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Mitochondrial dysfunction is increasingly considered as a critical contributor to the
occurrence and progression of acute kidney injury (AKI). However, the mechanisms by
which damaged mitochondria mediate AKI progression are multifactorial and
complicated. Mitochondrial DNA (mtDNA) released from damaged mitochondria could
serve as a danger-associated molecular pattern (DAMP) and activate the innate immune
system through STING, TLR9, NLRP3, and some other adaptors, and further mediate
tubular cell inflammation and apoptosis. Accumulating evidence has demonstrated the
important role of circulating mtDNA and its related pathways in the progression of AKI, and
regulating the proteins involved in these pathways may be an effective strategy to reduce
renal tubular injury and alleviate AKI. Here, we aim to provide a comprehensive overview of
recent studies on mtDNA-mediated renal pathological events to provide new insights in
the setting of AKI.
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INTRODUCTION

Acute kidney injury (AKI) is a cluster of clinical syndromes characterized by a rapid decline in renal
function over short period of time, such as hours or days (1). The incidence of AKI is increasing
with the aging population and leads to high mortality and disability, especially in patients in
intensive care units (ICUs) (2, 3). Unfortunately, AKI is now still monitored by urine volume and
serum creatinine level; indexes for early detection remain to be discovered. Additionally, there is a
lack of effective therapeutic strategies for AKI (4). Therefore, studies on new diagnostic markers and
treatment approaches are urgently needed (5).

Mitochondria are well known as energy-producing organelles. In addition to their canonical
function to meet the energy requirements of cells, mitochondria also control the innate immune
responses to sterile and infectious insults (6). In particular, mitochondria are essential for
maintaining renal tubular cell survival and normal function but are highly susceptible to damage
(7). Mitochondrial dysfunction is a crucial pathogenic factor which leads to tubular injury (8). The
multiple pathological features related to tubular cell injury, such as oxidative stress, immune cell
recruitment, inflammatory cytokine accumulation, and apoptosis, could all be caused by
org June 2021 | Volume 12 | Article 6806481
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mitochondrial dysfunction (9). Pathological analysis of renal
biopsy samples obtained from septic patients in the ICU
supported the view that mitochondrial injury contributes to
the pathogenesis of sepsis-causing AKI (10). Recent evidence
suggests that mitochondrial damage occurs at early stage of AKI
and even before the tubular cell apoptosis is detectable (11–13).
Strategies for mitochondrial protection could effectively protect
against AKI (14, 15). However, the mechanisms by which
mitochondrial dysfunction promotes tubular cell injury and
AKI progression are complex and need further study (16).

Circulating mtDNA Serves
as a Universal Danger-Associated
Molecular Pattern in AKI
In addition to nuclei, mitochondria are the only organelles that
contain DNA in eukaryotic cells. Mitochondrial DNA (mtDNA)
is a circular double-stranded DNA (dsDNA) that encodes
enzyme proteins, related ribosomal RNA, and transfer RNA
required for various steps of oxidative phosphorylation (17).
Normally, mtDNA is present in the mitochondrial matrix, but in
cases of membrane potential reduction and/or mitochondrial
membrane integrity damage, mtDNA can be translocated from
the mitochondria to the cytoplasm (18). Free in the cytoplasm,
mtDNA can serve as a danger-associated molecular pattern
(DAMP) to trigger the innate immune system to initiate a
non-infection-related inflammatory response, and that could
mediate local inflammation, cell death, tissue injury, and
dysfunction (6, 19). Moreover, biological behaviors, such as cell
necrosis and pyroptosis that damage the structure of the cell
membrane, can cause mtDNA to be released from the
intracellular and enter the extracellular environment, such as
blood or urine, which results in systemic inflammation and
injury (20). As a newly identified mitochondrial DAMP,
mtDNA has attracted growing interest in clinical and basic
research, including studies on AKI in recent years.

