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Abstract  

Patients with schizophrenia have a lower than average life span, largely due to the increased 

prevalence of cardiometabolic co-morbidities. Identification of individuals with psychotic 

disorders with a high risk of rapid weight gain, and the associated development of metabolic 

complications, is an unmet need as regards public health. Here, we applied mass 

spectrometry-based lipidomics in a prospective study comprising 48 controls (CTR), 44 first-

episode psychosis (FEP) patients and 22 individuals at clinical-high-risk (CHR) for psychosis, 

from two study centers (Turku/Finland and London/UK). Baseline serum samples were 

analyzed by lipidomics, while body mass index (BMI) was assessed at baseline and after 12 

months. We found that baseline triacylglycerols with low double bond counts and carbon 

numbers were positively associated with the change in BMI at follow-up. In addition, a 

molecular signature comprised of two triacylglycerols (TG(48:0) and TG(45:0)), was predictive 

of weight gain in individuals with a psychotic disorder, with an area under the receiver 

operating characteristic curve (AUROC) of 0.74 (95% CI: 0.60–0.85). When independently 

tested in the CHR group, this molecular signature predicted said weight change with AUROC = 

0.73 (95% CI: 0.61–0.83). We conclude that molecular lipids may serve as a predictor of weight 

gain in psychotic disorders in at-risk individuals, and may thus provide a useful marker for 

identifying individuals who are most prone to developing cardiometabolic co-morbidities.
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Introduction 

Psychotic disorders are associated with a life expectancy reduction of 15-20 years [1,2], 

mostly due to the high prevalence of cardiovascular disease, type 2 diabetes (T2DM) and 

metabolic syndrome [3-5]. Metabolic co-morbidities, including impaired glucose tolerance, 

weight gain and obesity often co-occur in first episode psychosis (FEP) patients [6-8], and this 

increases the risk of cardiovascular disease in these individuals [9,10]. Although unhealthy 

lifestyles and antipsychotic medication associate with the development of metabolic co-

morbidities in psychosis patients, the underlying mechanisms remain poorly understood [3,11]. 

Drug-induced metabolic dysregulation appears heterogeneously [12,13], while metabolic co-

morbidities can also occur in drug-naïve FEP patients [6,14].  

Metabolomics, that is, a global study of small molecules (< 1500 Da) and their associated 

biochemical processes, is a powerful emerging tool in psychiatric research, enabling 

investigations of disease etiology and treatment responses from metabolic perspectives [8,15]. 

Lipidomics is a sub-field of metabolomics, which focuses on study of lipids. By applying a 

lipidomics approach, we have previously found that FEP patients who rapidly gain weight 

during follow-up have increased serum lipids at baseline; lipids which are also known to be 

associated with non-alcoholic fatty liver disease (NAFLD) and increased risk T2DM [8,16]. 

However, it is currently unclear if these lipids could be used for prediction of said weight gain 

and the associated metabolic co-morbidities in FEP patients. Here we report a lipidomics study 

in a prospective series of plasma samples from healthy controls (CTR), FEP patients (FEP), and 

individuals at clinical-high-risk (CHR) for psychosis. The aim was to investigate the ability of 

lipid profiles to identify FEP patients or CHR individuals, who are at the highest risk of rapid 

weight gain and occurrence of metabolic co-morbidities. 
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Methods 

Study design and participants 

We collected plasma samples from two cohorts of patients receiving psychiatric early 

intervention services in Turku, Finland or London, United Kingdom. Ethical approval was 

obtained from the respective study sites in Finland (ETMK 98/180/2013) and United Kingdom 

(14/LO/1289). Capacity for consent was assessed and informed written consent was obtained 

from all volunteers. In total, 114 non-fasting blood samples were collected for this study. This 

case-control study included 48 healthy controls (CTR group), 44 first-episode psychosis 

patients (FEP group) and 22 individuals who were at clinical-high-risk for psychosis (CHR 

group). Demographic characteristics of the study subjects are shown in Table 1. 

