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Abstract

Up to 50% of ovulations go undetected in modern dairy herds due to attenuated oestrus

behavior and a lack of high-accuracy methods for detection of fertile oestrus. This signifi-

cantly reduces overall herd productivity and constitutes a high economic burden to the dairy

industry. MicroRNAs (miRNAs) are ubiquitous regulators of gene expression during both

health and disease and they have been shown to regulate different reproductive processes.

Extracellular miRNAs are stable and can provide useful biomarkers of tissue function;

changes in circulating miRNA profiles have been reported during menstrual cycles. This

study sought to establish the potential of circulating miRNAs as biomarkers of oestrus in cat-

tle. We collected plasma samples from 8 Holstein-Friesian heifers on days Days 0, 8 and 16

of an oestrous cycle and analysed small RNA populations on each Day using two indepen-

dent high-throughput approaches, namely, Illumina sequencing (n = 24 samples) and Qia-

gen PCR arrays (n = 9 sample pools, 3–4 samples / pool). Subsequently, we used RT-

qPCR (n = 24 samples) to validate the results of high-throughput analyses, as well as to

establish the expression profiles of additional miRNAs previously reported to be differen-

tially expressed during reproductive cycles. Overall, we identified four miRNAs (let-7f, miR-

125b, miR-145 and miR-99a-5p), the plasma levels of which distinctly increased (up to 2.2-

fold, P < 0.05) during oestrus (Day 0) relative to other stages of the cycle (Days 8 and 16).

Moreover, we identified several hundred different isomiRs and established their relative

abundance in bovine plasma. In summary, our results reveal the dynamic nature of plasma

miRNAs during the oestrous cycle and provide evidence of the feasibility of using circulating

miRNAs as biomarkers of reproductive function in livestock in the future.

Introduction

Failure to adequately identify fertile oestrus in farmed animals is a major contributor to the

long-standing problem of low fertility rates in modern production animal systems, particularly

in cattle. To illustrate the severity of the problem, current conception rates at first postpartum

service in dairy cows are approximately 40%; according to the UK’s Dairy Science Forum

(2008), this is estimated to cost the UK dairy industry in excess of £300 million per year
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through extended calving intervals, in addition to being a major welfare issue through disease

and premature culling.

The physiological period of anoestrus following calving is characterised by progressive res-

toration of the neuroendocrine-reproductive axis to allow adequate maturation of ovarian folli-

cles followed by ovulation before normal oestrous cycles can be re-established [1]. In non-

stressed dairy cows ovulatory activity normally begins within 2 to 3 weeks after calving. How-

ever, in modern dairy herds, a combination of factors resulting from both genetic selection for

production traits and intensive management, including negative energy balance, stress and dis-

ease (uterine infection, mastitis, lameness), often disrupt normal neuroendocrine restoration

which prevents normal follicle maturation and leads to a delay in the onset of regular, normal-

length oestrous cycles [2, 3]. Furthermore, behavioural oestrus, physiologically triggered by

high oestradiol levels from mature pre-ovulatory follicles, is significantly reduced under these

conditions, both in intensity and duration; this leads to up to 50% of heats being missed by

farm personnel [4]. Altogether, this leads to a dramatic decrease in breeding efficiency,

increased risk of disease through non-productive inseminations, and extended calving

intervals.

Periodic visual inspection of cows for behavioural signs of oestrus has been traditionally

used to select cows for breeding [5]. More sophisticated methods include measurement of milk

progesterone, heat mount detectors and activity monitors; in practice these are frequently com-

bined with visual observation [5]. Yet, multiple reports agree that approximately 30% of oestrus

events may still not be detected even when combinations of these methods are used [5, 6].

Thus, there is growing interest in the development of novel oestrus detection methods to mini-

mise economic losses and boost annual milk production.

MiRNAs are small RNA molecules that play key roles as gene expression regulators in ani-

mal tissues [7]. Intracellular miRNAs enter the extracellular space [8] in the form of stable

complexes within protective exosomes [9] and / or associated with proteins such as HDL and

Ago2 [10, 11]. Some miRNAs are tissue-specific and are present in the circulation at quantifi-

able levels (e.g. placental miRNAs) [12]. These findings have led to a plethora of studies into

the biomarker potential of circulating miRNAs; it is now widely accepted that miRNAs can

offer useful circulating biomarkers of multiple diseases such as cancer, heart disease, autoim-

mune diseases [13, 14] as well as preeclampsia and other reproductive diseases [15, 16]. In

contrast to the abundant literature focusing on humans, the potential of circulating miRNAs

as biomarkers of animal disease and / or productivity traits has not been investigated in

depth.