In early AKI, pathological changes in the mitochondria are
found in multiple kinds of AKI, including the septic, ischemic
and toxic insults in origin (8, 21, 22). Circulating mtDNA in AKI
patients’ blood or urine has been investigated in numerous
studies. As reported, the plasma mtDNA quantity was
enhanced in circulation after trauma and was associated with
the mortality of patients in ICUs (23, 24). MtDNA in plasma has
been suggested to be a promising biomarker in the clinical
context of AKI and severe lung injury (25, 26). Evidence from
clinical samples showed that in addition to the circulation,
mtDNA in urine is an important marker of renal injury and
AKI progression (27–30). Urine mtDNA levels were significantly
enhanced in patients with AKI and positively correlated with
serum creatinine levels, urine neutrophil gelatinase associated
lipocalin (NGAL), kidney injury molecule 1 (Kim1), and the
levels of inflammatory factors (30). Animal experiments also
confirmed that in the AKI mouse model, urine mtDNA was
derived from mitochondria-damaged renal tubular cells and
significantly and positively associated with serum creatinine
and urea nitrogen levels (27). Moreover, in vitro experiments
showed that mtDNA derived from necrotic cells induced
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inflammation in renal tubular epithelial cells (31–33). The
above evidence suggests that free mtDNA is a significant
damage factor during the occurrence and progression of AKI,
and could serve as a novel predictor in AKI. Furthermore,
strategies of targeting mtDNA-related pathways can be
potentially applied in the treatment of AKI.

The innate immune system plays a crucial role in mediating
tubular injury and renal dysfunction. During AKI, elevated
cytokines produced through innate immune pathways are
closely related to the renal pathological damage (34, 35).
Moreover, mtDNA, as an identified DAMP, can trigger the
activation of the innate immune system in numerous
pathological conditions such as sepsis, AKI, liver failure, and
lung injury (36–38). Considering the important contribution of
mtDNA in AKI and its related innate immune pathways, we
summarize the major signaling pathways which are triggered by
mtDNA and the potential therapies based on these studies.
MECHANISMS CONTRIBUTING TO THE
MTDNA-ASSOCIATED PATHOGENESIS
OF AKI

As a DAMP, free DNA is recognized and consequently elicits the
related signals to transfer downstream through pattern
recognition receptors (PRRs). MtDNA has been reported to be
captured by different PRRs (6); various PRRs which could
recognize mtDNA and their related pathways are reported to
play vital roles in the progression of AKI, as discussed
below (Figure 1).

The cGAS–STING System
Stimulator of interferon genes (STING), also called mediator of
IRF3 activation (MITA) or transmembrane protein 173
(TMEM173), was found to be a novel DNA recognition
receptor. Since STING was discovered in 2012, an increasing
number of studies have confirmed the existence of the cGAS–
cGAMP–STING pathway in different conditions and its vital role
in the removal of DNA viruses (39, 40).

The cGAS–STING system starts with the recognition of
DNA. DNA is bound to cyclic GMP-AMP synthase (cGAS) in
a non-sequence-dependent way through its phosphate ribose
skeleton to form a dimer, which can catalyze the synthesis of 2′-
3′ cyclic AMP-GMP (2′–3′ cGAMP), a secondary messenger in
cells. Then, cGAMP is transferred to the joint protein STING
and binds it through hydrophobic interaction and hydrogen (41,
42). Activated STING transfers to the Golgi apparatus, where
two cysteine residues of STING (Cys88 and Cys91) undergo
palmitoylation, which leads to the exposure of the active C-tail
domain (CTD). The structure of CTD is similar to the substrate
of TANK-bound kinase 1 (TBK1), and the combination with
TBK1 activates the downstream pathways. Two main
downstream pathways of STING have been recently described:
1) TBK1 mediates IRF3 phosphorylation, then initiates the
transcription of type 1 interferon to produce IFN-a and
IFN-b, and also induces many other target genes such as
June 2021 | Volume 12 | Article 680648
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interleukin (IL)-6 and IL-12; 2) Stimulation of cGAS–STING
activates the classical NF-kB inflammatory responses, which is
not fully dependent on the CTD of STING, to generate TNF-a,
IL-Ib, IL-6, and so on (43–48). Previous studies mainly focused
on the antiviral effect of STING in removing DNA viruses. In
fact, the cGAS–cGAMP–STING pathway plays many other roles
in addition to its antiviral ability. For example, STING is
important for many non-infection-related inflammatory states
by mediating acute and chronic inflammatory injury and
participating in the onset and progression of auto-
inflammatory diseases (49). Strikingly, many studies have
confirmed that not nuclear DNA but mtDNA is the key factor
for triggering the cGAS–cGAMP–STING pathway, possibly
because mtDNA has fewer DNA repair systems than nuclear
DNA and is more prone to damage (50–54).