FEP patients met the following inclusion criteria: (i) DSM-IV diagnosis of a psychotic disorder, 

determined by the Structured Interview for Prodromal Syndromes (SCID)-I/P; (ii) illness duration 

of less than 3 years. In the Turku/Finland study, FEP volunteers were taking antipsychotic 

medication and had diagnoses of affective or non-affective psychosis. In the London/UK, FEP 

arm of the study, volunteers were medication-free from all pharmacological treatments for at 

least 6 months and had diagnoses of schizophrenia or schizoaffective disorder. In the 

London/UK cohort, FEP volunteers were recruited from first episode teams covering central 

south London (total population approximately 1.5 million people). The state-funded health 

service in the UK means that these teams receive all referrals with a first-episode of psychosis 

within the catchment area. We recruited patients who were medication-free for at least 6 

months and had diagnoses of schizophrenia or schizoaffective disorder. Healthy volunteers 

had no current/lifetime history of an Axis-I disorder as determined by the SCID-I/P and were 

matched by age (age +/- 3 years). 

CHR patients were identified from the clinical population of psychiatric services using SCID 

interviews [17]. Patients with either brief, intermittent psychotic symptom syndrome, attenuated 
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positive symptom syndrome or genetic risk and deterioration syndrome were classified as 

clinical high risk for psychosis patients [17]. 

The study setting for the THL/Finland dataset, which was used as an additional dataset to build 

the statistical model, was described in detail previously [18]. 

Analysis of molecular lipids 

A total of 114 plasma samples were randomized and extracted using a modified version of the 

Folch procedure [19]. Promptly before extraction, 10 µL of 0.9% NaCl and 120 µL of CHCl3: 

MeOH (2:1, v/v) containing 2.5 µg mL-1 internal standard solution (for quality control (QC) and 

normalization purposes) were added to 10 µL of each plasma sample. The standard solution 

contained the following compounds: 1,2-diheptadecanoyl-sn-glycero-3- phosphoethanolamine 

(PE(17:0/17:0)), N-heptadecanoyl-D-erythrosphingosylphosphorylcholine (SM(d18:1/17:0)), N-

heptadecanoyl-D-erythro-sphingosine (Cer(d18:1/17:0)), 1,2-diheptadecanoyl-sn-glycero-3-

phosphocholine (PC(17:0/17:0)), 1- heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine 

(LPC(17:0)) and 1-palmitoyl-d31-2- oleoyl-sn-glycero-3-phosphocholine (PC(16:0/d31/18:1 that 

were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA), as well as 3β-Hydroxy-5-

cholestene 3-heptadecanoate (CE17:0) and tripalmitin-triheptadecanoylglycerol 

(TG(17:0/17:0/17:0)) (Larodan AB, Solna, Sweden). The samples were vortexed and incubated 

on ice for 30 min after which they were centrifuged (9400 × g, 3 min, 4 °C). 60 µL from the 

lower layer of each sample was then transferred to a glass vial with an insert, and 60 µL of 

CHCl3: MeOH (2:1, v/v) was added to each sample. The samples were re-randomized and 

stored at -80 °C until analysis. Calibration curves using 1-hexadecyl-2-(9Z-octadecenoyl)-sn-

glycero-3-phosphocholine (PC(16:0/18:1(9Z))), 1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-sn-

glycero-3-phosphocholine (PC(16:0/16:0)),  1,2-dihexadecanoyl-sn-glycero-3-phosphocholine 

(PC(18:0/18:0), 1-octadecanoyl-sn-glycero-3-phosphocholine (LPC(18:0)), 1-(11Z-

octadecadienoyl)-sn-glycero-3-phosphocholine (LPC(18:1)), 1-(9Z-octadecenoyl)-2-
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hexadecanoyl-sn-glycero-3-phosphoethanolamine (PE (16:0/18:1)), (2-aminoethoxy)[(2R)-3-

hydroxy-2-[(11Z)-octadec-11- enoyloxy]propoxy]phosphinic acid (LysoPE (18:1)), N-(9Z-

octadecenoyl)-sphinganine (Cer (d18:0/18:1(9Z))), 1-hexadecyl-2-(9Z-octadecenoyl)-sn-

glycero-3-phosphoethanolamine (PE (16:0/18:1)) (Avanti Polar Lipids, Inc.), 1-Palmitoyl-2-

Hydroxy-sn-Glycero-3- Phosphatidylcholine (LPC(16:0)) and 1,2,3 trihexadecanoalglycerol 

(TG16:0/16:0/16:0), 1,2,3- trioctadecanoylglycerol (TG(18:0/18:0/18:0)) and ChoE (18:0), 3β-

Hydroxy-5-cholestene 3- linoleate (ChoE(18:2)) (Larodan AB, Solna, Sweden), were prepared at 

the following concentrations: 100, 500, 1000, 1500, 2000 and 2500 ng mL−1 (in CHCl3:MeOH, 