MiRNAs are involved in the regulation of follicular and luteal development (reviewed

here [17]) as well as endometrial function [18]. Consistent with this, studies using cows

and other species have identified numerous miRNAs with expression that changes signifi-

cantly in association with follicle growth and selection, the follicle-to-luteal transition, and

embryo implantation [19–21]. Because the reproductive tract is highly vascularised, particu-

larly the ovary, it is reasonable to hypothesise that changes in miRNA levels occurring in

those tissues may lead to changes in the levels of circulating miRNAs, which may provide

useful oestrous cycle biomarkers. In this study we used next-generation sequencing and

PCR-based platforms to compare miRNA profiles in the circulation of heifers across differ-

ent stages of a normal oestrous cycle. We identified four circulating miRNAs, the levels of

which were significantly higher during oestrus compared to other stages of the oestrous

cycle. These findings pave the way towards the development of novel oestrus detection

methods.
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Materials and Methods

Experimental animals

Eight Holstein-Friesian heifers (15–17 months old) were oestrus-synchronised using Eazi-

Breed™ CIDR1 Cattle Insert (1.38 g progesterone over eight days; Zoetis, USA), Receptal1

(0.02 mg buserelin on the day of CIDR insertion; MSD Animal Health, UK) and Estrumate1

(0.5 mg cloprostenol seven days after CIDR insertion; MSD Animal Health). Blood was col-

lected on Days 0, 8 and 16 from all animals (Day 0 being the first day of observed oestrus). The

stage of the oestrous cycle was confirmed by plasma progesterone profiles determined using a

Coat-a-Count radio-immuno-assay (Siemens Healthcare, Germany). All animal procedures

were carried out under the UK Home Office Animals (Scientific Procedures) Act 1986, license

60/4604, and with approval by the Ethical Review Committee, University of Edinburgh and all

efforts were made to minimize animal suffering.

Blood sample collection and processing

Blood was collected in 10 mL K2 EDTA Vacutainer tubes (Becton Dickinson, USA) by jugular

venepuncture, using 18G needles (Becton Dickinson) and stored at 4°C. Within two hours of

collection samples were centrifuged at 1,900 g for 10 min at 4°C to remove blood cells, and

then again at 16,000 g for 10 min at 4°C to remove cellular debris and platelets. The second

centrifugation step has been shown to significantly reduce platelet numbers in plasma samples,

minimising platelet contamination [22]. In addition, haemolysis was controlled for by using

absorbance at 414 nm and the ‘miR ratio’ (ΔCq between miR-451 and miR-23a) as described

previously [23, 24]. All plasma samples were immediately frozen at -80°C.

RNA extraction

RNA was extracted from 1.05 mL of plasma using TRIzol LS (Life Technologies, USA), follow-

ing the manufacturer’s protocol. During the RNA extraction protocol, glycogen (180 μg;

Sigma-Aldrich, USA) was added to each sample to facilitate the precipitation of RNA, and an

exogenous miRNA control, syn-cel-miR-39-3p (0.25 fmol; Qiagen, NL), was spiked into each

sample. RNA was re-suspended in 30 μL of RNase-free water and used immediately or frozen

at -80°C.

Small-RNA sequencing analysis

Small-RNA libraries were prepared using the Illumina TruSeq small-RNA sample preparation

kit (Illumina, USA) following the manufacturer’s protocol. Libraries were submitted to 36-base

single-end sequencing using the Illumina HiSeq 2000 platform. The raw sequencing data are

available on the GEO database under accession GSE81050. Raw reads were processed using

sRNAtoolbox 1.0; initially reads with no adaptor and/or with undetermined bases (N) were

removed [25]. The bovine genome (assembly UMD 3.1, [26]) was used as reference; trimmed

and quality-controlled reads were mapped against mature miRNAs from bovine and human

(for homologue identification) in miRBase 20 (accessed 11/06/2014, [27]) allowing only a one-

nucleotide mismatch; novel bovine miRNAs as well as isomiRs were identified at this stage.