As in AKI, when the kidney suffers from cisplatin-induced
injury, mitochondrial damage occurs accompanied by the
increased mitochondrial membrane permeability, which causes
the mtDNA to leak into the cytoplasm through the BAX pore on
the outer mitochondrial membrane. After mtDNA leakage, the
cGAS–STING pathway is activated, which leads to the
phosphorylation of transcription factors, promotion of
inflammatory factor secretion, and AKI progression. Activation
of the cGAS–STING pathway has been observed in multiple AKI
mice models and AKI patients (37, 55, 56). Moreover, STING
knockout mice showed attenuated renal function, tubular injury,
and inflammation when subjected to cisplatin treatment (37). In
addition, STING also mediates the secondary renal inflammation
and tubular injury (57). Although few studies focused specifically
on the kidney injury in sepsis, a role for the cGAS–STING
pathway in sepsis has been identified. Li N et al. found that
STING can activate the expression of the NOD-like receptor
family pyrin domain-containing-3 (NLRP3) inflammasome by
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promoting the nuclear translocation of phosphorylated IRF3,
stimulating the expression of inflammatory factors in myocardial
cells in LPS-induced septic mice and aggravating myocardial
injury (58). Qiongyuan Hu et al. reported that STING signaling
pathway in the intestinal tract was significantly activated, and the
expression level of STING in the human intestinal lamina was
related to intestinal inflammation in patients with sepsis and
cecal ligation and puncture (CLP)-induced septic mice.
Moreover, STING-knockout mice showed reduced bacterial
translocation, decreased intestinal permeability, and a weaker
inflammatory response, indicating that modulation of the
mtDNA–STING pathway might facilitate healing of mucosa
and defend the intestinal barrier in septic patients (59).
However, STING-mediated specific downstream mechanism in
AKI needs to be further explored.

As STING pathway is involved in the pathogenesis of AKI,
STING inhibitors have been employed to explore their effects on
AKI. To date, two kinds of STING antagonists have been tested
in AKI mouse models and displayed beneficial effects towards
ameliorating acute tubular injury and renal dysfunction (37, 60).
Of note, there is a species difference between human STING and
murine STING which is possibly due to the difference in the
amino acid sequences between species and the different binding
activities to specific cyclic dinucleotides (61, 62). Therefore, it is
required to take this into account for the design of
STING antagonists.

