-40 as a
serum marker was evaluated during a follow-up period of 27
months after surgery for high-grade glioma.219 Levels of
YKL-40 were significantly correlated with radiographic evidence
of disease and survival times in GBM (n¼ 76) and anaplastic gli-
oma (n¼ 66).219 In a prospective study in which 1740 MRI
matched serum samples of 343 anaplastic glioma patients
were implicated, the YKL-40 levels appeared to be significantly
lower in patients with no radiographic tumor progression as
compared with patients with progressive disease.257 Increases
in YKL-40 levels were also associated with worse survival.257 In
various other clinical studies, serum YKL-40 levels of glioma pa-
tients were also elevated and correlated with radiographic evi-
dence of disease and worse overall survival.219,235,256,257 Since
serum levels of YKL-40 are also correlated with poor outcome
in various cancers,243 – 245,249 – 255 additional validation studies
need to be done, focusing on the specificity of YKL-40 and test-
ing of its value as a glioma biomarker in prospective, controlled
settings.
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Other proteins

Various other proteins, which are not discussed here, are listed in
Table 1 and include galectin-1,258 nerve growth factor (NGF),31

macrophage migration inhibitory factor (MIF),32 alpha-1-antichy-
motrypsin (AACT),33 transthyretin (TTHY),33 gelsolin,259

2-Heremans-Schmid glycoprotein (AHSG),260 Pre-B-cell colony en-
hancing factor 1 (PBEF1),261 plasminogen activator inhibitor 1
(PAI-1),262 neural cell adhesion molecule (NCAM),263 EGFR,264

attractin,35 a proliferation-inducing ligand (APRIL),265 Cathepsin
D,266 recoverin,39 CD95,42 G-22,267 and somatomedins.47

Concluding Remarks
Current strategies in the therapy for patients suffering from pri-
mary brain tumors necessitate the development of practical
and standardized assays for monitoring disease activity and
therapy effects. Intracranial tumors are not accessible for fre-
quent sampling, and therefore body fluids such as blood and
CSF are preferable sources for biomarkers. A large number of
candidate biomarkers have been discovered, but neither circu-
lating tumor cells, nor their exosomes, DNA, RNA, and particular
proteins have passed the requirements of the Tumor Marker
Utility Grading System Levels of Evidence/NCCN for clinical ap-
plication or for serving as monitors in trials. The road from the
discovery of new candidate biomarkers to their clinical valida-
tion is long. Many issues need to be addressed including biolog-
ical relevance, sensitivity, specificity, and reproducibility of the
measurements. Technical standardization is crucial to achieve
clinical utility for candidate biomarkers. Collaborating consortia
are needed for standardization and validation of sample collec-
tion and isolation, and large prospective multicenter studies are
needed to reach the level of evidence required for introducing
new biomarkers into clinical practice.
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