Prediction of novel miRNAs was carried out using sRNAbench software, as described previ-

ously [28, 25]. Briefly, sequencing reads that did not map to known miRNAs were mapped to

the bovine genome. Where pairs of read clusters mapped 60 nt apart, the two clusters (putative

novel miRNAs) and the connecting sequence were tested for their ability to form a stem-loop

(pre-miRNA). We also identified isomiRs of known canonical miRNAs using sRNAbench.

Briefly, the procedure maps small RNA reads to pre-miRNA loop sequences, identifying
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differences in sequence using a step-wise approach (end-variations first, miRNA-body varia-

tions next, etc; for further details please refer to the sRNAbench manual). To increase confi-

dence, only sequences present at a minimum of 25 RPM in more than 75% of samples analysed

were taken as true isomiRs.

After mapping, human and bovine miRNA read counts were merged and normalised to

generate reads per million mapped (RPMM). MiRNAs with less than 25 RPMMs in more than

75% of the samples within each of the experimental groups were excluded, keeping 181 miR-

NAs for further analysis. Normalised expression levels (RPMMs) from sRNAbench 1.0 were

log2 transformed before applying repeated-measures ANOVA using “ez” package 4.2 [29], fol-

lowed by FDR adjustment using R language 3.02 and RStudio 0.98 [30, 31]. The transformed

data were normally distributed as determined by the D’Agostino-Pearson omnibus and Sha-

piro-Wilk normality tests. Statistical significance was set to FDR< 0.1. Sequencing data are

provided in S1 File.

PCR array analysis

To design our Custom PCR array we took all miRNAs included in the Qiagen Human miR-

Nome™miscript v. 16.0 PCR array and aligned them (using BLAST, [32]) to cow miRNA

sequences listed in miRBase 19 (accessed 20/02/2013, [33]) in a Linux environment. A total of

308 miRNAs conserved in cow (i.e., with� 2 nucleotide mismatches between human and cow

sequences) were included in the 384-well Custom miScript miRNA PCR array (384-well,

Qiagen).

Three sample pools from each of Day 0, Day 8 and Day 16 (3–4 samples / pool) were ana-

lysed. cDNA (10 μL) was synthesised from 2 μL of RNA sample using miScript II RT kit (Qia-

gen) in a Whatman-Biometra Thermocycler (Biometra, USA). The arrays were setup

according to the manufacturer’s instructions and were analysed on the LightCycler 480 System

(Roche, Switzerland). Data analysis was performed using Microsoft Excel (Microsoft Corpora-

tion, USA) and R programming using R language 3.02 and RStudio 0.98 [30, 31]. Raw Cq data

were initially filtered to remove wells with non-specific amplification as identified by melting-

curve analysis. Cq values were normalised using the global mean expression, which was calcu-

lated from miRNAs which were detected in all of the sample pools. The statistical analysis of

the transformed normalised data was performed as described for the sequencing data above.

The PCR array dataset is provided in S2 File.

RT-qPCR analysis

cDNA was generated as described above and diluted for use in 10 μL qPCR reactions using

Qiagen SYBR Green kits in an Agilent Mx3005P qPCR system (Agilent Technologies, USA).

Raw fluorescence data were processed using Agilent MxPro software. A fluorescence threshold

of 0.1 was used to determine Cq values for all experiments. The amplification efficiency ranged

between 88% and 109%, with R2> 0.85. Data were processed using Microsoft Excel (Microsoft

Corporation). Statistical analyses were performed in GraphPad Prism 6 (GraphPad Software,

USA) using repeated-measures ANOVA followed by Dunnett’s tests or 2-sample t-tests if com-

parisons involved only two means. Statistical significance was set to P< 0.05. For selected cir-

culating miRNAs, normalised expression levels were correlated with plasma progesterone

levels using Spearman’s correlation (ρ) in GraphPad Prism 6 (GraphPad Software).

miRNA target analysis

Target analysis was carried out using DIANA miRPath 3.0 [34]. Briefly, experimentally vali-

dated miRNA targets were identified by calling DIANA TarBase 7.0 through the miRPath 3.0

MiRNAs and Oestrous Cycles
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interface [35]. Targets which were common to two or more of the miRNAs considered were

further selected for pathway prediction using miRPath 3.0 selecting the gene intersection analy-

sis method in the tool’s interface. Enriched pathways from the KEGG database were exported

from the tool along with FDR-corrected p-values. A significance threshold of P = 0.05 was

used. The predicted pathways (KEGG) are provided in S5 File.