TLR9 Signaling
Toll-like receptors (TLRs) are important pattern recognition
receptors that regulate adaptive and innate immunity and
mediate resistance to microbial invasion. To date, 12 TLRs
have been found in mice, and 10 have been found in humans
(63). TLRs can be categorized into cell-surface TLRs (TLR1, 2, 4,
FIGURE 1 | Circulating mtDNA triggers the innate immune system through several mechanisms and mediates the pathogenesis of AKI. The occurrence of AKI is
closely associated with mitochondrial dysfunction in renal tubular cells. Tubular mitochondrial damage leads to mtDNA leakage into cytosol and extracellular space.
Circulating mtDNA binds with different DNA sensors and activates several innate immune signaling pathways such as cGAS–STING, TLR9-Myd88-NF-kB and
NLRP3 inflammasome, leading to tubular inflammation and injury, which contributes to the progression of AKI. MtDNA, mitochondrial DNA; STING, stimulator of
interferon genes; TBK1, TANK binding kinase 1; IKK, the IkB kinase; p, phosphorylation; IRF3, interferon regulatory factor 3; NF-kB, nuclear factor kappa B; TNF,
tumor necrosis factor; TLR9, toll-like receptor 9; Myd88, myeloid differentiation factor 88; IRAK, interleukin 1 receptor associated kinase; Ub, ubiquitylation; TRAF6,
TNF receptor associated factor 6; AIM2, absent in melanoma 2; IL, interleukin.
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5, and 6, which recognize fungal or bacterial products) and
intracellular TLRs (TLR3, 7, 8, and 9, which recognize RNA and
DNA products) (64). TLR9 is a cytoplasmic receptor for
unmethylated CpG motif containing DNA (CpG-DNA) found
in DNA viruses and microbial DNA (65). Generally, TLR9 is
localized to intracellular membrane compartments, such as the
endoplasmic reticulum, endosome, and lysosome. Therefore,
clathrin-mediated endocytosis is needed for the DNA
translocating from the cell surface to the intracellular
compartment and binding with TLR9 (66–68). Recent studies
suggest that mtDNA can be recognized by TLR9, which triggers
MYD88-dependent NF-kB-mediated gene transcription and
leads to inflammation and apoptosis in acute lung injury, non-
alcoholic steatohepatitis, and heart injury (26, 69, 70). Besides,
mtDNA is also recognized following endocytosis and binding to
TLR9 (71, 72).

In AKI, in vivo studies have illustrated that TLR9 contributes to
the development of septic and ischemic renal tubular injury by
promoting inflammation, apoptosis, and necrosis (73–76).
Meanwhile, enhanced levels of mtDNA were found in the
peritoneal cavity and plasma of septic mice induced by CLP or
LPS. Furthermore, renal function injury, abnormal mitochondrial
dysfunction and oxidative stress damage in the proximal tubules can
be reversed by TLR9 knockout. More importantly, intravenous
injection of mitochondrial debris (MTD) including substantial
amounts of mtDNA in mice induced the similar inflammatory
response to that of mice subjected to CLP; while knocking out TLR9
or DNase pretreatment attenuated this effect, which provided
evidence that free mtDNA could mediate kidney injury through
TLR9 (77). All these studies imply the role of mtDNA in the TLR9-
mediated pathogenesis in AKI.

However, it is inconsistent whether the TLR9 pathway
specifically causes tubular dysfunction in sepsis. Results from a
previous study indicated that TLR9 was predominant on
dendritic cells (DCs) in the interstitium but not on tubular
epithelial cells (78). Consistent with this observation, Liu et al.
documented that TLR9 expression was weakly detected in
glomerular cells or renal tubular epithelial cells in control
mice, although it was upregulated in tubular epithelial cells
and glomerular cells in the mice subjected to CLP (79).
Another study suggested that only the activation of TLR9 on
renal tubular epithelial cells exacerbated the ischemic AKI; the
activation of TLR9 on other cell types was renoprotective during
AKI (80). These conflicting results suggest a necessity for further
experimentation to clarify the mechanism of TLR9 activation in
AKI. However, the endogenous mtDNA-mediated activation of
TLR9 should contribute to the pathogenesis of AKI, and
targeting TLR9 using siRNA or selective antagonist through
targeting tubular delivery could protect against AKI (79, 81, 82).