2:1, v/v) including 1250 ng mL-1 of each internal standard. The samples were analyzed using an 

established ultra-high-performance liquid chromatography quadrupole time-of-flight mass 

spectrometry method (UHPLC-QTOFMS). The UHPLC system used in this work was a 1290 

Infinity system from Agilent Technologies (Santa Clara, CA, USA). The system was equipped 

with a multi sampler (maintained at 10 °C), a quaternary solvent manager and a column 

thermostat (maintained 7 at 50 °C). Separations were performed on an ACQUITY UPLC® BEH 

C18 column (2.1 mm × 100 mm, particle size 1.7 µm) by Waters (Milford, USA). The mass 

spectrometer coupled to the UHPLC was a 6545 quadrupole time of flight (QTOF) from Agilent 

Technologies interfaced with a dual jet stream electrospray ion (dual ESI) source. All analyses 

were performed in positive ion mode and MassHunter B.06.01 (Agilent Technologies) was used 

for all data acquisition. Quality control was performed throughout the sample run by including 

blanks, pure standard samples, extracted standard samples and control plasma samples. An 

aliquot of each sample was collected and pooled and used as quality control sample, together 

with NIST SRM 1950 reference plasma sample [20], an in-house pooled serum sample. 

Relative standard deviations (% RSDs) for lipid internal standards representing each lipid class 

in the samples (raw variation) was below 11%. The lipid concentrations in the pooled control 

samples were, on average, 16.4% (KCL) and 11.4% (UTU). This shows that the method is 

reliable and reproducible throughout the sample set.  
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The identification was carried out in pooled serum sample, and with this information, an in-

house database was created with m/z and retention time for each lipid. Identification of lipids 

was carried out by combining MS (and retention time), MS/MS information, and a search of the 

LIPID MAPS spectral database [21], and in some cases by using authentic lipid standards. 

MS/MS data were acquired in both negative and positive ion modes in order to maximize 

identification coverage. The confirmation of a lipid’s structure requires the identification of 

hydrocarbon chains bound to its polar moieties, and this was possible in some cases.  

Data pre-processing 

Mass spectrometry (MS) data processing was performed using the open-source software, 

MZmine 2.18 [22]. The following steps were applied in the processing: (1) Crop filtering with a 

m/z range of 350 – 1200 m/z and a RT range of 2.0 to 15.0 min, (2) Mass detection with a noise 

level of 1000, (3) Chromatogram builder with a min time span of 0.08 min, min height of 1200 

and a m/z tolerance of 0.006 m/z or 10.0 ppm, (4) Chromatogram deconvolution using the local 

minimum search algorithm with a 70% chromatographic threshold, 0.05 min minimum RT 

range, 5% minimum relative height, 1200 minimum absolute height, a minimum ration of peak 

top/edge of 1.2 and a peak duration range of 0.08 - 5.0, (5) Isotopic peak grouper with a m/z 

tolerance of 5.0 ppm, RT tolerance of 0.05 min, maximum charge of 2 and with the most 

intense isotope set as the representative isotope, (6) Peak list row filter keeping only peaks 

with a minimum of 10 peaks in a row, (7) Join aligner with a m/z tolerance of 0.009 or 10.0 ppm 

and a weight for of 2, a RT tolerance of 0.1 min and a weight of 1 and with no requirement of 

charge state or ID and no comparison of isotope pattern, (8) Peak list row filter with a minimum 

of 53 peak in a row (10% of the samples), (9) Gap-filling using the same RT and m/z range gap 

filler algorithm with an m/z tolerance of 0.009 m/z or 11.0 ppm, (10) Identification of lipids using 

a custom database search with an m/z tolerance of 0.009 m/z or 10.0 ppm and a RT tolerance 

of 0.1 min, (11) Normalization using internal class-specific standards (PE (17:0/17:0), SM 

(d18:1/17:0), Cer (d18:1/17:0), LPC (17:0), TG (17:0/17:0/17:0) and PC (16:0/d30/18:1)) for 
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identified lipids and closest ISTD for the unknown lipids, followed by calculation of the 

estimated concentrations based on lipid-class calibration curves, (12) Imputation of missing 

values was calculated as half of the lipid’s minimum observed value. 