Results and Discussion

Small-RNA sequencing of bovine plasma during the oestrous cycle

We sequenced 24 small-RNA libraries prepared from individual plasma samples collected

from 8 non-pregnant heifers on each of Days 0, 8 and 16 of the oestrous cycle in order to iden-

tify differentially expressed miRNAs at oestrus (Day 0). On average, we obtained 9.1 million

raw sequences from each sample (Table 1). The most common read lengths after removing the

sequencing adaptors ranged between 20–23 nucleotides, which corresponds to the length of

mature miRNAs (Fig 1A). On average, 4.3 million high quality reads (47.2% of raw reads) were

mapped to the bovine genome per sample. More than 70% of these mapped reads corre-

sponded to miRNAs, the majority of which were bovine (as registered in miRBase 20, accessed

11/06/2014 [36]); a much smaller fraction consisted of human miRNA homologues (0.1%) and

predicted novel miRNAs (0.04%; Table 1). A small percentage of the mapped reads corre-

sponded to other small non-coding structural and regulatory RNAs, such as small nuclear and

nucleolar RNA (snRNA and snoRNA, respectively; Fig 1B).

On average, a total of 313 unique miRNAs (296 bovine and 17 human) were detected with

more than 10 reads. Among the 10 most abundant miRNAs in plasma (Fig 1C), miR-486 (the

most abundant) and miR-92a are reportedly expressed primarily in red blood cells [37],

whereas miR-191 is highly expressed in platelets [38]. Four of the 10 most abundant miRNAs

(miR-486, miR-92a, miR-192 and miR-423-5p) were also identified as highly abundant in

bovine plasma in another study using Illumina technology [39]. The partial lack of agreement

between the two studies could be explained by the use of different protocols to prepare the

sequencing libraries as this has been shown to significantly influence the results of miRNA

sequencing, mainly through effects on adaptor ligation [40].

Our differential expression analysis included 181 bovine and human miRNAs, all of which

were present with more than 25 RPMM in at least 75% of samples in each experimental group

(see Materials and Methods; S1 File). Principal component analysis did not reveal a clear sepa-

ration of samples according to Day of the oestrous cycle (Fig 2A). Upon statistical analysis we

detected an effect of Day of the oestrous cycle on the expression levels of 20 miRNAs

(P< 0.05, Table 2; Fig 2B), however the differences involved were generally small (under

Table 1. Summary showing various endpoints from small-RNA sequencing of plasma samples from Day 0, 8 and 16 of the oestrous cycle (n = 8
heifers).

Day 0 Day 8 Day 16 Mean

Raw reads 9,241,040 9,380,798 8,737,868 9,119,902

Reads with adapter 8,461,507 8,361,521 7,918,324 8,247,117

Reads that passed QC 4,073,814 5,075,814 4,251,624 4,467,084

Reads that mapped to the
genome

3,918,066 4,894,047 4,075,763 4,295,959

Total miRNA reads 2,727,909 3,468,900 2,922,572 3,039,794

Bovine miRNA reads 2,724,952 3,465,422 2,920,090 3,036,821

Human miRNA reads 2,957 3,479 2,482 2,973

Novel miRNA reads 1,493 2,034 1,597 1,700

doi:10.1371/journal.pone.0158160.t001
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1.6-fold) and were not significant after multiple testing adjustment (FDR> 0.1), failing to

identify a high-confidence candidate miRNA biomarker of oestrus at this stage of the study.

We also used our sequencing data to identify isomiRs in plasma samples using sRNAbench.