Activation of NLRP3 Inflammasomes
NLRP3 inflammasomes are mainly composed of the receptor
protein NLRP3, adaptor protein ASC (apoptosis-associated speck-
like protein containing a CARD) and downstream caspase-1 (83).
Studies have verified the vital roles of activated inflammasomes in
numerous pathological conditions, such as metabolic, autoimmune,
autoinflammatory and infectious diseases (84–88). NLRP3
Frontiers in Immunology | www.frontiersin.org 4
inflammasomes are mainly expressed in monocytes, macrophages,
neutrophils, dendritic cells, and many non-hematopoietic cells (89,
90). Once activated, NLRP3 can trigger the self-cleavage and
maturation of caspase-1, then activated caspase-1 not only
promotes the maturation and secretion of various pro-
inflammatory cytokines, including IL-1b and IL-18, but also
triggers pyroptosis, which can eliminate pathogens and damaged
cells (91, 92). Notably, NLRP3 inflammasomes are able to recognize
various patterns that are closely related to many diseases, such as
bacterial polypeptide antibiotics, bacterial RNA, and influenza virus
ion channel proteins, ATP, and mtDNA (93–99). Although NLRP3
inflammasome activation triggered by cytosolic mtDNA has been
demonstrated in many cases (98, 100, 101), direct evidence of
mtDNA triggering NLRP3 inflammasomes in AKI is lacking.
However, studies found that patients in the ICU had high levels
of free mtDNA and IL-18 in the plasma, which were positively
associated with the severity and mortality of diseases (25, 102),
which suggested that cytosolic mtDNA might drive inflammasome
activation and IL-18 secretion in an indirect or possibly a
direct manner.

Others
In addition to the aforementioned sensors and adaptors, studies
have found other kinds of DNA sensors. However, not all
receptors can combine with mtDNA directly. Absent in
melanoma 2 (AIM2), a member of the ALR family, is composed
of the DNA-binding HIN domain and pyrin-signaling domain
(PYD). Cytoplasmic dsDNA can bind to the HIN domain of
AIM2 non-specifically, which stimulates the assembly of AIM2 in
inflammasomes. Activation of the AIM2 inflammasome promotes
apoptosis and the maturation of pro-inflammatory cytokines IL-
18 and IL-1b (103, 104). However, the minimum number of base
pairs of DNA that can be recognized by AIM2 is 80 kb (105), while
mtDNA is a short strand of nucleic acid, at 17 kb (47), which
cannot effectively bind to AIM2. AIM2 has a protective effect
against microbial infection, but it is pathogenic to sterile
inflammatory diseases, such as cardiovascular diseases, skin
diseases, neuroinflammatory diseases, and CKD. During the
pathogenesis of CKD, DNA from necrotic cells in the kidney
was recognized by AIM2, which induced the assembly of the
inflammasome complex and activated macrophages to produce
IL-18 and IL-1b (106). Therefore, we hypothesize that AIM2,
although unable to bind with mtDNA, may mediate the similar
inflammatory effect in renal injury by responding to nuclear DNA.
In addition, there are some other sensors that might recognize
cytosolic mtDNA, such as DNA-dependent activator of IFN-
regulatory factors (DAI) and RNA polymerase III. However,
further studies are needed to explore their binding with mtDNA
and/or the function in the pathogenesis of AKI (107, 108).
SUMMARY AND FUTURE
PERSPECTIVES

Mitochondrial injury is a common pathological phenomenon in
different types of AKI models, which leads to the release of
June 2021 | Volume 12 | Article 680648

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. Mitochondrial DNA in AKI
mtDNA into the cytoplasm. Currently, circulating mtDNA from
damaged mitochondria has been reported to be involved in the
pathogenesis of AKI. Clinical studies demonstrated that level of
free mtDNA was elevated in AKI patients and was associated
with the disease severity and prognosis (28, 29), suggesting that
circulating mtDNA has the potential to serve as a predictor for
AKI. As one kind of mitochondrial DAMPs, mtDNA could
promote inflammatory response through binding with the
DNA sensors and triggering the innate immune activation.
Although the identified sensors of mtDNA could also
recognize other kinds of nucleic acids, studies have mentioned
the importance of mtDNA, but not nuclear DNA, in the
occurrence and the development of AKI (38). Furthermore,
depletion of mtDNA markedly attenuated the acute renal
tubular cell injury (37), indicating that strategies targeting both
mtDNA-mediated pathways and mtDNA clearance mechanisms
need to be considered in AKI therapy. However, the detailed
mechanism underlying mtDNA-mediated pathogenesis in AKI
Frontiers in Immunology | www.frontiersin.org 5
and the strategies antagonizing mtDNA-associated kidney injury
need to be further explored.
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