Data analysis 

Mann-Whitney U test was applied to compare the difference in weight gain between the study 

groups (e.g., CTR vs. FEP), and performed using GraphPad Prism v. 7.04 (GraphPad Software 

Inc., San Diego, CA). In order to visualize the changes in BMI between the study groups, we 

created a violin plot using the ggplot2 package (version 3.2.1) in the R statistical software 

[23]. Spearman correlation coefficients were calculated using the statistical toolbox in MATLAB 

2017b (Mathworks Inc., Natick, MA) and p-values < 0.05 (two-tailed) were considered 

significant for these correlations. All statistical analyses involving lipid concentrations were 

performed on log2-transformed data. The mclust R package (version 5.4.1) was used to build 

lipid clusters from the lipidomics dataset. Mclust allows modelling of data as a Gaussian finite 

mixtures and attempts to fit various model types and assesses their performance using the 

Bayesian Information Criterion (BIC). The highest BIC achieved by mclust form the lipidomics 

dataset in control subjects was used to determine both the model type and the number of 

clusters into which the variables should be divided. 

Logistic ridge regression (LR) models were developed to predict and stratify weight gain in the 

FEP patients. The matched triacylglycerols (TGs) with a regression coefficient (r ≥ 0.4) in 

Turku/Finland and London/UK cohorts, between high vs. low weight gain subjects (i.e., change 

in the BMIs binarized around the median), were used either singly or in combination for LR 

modelling. A recursive feature elimination scheme was implemented for the optimal selection of 

the lipids. The lipids in the LR models were incorporated or removed in an iterative manner, 

starting with all nine TGs. The models were adjusted for sex and assessed by area under the 

receiver operating characteristic (ROC) curves (AUROCs). The mean AUROC of a model was 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 3, 2020. ; https://doi.org/10.1101/2020.01.30.20019711doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.30.20019711


9 
 

estimated by bootstrapping, i.e., 1000 times re-sampling without replacement and partitioning 

(70% training, 30% test sets) of the lipidomic dataset using 'createDataPartition' function 

coded in the'caret’ (v. 6.0.84) R package. The model with the highest mean AUROC was 

considered to be the best model which was assessed by their ROC curves using ‘pROC 

1.15.3’ R package. Regularized ridge models in 'cv.glmnet' requires a hyper-parameter 'l'. 

Here, the lminimum that corresponds to the minimum cross-validation (CV) error was determined 

by 10-fold CV. The LR model with the highest mean AUROC was named FEP-LR model. This 

model was also used to predict weight gain (change in BMI from the baseline) an independent 

dataset (the CHR subjects).  

Results 

Lipidome in first episode psychosis patients 

We measured circulating molecular lipids by UHPLC-QTOFMS from the three study groups 

(Fig. 1), together comprising 48 healthy controls (CTR), 44 FEP patients and 22 CHR 

individuals, from two study centers (Turku, Finland and London, UK), at baseline as well as at 

one-year follow-up (CTR, n=21; FEP n=13; CHR, n=9). Demographic characteristics of the 

three study groups are shown in Table 1. The lipidomics dataset included in data analysis 

comprised 265 identified lipids from the following lipid classes: cholesterol esters (CE), 

ceramides (Cer), lysophosphatidylcholines (LPC), phosphatidylcholines (PC), 

phosphatidylethanolamines (PE), sphingomyelins (SM) and triacylglycerols (TG). 

In order to summarize the data, we first performed clustering using the Gaussian mixture 

models [24], reducing the data into 22 distinct lipid clusters (Supplementary Table 1). As 

expected, the lipids were clustered according to the main functional lipid classes. For example, 

PCs and SMs predominated in lipid clusters (LCs) LC3 and LC6, while LPCs and Cers had 

distinct clusters (LC4 and LC5, respectively). These clusters also revealed sub-grouping 
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according to the acyl chain carbon number and double-bond count in TGs (LC13, LC14).  

Associations between lipidome and weight gain 

We then examined the differences in weight gain between the study groups (CTR vs. FEP, CTR 

vs. CHR, and CHR vs. FEP). FEP patients gained weight when compared to the CTR group (Fig 

2a; p = 0.004). No significant differences were observed when comparing CHR vs. FEP and 

CTR vs. CHR (p = 0.3851 for CHR vs. FEP and p = 0.0561 for CHR vs. CTR). 