We identified 655 different isomiRs for a total of 134 ‘canonical’ (miRBase) miRNAs. The

majority of the isomiRs (507) involved modifications on the 3’ end of the ‘canonical’miRNA,

while others had modifications on the 5’ end (22 isomiRs) or the middle (13 isomiRs) of the

‘canonical’miRNA. Ninety-three of the identified isomiRs contained multiple modifications

(e.g. 5’ end addition and 3’ end addition). Finally, 20 isomiRs were multiple length variants

involving a shift along the pre-miRNA sequence. A list of all the identified isomiRs is provided

in S3 File. Interestingly, the canonical sequence was the most abundant in plasma for only 51

miRNAs (38.1%). For the remaining miRNAs, the most abundant sequence(s) corresponded

to one or more of the identified isomiRs. For some miRNAs, the canonical sequence was

Fig 1. Results of small-RNA sequencing of bovine plasma. (A) Length distribution of trimmed read counts (mean number of
reads ± SEM) for each of Days 0, 8 and 16 of the oestrous cycle (n = 8 heifers). (B) Relative abundance (% of total mapped reads) of
different RNA species in bovine plasma. The ‘Misc RNA’ category predominantly includes Y RNA, Vault RNA and RNase P RNA. (C) Ten
most abundant miRNAs (mean read counts ± SEM) in bovine plasma on each of Days 0, 8 and 16 of the oestrous cycle.

doi:10.1371/journal.pone.0158160.g001
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Fig 2. Differential expression analysis of small-RNA sequencing data from Days 0, 8 and 16 of the bovine oestrous cycle (n = 8
heifers). (A) PCA plot. (B) Volcano plot showing the largest fold-change between any 2 of the 3 days analysed for each miRNA. The grey
dotted line indicates the 2-fold change threshold and the yellow horizontal line indicates P = 0.05. The plotted data have been log2
transformed.

doi:10.1371/journal.pone.0158160.g002

Table 2. TopmiRNAs which were up- or down-regulated between different Days of the oestrous cycle
using small RNA sequencing.

miRNA D8/D0 D16/D0 D16/D8 P-value FDR

bta-miR-199a-
5p

0.72 0.62 0.99 0.024 0.405

bta-miR-381 0.71 0.66 1.06 0.008 0.238

bta-miR-125b 0.98 0.68 0.74 0.025 0.405

bta-miR-154c 0.71 0.71 1.07 0.003 0.172

bta-miR-100 0.88 0.72 0.91 0.046 0.405

bta-miR-214 0.78 0.74 1.01 0.002 0.172

bta-miR-199c 0.76 0.74 1.06 0.004 0.172

bta-miR-532 0.81 0.74 0.93 0.005 0.172

bta-miR-2285t 0.86 0.75 0.94 0.040 0.405

bta-miR-99b 0.90 0.75 0.90 0.045 0.405

bta-miR-380-3p 0.76 0.80 1.11 0.025 0.405

bta-miR-222 1.24 0.90 0.76 0.040 0.405

bta-miR-369-3p 0.77 0.79 1.11 0.028 0.405

bta-miR-10b 0.77 0.90 1.19 0.031 0.405

bta-miR-3431 0.79 0.77 1.06 0.035 0.405

bta-miR-224 0.84 0.78 0.97 0.003 0.172

bta-miR-23a 0.87 0.78 0.92 0.010 0.254

bta-miR-23b-3p 0.86 0.79 0.93 0.036 0.405

bta-miR-205 0.81 0.79 1.04 0.045 0.405

bta-miR-155 1.32 0.96 0.76 0.034 0.405

MiRNAs are sorted using the maximum fold-change across all three comparisons. MiRNAs with FC > 1.5

are in bold.

doi:10.1371/journal.pone.0158160.t002
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expressed at much lower levels than the most abundant isomiR, this difference being� 25-fold

for a total of 21 miRNAs and up to 1044-fold for miR-192 (S3 File). This indicates that many

bovine miRNA sequences listed on miRBase do not actually correspond to the most abundant

isoform in plasma, and possibly also other tissues, something which will need to be considered

in future studies. Because of the low abundance of most isomiRs, we did not use these data for

differential expression analyses.

PCR array profiling of miRNAs in bovine plasma during the oestrous
cycle

To complement our sequencing analyses, we used a commercial Custom PCR array platform

to profile the expression of 308 bovine miRNA in the same plasma samples. It is usually not

feasible to screen a large number of individual samples using PCR arrays, therefore we analysed

3 plasma sample pools (3–4 samples / pool) from each of Days 0, 8 and 16 of the oestrous

cycle.

A total of 211 miRNAs were detected at Cq< 35 across all samples (Fig 3A). The miRNAs

which were most abundant in plasma (Fig 3B) in our experiment are reportedly expressed at

high levels in blood cells, including erythrocytes (miR-451, miR-16b), leukocytes (miR-150,

miR-27a, miR-23a) and thrombocytes (miR-223, miR-20a, miR-24) and are putatively released

into the plasma through apoptosis, lysis or active shedding [41, 42, 14]. Out of the 20 most

abundant miRNAs in each of the sequencing and PCR array datasets, only six (miR-451, miR-

486, miR-22-3p, miR-92a, miR-191 and miR-140) were common to both datasets (20% over-

lap). A very abundant miRNA in the sequencing dataset (miR-21-5p) could not be compared

as it was not included in the PCR array. However, considering the 150 most abundant miR-

NAs, 104 (70%) were detected by both platforms; out of the 46 miRNAs which were present

only in the sequencing dataset, 35 were not represented on the PCR array, explaining a large

part of the apparent lack of overlap in detected miRNAs between the two platforms. Further

explanation for differences in the most abundant miRNAs is provided in the form of platform-

Fig 3. Results of PCR array analyses of bovine plasmamiRNAs. (A) Distribution of Cq values. The percentage shown is the number of
miRNAs in each category divided by the total number of miRNAs assayed. (B) The expression level (mean ± SEM of 2^(40-Cq)) of the top 10
miRNAs during each of Days 0, 8 and 16 of the oestrous cycle (n = 8 heifers).

doi:10.1371/journal.pone.0158160.g003
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specific biases involving, for example, sequencing adaptor ligation bias and differences in

primer efficiency, which determine the relative abundance for a given miRNA [43, 44].

Principal component analysis did not reveal clear separation of the sample pools according

to Day of the oestrous cycle (Fig 4A), although sample pools for Day 0 were much more spread

than those for Days 8 and 16. After examining the major components in our PCA analysis we

could not identify an obvious miRNA or biologically meaningful miRNA group which

accounted for the variation within Day 0, although the low number of biological replicates

used in the PCR array analyses may have been a contributing factor. A total of 169 miRNAs

which had Cq< 35 in more than 67% of samples within each experimental group were used

for statistical analyses (S2 File). Differences in expression across the oestrous cycle (fold-

change� 2.1) were identified for 10 miRNAs, although they did not reach significance after

multiple testing adjustment (FDR> 0.1, Fig 4B, Table 3). Five of these miRNAs changed by

more than 1.5-fold between Days (Fig 4B, Table 3) and only miR-224 was common to both

PCR array and sequencing datasets (Tables 2 and 3).

RT-qPCR validation of plasma miRNA profiles

Despite the lack of significant differences in miRNA levels after FDR adjustment in either of

the sequencing and PCR array datasets, we decided to further analyse some of the differences

identified with P< 0.05. For this, we performed RT-qPCR on individual plasma samples,

which is considered the ‘gold standard’ for validation of high-throughput analyses results due

to its relative high accuracy, the ability to factor-in the amplification efficiency for each miRNA

and the absence of severe biases which can typically alter miRNA abundance data obtained

from sequencing analyses [43, 45].

Using RT-qPCR we also profiled additional miRNAs which expression in body tissues

changes during reproductive cycles according to previous reports [20, 21, 46–50]. This was

adopted as a complementary approach to identify biologically relevant miRNAs which may

have been missed by our high-throughput analyses.

Fig 4. Differential expression analysis of PCR array data from Days 0, 8 and 16 of the bovine oestrous cycle (n = 8 heifers). (A) PCA
plot. (B) Volcano plot showing the largest fold-change between any 2 of the 3 days analysed for each miRNA. The grey dotted lines indicate
the 2-fold change threshold and the yellow lines indicate P = 0.05. The plotted data have been log2 transformed.

doi:10.1371/journal.pone.0158160.g004
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We selected 8 miRNA candidates identified by sequencing (miR-125b, miR-155, miR-199a-

5p, miR-381, miR-99b; Table 2) or PCR array (let-7f, miR-378, miR-455-5p; Table 3) for RT-

qPCR analysis. Unfortunately, the plasma levels of miR-199a-5p, miR-381 and miR-99b were

too low for accurate profiling by RT-qPCR (Cq> 35). Out of the remaining 5 miRNAs, miR-