Next, we analyzed the association between the mean levels of the lipids in the baseline lipid 

clusters and weight gain in CTR and FEP groups. Among the 22 LCs, the baseline level of 

cluster LC13 was associated with changes in BMI in the FEP group after 12-month follow-up 

time (Spearman r = 0.53, p =0.0291). The cluster LC13 contains TGs with low double-bond 

count, indicating that the change of BMI in FEP patients was specifically associated with a 

structurally-distinct subgroup of lipids. Interestingly, we observed trends of positive 

association (r > 0.3) between weight gain and other lipid clusters containing mainly TGs (L14, 

L16, L20; Fig 2b). Thus, we sought to determine the association between baseline TG 

composition and change of BMI (12-month follow-up vs. baseline) at the molecular lipid level. 

The baseline levels of TGs with low carbon number and double bond count showed positive 

associations with the change in BMI among the FEP patients (Fig. 3b), while the association 

in the CTR group remained weak (Fig. 3a). Nine of 109 TGs at baseline, including TG(47:0), 

TG(47:1), TG(48:0), TG(48:0) TG(48:1), TG(48:1), TG(49:0), TG(14:0/16:0/18:1), and 

TG(16:0/16:0/16:0), were significantly associated with the change in BMI (p < 0.05, 

Supplementary Table 2). Similarly, we performed correlation analysis between changes in 

BMI and baseline TG composition in CHR individuals. 32 out of 109 TGs remained correlated 

with the change in the BMI (p < 0.05, Supplementary Table 3). Baseline TGs with low carbon 

number and double bond count showed strong positive association with the change in BMI 

(Fig. 3c).  
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Prediction of weight gain in FEP patients and CHR individuals by circulating lipids 

Next, we sought to determine if baseline TG concentrations predicted the risk of weight gain in 

FEP patients, utilizing the regularized logistic regression (LR) model. We examined the 

predictor model combining the data from three centers including Turku/Finland, London/UK, 

and the matched TGs from the THL/Finland dataset. The matched TGs with regression 

coefficient (r ≥ 0.4) in Turku/Finland and London/UK cohorts were used as input to build the LR 

models between the high and low weight gain groups (binarized at their median change of 

BMIs from the baseline, see Methods) in FEP cases. The recursive scheme for feature 

selection and model reduction showed that TG (48:0) together with TG (45:0) were the best 

predictors for high change in BMI, with AUROC=0.74 (Fig. 4a, 95% confidence interval, CI: 

0.60 – 0.85).  

We then independently tested the potential of the FEP-LR model to predict weight gain 

(change in BMI) in CHR individuals. The FEP-LR model was indeed able to predict the outcome 

with AUROC=0.73 (Fig. 4b, 95% CI: 0.61 – 0.83). 

Discussion 

Our study demonstrates that circulating lipids can predict risk of future weight gain in FEP 

patients and, as a novel finding, also in CHR individuals. We found that plasma lipids, 

specifically TGs, may form a useful molecular signature for the identification of individuals who 

are vulnerable to rapid weight gain. This finding is in line with and builds on our previous study, 

which showed that weight gain in FEP patients is associated with elevated TGs containing low 

acyl carbon numbers and double bond counts, independently of obesity at baseline [16,25]. 

TGs with low double bond count and carbon number, which are, in part, generated by de novo 

lipogenesis [26,27], are known to be elevated in non-alcoholic fatty liver disease (NAFLD) [28-

30] and associated with an increased risk of T2DM [31,32]. Our findings thus strongly suggest 
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that the FEP patients who go on to gain weight in the future are those who have elevated levels 

of liver fat.  

Weight gain and metabolic co-morbidities are typically evident in antipsychotic drug-naïve FEP 

patients [11,33]. However, there is considerable variability in weight gain and lipid changes 

among the FEP individuals with respect to antipsychotic drugs [34-36]. Due to the relatively 

small sample size in the present study, we could not systematically examine the impact of 

specific antipsychotic drugs on weight gain, and their association with the baseline lipid levels. 

However, earlier analyses suggest that the NAFLD lipid signature associates with weight gain, 

independent of antipsychotic medication [16]. In line with this, and as a novel finding, we have 

here also demonstrated that the same lipid signature, predictive of weight-gain in FEP patients, 

is also predictive of weight gain in CHR individuals. This suggests that specific lipid 

disturbances in early psychosis may also contribute to the development of metabolic co-

morbidities, potentially independent of antipsychotic medication. Since a fraction of CHR 

individuals in our study received low-dose antipsychotic medication, one also cannot exclude 

the possibility that the metabolic consequences in some CHR individuals may have been 

influenced by the use of antipsychotics [37].  