155, miR-378 and miR-455-5p did not change (P> 0.1) during the oestrous cycle when ana-

lysed by RT-qPCR. In contrast, let-7f levels decreased 2.2-fold (P< 0.05) on Day 8 compared

to oestrus (Day 0) followed by a non-significant increase in mean levels on Day 16, in agree-

ment with high-throughput data (Fig 5A). In addition, for miR-125b, although an overall effect

of Day of oestrous cycle was not found, expression levels tended to be higher (P = 0.08) during

oestrus (Day 0 vs Days 8 and 16 combined). Consistent with these findings, comparison of

miRNA and progesterone levels during Days 0, 8 and 16 within animals (S4 File) revealed a

negative correlation between let-7f and progesterone during the oestrus cycle (ρ = -0.523,

P = 0.009).

Thus, overall, 2 out of 5 miRNAs identified by either sequencing or PCR array were vali-

dated successfully by RT-qPCR. A recent study involving all major vendors of miRNA profiling

technologies [45] assessed different quantitative miRNA gene expression platforms (hybridiza-

tion, sequencing and RT-qPCR) and found concordance in differentially expressed miRNAs to

be surprisingly low between quantification platforms (54.6% on average). Based on this, the

qPCR validation rates observed in our study were not lower than expected, especially when

considering 1) the difficulty of profiling miRNAs in plasma and 2) the magnitude of the differ-

ences we attempted to validate.

Following this, we profiled additional miRNAs which we and others previously found to be

differentially expressed in ovarian [21, 19, 46, 51] or endometrial [48–50] tissues across differ-

ent stages of the reproductive cycle, but did not come up as significantly different between

Days of the oestrus cycle in our high-throughput analyses. We selected 8 miRNAs that were

reported to be upregulated (miR-145, miR-143, miR-99a-5p) or downregulated (miR-155 and

miR-142-3p, miR-132, miR-378) in follicular relative to luteal tissues of ruminants [19, 21] or

differentially expressed in endometrium during the human menstrual cycle (miR-31) [48–50].

These analyses revealed significant changes in the plasma levels of both miR-99a-5p and miR-

145 during Days 8 and 16 (Fig 5B) of the oestrous cycle compared to Day 0, in agreement with

differences reported between ovarian follicular and luteal tissues during oestrous cycles [21].

Table 3. TopmiRNAs which were up- or down-regulated between different Days of the oestrous cycle
using PCR arrays.

miRNA D8/D0 D16/D0 D16/D8 P-value FDR

bta-miR-224 0.75 0.63 0.86 0.031 0.666

bta-miR-185 1.30 1.51 1.18 0.027 0.666

bta-miR-140 1.57 1.36 0.87 0.028 0.666

bta-miR-455-
5p

1.67 1.61 0.99 0.049 0.787

bta-miR-382 0.48 1.00 2.13 0.013 0.556

bta-let-7f 0.71 0.87 1.26 0.012 0.556

bta-miR-20a 1.19 1.27 1.07 0.039 0.732

bta-miR-423-3p 1.38 1.23 0.89 0.032 0.666

bta-miR-106b 1.33 1.39 1.05 0.002 0.311

bta-miR-378 1.46 1.22 0.83 0.013 0.556

MiRNAs are sorted using the maximum fold-change across all three comparisons and miRNAs with

FC > 1.5 are shown in bold.

doi:10.1371/journal.pone.0158160.t003
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Fig 5. Results of RT-qPCR analyses of plasmamiRNAs during the oestrous cycle (n = 8 heifers). (A)
RT-qPCR validation (right column) of candidate plasmamiRNAs that had been identified as differentially
expressed by high-throughput analyses (small RNA sequencing or PCR array; shown in left column). (B)
Expression profiles obtained by RT-qPCR (right column) of miRNAs previously reported to be differentially
expressed in the ovary or endometrium during the oestrous cycle. Profiles for the samemiRNAs obtained by
small RNA sequencing are shown in the left column. In both (A) and (B) P-values from repeated-measures
ANOVA are shown. Mean differences are indicated by different letters; a, b for P < 0.05 (Dunnett’s tests) and
A, B for P < 0.1 (t-test).

doi:10.1371/journal.pone.0158160.g005
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Accordingly, the circulating levels of these miRNAs were negatively correlated with plasma

progesterone levels (ρ = -0.407; P = 0.049 and ρ = -0.404; P = 0.05 for miR-99a-5p and miR-

145, respectively; S4 File), similar to let-7f above. Higher mean levels of those two miRNAs

during oestrus (Day 0) were also apparent from high throughput data, but they were not signif-

icant (Fig 5B, left column). These results underline the advantages of combining different ana-

lytical approaches for identification of changes in circulating miRNA levels, particularly when

such changes are expected to be modest.