The specific mechanisms linking psychosis, NAFLD, and increased risk of metabolic co-

morbidities, are currently unknown. One plausible, yet currently speculative link, is the 

endocannabinoid system (ECS). Our positron emission tomography (PET) imaging data 

suggest that the brain ECS is dysregulated in FEP, including in drug-naïve patients [38]. Brain 

CB1R availability, as measured by PET imaging, associates with changes in peripheral 

endocannabinoid levels [39]. Furthermore, there is a large body of literature suggesting that the 

ECS modulates energy intake [40], and that the development of NAFLD is promoted by 

peripheral activation of the ECS [41]. More studies are clearly needed if one is to elucidate the 

hypothetical role of ECS as a link between psychosis and the development of metabolic co-

morbidities. 
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Taken together, our study independently confirms that the lipidomic signature of NAFLD may 

serve as a predictor of future weight gain in FEP patients as well as in CHR individuals. This 

lipid signature may be used for the identification of at-risk individuals and patients who are at 

increased risk for development of metabolic co-morbidities in psychosis. Such knowledge may 

be useful in targeting primary prevention of metabolic co-morbidities and the identification of 

optimal treatment strategies for each patient. 
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Table 1. Clinical characteristics of study population.  

Abbreviations: CTR, healthy controls; FEP, first-episode psychosis group; CHR, clinical high-risk 

for psychosis group; SD, standard deviation; CPZE, Chlorpromazine equivalence. 

 CTR FEP CHR 

N (Total) 

n (Turku, Finland)  

n (London, UK) 

48 

31 

17 

44  

30 

14 

22 

22 

N/A 

Sex (Male, Female) 31, 17 26, 18 11, 11 

BMI (± SD) 24.50 (3.85) 24.35 (4.26) 25.56 (5.72) 

Ethnicity (EU, non-EU, NA) 36, 12, -- 37, 6, 1 22 

GAF score (± SD) 92.40 (3.80)  47.80 (16.37) 56.00 (9.84) 

PANSS TOT (± SD)  30.48 (0.97) 70.07 (24.40) 54.33 (12.65) 

Antipsychotic CPZE (± SD) 

Turku, Finland  

(n = 23 FEP, n = 9 CHR) 

London, UK  

(n = 13 FEP) 

 

N/A 

 

N/A 

 

 

221.83 (± 115.04)  

 

622.63 (± 650.94) 

 

 

207.91(± 102.23)  

 

N/A 

 

 

* Study populations are from Turku/Finland and London/UK 
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Figure legends 

Figure 1. Study setting. Lipidomics was applied to analyze baseline samples from 48 healthy 

controls (CTR), 44 first-episode psychosis patients (FEP) and 22 individuals at clinical-high-risk 

for psychosis (VHR), from two study centers (Turku, Finland and London, UK). Body mass index 

(BMI) and other metabolic measures were assessed at baseline and at 12-month follow-up.  

Figure 2. Associations between lipidome and weight gain. a) Difference in BMI change (12-

month follow-up vs. baseline) between the study groups (CTR vs. FEP, CTR vs. CHR, and CHR 

vs. FEP). b) Association between baseline lipid clusters and weight gain in FEP group. *p<0.05. 

Figure 3. Correlation of individual TGs with change in BMI (12-month follow-up vs. baseline). 

The x-axis is the acyl carbon number and y-axis is the acyl double bond count. a) CTR, b) FEP 

and c) CHR. The spearman correlation coefficient (R) is used for the color code. 

Figure 4. Predictive models of weight gain (BMI change in the 12-month follow-up) in the FEP 

and CHR group. Logistic ridge regression (LR) models showing triacylglycerols (TGs) as 

predictive markers to stratify patient groups into high and low BMI changes. a) Receiver-

operating characteristic (ROC) curves, showing the performance of the LR models with highest 

mean AUROCs in the FEP patients, discriminating high vs. low BMI changes in 12-month follow-

up. The light green shaded area denotes the 95% confidence intervals (CI), as calculated by 

using bootstrapping. b) ROC curves showing the prediction performance of the FEP-LR models 

with highest mean AUROCs in the CHR individuals, discriminating high vs. low BMI changes in 

12-month follow-up. 
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