Two previous studies analysed circulating miRNA profiles during human menstrual cycles;

one reported no changes [52] and the other reported an increase in miR-31 levels during the

secretory phase of the cycle [48]. Differences in reproductive physiology between species and

in the analytical platforms that were used could very well account for the variable results

between studies, especially if changes in miRNA levels in circulation across reproductive cycles

are small. Another study recently reported differences in plasma miRNA levels (including

miR-26b-4p, miR-125b and miR-99a-3p) between naturally cycling heifers and heifers treated

with FSH to induce ovarian hyper-stimulation, but did not report differences in plasma

miRNA expression during natural oestrous cycles [53].

The origin and function of the miRNAs identified as increasing in plasma during oestrus is

not known. A reasonable assumption is that they may result, at least partially, from changes in

miRNA expression in the ovary, particularly given that mature follicles and especially corpora

lutea (CL) are highly vascularised structures that may contribute significantly to miRNA popu-

lations in the systemic circulation. In support of this, all 4 miRNAs that were expressed at

higher levels on Day 0 than Day 8 of the oestrus cycle (let-7f, miR-125b, miR-99a-5p and miR-

145) are also known to be expressed at higher levels in pre-ovulatory follicles than in corpora

lutea of ruminant ovaries, consistent with their role in the follicle-to-luteal transition [21]. On

the other hand, although some of the miRNAs analysed in this study are known to increase in

expression in the ovary during the luteal phase (e.g. miR-132; [46, 54, 20]), they were not

higher in plasma on Days 8 or 16 relative to Day 0 of the oestrus cycle. Moreover, the 4 miR-

NAs identified in our study to be differentially expressed during the oestrous cycle (let-7f, miR-

125b, miR-99a-5p and miR-145; Fig 5) are indeed expressed naturally not only in the ovary but

also (at lower levels) in many other tissues [55, 56], the relative contribution of which to circu-

lating levels is not known. It is also worth pointing out that we have not been able to accurately

quantify in plasma the gonad-specific miRNA, miR-202, despite this miRNA being present at

relatively high levels in both follicular cells and follicular fluid [19, 51], a finding that, in the

absence of any other evidence, argues against the ready transfer of at least some miRNAs from

follicular tissues at levels that can be robustly quantified in circulation.

Finally, miRNA target analysis identified predicted KEGG pathways simultaneously tar-

geted by two or more of the miRNAs identified in this study (miR-125b, let-7f, miR-99a-5p

and miR-145), and those included ECM-receptor interaction, p53 signalling, Hippo signalling,

Thyroid hormone and Cell cycle pathways (S5 File). However, the precise origin of these

plasma miRNAs will need to be elucidated before meaningful conclusions about their role dur-

ing the oestrus cycle can be drawn from these data.

In summary, the changes in miRNA levels during the bovine oestrous cycle identified in

this study likely reflect changes in expression in tissues other than or in addition to the repro-

ductive tract, a possibility that should be further investigated.

Conclusions

Using a combination of small RNA sequencing and qPCR we have identified for the first time

a subset of miRNAs with changing levels in plasma during the bovine oestrous cycle.
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Specifically, we identified an increase (up to 2.2-fold) in the levels of let-7f, miR-125b, miR-

99a-5p and miR-145 during oestrus. These may reflect changes in miRNA expression in repro-

ductive and/or other body tissues possibly involved in regulating cyclic reproductive activity.

In addition, we have characterised and provide a list of miRNA isoforms together with their

relative abundance in bovine plasma, which will provide valuable information for future stud-

ies. Our results pave the way towards exploring the role of circulating miRNAs as biomarkers

of reproductive function in livestock. Future improvements in nucleic acid profiling technology

may allow more accurate measurement of low-abundance miRNA levels in circulation and the

identification of additional miRNA candidate biomarkers.
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